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Darcy’s law without friction in active nematic rheology

Fraser Mackay1, John Toner2, Alexander Morozov1, Davide Marenduzzo1
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Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK

2Institute for Theoretical Sciences and Department of Physics, University of Oregon, Eugene, OR 97403, USA

We study the dynamics of a contractile active nematic fluid subjected to a Poiseuille flow. In a
quasi-1D geometry, we find that the linear rheology of this material is reminiscent of Darcy’s law
in complex fluids, with a pluglike flow decaying to zero over a well-defined “permeation” length.
As a result, the viscosity increases with size, but never diverges, thereby evading the yield stress
predicted by previous theories. We find strong shear thinning controlled by an active Ericksen
number quantifying the ratio between external pressure difference and internal active stresses. In
2D, the increase of linear regime viscosity with size only persists up to a critical length beyond which
we observe active turbulent patterns, with very low apparent viscosity. The ratio between critical
and permeation length, determining the stability of the Darcy regime, can be made indefinitely large
by varying the flow aligning parameter or magnitude of nematic order.

Active gels provide a generic and universal model to
understand the physics of active materials exerting non-
thermal forces on the environment [1, 2]. Solutions of
biopolymers, such as actin or microtubules, crosslinked
by molecular motors, such as myosin or kinesin, are well
described by the active gel paradigm [3, 4], and so are sus-
pensions of self-motile microorganisms [5, 6]. According
to the active gel theory, these systems can be modelled
as a collection of force dipoles, exerted by the active par-
ticles (the motors or the microorganisms in the previous
examples) on the surrounding fluid [1, 2]. Extensile ac-
tive gels are those in which particles act on the surround-
ings via outward-pointing dipolar forces, contractile ones
exert inward-pointing forces.

Theory [7–14] and experiments [15–17] have shown
that active gels possess many intriguing and counter-
intuitive flow and rheological properties, making them
good candidates as new soft functional materials. Exten-
sile fluids flow more easily due to activity, and can behave
as “superfluids” with near-zero viscosity [7–11, 16, 17].
Contractile gels flow instead more slowly due to activ-
ity [7, 10, 15]. Theory suggests that the rheology of con-
tractile active gels is reminiscent of that of glasses: these
systems should be shear thinning and possess a yield
stress when in the nematic phase [12]. Whilst numeri-
cal simulations of contractile active gels in the isotropic
phase showed that their viscosity tends to infinity as the
system approaches the spinodal point [8], whether or not
the system should have a yield stress deep in the nematic
phase is currently unclear. Here, the complication is that
splay fluctuations are known to generically destroy ne-
matic order in a large enough contractile system [18, 19],
rendering calculations based on spatially homogeneous
states inconclusive.

To address the yield stress issue, and to provide a
complete theory for active contractile rheology, here
we combine computer simulations and analytics to
study contractile nematics subjected to a pressure-driven
(Poiseuille) flow (Fig. 1a). We define an apparent viscos-

ity as in experiments, by analysing the magnitude of the
throughput flow as a function of the forcing. Focussing
initially on systems that do not flow spontaneously and
on a “quasi-1D” geometry (in which order parameter
and flow field vary in only one direction), we find no
yield stress behaviour, but instead a viscosity which – in
the linear regime – increases with sample size. The phe-
nomenology of the associated flow, in particular the flow
velocity profile and high apparent viscosity, is strikingly
similar to permeation in liquid crystals [20–23] and to
Darcy’s flow [25], but occurs here in the absence of any
substrate friction. Our theory shows that this behaviour
arises because active forces create a flow opposing that
imposed by the pressure gradient, in a way which resem-
bles friction qualitatively resulting in pluglike flow. In
2D or 3D systems, the Darcy-like flow persists only up
to a critical length, beyond which we find chaotic be-
haviour, or “active turbulence” [5, 6, 26–29], with much
lower viscosity. Importantly, we find that by changing the
flow alignment angle and the amplitude of the nematic
order parameter, the range of lengthscales over which
the Darcy-like regime is stable can be increased without
bound. This happens in particular when the amplitude
of the nematic order parameter approaches zero [30].

To describe the equilibrium behaviour of our active
nematic fluid, we used a particular Landau-de Gennes
free energy F with density f [31], which has two con-
tributions. The first is a bulk term, which describes the
isotropic-nematic transition:

f1 =
Ao
2

(
1− γ

3

)
Q2
αβ −

Aoγ

3
QαβQβγQγα +

Aoγ

4
(Q2

αβ)2.

(1)
The second term quantifies the cost of elastic distortions
in the nematic orientation; in the one elastic constant
approximation [32], it reads:

f2 =
K

2
(∂αQβγ)2. (2)

In Eqs. (1) and (2), A0 is the bulk energy scale, γ is a
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temperature-like parameter with an isotropic-to-nematic
transition at γ = 2.7, K is the elastic constant and Q
is the tensorial order parameter measuring orientational
order [32]. We use the repeated index summation conven-
tion throughout, with Greek indices denoting Cartesian
components.

The equation of motion for Q is(
∂

∂t
+ uγ∂γ

)
Qαβ − Sαβ(Q,W) = ΓHαβ , (3)

where the first term on the left hand side describing the
advection of rods by a fluid with velocity u. The second
term is a tensor that couples the rotation and stretching
of the liquid crystals to the flow and has the form

S(Q,W) = (ξD + Ω) (Q + I/3) + (Q + I/3) (ξD−Ω)

− 2ξ (Q + I/3)Tr (QW) , (4)

where D = (W + WT )/2 and Ω = (W −WT )/2 are
the symmetric and anti-symmetric parts of the velocity
gradient tensor Wαβ = ∂βuα and I is the identity matrix.
The quantity ξ is the flow aligning parameter, which will
play an important role in this work. Finally, Γ is the
rotational diffusion constant, and the tensor H is the
molecular field, H = − δF

δQ + I
3Tr δFδQ .

The evolution of the fluid velocity field u is described
by the Navier-Stokes equation,

ρ (∂t + uβ∂β)uα = fα + η0∇2uα + ∂βΠαβ , (5)

where ρ is the fluid density and fα is the externally ap-
plied pressure gradient. The fluid is assumed to be in-
compressible. The second term on the right hand side
describes the viscous forces, where η0 is the background
fluid viscosity, and Παβ is the stress tensor [7, 18, 26],

Παβ = −P0δαβ + 2ξ

(
Qαβ −

1

3
δαβ

)
QγµHγµ (6)

− ξHαγ

(
Qγβ +

1

3
δγβ

)
− ξ

(
Qαγ +

1

3
δαγ

)
Hγβ

− ∂f

∂(∂βQγµ)
∂αQγµ +QανHνβ −HανQνβ − ζQαβ ,

where the last term is the active stress. The activity ζ is
negative for contractile fluids, and positive for extensile
systems. For more details see [33].

We begin by reporting lattice Boltzmann simulation
results for the linear rheology of contractile fluids under
Poiseuille flow (Fig. 1; see [24] for methods). We consider
a quasi-1D active nematic (where orientational order and
flow velocity only vary along z) confined between two
infinite parallel plates at z = 0 and z = Lz, subject to a
constant body force (magnitude f) along y. The nematic
order parameter Q is pinned at the plates to Q0 = q(ŷŷ−
I/3), where the magnitude q of the order parameter is
determined by minimizing the bulk free energy density

in Eq. (1), which gives q = 1
4

(
1 +

√
9− 24

γ

)
. We also

impose no-slip boundary conditions u = 0 at the plates.

We define an apparent viscosity η = η0M0/M in
terms of the throughput flow of the active nematic, with

M =
∫ Lz

0
dzvy(z), and M0 the value for a Newtonian

fluid with viscosity η0 in a channel of the same width
and subject to the same body force. The velocity pro-
files in the steady state are shown in Fig. 1b for different
values of system size Lz (and the same value of f). These
correspond to the linear regime, so that further decreas-
ing f leads to no changes in η. We find no sign of a yield
stress. Notably, though, we find pluglike flow for all Lz,
with near-uniform velocity in the bulk of the channel, and
all the shear confined in a small region close to the wall
(Fig. 1b). An analysis of the profiles in Fig. 1b shows that
the maximum velocity scales as Lz, whereas the length-
scale over which vy drops to 0 (the “permeation length”
λp) does not vary appreciably with size.
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FIG. 1: (a) A schematic diagram of the channel with walls at
the boundaries in the z-direction and periodic boundaries in
x and y. A constant body force f is applied in the positive y-
direction. In our quasi-1D geometry Q and u only depend on
z; in 2D simulations, they depend on y and z. (b) Numerical
results showing the y-component of the velocity (scaled by
system size) against z for systems of varying channel width.
The permeation length λphas been determined by fitting these
curves to the velocity field in Eq. 9 thus showing that λp

(represented by the dotted vertical line) is independent of
Lz. The inset shows a plot of η/η0 in the linear regime of
contractile active liquid crystals in one-dimension against the
channel width Lz.

To better understand these results, we linearise the
steady state equations of motion for our quasi-1D case
to obtain,

ΓKδQ′′ + x2v
′ = 0, (7)

η0v
′′ − ζδQ′ − x2KδQ

′′′ + f = 0,

where x2 ≡ (2ξ+q(ξ−3))/6 [24], whereas δQ = δQyz and
v = uy are the deviations of the order parameter tensor
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and the flow field from their rest values (Q = Q0 and
u = 0) due to the body force f . This set of equations –
which is a valid approximation of the full model in the
linear regime of f → 0 – is solved by:

δQ =
fLz
2|ζ|

(
sinh (δz/λp)

sinh (Lz/2λp)
− 2δz

Lz

)
, (8)

v =
KΓfLzcoth (Lz/2λp)

2x2λp|ζ|

[
1− cosh (δz/λp)

cosh (Lz/2λp)

]
(9)

with δz = z − Lz/2. The flow field in Eq. 9 corresponds
to pluglike flow (Fig. 1b), with constant velocity except

in a boundary layer of size λp =
√

Γη0K+2Kx2
2

|ζ|x2
. For Γη0

sufficiently large, the permeation length λp ∼ la
√

Γη0,
where we have introduced the active lengthscale la =√
K/|ζ|. This scaling holds in our simulations (Fig. S1).
Integrating the velocity over the channel we obtain

M =
∫ Lz

0
vdz. This leads to

η =
Lzλpx2|ζ|

6ΓK
[
coth

(
Lz

2λp

)
− 2

λp

Lz

] . (10)

The apparent viscosity η tends to a constant for Lz � λp,
and increases linearly with Lz for Lz � λp, as found nu-
merically (Fig. 1b, inset). Our theory shows that the
nontrivial behaviour is due to the pluglike flow velocity
profile, which occurs here despite the absence of a fric-
tional substrate. This is reminiscent of Darcy’s flow in
porous media [25], or of permeative flows in cholesteric
liquid crystals [22, 23]. We therefore refer to this lin-
ear regime of contractile fluids as the “Darcy” regime.
A Darcy-like flow appears because Eq. 7 implies that
δQ′′ ∝ v′ in steady state, so that the terms dependent on
δQ′ in Eq. (8) introduce, among others, a term linear in
v, which is formally similar to the contribution describ-
ing friction with a substrate. Physically, the mechanism
underlying the onset of a Darcy-like pluglike flow is that
the active flow due to the non-trivial order parameter
profile pulls back on the fluid and opposes the externally
imposed flow. This results in the removal of gradients in
the order parameter and velocity in the bulk.

To address the stability of the Darcy regime as a func-
tion of the pressure gradient, we now study the nonlin-
ear rheology of active contractile nematics. Inspection
of Eq. 5 suggests that in steady state we may expect a
balance between the body force and the divergence of
the stress tensor. The latter should be dominated by
the active contribution ∼ |ζ| [7]. Dimensional analysis
then yields f̃ = fl/|ζ| as a potential control parameter,
which determines the relative weight between external
forcing and internal active stresses; we call this an ac-
tive Ericksen number. Here, l is a length quantifying the
scale over which the active stress and orientation order
vary spatially – in our simulations, we find the relevant
lengthscale to be Lz, hence f̃ = fLz/|ζ|.
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FIG. 2: Plot of η/η0 against ln(f̃), from numerical simulation

of a quasi-1D contractile active material. At lower f̃ , η/η0
is constant and increases with the channel width. The inset
shows a fit to 1+bf̃

bf̃−c
, with b, c > 0.

Figure 2 plots the apparent viscosity found in simu-
lations as a function of f̃ . We find that all the curves
collapse for sufficiently large values of f̃ , whereas they
diverge for small forcing (to yield the linear regime ap-
parent viscosity discussed in Fig. 1). In other words,
there is a crossover between the Darcy regime and a uni-
versal shear thinning regime, which is singly determined
by f̃ . The dependence of the apparent viscosity on f̃ can
be understood via a qualitative scaling argument which
adds the Newtonian and the opposing active contribution
to the throughput flow M , as shown in [24].

The quasi-1D approximation described above is use-
ful as it allows a complete characterisation of the rhe-
ology of a contractile gel, together with an analytically
tractable theory which uncovers the mechanism leading
to a Darcy-like linear regime with no yield stress. How-
ever, the persistence of the Darcy regime to arbitrarily
large system size which we observe in Fig. 1 is due to the
special features of our effectively 1D geometry [26, 34].
In a fully 2D or 3D system, we only expect the Darcy
regime to be stable up to a finite system size, as it has
long been known [18] that infinitesimal splay fluctuations
destabilise the uniform state of the contractile active ne-
matic for Lz > Lc – an instability lengthscale propor-
tional to la.

To explore the more general problem of 2D contractile
rheology, we now use simulations to study the case in
which the Q tensor and velocity fields depend on both y
and z (though orientational order and flow can also point
out of the (y, z) plane) [35]. We focus on the case of a
fixed (small) value of f . Fig. 3(a) shows η as a function
of system size Lz. As anticipated, the Darcy-like regime
(corresponding to the increase of η with Lz) gives way to
another regime – characterised by much smaller viscosity



4

(a)

(b)

(c)

 0.05

 0.1

 0.15

 0  1e+06  2e+06  3e+06

η
/η

0

time

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

z

y

-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0.1

 0.2

 0.3

 0.4

 0.5

 0  1e+06  2e+06  3e+06

η
/η

0

time
 0

 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  20 40 60 80 100 120

z

y

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 20  40  60  80  100  120  140  160  180  200

η/
η 0

Lz

 0

 20

 40

 60

 80

 100

 120

 0  20  40  60  80  100  120

z

y

-0.2
-0.15
-0.1
-0.05
 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  20 40 60 80 100 120

z

y

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

FIG. 3: (a) A plot of η/η0 against L ≡ Lz for small fixed body
force (f = 10−6) for contractile active nematics (|ζ| = 0.01).
(b) Viscosity versus time (left) and Qyz pattern (right) for
a system with Lz = 128. (c) Viscosity versus time (left)
and Qyz pattern for a system with Lz = 192. Axes tics in the
right patterns in (b,c) are shown every 20 lattice sites.

– beyond the instability lengthscale Lc.

In the unstable regime, the apparent viscosity varies
chaotically over time, so that the system is in the ac-
tive turbulent regime, best characterised for extensile
fluids [5]. Remarkably, we find that in several cases
the chaotic dynamics settles into a spatially-dependent
non-trivial travelling wave pattern – an example of the
resulting Q tensor texture is shown in Fig. 3(b). The
existence of multiple possible non-trivial travelling wave
solutions is reminiscent of the phenomenology of low-
dimensional models for Newtonian turbulence [36], al-
though here these states appear to be linearly stable.
The travelling wave states and turbulent patterns both
involve a characteristic lengthscale, which in our simula-
tions is close to the active lengthscale la, known to set
the typical vortex size in active turbulence [33]. For suf-
ficiently large f̃ , we re-enter the 1D shear thinning pat-
tern, as the forcing is strong enough to suppress variation
along the flow direction (as for shear [37]; Fig. S2).

To complement our simulations, we calculated exactly

Darcy regime
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FIG. 4: Log-log plot of the instability lengthscale Lc (solid
line, exact numerics, and filled squares, lattice Boltzmann)
and of λp (dotted line) as a function of ξ, for A0 = 1, γ =
3, q = 1/2, Γ = 0.33775, η0 = 5/3, K = 0.04 and variable ζ.
Lengthscales are in units of la.

the value of Lc – beyond which the Darcy regime is un-
stable in 2D [35] with our boundary conditions – by using
a spectral Chebyshev method [24, 38]. Figure 4 plots the
dependence of Lc on ξ, and shows that increasing the flow
aligning parameter leads to a dramatic enhancement of
the stability range of the quasi-1D Darcy regime. By fol-
lowing [39], we can relate ξ to microscopic parameters
accessible experimentally via the formula

ξ =
2 IL+2Is
IL−Is + q

2 + q
(11)

where IL and Is are, respectively, the largest eigenvalue
of the moment of inertia tensor of the constituent ne-
matogens, and the mean of the two smallest eigenvalues.
Eq. (11) and Fig. 4 predict that, for instance, IL/Is = 4
and q = 1/2 give ξ = 1.8, for which Lc/λp ' 60 (Fig. 4),
corresponding to a large Darcy regime.

Another way to increase the stability range of the
Darcy regime is to decrease the value of the nematic or-
der q → 0 [24]. This limit could be reached in mod-
els in which the cubic term in Eq. (1) gets very small
(for instance a theory for weakly ordered thin actomyosin
films), or in mixtures of prolate and oblate molecules.

In summary, we have shown that an active contrac-
tile nematic subjected to a pressure-driven flow does not
possess a yield stress, and evades it by instead acquiring
a size-dependent viscosity associated with pluglike flow
which is reminiscent of Darcy’s flow in porous materials.
The Darcy regime is always found in a quasi-1D geometry
(with variation of order and flow along a single direction)
for sufficiently small values of the body force. In a 2D
geometry, the Darcy regime is instead only observed up
to a critical system size, beyond which we find chaos and
active turbulence. The range of stability of the Darcy
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regime in 2D is tunable, and can be increased virtually
indefinitely by a suitable choice of parameters. In partic-
ular, our results suggest that this range can be very large
in thin and weakly ordered films of actomyosin, for which
la is a few microns [40]. We hope this prediction will
stimulate experiments on channel flow in active contrac-
tile systems – such as, but not limited to, myosin-filament
mixtures – aimed at observing all rheological regimes we
predict here – Darcy flow, shear thinning and chaos.

We thank the Higgs Centre for Theoretical Physics for
supporting two of JT’s visits to the University of Edin-
burgh, during which part of this work was performed.
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