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Abstract

Research in automatic affect recognition has seldom addressed the issue of com-

putational resource utilization. With the advent of ambient intelligence tech-

nology which employs a variety of low-power, resource-constrained devices, this

issue is increasingly gaining interest. This is especially the case in the context

of health and elderly care technologies, where interventions may rely on mon-

itoring of emotional status to provide support or alert carers as appropriate.

This paper focuses on emotion recognition from speech data, in settings where

it is desirable to minimize memory and computational requirements. Reducing

the number of features for inductive inference is a route towards this goal. In

this study, we evaluate three different state-of-the-art feature selection methods:

Infinite Latent Feature Selection (ILFS), ReliefF and Fisher (generalized Fisher

score), and compare them to our recently proposed feature selection method

named ‘Active Feature Selection’ (AFS). The evaluation is performed on three

emotion recognition data sets (EmoDB, SAVEE and EMOVO) using two stan-

dard acoustic paralinguistic feature sets (i.e. eGeMAPs and emobase). The
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results show that similar or better accuracy can be achieved using subsets of

features substantially smaller than the entire feature set. A machine learning

model trained on a smaller feature set will reduce the memory and computa-

tional resources of an emotion recognition system which can result in lowering

the barriers for use of health monitoring technology.

Keywords: Feature Engineering, Feature Selection, Emotion Recognition,

Affective Computing, Prosodic analysis, Cognitive Health Monitoring

1. Introduction

Speech signals are used in a number of automatic prediction tasks, including

cognitive state detection [1], cognitive load estimation [2], presentation qual-

ity assessment [3] and emotion recognition [4, 5]. Emotional/affective states

could have influence on health and intervention outcomes. Positive emotions5

have been linked with health improvement, while negative emotions may have

negative impact [6]. For example, long term bouts of negative emotions are pre-

disposing factors for depression (ibid.), while positive emotions-related humour

and optimism have been linked with positive effects on the immune system and

cardiovascular health [7]. Emotion recognition has been used in applications10

in the domain of health technologies, including mental health assessment and

beyond [8, 9, 10].

Applications using speech usually extract emotions as an additional signal in

complex systems, such as in ambient intelligence (AmI) [11], depression recog-

nition [9], and longitudinal cognitive status assessment [12]. These approaches15

employ very high-dimensional feature spaces consisting of large numbers of po-

tentially relevant acoustic features, usually obtained by applying statistical func-

tionals to basic, energy, spectral and voicing related acoustic descriptors [13]

extracted from speech intervals lasting a few seconds [14]. Although there is no

general consensus on what the ideal set of features should be, this “brute-force”20

approach of employing as many features as possible seems to outperform alter-

native (Markovian) approaches to modelling temporal dynamics on the classifier
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level [15]. However, the use of such high-dimensional data sets poses challenges

for prediction, as they suffer from the so-called “curse of dimensionality”, high

degree of redundancy in the feature set, and a large number of features with25

poor descriptive value. Su and Luz, for instance, noted that in a cognitive

load prediction data set about 4% of a feature set of over 250 features had a

standard deviation of less than 0.01 and therefore contributed negligibly to the

classification task [12]. Moreover, processing of very large numbers of features

presents computational challenges for the low-power, low-cost devices such as30

the Raspberry Pi Zero 1, which are often used in AmI applications.

The main contribution of this study is the evaluation of different state of

the art feature selection methods, including our Active Feature Selection (AFS)

method, on the emotion recognition from speech, which has, to the best of

our knowledge, not yet been systematically explored. This study extends our35

previous work [16], where we first introduced the novel AFS method and tested

it on the ICMI Challenge on Eating Conditions Recognition [17].

2. Background and Related Work

The automatic identification of emotions in speech is a challenging task,

and identifying relevant acoustic features and systematic comparative evalua-40

tions has proved difficult [18]. In 2016, the eGeMAPs set [19] (see Section 4.2)

was designed based on features’ potential to reflect affective processes and their

theoretical significance. It was proposed to set a common ground of emotion-

related speech features, which has become since then a de-facto standard. The

set of target emotions has mostly been fixed around the ‘Big Six’, and similarly,45

evaluations are more and more frequently performed on a number of publicly

available corpora (see Section 4.1). In the health domain, feature selection

methods for speech processing have been applied to determine the most dis-

criminant features in support of automatization efforts, as for instance in the

1https://www.raspberrypi.org/products/raspberry-pi-zero/ (last accessed January 2019)
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assessment of patients with pre-dementia and Alzheimer’s disease [20, 21] or for50

the detection of sleep apnea [22]. The automatic emotion recognition task has

gained attention in the past few years [23, 24]. This task has been addressed

through processing of facial, speech, body movements and biometric informa-

tion [25, 26, 27, 28, 1]. Numerous studies [25, 26, 28, 29, 30, 31] extract audio

features with OpenSMILE using de-facto standard presets: IS10, GeMAPS,55

eGeMAPs, Emobase.

The reviewed literature suggests that although the accuracy of various ma-

chine learning approaches in this area is promising, automatic dimensionality

reduction has focused largely on the removal of noisy or redundant features,

with less attention paid to computational resource utilisation [1, 25, 26, 27, 28,60

29, 30, 31].

There are many dimensionality reduction methods: some are feature selec-

tion methods which require labelled data, and some are feature transformation

methods which do not require labelled data. The former includes methods such

as correlation based feature selection and Fisher feature selection [32, 33], while65

the latter includes, for instance, principal component analysis (PCA), inde-

pendent component analysis (ICA) [34] among others. Recently, efforts have

focused on reducing dimensionality using PCA to improve the results for emo-

tion recognition from speech [35, 36, 37, 38] in different settings such as noisy

setting [36]. Dimensionality reduction using feature selection methods, on the70

other hand, are less explored in this area.

3. Feature Selection Methods

In this section we will briefly describe the feature selection methods used in

this study along with our AFS method. We have selected three state of the art

feature selection methods. The motivation behind using these methods here is75

their robust performance in a number of tasks [39].
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3.1. Infinite Latent Feature Selection (ILFS)

The ILFS method [39] performs cross-validation on an unsupervised ranking

of features. At a pre-processing stage, each feature is represented by a descriptor

reflecting how discriminative it is. A probabilistic latent graph containing each80

feature is built. Weighted edges model pairwise relations among feature distri-

butions, created using probabilistic latent semantic analysis. The relevance of

each feature is computed by looking on its weight in arbitrary set of cues. Each

path in the graph represents a selection of features. The final ranking of each

feature looks at its redundancy in all the possible feature subsets, selecting the85

most discriminative and relevant features. The evaluation on a range of different

tasks (e.g. object recognition classification and DNA microarray analysis) con-

firms its robustness, outperforming other methods on robustness and ranking

quality [39].

3.2. ReliefF90

The ReliefF algorithm [40] which is an adaptation of the Relief feature selec-

tion method [41], performs ranking and selection of top scoring features based

on their processed score. The score is calculated by weighting features on a

random sample of instances. For each instance, the weight vector represents

the relevance of each feature amongst the class labels: neighbours are selected95

from the same class (nearest hits) and from each different class (nearest misses).

The weight of each feature increases when the difference with its nearest hits

is low and with its nearest misses is high. Each weight vector is combined in a

global relevance vector. The final subset is constituted of all the features with

relevance greater than a manually set threshold. ReliefF is a common method100

of Feature Selection which has been continuously improved since its first publi-

cation [41, 42].

3.3. Generalized Fisher score (Fisher)

The generalized Fisher score [33] is a generalization of the Fisher score to

take into account redundancy and combination of features. A subset of features105
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is sought which maximizes the lower bound of the traditional Fisher score.

A combination of features is evaluated, and redundant features discarded. A

quadratically constrained linear programming (QCLP) is solved with a cutting

plane algorithm. At each iteration, a multiple kernel learning is solved by a

multivariate ridge regression followed by a projected gradient descent to update110

the kernel weights. The method produces state of the art results, outperforming

many feature selection methods while having a lower complexity [33].

3.4. Active feature selection method

An Active Feature Selection method, which divides a feature set into subsets,

has been recently introduced [16]. The term ‘active’ is used because compared115

to other approaches it evaluates feature subsets and not each feature separately,

so that different features actively contribute to the feature selection. While

clustering is employed, AFS does not cluster instances but dimensions. Our

hypothesis is that noisy features have common characteristics that differ from

those of informative features, and that clustering will divide the features into120

subsets according to such common characteristics. This involves clustering the

data set into N clusters (where N = 5, 10, 15, ..., 100) using self-organizing maps

(SOM) with 200 iterations and batch training [43], and then evaluating the

discrimination power of the features from each cluster CN using leave one subject

out (LOSO) cross-validation, as shown in Figure 1. The cluster with the highest125

validation accuracy is selected (see Figure 6 in Section 5).

4. Experimentation

The section describes the datasets and their characteristics along with acous-

tic feature extraction and classification methods.

4.1. Data sets130

Three corpora were selected for their shared characteristics and public avail-

ability: EmoDB, SAVEE, and EMOVO. They consist of recorded acted perfor-

mances, annotated using the well-known and widely used Big Six set of anno-
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D(m,n) D(n,m) SOM
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CN

Validati¡ on
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Selection of 

best Cluster 

(Features)

Figure 1: Active feature selection method: D(m,n) represents the data where m is the total

number of training instances and n is the total number of dimensions (988 for emobase and

88 for eGeMAPs) [16].

tations : anger, disgust, fear, happiness, sadness, surprise + neutral, except in

the older EmoDB data set where boredom was used instead of surprise. Their135

characteristics are summarised in Tables 1 and 2.

Berlin Database of Emotional Speech (EmoDB)

The EmoDB corpus [44] is a data set commonly used in the automatic emotion

recognition literature. It features 535 acted emotions in German, based on ut-

terances carrying no emotional bias. The corpus was recorded in a controlled140

environment resulting in high quality recordings. Actors were allowed to move

freely around the microphones, which affected absolute signal intensity. In ad-

dition to the emotion, each recording was labelled with phonetic transcription

using the SAMPA phonetic alphabet, emotional characteristics of voice, seg-

mentation of the syllables, and stress. The quality of the data set was evaluated145

by perception tests carried out by 20 human participants. In a first recognition

test, subjects listened to a recording once before assigning one of the available

categories, achieving an average recognition rate of 86%. A second naturalness

test was performed. Documents achieving a recognition rate lower than 80%

or a naturalness rate lower than 60% were discarded from the main corpus,150

reducing the corpus to 535 recordings from the original 800.
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Surrey Audio-Visual Expressed Emotion (SAVEE)

SAVEE [45] is an audio-visual data set that was recorded to support the de-

velopment of an automatic emotion recognition system. The corpus is a set of

480 British English utterances. Each actor was recorded for 15 utterances per155

emotion (3 common utterances recorded for each of the 7 emotions, 2 emotion

specific, and 10 generic sentences different for each emotion) and 30 neutral

recordings (the 3 common and every emotion specific sentences). No limitation

regarding audio features (e.g. absolute signal intensity) is explicitly stated in

the description of the data set. A qualitative evaluation of the database was run160

as a perception tests by 10 human subjects. The mean classification accuracy

for the audio modality was 66.5%, 88% for the visual modality, and 91.8% for

the combined audio-visual modalities.

Italian Emotional Speech Database (EMOVO)

The EMOVO corpus [46] is a speech data set featuring recorded emotions from165

acted performances by 6 persons. Actors were allowed to move freely around the

microphones and the volume was manually adjusted, affecting absolute signal

intensity. A qualitative evaluation was performed using a discrimination test.

Two phrases were selected and, for each, 12 subjects had to choose between two

proposed emotions. The mean accuracy for the test was about 80%.170

4.2. Volume normalization and feature extraction

We have normalized all the speech utterances’ volume into the range [-1:+1]

dBFS before any acoustic feature extraction. The motivation for this is to

improve the model’s robustness against different recording conditions such as

distance between microphone and subject. We use the openSMILE [47] toolkit175

for the extraction of two acoustic feature sets which are widely used for emotion

recognition. These are:

emobase: this acoustic feature set contains the MFCC, voice quality, fun-

damental frequency (F0), F0 envelope, LSP and intensity features along with

their first and second order derivatives. In addition, many statistical functions180

are applied to these features, resulting in a total of 988 features for every speech
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Table 1: Main characteristics of the data sets.

Corpus
Size (ut-

terances)
Population Participants Emotion categories

EmoDB 535
10 (5 males,

5 females)

German na-

tive speakers

actors

anger, disgust, fear,

joy, sadness, bore-

dom + neutral

SAVEE 480 4 (males)

English na-

tive speakers

actors

anger, disgust, fear,

happiness, sadness,

surprise + neutral

EMOVO 588
6 (3 males, 3

females)

Italian na-

tive speakers

actors

anger, disgust, fear,

happiness, sadness,

surprise + neutral

Table 2: Distribution of recordings across emotion categories.

Corpus Neutral Anger Disgust Fear Happiness Sadness Surprise Boredom

EmoDB 79 127 46 69 71 62 - 81

SAVEE 120 60 60 60 60 60 60 -

EMOVO 84 84 84 84 84 84 84 -

utterance.

eGeMAPs: this feature set contains the F0 semitone, loudness, spectral

flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio, hammarberg index and

slope V0 features including many statistical functions applied to these features,185

which result in a total of 88 features for every speech utterance [19].

4.3. Classification Method

Classification is performed using Support Vector Machines (SVM) with a

linear kernel, SMO solver and cost parameter (box constraint) set to 0.75. This
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classifier is employed in MATLAB2 using the statistics and machine learning190

toolbox. The feature selection methods are evaluated through LOSO cross-

validation, and unweighted average recall (UAR) results are computed.

4.4. Evaluation Criterion

All of the emotion recognition data sets are labeled for seven classes and

we have evaluated the classifier using UAR, which corresponds to the average195

accuracy of all classes. The UAR measure is selected because the datasets are

not balanced for emotions. The method with the highest UAR is considered

the best. The blind/majority guess for this task results in a 14.3% UAR. As

our focus is on feature selection methods, we set the baseline as UAR obtained

using the entire feature set.200

5. Results and discussion

We have evaluated the three different automatic feature selection methods

(ILFS, ReliefF and Fisher) along with our AFS method using two different

acoustic feature sets extracted from three different data sets. The results of

three feature selection methods are shown in Figure 2. The AFS results are205

not plotted there, as the AFS does not operate on features iteratively, but on

subsets of features determined through SOM. It can be observed that around

30 out of 88 eGeMAPs features and around 100 out of 988 emobase features are

sufficient to provide almost the same UAR as the highest achieved UAR for the

three data sets. The best results of each feature selection method are shown in210

Table 3.

The results confirm that a higher accuracy can be achieved using a subset

of the feature set than when using the full feature set. The results for each data

set can be summarised as follows:

1. EmoDB: the ILFS method provides better UAR (69.7% for eGeMAPs215

and 76.9% for emobase) results than the other methods and is able to

2http://uk.mathworks.com/products/matlab/ (Last accessed: January 2019)
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Table 3: Best Unweighted Average Recall (UAR (%)) of feature selection methods and number

of selected features (numFeat) are reported. The best UAR (%) results for each feature set

are given in bold. The unweighted arithmetic average for each feature selection method is also

reported in ‘Average’ column.

Data Set EmoDB EMOVO SAVEE

Feature Set eGeMAPs emobase eGeMAPs emobase eGeMAPs emobase

numFeat UAR (%) numFeat UAR (%) numFeat UAR numFeat UAR(%) numFeat UAR (%) numFeat UAR (%) Mean

Baseline 88 68.5 988 74.6 88 37.4 988 34.4 88 40.8 988 38.1 49.0

ILFS 74 69.7 685 76.9 28 38.1 113 34.7 86 42.0 574 38.8 46.9

reliefF 88 68.5 666 75.3 20 37.8 348 37.1 82 41.4 72 39.3 49.9

Fisher 88 68.5 975 75.2 25 41.0 464 36.2 34 42.4 158 42.4 51.0

AFS 81 68.5 696 75.8 2 39.0 56 36.4 68 40.5 21 37.5 49.6

reduce the number of features (74 out of 88 for eGeMAPs and 685 out

of 988 for emobase). The confusion matrix of the best UAR (76.9%) is

shown in Figure 3. For eGeMAPs, the AFS method provides an UAR

of 68.5% (around 1% lower than ILFS) using 81 features. For emobase,220

AFS method provides an UAR of 75.8% (around 1% lower than ILFS)

using 696 features. With a subset of the eGeMAPs feature set, the reliefF

and Fisher methods are not able to improve over the baseline in terms of

UAR. However, Figure 2 shows that reliefF and Fisher achieved almost

the same UAR as compared to baseline with only 35 eGeMAPs features225

instead of 88 eGeMAPs features. Hence around 60% reduction in number

of features is observed.

2. EMOVO: the Fisher method yields the best UAR (41.0%) using only 25

out of 88 eGeMAPs features, while ReliefF method yields the best UAR

(37.1%) for emobase (selecting 348 out of 988 features). The confusion230

matrix of the best UAR (41.0%) is shown in Figure 4. The results for AFS

are slightly lower than the best method (around 2%), but the number of

features are significantly lower, compared to other methods. AFS selects

only 2 eGeMAPs features out of 88, and 56 emobase feature out of 988,

while still reaching an UAR of 39.0% and and 36.4%, respectively.235

3. SAVEE: the Fisher method again yields the best UAR for eGeMAPs (34

features, and UAR of 42.4%) and emobase (158 features and UAR of

11
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Figure 2: Feature selection methods (ILFS, ReliefF and Fisher) results for all three data sets

(EMODB, EMOVO and SAVEE) using two feature sets (eGeMAPs and emobase). Where

x-axis represents the number of features and y-axis represents the UAR.

42.4%). The confusion matrix of the best result (UAR = 42.4%) using

eGeMAPs features is shown in Figure 5. For eGeMAPs, the results of

AFS are slightly lower than the best method (around 2%). For emobase,240

AFS method yields and UAR of 37.5% (around 5% lower than Fisher)

using 21 features.

The machine learning models trained using EmoDB (UAR=76.9%) data

provide better UAR than EMOVO (41.0%) and SAVEE (42.9%). This could

be due to very high quality nature of the EmoDB data set. The EmoDB data245
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set quality was evaluated by 20 human coders with an average recognition rate

of 86%, and audio recordings with the inter-coder agreement below 80% were

removed (no such measure was taken for EMOVO and SAVEE).

For EMOVO, while the reported accuracy for the test set is 80% (see Sec-

tion 4.1), one should note that rather than evaluating the full EMOVO data250

set only two phrases were selected and each coder had to choose only between
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Figure 5: Confusion matrix of Fisher feature selection method for SAVEE data set using

eGeMAPs feature set.

two proposed emotions rather than seven. The fact that our machine learning

approach to EMOVO classification is of a seven-class problem explains the much

lower results obtained in comparison to human perfomance.

For SAVEE, 10 human subjects evaluated the data set and came up with255

an accuracy of 66.5% for audio. Our machine learning based models provide

promising results as compared to humans subjects. Although they are less

accurate than human annotators, we use only acoustic information to automate

the process of emotion recognition, while human annotators used both acoustic

and linguistic information (i.e. the spoken content).260

As shown in Table 3, Generalized Fisher score provides better results in 3 out

of 6 cases, ILFS provides better results in 2 out of 6 cases and reliefF provides

better results in 1 out of 6 cases, indicating that overall Fisher feature selection

provides the best results for the emotion recognition task.

The AFS method comes second in 3 out of 6 cases as shown in Table 3.265

It is also observed that the AFS method provides almost the same results in

terms of UAR as the other state of the art feature selection methods, with

smaller numbers of dimensions on average. We have note that for the SAVEE

data set only 2 out of 88 eGeMAPs features (selected by AFS) provide better
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Figure 6: A visualization of AFS method results: number of features present in each cluster

(i.e. hexagon or neuron) along with the UAR (%) obtained using eGeMAPs feature set for

EMOVO data set. Note that 2 out of 88 features provide better results than other feature

subsets.

results than reliefF, ILFS and the baseline (i.e. entire feature set). For further270

insight into these results, we show the evaluation of clusters (feature subsets)

using AFS in Figure 6. In this figure we see that there are many clusters which

provide better results than the blind guess (14.3%), while the feature cluster

selected by AFS contains only 2 features (hammarbergIndexV sma3nz amean

and hammarbergIndexV sma3nz amean) and leads to the 39.0% UAR. One of275

the possible lines of future work is to combine features from different clusters

to see if this leads to improvement in classification. The AFS method was also

evaluated with different numbers of clusters. The best UAR is obtained using

70 clusters for EMOVO dataset. The UAR values for these 70 clusters with

their respective numbers of features are shown in Figure 6.280

To further evaluate the feature selection methods, we have combined all three

data sets which results in a 8-class problem i.e. to recognise (7+1) emotions.

The results of this experimentation in LOSO cross-validation setting is shown

in Table 4. We have noted that the reliefF method provides the best results

for eGeMAPs (46.6%) and emobase (48.0%) feature sets. All three data sets285

belong to different languages and have different qualities of annotation. Hence,

the reliefF method could be a better choice than other methods where the

quality and language of data sets are different.
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Figure 7: AFS method results: The x-axis represents the number of cluster (N = 5,10,15,

... 100). The y-axis represents the number of features (numFeat) and Unweighted Average

Recall (UAR) in % of the best cluster.

In a previous study [16], we demonstrated that the AFS method is able

to select a feature subset which provides better results than the entire feature290

set and the PCA feature set for eating condition recognition. However the

results have not been demonstrated in detail as in this study, and the AFS

method has not been evaluated on multiple data sets and compared against other

feature selection methods to the same extent as in this paper. The present study

is therefore a step towards in demonstrating the generalisability of the AFS295

method. The contribution of this study is not only the evaluation of performance

of different feature selection methods but also the assessment of the extent to

which AFS, reliefF, Fisher and ILFS can reduce the feature set and therefore
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Table 4: Evaluation of feature selection methods for 7+1 emotion recognition task by combin-

ing all three data sets. Best Unweighted Average Recall (UAR (%)) and number of selected

features (numFeat) are reported. The bold figures indicate the best UAR (%) for each feature

set (i.e. eGeMAPs and emobase).

Method eGeMAPs emobase

numFeat UAR (%) numFeat UAR (%)

Baseline 88 44.4 988 47.4

ILFS 78 45.6 709 47.9

relifF 44 46.6 732 48.0

Fisher 53 45.3 822 47.9

AFS 79 43.8 835 47.2

select small enough subsets which will impose lower computational demands

on low resource systems, while preserving or improving emotion recognition300

performance, in comparison to full feature sets.

6. Conclusion

This study evaluated three state-of-the-art feature selection methods, namely,

ILFS, reliefF and generalized Fisher score for emotion recognition, along with

the recently proposed AFS method. It employed three different emotion recog-305

nition data sets from three different languages. The results show that higher

UAR can be achieved using reduced feature sets. Generally, around 30 out of

88 eGeMAPs and 100 out of 988 emobase features are sufficient to obtain al-

most the same UAR as a full feature set. The Fisher feature selection method

provided the best averaged UAR across all three data sets (51.0%) and two310

feature sets compared to the 49.0% averaged UAR for the full feature set base-

line. However the reliefF method outperformed the other methods when all the

data sets were combined. These findings are relevant to the development of

machine learning models for machines with low computational resources. The

AFS method provides competitive results in relation to the state of the art in315

feature select. AFS currently uses only features present in one cluster. For

future studies, we will explore methods to rank the clusters of features and do

17



fusion of different clusters for possible accuracy improvements. Other possible

avenues for future work include testing the AFS on other modalities in addition

to speech.320
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