
                          Laudani, A. A. M., Carloni, L., Thomsen, O. T., Lewin, P. L., & Golosnoy, I.
O. (2020). Efficient Method for the Computation of Lightning Current
Distributions in Wind Turbine Blades using the Fourier Transform and the
Finite Element Method. IEE Proceedings A - Science Measurement and
Technology. https://doi.org/10.1049/iet-smt.2019.0343

Peer reviewed version

Link to published version (if available):
10.1049/iet-smt.2019.0343

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IET at https://digital-library.theiet.org/content/journals/10.1049/iet-smt.2019.0343. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/user-
guides/explore-bristol-research/ebr-terms/

https://doi.org/10.1049/iet-smt.2019.0343
https://doi.org/10.1049/iet-smt.2019.0343
https://research-information.bris.ac.uk/en/publications/efficient-method-for-the-computation-of-lightning-current-distributions-in-wind-turbine-blades-using-the-fourier-transform-and-the-finite-element-method(2b18fbbd-9fac-4f48-8069-ff2ff2757b3f).html
https://research-information.bris.ac.uk/en/publications/efficient-method-for-the-computation-of-lightning-current-distributions-in-wind-turbine-blades-using-the-fourier-transform-and-the-finite-element-method(2b18fbbd-9fac-4f48-8069-ff2ff2757b3f).html


 

1           
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Efficient Method for the Computation of Lightning Current 
Distributions in Wind Turbine Blades using the Fourier 
Transform and the Finite Element Method 
 
 
A.A.M. Laudani1*, L. Carloni2, O.T. Thomsen3, P.L. Lewin1, I.O. Golosnoy1 
 
1 The Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, 
University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom 
2 PolyTech Lightning A/S, Hovedgaden 451K, Hedehusene, 2640, Denmark 
3 Bristol Composite Institute (ACCIS), Department of Aerospace and Engineering, University 
of Bristol, University Walk, Bristol, BS8 1TR, United Kingdom 
 
 
Published in: 
IET Science, Measurement & Technology, DOI: 10.1049/iet-smt.2019.0343  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

2           
 

 
 
 
 
 
 
 
Efficient Method for the Computation of Lightning Current Distributions in Wind 
Turbine Blades using the Fourier Transform and the Finite Element Method 
 
A.A.M. Laudani1*, L. Carloni2, O.T. Thomsen3, P.L. Lewin1, I.O. Golosnoy1 
 
1 The Tony Davies High Voltage Laboratory, School of Electronics and Computer Science, University 
of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom 
2 PolyTech Lightning A/S, Hovedgaden 451K, Hedehusene, 2640, Denmark 
3 Bristol Composite Institute (ACCIS), Department of Aerospace and Engineering, University of Bristol, 
University Walk, Bristol, BS8 1TR, United Kingdom 
*a.a.m.laudani@soton.ac.uk 
 

Abstract: Rotor blades of large, modern wind turbines are susceptible to lightning strikes. In order to produce 
a design that resists lightning strikes, it is crucial to simulate lightning current propagation in the blade 
components. Since the current in the blade is generated by the superposition of potential and induced electric 
fields, a coupling exists between electric and magnetic fields which needs to be calculated by an imposed 
integral constraint at each time step. Commercial software packages are able to deal with such constraints, 
but it results in time-consuming computations. Therefore, this work aims to develop a numerical methodology 
able to compute the voltage which drives the lightning current through the structure. In this way, the problem 
is reformulated as a voltage-driven one which in turn allows a simple subsequent coupling of electric and 
magnetic problems. The computation of the voltage waveform was accomplished using the Fast Fourier 
Transform (FFT) and the Finite Element Method (FEM) to compute the structure impedance in the frequency-
domain. The developed procedure showed high efficiency for a blade subjected to different lightning 
impulses. It allows a description of the time-dependent lightning current to be given, as well as the 
distribution of current within the blade conductors. 
 
1. Introduction 

Over more than a decade, several studies [1] [2] 
[3] [4] [5] have shown that wind turbine blades are highly 
susceptible to downward lightning strikes, as well as to 
triggering upward lightning. Consequently, it is required 
to equip them with a Lightning Protection System (LPS) 
capable of preventing damage due to lightning direct 
attachment. LPSs are composed of metal receptors 
placed over the blade surface and metal down 
conductors located in the cavity of the blade. The former 
are aimed to intercept the lightning leaders, whereas the 
latter are intended to conduct the lightning current from 
the attachment point to the earthing system [6] [7]. The 
receptors have to be designed according to the 
guidelines and procedures specified in the IEC standard 
[7]. In this case, most of the lightning energy is 
discharged to the ground through the LPS [3] [5]. 

The ever-increasing demand for wind turbines 
with higher rated power outputs led to the need for 
longer rotor blades. To meet these requirements and to 
maintain a low weight, wind turbine manufacturers 
implemented Carbon Fibre Reinforced Polymer (CFRP) 
materials into the rotor blade load-carrying laminates, 
i.e. the spar caps (Fig. 1) [8] [9]. However, the 
incorporation of a poorly conducting material like CFRP 
(with conductivity between 3 and 5 orders of magnitude 

smaller than metals) introduces additional challenges 
for the protection of the blade against lightning strikes. 
For instance, equipotential connections need to be 
realised between the down conductor and the CFRP 
structure to prevent internal arcs due to a high potential 
difference between the two conductors, which would 
cause severe structural damage to the spar cap [10].  

The performance of LPSs is mainly assessed by 

 
Fig. 1. Typical wind turbine blade cross-section [9]. 

 
expensive testing, which can cost up to €100,000 
including material and manufacturing costs [11]. 
Numerical simulations using the Finite Element Method 
(FEM) might represent a cost-effective and time-
efficient alternative to testing in order to assess the 
capability of lightning protection solutions. In fact, once 
a model is validated, it can be re-employed several 
times during the design stage (e.g. it might be needed 
to modify the geometry or to vary the lightning waveform 
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parameters) at little extra cost [6] [7] [12]. However, past 
research [12] [13] [14] has shown that electric current 
distributions within the rotor blade structure (down 
conductors and CFRP spar caps) are driven by both 
potential electric field and induced electric field 
generated by the time-variable magnetic field. Current 
distributions in the blade structure can be predicted 
through the solution of the field diffusion problem, i.e. by 
solving for electric and magnetic potentials and coupling 
them through an imposed integral constraint on the total 
transport current. A numerical solution of such a 
combined problem is complex for fast rising currents 
such as lightning impulses (large induced electric field) 
and tests on commercial software packages [15] [16] 
indicate that multiple iterations at each time step are 
required to find consistent solutions. Moreover, the 
computational cost of such analyses is even higher for 
high aspect-ratio structures like rotor blades, which 
require fine meshes for accurate predictions.  

On the other hand, better convergence and a 
smaller computational time would be achieved by 
imposing a transient voltage boundary condition. The 
latter allows independent calculations of the potential 
component of the electric field (and of the associated 
current density, i.e. -V) in the magnetic potential 
problem. However, such voltage waveforms are not 
known from lightning observation studies. Therefore, 
the objective of this paper is to develop a numerical 
procedure able to compute the voltage which drives the 
sought lightning current through the assessed structure.    

The FEM is an effective tool to study the thermal 
damage experienced by wind turbine blades during a 
lightning strike. In fact, the advantage of this method is 
the capability to predict the spatial distribution of the 
current density in the rotor blade cross-section. This 
would allow the identification of high current density 
areas, which might lead to resin decomposition, 
associated outgassing and delamination within the 
composite [17] [18]. The considerable reduction in 
computational time achieved through the proposed 
procedure would make FEM analyses more efficient to 
study such phenomena. Alternative approaches based 
on equivalent circuit modelling are less computationally 
demanding but cannot provide the spatial distribution of 
the current density in the blade cross-section. 

This paper is structured as follows. Section 2 
introduces the modelling framework used in this study, 
while Section 3 presents details of the numerical 
methodology when applied to the first positive return 
stroke lightning impulse. Then, the procedure is applied 
to a second type of lightning current (i.e. the subsequent 
return stroke) in Section 4. The results are presented 
and discussed in Sections 5 and 6. Finally, the 
conclusion sums up the main points of this paper. 

2. Modelling Framework 

As outlined in the introduction, the numerical 
solution to lightning current distribution problems is 
complex due to the integral constraint on the total 
lightning current. This issue can be removed by a 
subsequent coupling of the equations for electric and 
magnetic potentials through transient voltage boundary 

conditions. However, these voltage conditions depend 
on the lightning current in a non-linear manner, i.e. they 
cannot simply be scaled up and down from a single 
reference case. Consequently, a procedure needs to be 
devised in order to compute the voltage which results in 
the sought lightning current. 

The first step of the developed approach (Fig. 2) 
is to compute the spectrum of the lightning current. In 
the second step, the electromagnetic problem is solved 
in the frequency-domain in order to determine the 
voltage related to each component of the lightning 
current spectrum. This can be easily completed since 
the problem is linear at each fixed frequency, i.e. 
voltage and current are directly proportional through the 
impedance. In the third step, the voltage components 
are transformed back to the time-domain, obtaining the 

 
Fig. 2. Flowchart of the proposed  procedure.  

 
sought transient voltage profile. Finally, the 
electromagnetic problem is solved in the time-domain 
applying the determined lightning voltage waveform as 
boundary condition.  

To accomplish this algorithm, the following input 
data need to be known: the expression of the transport 
current to compute its spectrum; and the geometry and 
material properties of the structure under study to 
evaluate its impedance at different frequencies. In our 
application, these are the lightning current and the rotor 
blade geometry and material properties, respectively. 

3. Numerical Procedure 

The steps outlined in Section 2 are accomplished 
by the computational algorithms given below. For clarity, 
the procedure was applied to the first positive return 
stroke case. 

3.1. Time-Domain Current: Heidler Function 

The waveforms of lightning short strokes (first 
and subsequent return strokes given in Table 1) are well 
approximated by the Heidler function [19] [20]: 
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(1) 
where I0 [A] is the peak current, k0 is the correction 
factor for the peak current (typically around unity), t [s] 
is the time, T1 [s] is the rise time coefficient and T2 [s] is 
the decay time coefficient. 

Table 2 summarises the Heidler function 
coefficients [6] [19] [20] [21], while an example of the 
Heidler function waveform for the first positive return 
stroke is illustrated in Fig. 3. Note that the time 
coefficients T1 and T2 that need to be entered in (1) are 
longer than the standard [7] front duration, 1 [s], and 
time to half value, 2 [s], respectively. In fact, the 
inherent shape of the Heidler function presents an initial 
offset interval, Toff [s], in which the current is zero (Fig. 
3).  

 
Fig. 3. First positive return stroke current waveform 

and offset time [20]. 
 
The first positive return stroke is characterised by 

a specific energy (i.e. action integral ∫ 𝑖ଶ 𝑑𝑡) equal to 10 
MJ/ and consequently it generates a large amount of 
Joule heating in the structure. Noting this, the downward 
positive lightning is often considered to assess the Joule 
heating damage at the equipotential connections 
between the LPS and CFRP spar [7].  

3.2. Fourier Transform  

The Heidler function in (1) is composed of two 
terms with very different time coefficients: the rise term, 
which is a power curve; and the decay term, which is 
the exponential decay. The Fourier integral of (1) cannot 
be analytically calculated, and the spectrum of the 
standard lightning waveform can be determined by 
either numerical integration or the Discrete Fourier 
Transform (DFT) [20]. The latter is the preferred method 
since it is more efficient when performed using the Fast 
Fourier Transform (FFT) algorithm, provided that the 
total number of samples is an integer power of 2 [22]. 

The DFT converts a discrete time periodic signal 
(an array of time-domain samples) into a sum of 
sinusoidal components (an array of frequency-domain 
components) [22] [23]. Since the standard lightning 
current is a non-periodic continuous function, it is first 

required to sample it. This was done by choosing an 
appropriate sampling interval, T [s], and number of 
samples, N, to ensure that the sampling reflects the 
characteristics of the lightning waveform. The 
observation time, Ts [s], is then defined as [22] [23] 

𝑇௦  =  𝑁𝑇 
(2) 

whereas the frequency points are defined as 

𝑓௞  =  
𝑘

𝑇௦
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(3) 
where k is the frequency index (bin number). 

The discrete spectrum of the Heidler function is 
given by the following equation: 
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(4) 
where 𝐼௞

෩  [A] is the frequency-domain k-th current 
complex coefficient, Ik [A] is the magnitude of the k-th 

current complex coefficient, j is the square root of -1, I,k 
[rad] is the argument of the k-th current complex 
coefficient, in [A] is the n-th current sample in the time-
domain and n is the time sampling index. 

The total number of frequency components is 
equal to the number of time-domain samples. According 
to the Nyquist Theorem [22], the frequency bandwidth 
is half the sampling frequency, Fs. Consequently, all the 
frequency components larger than Fs/2 will be aliased 
when the signal is transformed back to the time-domain. 
Therefore, when performing the Discrete Fourier 
Transform of non-periodical signals, the sampling 
frequency must be chosen carefully in order to prevent 
significant errors. In addition, special attention should 
also be paid to [22] 
 The selection of the sampling interval, which is 

chosen to represent the high frequency 
components of the Heidler function. For this reason, 
at least 20 time points need to be placed along the 
rising front. Such an empirical approach allows to 
pass the “knee” on the current magnitude plot given 
in Fig. 4a, as well as to ensure that the magnitudes 
of the aliased components are small enough to be 
ignored.  

 The number of samples, which defines Ts as given 
in (2) and is chosen to capture the slow decaying 
tail of the Heidler function, i.e. the current i(Ts) 
should decay below 10-18 of its peak value. This is 
a very conservative requirement and can be relaxed 
for lightning waveforms that present shorter tails. 
However, such an excessive extension of the 
observation time does not affect the computational 
time of the DFT since it is performed using the FFT 
algorithm (FEM simulations are instead stopped at 
2 ms, which is the typical duration of a lightning 
short stroke [7]).  

An adequate representation of the first positive 
return stroke was achieved when the sampling interval 
was 0.61 s, the number of samples was equal to 
32,768 and the frequency bandwidth was 800 kHz 
(see Fig. 4a and Fig. 4b). This discretisation is 
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compared in Section 5 with the one employed in [24]. 
The latter presents computations with only 14 points on 

the rising front and the current i(Ts) decays to 10-6 of its 
peak value. 

 
Table 1. Waveform parameters of both the first positive return stroke and subsequent return stroke [7]. 

Lightning Impulse 
Peak Current 

I0 [kA] 
Front Duration 

1 [s] 
Time to Half Value 

2 [s] 

First Positive Return Stroke 200 10 350 

Subsequent Return Stroke 50 0.25 100 
Table 2. Heidler function coefficients for the first positive return stroke and subsequent return stroke [6] [19] [20] 

[21]. 

Lightning Impulse 
Peak Current 

I0 [kA] 
Correction Factor  

k0 
Rise Time 

T1 [s] 
Decay Time 

T2 [s] 

First Positive Return Stroke 200 0.93 19 485 

Subsequent Return Stroke 50 0.993 0.454 143 
 

 
Fig. 4. First positive return stroke current spectrum: (a) magnitude; (b) argument. 

 

 
Fig. 5. Arrangement of the blade conductors (not to scale). 

 
 

Table 3. Wind turbine blade dimensions [11]. 

Spar cap 

Width [mm] 400 

Thickness [mm] 0.8-27 

Length [m] 40 

Spar - Down Conductor Distance [mm] 100 

Equipotential Bonding 

Width [mm] 522.8 

Thickness [mm] 0.214 

Length [m] 40 

Down Conductor  

Width [mm] 22.8 

Thickness [mm] 2.2 

Length [m] 40.2 

Cross-Section [mm2] 50 
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Fig. 6. Variation of the spar thickness as a function of 
the blade position [11].

Table 4. Spar, equipotential bonding and down conductor electrical conductivity tensors. The electrical conductivity 
of both UD and Biax CFRP along the principal directions were experimentally measured in this study using the 

methodology published in [25] [26] [27]. The CFRP principal directions given in the table are: 1 – along the fibres; 2 
– transverse to the fibres; 3 – through-thickness. Biax CFRP is assumed to be approximately in-plane isotropic (1, 

2). The conductivity of the copper braid is taken from [11]. 
Materials  11 [S/m] 22 [S/m] 33 [S/m] 

UD CFRP (Spar)  36380 17.910 3.950 

Biax CFRP (Equipotential Bonding)  20702 20702 8.340 

Copper (Down Conductor) [11] 5.998x107 5.998x107 5.998x107 

3.3. Impedance Calculation: Frequency-Domain Field 
Diffusion Problem 

Once the spectrum of the transport current is 
determined, the next step is to predict the voltage 
spectrum (i.e. the voltage magnitude and phase related 
to each frequency component of the current spectrum). 
This was done by solving the steady-state problem in 
the frequency-domain using the FEM. In order to do so, 
it was essential to know the geometry and material 
properties of the analysed system (i.e. the wind turbine 
blade). 

3.3.1. Model Formulation 

The rotor blade was modelled in Comsol 
Multiphysics and the following set of equations were 
solved in the frequency-domain [15] [16]: 

൝
𝛻 x 𝑯 =  𝑱
𝛻 ∙  𝑨 =  0
𝛻 ∙  𝑱 =  0

 

(5) 
while the following relations are known as follows: 

൝

𝑩 =  𝛻 x 𝑨
𝑩 =  𝜇଴𝜇௥𝑯

 𝑱 =  − 𝝈𝛻𝑉 −  𝝈𝑗𝜔𝑨
 

(6) 
where ∇ x is the curl operator, H [A/m] is the magnetic 
field strength, J [A/m2] is the conduction current density, 
∇ ∙ is the divergence operator, A [Wb/m] is the magnetic 
vector potential, B [T] is the magnetic flux density, 0 
[H/m] is the vacuum permeability, r is the relative 
permeability, σ [S/m] is the electrical conductivity tensor, 
∇ is the gradient operator and V [V] is the electric scalar 
potential.  

The displacement current density term has been 
neglected in (5) since lightning strikes are considered to 
be low-frequency applications [17] [18] [28] [29]. For 
instance, at 800 kHz the displacement current in the 
composite materials is smaller than the conduction 
current by 11 orders of magnitude along the fibre 
direction and by 7 orders of magnitude along the 
through-thickness direction.  

In addition, the rotor blade is considered 
reflectionless in this modelling approach, which has 
been proved to be a safe assumption [12].   

3.3.2. Rotor Blade Geometry and Material Properties 

The geometry of the analysed system is shown in 
Fig. 5 while its dimensions are summarised in Table 3. 
The spar cap thickness varies along the blade length 
and the design includes three chamfered profiles, which 
are 5 m in length. As depicted in Fig. 6, the spar 
thickness increases from 0.8 mm to 20 mm (a) and from 
20 mm to 27 mm (b) when moving from the tip towards 
the centre of the blade. It then decreases again up to 
0.8 mm (c) when approaching the blade root. The CFRP 
spar is connected to the down conductor along the 
entire length of the blade by means of equipotential 
connections (Fig. 5). The down conductor has a cross-
sectional area of 50mm2 [7]. 

Table 4 lists the electrical properties of the spar, 
equipotential bonding and down conductor materials. 
The anisotropic conductivity of both UD and Biax CFRP 
materials were experimentally measured according to 
the procedures available in [25] [26] [27]. Finally, the 
relative permeability of both copper and CFRP materials 
was assumed to be equal to 1 [30] [31]. 
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The epoxy system used in the CFRP materials 
was supplied by Hexion and comprised Hexion 
RIMR035c epoxy resin and Hexion RIMH037 curing 
agent. The spar UD non-crimp carbon fabrics and the 
equipotential bonding Biax non-crimp carbon fabrics 
were supplied by Saertex and had areal weights of 870 
g/m2 and 218 g/m2, respectively. Finally, a copper braid 
[11] was employed as down conductor. 

3.3.3. Mesh 

The blade structure (Fig. 5) was placed within a 
computational domain, i.e. the return path, which was a 
rectangular box of height and width equal to 1 m and 
length of 40.2 m. The implemented return path is the 
one usually employed during tests, in which it is placed 
at a small distance from the blade sample, generally 1-
2 m [11] (on the other hand, it would be required to 

employ infinite elements for general simulations of 
lightning strikes to rotor blades).  

A mesh convergence study was conducted using 
the automatic mesh refinement option [15] [16] for two 
frequency components of the current spectrum: the first 
one had amplitude and frequency equal to 150 A and 
20 kHz, respectively; the second one was characterised 
by an amplitude of 4.147 x 10-11 A and a frequency of 
800 kHz. The mesh convergence results for these two 
frequency components are shown in Fig. 7a and Fig. 7b, 
respectively. Uncertainties in the driving voltage below 
0.5% were found when the solving domain was 
discretised by 64,000 prismatic elements, and this 
mesh was used for the analyses carried out in this study 
(Fig. 8).

 
Fig. 7. Mesh convergence: (a) Ik = 150 A and fk = 20 kHz; (b) Ik = 41.47 pA and fk = 800 kHz. 

 

 
Fig. 8. FE blade model and mesh implemented in Comsol Multiphysics (the air volume is hidden in this view). 
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3.4. Selection of Frequency Components and 
Interpolation Strategy  

As shown in Section 3.2, the typical spectrum of 
the first positive return stroke current comprised 32,768 
components. Solving the electromagnetic problem (in 
order to predict the voltage components at given 
frequencies) for all these components is very time-
consuming, especially when considering real blade 
geometries characterised by a high aspect-ratio. 
Therefore, to reduce the computational time, the 
electromagnetic problem was solved for a small set of 
components only, while the remaining voltage 
components were determined through interpolation.  

The selection of the current frequency 
components for the electromagnetic solution plays an 
important role in the overall accuracy of the procedure 
because it might introduce significant errors during the 
interpolation process. First of all, the electromagnetic 
problem was only solved for 133 components out of 
32,768, which were chosen in such a way as to cover 
the entire bandwidth of the current spectrum (note that 
only a small number of components was selected at 
high frequency, see Fig. 9). The corresponding voltage 
drops predicted through the FEM were then cubic 
interpolated to determine the remaining 32,635 voltage 
components and thus the voltage spectrum (Fig. 10).  

However, it is also required to know the phase 
(V,k) of each voltage component to obtain the required 
time-domain voltage waveform. Consequently, a 
second component selection procedure was carried out 
to determine the voltage phase at different frequencies. 
To do so, the approximately linear relationship between 
the current phase and the frequency (Fig. 4b) was 
exploited. More specifically, a set of frequencies was 
chosen that lay in all the branches of the bandwidth (Fig. 
11). That is, the selected components need to be 
spaced by approximately 2 rad. In fact, if the selected 
points are spaced by more than 2 rad, then some of 
the phase branches would be lost. After that, the 
electromagnetic problem was solved for these 
frequencies (416 in total) and the corresponding voltage 
phases are plotted in Fig.12 (blue points). Then, the 
frequencies at which the phase is minimum (-rad) and 
maximum ( rad) were linearly extrapolated (red 
crosses in Fig. 12). The phases between the 

frequencies of minima (-rad) and maxima (rad) were 
instead determined by linear interpolation, which are 
given in Fig.13 (blue plot). As a comparison, Fig. 13 also 
shows the voltage phase obtained when solving the 
electromagnetic problem in a time-domain 
computational analysis (red plot) by imposing the 
transport current, i.e. the slow procedure. A good 
agreement is obtained between the two, with some 
discrepancies in the frequency range between 250 and 
600 kHz. Because of these discrepancies, it needs to 
be verified that the correct current is driven by the 
sought transient voltage (see Section 5).  

The performance of the interpolation procedure 
as a function of the number of selected components is 
studied in Section 5. The following sets of components 
were considered for the voltage magnitude and phase 
interpolations: 20 and 67; 45 and 119; 80 and 294; 133 
and 416 (the suggested ones).  

Finally, it should be noted that the accuracy of the 
obtained transport current was significantly reduced [24] 
when only one of the two sets of frequencies 
(numbering either 133 or 416) was used for both voltage 
magnitude and phase interpolations (since the two sets 
are distributed differently within the bandwidth).  

3.5. Time-Dependent Voltage: Inverse Discrete Fourier 
Transform 

Once all the frequency components of the driving 
voltage were found, the voltage spectrum was 
transformed back to the time-domain using the Inverse 
Discrete Fourier Transform (IDFT) [22]: 

𝑣(𝑡௡)  =  𝑁 ෍ 𝑅𝑒൫𝑉௞
෪ 𝑒௝ ఠೖ ௧೙൯ =  𝑁 ෍ 𝑅𝑒൫𝑉௞  𝑒௝ ఝೇ,ೖ  𝑒௝ ఠೖ ௧೙൯ 

ேିଵ

௞ୀ଴

ேିଵ

௞ୀ଴

 

 (7) 
where v(tn) [V] is the time-domain voltage, tn [s] is the 
discrete time variable, 𝑉௞

෪ [V] is the frequency-domain k-
th voltage complex coefficient,  Vk [V] is the magnitude 
of the k-th voltage complex coefficient, k [rad/s] is the 

angular frequency and V,k [rad] is the argument of the 
k-th voltage complex coefficient. 

The resulting time-dependent voltage profile for 
the first positive return stroke case is depicted in Fig. 14.

  

 

Fig. 9. First positive stroke: selected current 
components to determine the voltage spectrum. 
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Fig. 10. First positive stroke: voltage spectrum. 

 
Fig. 11. First positive stroke: selected current 
components to determine the voltage phase. 

 

 
Fig. 12. First positive stroke: FE voltage phase and 

extrapolated minima and maxima.  

 
Fig. 13. First positive stroke: interpolated voltage 

phase and current-control simulation voltage phase. 
 

 
Fig. 14. First positive stroke: voltage waveform.  

 
3.6. Current Distribution: Time-Domain Field Diffusion 

Problem  

The sought time-dependent voltage profile 
determined using (7) was finally applied as a time-
dependent boundary condition to solve the 
electromagnetic problem in the time-domain and 
compute the associated current distribution within the 
blade conductors. The equations and boundary 
conditions are similar to (5)-(6) but in the time-domain 
formulation [15] [16]. 

4. Second Application: Subsequent Return Stroke 

To show the wide applicability of the proposed 
algorithm, a lightning impulse with faster rising and 
decay fronts was also considered. 

4.1. Subsequent Return Stroke Waveform 

The waveform parameters of the subsequent 
return stroke are listed in Table 1, while the Heidler 
function coefficients are given in Table 2. Such an 
impulse presents the largest rate of rise of current, i.e. 
200 kA/s, which will generate the highest voltage drops 
across the struck structure compared with the other 
types of lightning strokes. Therefore, this lightning 
waveform is often used to assess the occurrence of the 
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electrical breakdown of the insulators placed between 
the down conductor and the CFRP spar [7]. 

4.2. Spectra and Voltage Waveform 

The spectrum of the subsequent return stroke 
was obtained by choosing a sampling interval of 0.038 
s, 524,288 frequency components and a frequency 
bandwidth of 13 MHz (see Fig. 15a and Fig. 15b). 
Compared with the first positive return stroke, the 
frequency content of the subsequent return stroke was 
much larger due to the smaller rise time. Note that it is 
still valid to neglect the displacement current in (5) 

under the subsequent return stroke. In fact, at 13 MHz 
the displacement current in the composite materials is 
smaller than the conduction current by 9 orders of 
magnitude along the fibre direction and by 5 orders of 
magnitude along the through-thickness direction.  

Similar to the first positive return stroke case, 154 
components were selected (Fig. 16) and interpolated to 
predict the voltage spectrum (Fig. 17), while 497 were 
used (Fig. 18) to determine the voltage component 
phase as a function of frequency (Fig. 19 and Fig. 20). 
Finally, the sought time-domain voltage waveform for 
the subsequent return stroke impulse is given in Fig. 21.

 

 
Fig. 15. Subsequent return stroke current spectrum: (a) magnitude; (b) argument. 

 
Fig. 16. Subsequent return stroke: selected current 

components to determine the voltage spectrum. 
 

 
Fig. 17. Subsequent return stroke: voltage spectrum. 
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Fig. 18. Subsequent return stroke: selected current 

components to determine the voltage phase. 

 
Fig. 19. Subsequent return stroke: FE voltage phase 

and extrapolated minima and maxima. 
 

 
Fig. 20. Subsequent return stroke: interpolated voltage 

phase and current-control simulation voltage phase. 
 

 
Fig. 21. Subsequent return stroke: voltage waveform. 

 

5. Results: Predicted Current Waveforms vs 
Heidler Function 

It is required to verify whether the voltage 
waveforms (Fig. 14 and Fig. 21) computed using the 
proposed discretisation and interpolation procedures 
are capable of driving the Heidler function through the 
rotor blade structure. To this end, the currents injected 
at the tip of the blade (current density integrated over 
the down conductor cross-section at x = 40.2 m) were 
compared to the Heidler function representing the 
expected lightning currents.  

Excellent agreement was obtained between the 
injected currents (solid green lines) and the Heidler 
function (dashed black lines) for both the first positive 
return stroke (Fig. 22) and the subsequent return stroke 
(Fig. 23). In the case of the first positive return stroke, 
slight discrepancies were observed in the rise time, 
which is delayed by 3 s. However, the decay front is 
fully captured, and the total specific energy of the 
injected current is equal to 9.955 MJ/, whilst the 
corresponding Heidler function first positive stroke 
specific energy is 10.275 MJ/. Similar results were 
also obtained for the subsequent return stroke, although 
small discrepancies were found in the value of the 

current peak, which is overestimated by 1.5 kA. As a 
result, the specific energy is also slightly overestimated 
and equal to 0.185 MJ/, while the Heidler function of 
the subsequent return stroke has a specific energy of 
0.180 MJ/. The negligible differences between the 
injected currents and the Heidler function are caused by 
small errors made during the extrapolation and 
interpolation process of the voltage phase (see Fig. 13 
and Fig. 20).  

As shown in Fig. 22, the discretisation procedure 
used in [24] resulted in a rough description of the first 
positive return stroke current (solid yellow lines). In fact, 
the initial offset interval preceding the rise front was lost 
and the current peak was overestimated. In addition, the 
long decay front was not adequately captured. From 
these results it appears that 14 points on the rising front 
and the decay of the current i(Ts) to 10-6 of its peak value 
are not sufficient for a correct representation of the 
Heidler function.  

Fig. 24 compares the injected current waveforms 
calculated by the different sets of selected components 
used for the interpolation procedure. A low number, e.g. 
20-67 (solid red lines) and 45-119 (solid blue lines), 
resulted in significant oscillations during the initial offset 
interval, as well as the decay rate was slower than 
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expected. Initial oscillations disappeared as the number 
of components was increased to 80-294 (solid yellow 
lines), although an initial negative current was observed. 
However, correct rise and decay fronts were obtained 
when employing the suggested interpolation strategy, 
i.e. 133-416 components. 

The total computational time required for the 
presented examples was 46.6 hours when employing a 
desktop computer equipped with Intel® Core™ i7-6700 

@ 3.4 GHz CPU, 16.0 GB RAM and NVIDIA GeForce 
GTX 1050 graphics card. Overall the developed 
procedure is approximately two times faster than the 
time-domain computations with the imposed transport 
current. The expected time savings are even greater 
because a range of different lightning impulses needs 
to be analysed, i.e. first positive return stroke, first 
negative return stroke and subsequent return stroke, as 
required by the IEC 61400-24 Ed.2 standard [7]. In this 

 
Fig. 22. Effect of the discretisation procedure for the first positive stroke current: (a) rise front; (b) decay front. 

 

 
Fig. 23. Subsequent return stroke injected current: (a) rise front; (b) decay front. 

 
Fig. 24. Effect of the interpolation procedure for the first positive stroke current: (a) rise front; (b) decay front. 
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Fig. 25. Current split between the blade conductors: (a) first positive return stroke; (b) subsequent return stroke. 

 
case, the expected gain for the whole analysis would be 
a factor of six since the calculation of the frequency 
dependent impedance, which is the most time-
consuming part of the procedure, would need to be 
performed only once.  

6. Discussion 

The procedure is capable of predicting the 
current split between the down conductor and the spar, 
as shown in Fig. 25a (first positive return stroke) and Fig. 
25b (subsequent return stroke). The down conductor 
currents (blue lines) and the spar currents (red lines) are 
obtained by integrating the current densities over the 
cross-section at x = 20 m (i.e. in the middle of the blade). 
The results show that during the rise front the lightning 
current is mainly conducted by the spar because of its 
low inductance, whereas during the slow decaying tail 
the lightning current mainly flows through the down 
conductor due to its low resistance. In addition, negative 
values of current through the spar (reversed currents) 
are typically observed during testing [11] and are 
predicted by the present models (see Fig. 25). 

Spatial current density distributions within the 
blade cross-section were computed by the developed 
numerical models. The distribution in the down 
conductor cross-section at x = 40 m (Fig. 26a) and x = 

33 m (Fig. 26c) reveals that the skin effect (current 
crowding [32]) is prominent in this component because 
of the high electrical conductivity of copper. Since the 
current in the down conductor is mainly localised at its 
corners, only small contact areas are established with 
the equipotential bonding layers to divert the current 
and direct it towards the spar. This results in high 
current density areas at the bottom equipotential 
bonding layer within approximately the first 7 m of the 
blade, i.e. from x = 40 m to x = 33 m (compare Fig. 26b 
and Fig. 26d). 

The electrical conductivity of the spar CFRP is 
much lower than the electrical conductivity of copper. 
Thus, no skin effect is observed in the spar although a 
slight increase in current density is still noticeable at its 
edges (see Fig. 27a and Fig. 27c). Regions with high 
current density are instead found in the vertical edge of 
the top equipotential bonding layer within approximately 
the first 0.5 m of the blade, i.e. from x = 40 m to x = 39.5 
m (compare Fig. 27b and Fig. 27d).   

The identified areas of large current density might 
generate high temperatures because of Joule heating, 
leading to resin pyrolysis, associated outgassing and 
delamination inside the composite. Therefore, thermal 
analyses need to be performed to assess the 
occurrence of thermal damage in the blade structure.  
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Fig. 26. Current density distribution under the first positive return stroke: (a) down conductor at x = 40 m; (b) 

equipotential bonding around the down conductor at x = 40 m; (c) down conductor at x = 33 m; (d) equipotential 
bonding around the down conductor at x = 33 m. 
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Fig. 27. Current density distribution under the first positive return stroke: (a) spar at x = 40 m; (b) equipotential 

bonding around the spar at x = 40 m; (c) spar at x = 39.5 m; (d) equipotential bonding around the spar at x = 39.5 
m. 

7. Conclusion                                                         

This paper presented a numerical procedure able 
to compute the voltage which drives the lightning 
current through a wind turbine blade. This was 
accomplished by first computing the lightning current 
spectrum and then calculating the blade impedance 
(and thus the voltage drops across the blade) for a small 
set of frequencies. After that, the complete voltage 
spectrum was obtained through interpolation of the 
predicted voltage-frequency mapping. Finally, the 
voltage spectrum was transformed back to the time-
domain to determine the time-dependent voltage 
waveform. The simulation of lightning strikes using the 

voltage driven model was faster than the time-domain 
calculations with the imposed transport current. 

Both the sampling interval and the number of 
frequency components should be considered carefully 
for a correct representation of the lightning waveform. 
The sampling interval should be such as to allow at least 
20-time points to be placed along the rising front to 
represent correctly high frequency components of the 
Heidler function. On the other hand, the slow decaying 
tail of the current waveform imposes a requirement on 
the observation time and thus on the total number of 
sampling points. It is recommended that the current 
should drop to 10-18 of its peak value at the end of the 
observation. This is a conservative requirement and can 



 

16 
 

be relaxed for lightning waveforms that present shorter 
tails. However, such an excessive extension of the 
observation time does not affect the computational time 
if the FFT algorithm is used. The application of these 
considerations to two particular lightning impulses 
showed that the first positive return stroke spectrum 
could be successfully discretised by 32,768 
components, whereas the subsequent return stroke 
spectrum required 524,288 components. Both 
discretisation procedures yielded the sought lightning 
waveforms and specific energies stored in the lightning 
pulses, although minor discrepancies in terms of rise 
time and current peaks were observed for the first 
positive return stroke and subsequent return stroke, 
respectively. 

Finally, the proposed methodology is very 
generic, and it can be applied to compute the time-
domain voltage of any imposed transport current 
regardless of its waveform, provided that the geometry 
of the assessed system is known. 
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