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Abstract

Phenotypic delay—the time delay between genetic mutation and expression of the corre-

sponding phenotype—is generally neglected in evolutionary models, yet recent work sug-

gests that it may be more common than previously assumed. Here, we use computer

simulations and theory to investigate the significance of phenotypic delay for the evolution of

bacterial resistance to antibiotics. We consider three mechanisms which could potentially

cause phenotypic delay: effective polyploidy, dilution of antibiotic-sensitive molecules and

accumulation of resistance-enhancing molecules. We find that the accumulation of resistant

molecules is relevant only within a narrow parameter range, but both the dilution of sensitive

molecules and effective polyploidy can cause phenotypic delay over a wide range of param-

eters. We further investigate whether these mechanisms could affect population survival

under drug treatment and thereby explain observed discrepancies in mutation rates esti-

mated by Luria-Delbrück fluctuation tests. While the effective polyploidy mechanism does

not affect population survival, the dilution of sensitive molecules leads both to decreased

probability of survival under drug treatment and underestimation of mutation rates in fluctua-

tion tests. The dilution mechanism also changes the shape of the Luria-Delbrück distribution

of mutant numbers, and we show that this modified distribution provides an improved fit to

previously published experimental data.

Author summary

Understanding precisely how some bacteria survive exposure to antibiotics is a major

research focus. Specific mutations in the bacterial genome are known to provide protec-

tion. However, it remains unclear how much time passes between a bacterium acquiring

the genetic change and being able to tolerate antibiotics—termed the phenotypic delay—

and what controls this delay. Here, using computer simulations and mathematical argu-

ments we discuss three biologically plausible mechanisms of phenotypic delay. We
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investigate how each mechanism would affect the outcome of laboratory experiments

often used to study the evolution of antibiotic resistance, and we highlight how the delay

might be detected in such experiments. We also show that the existence of the delay could

explain an observed discrepancy in the measurement of mutation rates, and demonstrate

that one of our models provides a superior fit to experimental data. Our work exposes

how molecular details at the intracellular level can have a direct effect on evolution at the

population level.

Introduction

The emergence of resistance to drugs is a significant problem in the treatment of diseases such

as cancer [1], and viral [2] and bacterial infections [3]. In infections with high pathogen load,

the occurrence of de novo genetic mutations leading to resistance is a significant problem [4];

examples include endocarditis infections caused by Staphylococcus aureus [5, 6], Pseudomonas
aeruginosa infections of cystic fibrosis patients [7, 8], as well as Burkholderia dolosa [4, 9]

infections.

The emergence and spread of resistant variants in populations of pathogenic cells has

received much experimental [10–14] and theoretical attention [15–18]. However, most mathe-

matical models assume that a genetic mutation immediately transforms a sensitive cell into a

resistant cell [19–24]. In reality, a new allele (genetic variant) must be expressed to a sufficient

level before the cell becomes phenotypically resistant. The time between the occurrence of a

genetic mutation and its phenotypic expression is called phenotypic delay. This is also referred

to as delayed phenotypic expression, phenotypic lag, cytoplasmic lag or phenomic lag.

Phenotypic delay was first observed in 1934 by Sonnenborn and Lynch when studying the

effect of conjugation on the fission rate of Paramecium aurelia [25]. Phenotypic delay was fur-

ther studied during the 1940s and 1950s, both theoretically [26] and experimentally [27, 28].

Interestingly, in their hallmark work on the randomness of mutations in bacteria [29], Luria

and Delbrück discussed the possible effect of a phenotypic delay on the estimation of mutation

rates. However, interest in phenotypic delay waned for the next seventy years, mostly because

experimental data failed to reveal evidence for such delay [29, 30]. However, Sun et al. [31]

recently demonstrated the existence of a phenotypic delay of 3-4 generations in the evolution

of resistance of Escherichia coli to the antibiotics rifampicin, nalidixic acid and streptomycin.

Sun et al. attributed this delay to effective polyploidy.

Here, we generalize these observations and also investigate other mechanisms that may lead

to phenotypic delay. We consider three mechanisms: (i) effective polyploidy as in Sun et al.

[31], (ii) the dilution of sensitive molecules targeted by the drug, and (iii) the accumulation of

resistance-enhancing molecules. We speculate on the relevance of these mechanisms for differ-

ent antibiotics in Table 1.

Effective polyploidy refers to the fact that a single cell can contain multiple copies of a given

gene. This can be due to gene duplication events or carriage of multicopy plasmids; it also

occurs in fast-growing bacteria, which initiate new rounds of DNA replication before the pre-

vious round has finished, allowing for a shorter generation time than the time needed to repli-

cate the chromosome [32–34]. Since a de novo resistance mutation happens in only one of the

multiple gene copies, it may take several generations before a cell emerges in which all gene

copies contain the mutated allele. Until then, sensitive and resistant variants of the target pro-

tein coexist in the cell. A phenotypic delay occurs when the resistance mutation is recessive,

i.e., the sensitive variant must be replaced by the resistant variant for the cell to become
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resistant. This is the case for antibiotics which form toxic adducts with their targets [35, 36].

Examples are quinolones that lock the enzyme DNA gyrase onto the DNA and prevent DNA

replication [37], and polymixins that bind to lipids in the outer membrane which causes mem-

brane perforation [38, 39]. Effective polyploidy also changes the per-cell mutation rate, because

it alters the number of gene copies per cell [31]. However, as shown both by Sun et al [31] and

in this paper, it does not alter the distribution of mutant numbers that are observed in fluctua-

tion tests.

The dilution mechanism also assumes the mutation to be recessive, but in contrast to the

polyploidy mechanism it focuses on the removal of the sensitive target protein through the

process of cell growth and division. As a mutated cell grows, the resistant version of the protein

accumulates; a subsequent division creates two cells in which the fraction of the sensitive vari-

ant is less than in the parent cell. Even if the relevant gene is present only in a single copy (rul-

ing out effective polyploidy), there may still be a considerable delay if the number of sensitive

proteins to dilute out is large before resistance can be established.

The accumulation mechanism posits that sufficient copies of the resistant variants of a pro-

tein must be produced to cause resistance. This is likely to apply to mutations that enhance the

expression of drug efflux pumps [40], β-lactamase enzymes that hydrolyse β-lactam antibiotics

[41, 42], or mutations that protect ribosomes from tetracycline [43], hence restoring the active

ribosome pool [44]. In these cases, a phenotypic delay could emerge due to the time required

for the resistance-enhancing protein to accumulate in the cell to a level high enough to cause

resistance.

We first analyse the three mechanisms using computer simulations and analytic calcula-

tions. We find that the accumulation of resistance-enhancing molecules only leads to pheno-

typic delay within a limited parameter range, while effective polyploidy and the dilution of

sensitive molecules lead to phenotypic delay for a broad range of parameters. We also show

that while the effective polyploidy mechanism does not affect the probability that a population

survives antibiotic challenge, dilution of sensitive protein leads to decreased probability of sur-

vival under drug treatment.

We then investigate the possibility of detecting a phenotypic delay experimentally. We first

show that the dilution mechanism would cause an underestimation of mutation rates in Luria-

Delbrück fluctuation tests compared to the true genetic rate of mutations. In a fluctuation test,

one measures the distribution of mutant numbers in replicate populations that have been

allowed to grow and evolve for a fixed number of generations. The mutation rate is then esti-

mated by fitting a population dynamics model to the experimental distribution [29, 45]. Our

result is consistent with the fact that the mutation rate of Escherichia coli obtained in fluctua-

tion tests has been found to be an order of magnitude smaller than the rate obtained by DNA

sequencing [46].

Table 1. Postulated mechanism of phenotypic lag for different antibiotics discussed in this work.

Antibiotic Target Mechanism of resistance Postulated phenotypic lag model

rifampicin RNA polymerase target mutation (rpoB), recessive dilution+polyploidy

fluoroquinolones DNA topoisomerases target mutation (gyrA, gyrB, parC), recessive dilution+polyploidy

polymixins lipo-poly-saccharide (LPS) mutations in enzymes modifying the structure of LPS dilution+polyploidy

beta-lactams enzymes in cell wall synthesis inactivation by beta-lactamase, dominant accumulation

tetracycline ribosomes efflux upregulation, production of a protective protein accumulation

many antibiotics different targets upregulation of efflux pumps, dominant accumulation

https://doi.org/10.1371/journal.pcbi.1007930.t001
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We also show that the dilution mechanism subtly alters the shape of the Luria-Delbrück dis-

tribution of mutant numbers. Discrepancies between the shapes of the experimental and theo-

retically predicted mutant number distributions have been observed since the original

experiments of Luria and Delbrück [26, 29, 30, 47], but have never been satisfactorily

explained. Using an experimental data set reported by Boe et al. [47] for E. coli and for fluoro-

quinolone antibiotics, we show that a mathematical model that includes the dilution mecha-

nism fits the data better than the no-delay Luria-Delbrück model, thus providing indirect

evidence for the existence of this type of phenotypic delay in the de novo evolution of resistance

to fluoroquinolones.

Results

Modeling the emergence of phenotypic delay

To explore the characteristic features of the three different phenotypic delay mechanisms—

dilution of sensitive molecules, effective polyploidy, and accumulation of the resistant

variant—we first simulate an idealised mutagenesis experiment (Fig 1a). We suppose that at

the start of the experiment a population of sensitive bacteria is exposed to a mutagen (e.g., UV

radiation [48, 49]) which instantaneously induces mutations in a small fraction of the cells [50,

51]. Cells immediately begin to express the mutated allele, but because of the existence of phe-

notypic delay, they remain sensitive to the antibiotic for some time; phenotypically resistant

cells emerge only after a few generations.

We investigate the emergence of resistance in two different ways. The first approach is to

follow a random lineage, starting from a single mutant bacterium (i.e., at each division we fol-

low one of the randomly selected daughter cells) and to measure the waiting time before a phe-

notypically resistant cell emerges in that lineage (S1 Fig). The second approach is to track the

entire population post mutagenesis, and examine the waiting time before the first phenotypi-

cally resistant cell emerges in the whole population. Fig 1b shows the conceptual difference

between these two approaches.

Dilution of antibiotic-sensitive molecules. Even in the absence of polyploidy, if the resis-

tance mutation is recessive such that a small number of sensitive target molecules are enough

to cause antibiotic sensitivity, a phenotypic delay can arise from the time taken to replace sen-

sitive target molecules by resistant ones. To model this, we assume that each cell has a number

n of target molecules that are initially sensitive. Once a mutation has happened, production of

sensitive molecules ceases and only resistant molecules are produced. We suppose that, upon

cell division, the nmolecules are partitioned stochastically without bias between the two

daughter cells (Fig 1c). For simplicity, in this work cells are considered phenotypically resistant

only when they contain no sensitive molecules, i.e., the number of sensitive molecules that

need to be diluted out is n.

For this mechanism, the length of the phenotypic delay increases approximately logarithmi-

cally with the number n of sensitive molecules that need to be diluted for resistance to emerge

(Fig 1d). To understand this, suppose momentarily that n is a power of 2 and stochasticity can

be neglected so that each daughter cell receives exactly half the number of molecules of the par-

ent cell. Then for any lineage stemming from a genetically mutant cell, the number of inherited

sensitive molecules will be 2n−1, 2n−2, . . ., as the generations progress. After log2 n generations

all cells will have a single sensitive molecule and hence the first phenotypically resistant cell

will then emerge after 1 + log2 n generations. In this deterministic setting, 1 + log2 n will also

be the number of generations for the population to become resistant.

In the more realistic case of stochastic segregation of molecules, the probability of resistance

along a random lineage after g generations is approximately exp(−2−gn) (S1 Text, Section 1.1).
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Fig 1. Models of phenotypic delay. (a) Schematic representation of a simulated experiment, in which a mutagen (e.g., UV radiation) induces

resistant mutations at a particular moment in time. Mutants initially remain sensitive to the antibiotic, only becoming resistant after a few

generations. (b) Two ways of determining the time to resistance: tracking a single random lineage (dotted line), and tracking the whole

population. In this example, resistance emerges in generations 3 and 2, respectively. (c) The dilution mechanism: blue/brown dots denote

sensitive/resistant variants of the target molecule. When a wild-type cell (blue) mutates, it initially remains sensitive (green) and becomes

resistant (red) when all sensitive molecules are diluted out. (d) Probability that at least one cell in an exponentially growing population starting

with 100 newly genetically mutated cells is phenotypically resistant (dilution model) as a function of the number of generations since the genetic

mutation (dots: simulation; lines: theory). Phenotypic delay increases with the number of molecules n to be diluted. (e) The effective polyploidy

mechanism: chromosomes are represented as black ellipses, with a sensitive/resistant allele marked blue/red. (f) Same as in (d) but for the

effective polyploidy mechanism. Phenotypic delay increases with ploidy c. (g) The accumulation mechanism: blue/red dots denote sensitive/

resistant mutants of the resistant-enhancing molecule. Cells become resistant (red) when the cell contains enough resistant molecules. (h) Same

as in (d) but for the accumulation model. Phenotypic delay decreases with increasing ratiom of the number of molecules produced during cell

cycle and the number of molecules required for resistance.

https://doi.org/10.1371/journal.pcbi.1007930.g001
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Hence the probability of resistance emerging in a lineage is negligible until generation g set by

2g� n, when the probability rapidly rises to 1. Therefore, in line with our deterministic reason-

ing, resistance along a random lineage will emerge after g� log2 n generations. Interestingly,

however, we obtain a different result for the probability that the population as a whole pro-

duces at least one resistant cell. If we start from x genetically mutated cells in the population,

the first phenotypically resistant cell in the population emerges, on average, after an approxi-

mate time 1 + log2(n/log(xn)) (S1 Text, Section 1.1). We can also calculate the resistance prob-

ability through a recursion relation (S1 Text, Section 1.1); the results fully reproduce the

simulations (Fig 1d). The emergence of resistance at the population level is thus accelerated

compared to what one would obtain based on deterministic dilution. We have assumed for

simplicity that each of the x cells initially has the same number n of sensitive molecules; this is

only a crude approximation for real bacteria. An extended model in which molecules are dis-

tributed in a biased way between the two daughter cells, inspired by recent evidence on accu-

mulation of membrane proteins in the daughter cell with the older pole [52–55], leads to a

similar result (S1 Text, Section 3). However, the bias decreases slightly the phenotypic delay at

a population level (S3 Fig); this is because the bias creates lineages which are low in the number

of resistant molecules.

Effective polyploidy. Rapidly dividing bacteria can become effectively polyploid when

they initiate a round of DNA replication before the previous round has finished; this leads to

the presence of multiple copies of at least some parts of the chromosome [32] (Fig 1e). Cru-

cially, the degree of polyploidy (number of gene copies) depends on the bacterial growth rate,

as well as on other factors such as the genetic locus. To model phenotypic delay caused by

effective polyploidy, we assume that each cell has a number c of chromosome copies that is

growth-rate dependent according to the well-established Cooper-Helmstetter model of E. coli
chromosome replication [32] (Methods). Each chromosome copy contains a single allele,

encoding the antibiotic target, that can be either sensitive or resistant. Initially all chromo-

somes have the sensitive allele but a mutation changes one allele from sensitive to resistant.

We then simulate the process of DNA replication and cell division, taking account of the fact

that duplicated resistant alleles are co-inherited—for example, if a cell has two chromosome

copies, one with a resistant allele and the other with a sensitive allele, then upon replication

and division, one daughter cell will have two sensitive alleles and the other daughter cell will

have two resistant alleles [33] (Methods). We assume that a cell becomes phenotypically resis-

tant when none of its chromosomes contain the sensitive allele (i.e., the resistant allele is

assumed to be recessive). In this model, the waiting time until a cell acquires a full suite of

resistant chromosomes is log2 c generations (Fig 1f). This phenotypic delay time is the same

whether we track a given lineage or the entire population (since it is deterministic). However,

resistance will not occur in all lineages; of the c lineages descended from the original mutant

cell, resistance will eventually occur in only one of them [31] (S1 Fig).

We note that effective polyploidy generally causes a shorter delay than dilution of sensitive

molecules: 2 to 3 generations for rapidly growing bacteria (c = 4 or 8 [31, 32]), versus 5 genera-

tions for the dilution mechanism (assuming n� 500, which is typical for the gyrase enzyme

targeted by fluoroquinolones [56, 57]). The transition in the probability of resistance as a func-

tion of time is also sharper for effective polyploidy than for the dilution mechanism in which

stochasticity of the segregation process smooths out the transition (compare Fig 1d and 1f).

Finally, for effective polyploidy, we expect only one in every c lineages to become resistant,

while for dilution of sensitive molecules, all lineages will eventually become resistant.

Accumulation of resistance-enhancing molecules. Phenotypic delay can also emerge

due to the time needed to accumulate resistance-enhancing molecules to a sufficiently high

level (Fig 1g). To model this mechanism, we suppose that during each cell cycle a genetically
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resistant cell producesMp resistance-enhancing molecules, which are randomly distributed

between daughter cells at division. A cell becomes resistant when it hasMr or more resistance-

enhancing molecules. Interestingly, considering either a single lineage (S1 Fig) or the entire

population (Fig 1h), we find that phenotypic delay emerges only within a limited parameter

range: 1 ≲m≲ 2, wherem ¼ Mp
Mr

is the ratio of the number of molecules produced during a cell

cycle and the number of molecules needed for resistance. The origin of this limited parameter

range is most easily explained by considering a single lineage. Tracking a lineage arising from

a single mutant cell, the cell in the gth generation will be born with an average ofMp(1 − 2−g)

molecules (S1 Text, Section 1.2). The steady-state number of molecules (found by taking g!
1) isMp. Thus ifm< 1, the steady state number of molecules will be always smaller than the

minimum required numberMr, and the lineage will never become phenotypically resistant.

Conversely, ifm> 1, phenotypic resistance will emerge after approximately τ = −log2(1 − 1/

m) generations when the average number of resistance-enhancing molecules exceedsMr. But

for the delay to be at least one generation long (τ� 1), we requirem� 2. Considering now the

scenario where we track the entire population, we again expect the steady-state molecule num-

berMp to be rapidly reached by all cells, so that there will be no phenotypic resistance for

m< 1. Further, if resistance does emerge (form> 1), it will do so more quickly in the entire

population than along the random lineage (as resistance may be acquired in any lineage). We

thus expect an even tighter upper bound on the value ofm for phenotypic delay to manifest

itself on the population level in this model.

Since our analysis shows that, for this mechanism, phenotypic delay only emerges in a nar-

row parameter range, we conclude that the accumulation of resistance-enhancing molecules is

unlikely to be biologically relevant in causing phenotypic delay. Therefore we do not explore

this mechanism further.

Combining effective polyploidy and dilution

In reality, for a recessive resistance mutation, we expect both the effective polyploidy and dilu-

tion mechanisms to contribute to the phenotypic delay. To understand the implications of

this, we simulated a model combining the two mechanisms, tracking the emergence of resis-

tance at a single-cell and population level. Our simulations predict a phenotypic delay with

characteristics of both mechanisms (Fig 2).

Focusing first on a single lineage (Fig 2a and 2b), we observe that the long-term probability

of phenotypic resistance depends on the ploidy c, tending to 1/c, as expected for the effective

polyploidy mechanism, while the approach to this value is gradual as expected for the dilution

mechanism. Combining both mechanisms increases the length of the delay compared to either

mechanism acting in isolation.

Following Sun et al. [31], we also calculate the phenotypic penetrance, defined as the pro-

portion of genetic mutants which are phenotypically resistant in the entire population. The

expected phenotypic penetrance (see S1 Text Section 1.3 for derivation) is:

0 0 � g < log 2c;

ð1 � 2� gÞ
nQlog2c� 1

i¼0
ð1 � 2� ðg� iÞÞ

nð1� 2i=cÞ log 2c � g:

8
<

:
ð1Þ

Note that n = 0 corresponds to only the effective polyploidy mechanism, while c = 1 corre-

sponds to only the dilution mechanism being present. The piecewise form of Eq (1) arises

because no cell can become phenotypically resistant until all its chromosomes have the resis-

tant allele. Fig 2d shows that the phenotypic penetrance predicted by Eq (1) increases gradually
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with time (characteristic of the dilution mechanism) but with a delay determined by effective

polyploidy.

We now return to computer simulations to study the emergence of resistance on the pop-

ulation level following mutagenesis (the thought experiment from Fig 1a), for the combined

delay mechanisms. In general, both the ploidy c and the number of antibiotic target mole-

cules per cell n will depend on the doubling time td (or growth rate) of cells. To be more

Fig 2. Combined effect of the dilution and effective polyploidy mechanisms. (a-b) Probability of resistance of a

single mutated cell. While the long-term probability is defined by the effective polyploidy, short-term behaviour is

determined by the dilution mechanism, leading to longer phenotypic delays than the effective polyploidy mechanism

would produce. (c) Population-level probability of resistance versus the number of generations from the mutation

event, for n = 20. The combined mechanism leads to smoother curves than the effective polyploidy mechanism and

longer delays than for either mechanism individually. (d) Phenotypic penetrance (ratio of phenotypically resistant to

genetically resistant cells, obtained from Eq (1)) for the different mechanisms, for c = 8, n = 8. The dashed red line

indicates when the phenotypic penetrance surpasses 1/2, which is the threshold used by Sun et al. [31] to define the

emergence of phenotypic resistance. With this definition, the dilution mechanism plus effective polyploidy doubles the

delay (generation 6 as opposed to generation 3 compared to effective polyploidy alone).

https://doi.org/10.1371/journal.pcbi.1007930.g002
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specific, we consider resistance of E. coli to fluoroquinolone antibiotics, that arises through

mutations in DNA gyrase (protein targeted by the antibiotic). Gyrase abundance as a fraction

of the proteome (i.e. gyrase concentration in the cell) has been found to be independent of

the growth rate [58]. We therefore assume that the number n of gyrases per cell is propor-

tional to the cell volume V. We model the volume as V / 2l=l0 , where λ = (ln 2)/td is the

growth rate and λ0 = 1h−1 [59–62], and we model polyploidy using the Cooper-Helmstetter

model [32] (see Methods and model for details). Suppose that for slow-growing cells (td =

60 min), c = 2 and n = 20. Then, for fast-growing cells (td = 30 min), we have c = 4 and n = 40.

Note that here we do not assume realistic values of n because the minimum number nr of poi-

soned sensitive gyrase molecules required to inhibit growth is probably much higher than

nr = 1 assumed in the model. n should be therefore interpreted more correctly as the number

of “units” of gyrase, with one unit equivalent to nr molecules. Fig 2c shows that the pheno-

typic delay is longer for the fast-growing population, and that this is mostly caused by the

increase in the number of molecules n (S4 Fig). We also observe that protein dilution leads to

a smoother transition between sensitivity and resistance than the transition due to effective

polyploidy alone.

The dilution mechanism, but not effective polyploidy, affects the

probability of clearing an infection

To understand better the practical significance of phenotypic delay, we simulated antibiotic

treatment of an idealised bacterial infection (Fig 3). We assume for simplicity that, before

treatment, the population of bacteria grows exponentially in discrete generations, and cells

mutate with probability μ = 10−7 per cell per replication. When the population size reaches

107, an antibiotic is introduced; this causes all phenotypically sensitive bacteria to die, leaving

only the phenotypically resistant cells (Fig 3b). We are interested in the probability that the

bacterial infection survives the antibiotic treatment, a concept closely related to evolutionary

rescue probability, i.e., the probability that cells can survive a sudden environmental change

thanks to an adaptive mutation [31, 63, 64]. Since sensitive cells do not reproduce in our simu-

lations in the presence of the antibiotic, survival can only be due to pre-existing mutations

(standing genetic variation).

We first consider the effective polyploidy model, with ploidy c controlled by the doubling

time td. In agreement with Sun et al. [31], we find that td has no effect on the survival probabil-

ity (Fig 3c). This is due to a cancellation of two effects: the increased number of gene copies

increases the per-cell chance of genetic mutation, but also increases the length of the pheno-

typic delay (see Section 2.2.1 of the SI of Ref. [31] for a mathematical derivation). In contrast,

phenotypic delay caused by the dilution of sensitive molecules does affect the survival proba-

bility (Fig 3d). The survival probability strongly depends on n, and decreases significantly

from 0.69 for n = 0 to 0.06 for n = 100.

We also simulated the mixed case where both the effective polyploidy and dilution mecha-

nisms are combined, with ploidy c and molecule number n determined by the doubling time td
as described in Sec. Combining effective polyploidy and dilution. In this case the survival proba-

bility does depend on the doubling time (Fig 3e; blue line). This is mostly caused by the change

in the molecular number n as a function of doubling time. If we neglect the dependence of n
on td, the effect is much smaller, although there is still some dependence on td because the rate

of resistant protein production depends on the resistant gene copy number, which increases

en route to the full suite of resistant chromosomes (S4 Fig).
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Phenotypic delay due to dilution changes the Luria-Delbrück distribution

and biases mutation rate estimates

The scenario discussed in the previous section is equivalent to the Luria-Delbrück fluctuation

test [29, 65], which has been extensively studied theoretically [45, 66–73]. In the fluctuation

test, a small number of sensitive bacteria are allowed to grow until the population reaches a

certain size. The cells are then plated on a selective medium (often an antibiotic) to reveal the

number of mutated bacteria in the population. The distribution of the number of mutants

(measured over replicate experiments) is termed the Luria-Delbrück distribution. This distri-

bution has a power-law tail caused by mutational “jackpot” events [29, 65, 72] in which rare,

early-occurring mutants produce many descendants in the population. The fluctuation test,

fitted to corresponding mathematical models, is widely used to estimate mutation rates in bac-

teria. Here, we discuss the effect of phenotypic delay on the Luria-Delbrück distribution and

on the resulting mutation rate estimate.

Fig 3. Phenotypic delay decreases the probability of a bacterial infection surviving antibiotic treatment. (a-b) A

schematic of the simulated infection: a population of exponentially replicating sensitive cells is exposed to an antibiotic

when the population reaches 107 cells. Only phenotypically resistant cells survive the antibiotic. Time and antibiotic

concentration in panel (b) have arbitrary units. (c) The probability of survival for the effective polyploidy mechanism is

independent of the doubling time (and hence the ploidy). (d) For the dilution mechanism, the probability of survival

decreases with the number of molecules n which need to be diluted out before the cell becomes phenotypically

resistant. (e) In a combined dilution-and-effective polyploidy model, the survival probability increases with the

doubling time.

https://doi.org/10.1371/journal.pcbi.1007930.g003
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First, we note that phenotypic delay caused by effective polyploidy alone does not affect the

Luria-Delbrück distribution. As discussed in the previous section, this is due to an exact can-

cellation of two effects: increased ploidy leads to more mutations per bacterium but also a lon-

ger phenotypic delay. In contrast, the dilution model does alter the Luria-Delbrück

distribution. Fig 4a shows that, for a fixed mutation probability μ and fixed initial and final

population sizes, phenotypic delay due to dilution causes an increase in the number of repli-

cate experiments yielding zero resistant mutants, and a decrease in the number of experiments

yielding intermediate numbers of resistant mutants. The number of experiments yielding very

large numbers of mutants, due to jackpot events, is less affected by the delay—this is because

mutants that arise early will have had sufficient time to dilute out the sensitive molecules and

become phenotypically resistant before being exposed to the antibiotic. Hence the dilution

model also leads to a similar scaling (proportion of replicates yielding at least xmutants is/

x−1 for large x) as for the Luria-Delbrück distribution (S8 Fig).

From a practical point of view, the mutation probability is often unknown and the fluctua-

tion test is used to estimate it. To investigate the effect of phenotypic delay on the estimated

mutation probability, we simulated the fluctuation test for the dilution model with n = 16, for

a range of mutation probabilities. We compared the resulting mutant number distributions to

that obtained in an equivalent simulation without phenotypic delay, with mutation probability

μ = 10−7. Using a genetic algorithm [74] to minimize the L2 norm between the distributions

with and without phenotypic delay, we found that the phenotypic delay model required a

much larger mutation probability (μ = 8 × 10−7) to reproduce the distribution of the no-delay

model. This suggests that neglecting phenotypic delay when fitting theory to fluctuation test

data could significantly underestimate the true mutation probability. We also note that the

“closest match” distributions with and without phenotypic delay are not exactly identical (Fig

4b). The model with phenotypic delay leads to a larger number of jackpot events (as might be

expected since the mutation probability is higher) and a reduced number of replicates with few

mutants, consistent with suppression of late-occuring mutants by the phenotypic delay.

Fig 4. The dilution model affects the probability distribution of the number of resistant cells. The frequency of mutants

for a simulated fluctuation test with 10,000 samples, for the model with n = 0 (no delay) and n = 16. (a) Distributions for both

models for a fixed μ = 10−7. (b) Distributions for the case when μ in the dilution model has been adjusted to minimize the

difference to the no-delay model (values in the inset).

https://doi.org/10.1371/journal.pcbi.1007930.g004
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Our result could explain an apparent discrepancy between mutation probabilities estimated

by different methods. In particular, Lee et al. measured the mutation probability of E. coli
using both fluctuation tests (with the fluoroquinolone nalidixic acid as selective agent) and

whole-genome sequencing [46]. The fluctuation test underestimated the mutation probability

by a factor of 9.5; Lee et al. suggested that this could be caused by phenotypic delay [46]. To see

whether our dilution model could explain this, we simulated the 40-replicate, 20 generation

fluctuation test experiment of Lee et al. [46], using the mutation probability as estimated by

whole-genome sequencing (μ = 3.98 × 10−9, total for all mutations producing sufficient resis-

tance to nalidixic acid), for differing values of the number n of target “units” (“effective” gyrase

molecules). For each n we simulated 1000 realisations of the 40-replicate experiment, and for

each realisation we estimated the mutation probability under the no-delay model using the

maximum likelihood method [45] (the same as used by Lee et al.) implemented in the package

flan [75]. This procedure correctly reproduced the mutation probability for data from simula-

tions without delay (n = 0; S6 Fig). For the model with delay, the maximum likelihood fit

returned a mutation probability that was lower than the true one (Fig 5a); the discrepancy

increased with the phenotypic delay. To obtain an apparent mutation probability that is under-

estimated by a factor of 9.5, as observed by Lee et al. [46], we require n� 30; i.e. roughly 30

sensitive ‘units’ of the antibiotic target must be diluted out before a cell becomes phenotypi-

cally resistant. Thus, while our simulations do not prove that phenotypic delay is responsible

for the discrepancy observed by Lee et al., they suggest that it is a plausible explanation.

Mutant number distributions may support the existence of phenotypic

delay

Our results suggest that a phenotypic delay caused by dilution produces a characteristic

(though small) change in the shape of the observed mutant number distribution (Fig 4b). This

deviation should, in principle be detectable in experiments. To check this, we used the dataset

of Boe et al. [47] who performed a 1104-replicate fluctuation test, using the bacterium E. coli
with the fluoroquinolone antibiotic nalidixic acid as the selective agent. Nalidixic acid targets

DNA gyrase. As explained in Sec. Combining effective polyploidy and dilution, we expect that a

small number of wild-type DNA gyrases should be enough for a bacterial cell to be sensitive to

the antibiotic, suggesting that phenotypic delay via gyrase dilution may be likely. Boe et al. [47]

report an unsatisfactory fit of their mutant number distribution data to the theoretical predic-

tions of two different variants of the Luria-Delbrück model (the Lea-Coulson and Haldane

models); in comparison to these models, Boe et al. observed too many experiments yielding

either no mutants or a high number of mutants (greater than 16), and a dearth of experiments

resulting in intermediate mutant counts (1-16). Qualitatively, this seems to be consistent with

our expectations for the dilution model (Fig 4).

To see if the dilution model of phenotypic delay indeed provides a superior fit to Boe et al’s

data, we used an approximate Bayesian computation (ABC) approach [76] (Methods). We

simulated a 1104-replicate fluctuation experiment 104 times, for the models with and without

delay, with initial and final population sizes of 1.2 × 104 and 1.2 × 109 matching those of Boe

et al. [47]. We then determined the posterior Bayesian probability that the experimental data is

generated by the delay model as opposed to the no-delay model, and tested the validity of our

approach using synthetic data (Methods and models). We find that the probability of the

experimental data coming from the model with phenotypic delay is 0.97, as opposed to the

model without phenotypic delay (Fig 5b). We thus conclude that the Boe et al. data supports

the existence of phenotypic delay caused by the dilution mechanism.
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Discussion

Quantitative models for de novo evolution of drug resistance are an important tool in tackling

bacterial antimicrobial resistance, as well as viral infections and cancer. However, our quanti-

tative understanding of how resistance emerges is still limited. The possibility of a phenotypic

delay between the occurrence of a genetic mutation and its phenotypic expression has long

been discussed [25–29], but its relevance for bacterial evolution has been questioned until

recently [31]. Here, we have used computer simulations and theory to study the effects of phe-

notypic delay on the emergence of bacterial resistance to antibiotics. We investigated three dif-

ferent mechanisms that could lead to phenotypic delay: (i) dilution of antibiotic-sensitive

molecules, (ii) effective polyploidy, and (iii) accumulation of resistance-enhancing molecules.

We observe that the third mechanism only leads to phenotypic delay under a limited range of

parameters, which makes it unlikely to be biologically relevant. The other two mechanisms

have different “control parameters” (the degree of ploidy c versus the number of target mole-

cules n) and different effects on the population dynamics. In particular, we show that protein

dilution, but not effective polyploidy, can affect the probability that a growing population sur-

vives antibiotic treatment. This in turn can bias the estimated mutation rate in a Luria-Del-

brück fluctuation test. Effective polyploidy does not play a role here because of two cancelling

effects: increased ploidy increases the number of mutations per cell in the growing population,

but also increases the length of the phenotypic delay. These effects counterbalance such that

the Luria-Delbrück distribution remains unaffected [31].

Effect of the dilution mechanism on the lineage/population survival

probability

We have shown that the various mechanisms affect the survival of whole populations, and of

random lineages, in different ways. In the case of effective polyploidy, the duration of the phe-

notypic lag is the same for a random lineage as it is for the entire population. However, only

Fig 5. Phenotypic delay due to the dilution mechanism explains observed discrepancy in mutation rates and provides superior fit

to fluctuation experiment data. (a) We simulated the fluctuation experiment of Ref. [46], where the authors report a factor of 9.5

difference between the values of μ obtained by DNA sequencing and fluctuation tests. For each n we simulated 1000 experiments with

the sequencing-derived mutation probability μ = 3.98 × 10−9 and then used the same estimation procedure as Ref. [46] to infer μ
assuming no delay exists. n = 30 sensitive molecules are required to account for the discrepancy observed. Error bars are 1.96 × standard

error. (b) The experimental cumulative mutant frequency distribution reported by Boe et al. [47] (black points) and the best-fit

simulated distribution (green line) for the dilution phenotypic delay model. The staircase-like shape of the simulated distribution is

caused by the fixed division time and strictly synchronous division of the mutated cells. (c) Histograms of the probability of the delay

model obtained by applying the approximate Bayesian computation scheme to simulated data. Our classification algorithm correctly

discriminates between the models.

https://doi.org/10.1371/journal.pcbi.1007930.g005
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one in c lineages becomes resistant and can survive antibiotic treatment. In contrast, in the

dilution mechanism every lineage becomes resistant and survives, as long as the time before

antibiotic exposure is much longer than the phenotypic lag. However, the length of the pheno-

typic lag for each lineage is now a random variable. The time to resistance at the population

level is thus determined by the shortest phenotypic lag among all the lineages.

Effect of the dilution mechanism on fluctuation test data

Luria-Delbrück fluctuation tests remain the standard microbiological method for estimating

mutation rates, yet it has often been noted that the measured distributions of mutant numbers

are not precisely fit by the theoretical distribution [26, 29, 30, 47]. A comparison with a more

direct approach (DNA sequencing) suggests that fluctuation tests can significantly underesti-

mate mutation rates [46]. Although phenotypic delay has been suggested as a possible explana-

tion for these effects [29, 46], our study is the first to investigate in detail how specific

mechanisms of phenotypic delay alter the shape of the Luria-Delbrück distribution, and to

demonstrate that it can indeed produce a mutation rate estimate that is biased in the same way

as that observed experimentally [46]. We also show that the simulated distribution of mutant

numbers from the dilution model fits the experimental fluctuation test data of Boe et al. [47]

better than the standard model without phenotypic delay. We note that this result should how-

ever be taken cautiously. Boe et al.’s experimental protocol is not ideal for detecting phenotypic

delay: for example, their bacterial cultures were allowed to reach stationary phase before plat-

ing. Moreover, our work shows that while phenotypic delay due to dilution affects the mutant

number distribution, the change is subtle, requiring many replicate experiments to produce

statistically significant results. While the usual number of replicates in a fluctuation test is less

than 100, recent developments in automated culture methods should make it possible to run

fluctuation tests with many more replicates, which may provide a way to probe the effects of

phenotypic delay on the Luria-Delbrück distribution in more detail.

From molecular detail to evolutionary population dynamics

Our work presents an example of how molecular details at the intracellular level (here, protein

dilution and the details of DNA replication) can have a direct effect on evolution at the popula-

tion level [77–79]. This observation complements other work showing, for example, that

molecular processes such as transcription and translation affect population-level distributions

of protein numbers [80, 81] and that noise in gene expression can directly affect the survival of

populations in a fluctuating environment [82].

Importantly, both the effective polyploidy mechanism and the dilution mechanism cause a

phenotypic delay only if the resistance mutation is recessive. For effective polyploidy this

means that a cell must contain only resistant alleles in order to be phenotypically resistant,

while for the dilution mechanism we have assumed that sensitive target molecules need to be

diluted out (or otherwise removed). This implies that we would expect to see phenotypic delay

in the evolution of resistance to some antibiotics, but not to others. In particular, we would

expect phenotypic delay due to dilution if the antibiotic acts by binding to its molecular target

to make a toxic adduct, and resistance involves production of a resistant target. This is the case

for fluoroquinolone antibiotics, which bind to DNA gyrase, causing DNA double-strand

breaks (Table 1); resistance is caused by production of mutant gyrase with lower affinity to the

antibiotic [83]. The fact that both Boe et al. [47] and Lee et al. [46] observed discrepancies in

fluctuation test data for resistance to the fluoroquinolone nalidixic acid is consistent with this

expectation.

PLOS COMPUTATIONAL BIOLOGY Phenotypic delay in the evolution of antibiotic resistance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007930 May 29, 2020 14 / 24

https://doi.org/10.1371/journal.pcbi.1007930


Assumptions of the model

Our simulations and theoretical calculations have involved a number of simplifying assump-

tions. Firstly, we ignore any possible fitness costs of mutations, assuming equal growth rates

for wild-type and mutant cells in the absence of the antibiotic. While resistance mutations can

incur a fitness cost [84, 85], many clinically-relevant mutations have either no cost or even pro-

vide a small growth advantage [85, 86].

For the molecular dilution mechanism, we have assumed that the degradation rate of target

molecules is negligible, so that sensitive molecules can only be removed through cell division

and dilution. While this seems to be (mostly) the case for bacterial enzymes targeted by antibi-

otics [87, 88], it may not be true for mammalian cells in which degradation plays a bigger role

than dilution [89].

We have also assumed here that in the dilution mechanism, all sensitive molecules need to

be removed for the cell to become phenotypically resistant, and that each cell has initially the

same number of sensitive molecules. In reality, resistance is likely to gradually increase as the

number of sensitive molecules decreases, and the total number of target molecules may vary

among different cells. Our general conclusions remain valid in this case, but the mutant distri-

bution may change. To construct more accurate models, we need measurements of the degree

of antibiotic sensitivity as a function of the intracellular numbers of resistant and sensitive

antibiotic targets. While technically challenging, such measurements could be carried out e.g.

by fluorescent labelling of target molecules [57]. A starting point for such a detailed model

could be to assume the production of sensitive molecules follows the model for protein pro-

duction of the accumulation mechanism. The value of n per cell would then depend on the

number of molecules at the time of mutation, which fluctuates around the mean number of

molecules produced per cell division (S1 Text, Section 1.2).

Experimental tests for phenotypic delay

Sun et al. have demonstrated phenotypic delay by tracking expression of a genetically engi-

neered fluorescent marker in bacterial lineages, and they attributed it to polyploidy [31]. How-

ever, their work did not involve de novomutations. Detecting and explaining the mechanism

of phenotypic lag due to spontaneous mutations would be much more challenging. Our work

suggests that, at least in principle, the mutant number distribution obtained in fluctuation tests

could be used to detect the existence of a phenotypic delay caused by molecular dilution,

although this would require many replicate experiments. Another possible method could rely

on differences in the probability and timing of phenotypic resistance in random lineages. A

mother-machine type of experiment in which many lineages can be tracked and exposed to an

antibiotic at controlled times could help to determine the contribution of different mecha-

nisms to phenotypic lag. Yet another approach would be an experiment similar to the thought

experiment from Fig 1, in which a mutagen such as UV irradiation creates a burst of mutants.

Other signatures of phenotypic delay may be detected in experiments where the timing of anti-

biotic exposure, and of resistance evolution, can be precisely controlled, for example in turbi-

dostat-like continuous culture devices [90].

Broader significance of phenotypic delay

We have shown here that phenotypic delay (caused by molecular dilution) can affect mutation

rate estimates from fluctuation tests, as well as the probability that a bacterial infection survives

antibiotic treatment. Phenotypic delay may also affect other processes. For example, it was

recently shown that a delay in evolutionary adaptation can lead to coexistence of spatial popu-

lations, in cases where immediate adaptation would eradicate coexistence [91, 92]. A delay in
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evolutionary adaptation has also been postulated to explain the effect of antibiotic pulses of dif-

ferent lengths on the probability of resistance emerging [93]. Thus, mechanistic understanding

of phenotypic delay may be of broad relevance in bacterial evolution.

Methods and models

In all our simulations we use an agent-based model to simulate how mutated cells gain pheno-

typic resistance. Each cell has a number of attributes depending on the studied mechanism,

such as the numbers of sensitive and mutated DNA copies, and the numbers of sensitive and

resistant proteins, as specified below. Cells divide after time td since last division.

In our population-level simulations (sectionModelling the emergence of phenotypic delay),
we simulate 100 cells which have just become genetically resistant. Population-level simula-

tions are repeated 1,000 times and single-cell simulations are repeated 10,000 times.

Modelling effective polyploidy

To describe how the copy number (ploidy) c changes during cell growth and division we use

the Cooper-Helmstetter model [32]. We assume that it takes t1 = 40 min for a DNA replication

fork to travel from the origin of replication to the replication terminus, and that the cell divides

t2 = 20 min after DNA replication termination (t1 = C and t2 = D in the original nomenclature

of Ref. [32]; values representative for Escherichia coli strain B/r). During balanced (“steady

state”) growth assumed in this work, the number of chromosomes must double during the

time td between cell divisions (population doubling time). This means that for any td< t1 +

t2 = 60 min, the cell must have multiple replication forks and more than one copy of the chro-

mosome. The number of chromosomes will change during cell growth: it will double some

time before division, and halve just after the division. If tini is the time, since the last division,

at which new replication forks are initiated, we must have ((tini + t1) mod td = td − t2). This

equation states that the time when a replication round, initiated in the parent cell, finishes in

the offspring cell ((tini + t1) mod td) must be the same as the time td − t2 when the cell division

process (lasting t2 min) is initiated. It can be shown that this gives (tini = td − (t1 + t2) mod td).
We proceed in a similar way to determine the time trep at which a gene which confers resis-

tance is replicated. If the gene is located in the middle of the genome, as is the case for the gyrA
gene relevant for fluoroquinolone resistance, it will be copied t1/2 minutes after chromosome

replication initiation. This implies that

trep ¼ td � t2 þ
t1
2

� �

mod td

� �

: ð2Þ

At this time point during the cell cycle the copy number of the gene of interest will double.

The effective polyploidy immediately after this event is maximal and equal to

c ¼ 2
d
t1=2þt2
td
e
; ð3Þ

where d. . .e denotes the ceiling function. We use c from Eq (3) as the control variable in simu-

lations of the polyploidy model.

To simulate a cell or a population of cells with effective polyploidy we use the following

algorithm. We initialize the simulation with all cells having c/2 sensitive alleles. Cells replicate

in discrete generations every td minutes. The number of allele copies doubles at trep (Eq (2))

since the last division in such a way that a sensitive/resistant allele gives rise to a sensitive/resis-

tant copy, respectively. Sensitive alleles have a probability μ of mutating to a resistant allele.

When a cell divides, the copies are split between the two daughter cells, with those linked by
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the most recent replication fork ending up in the same cell. We assume that the resistance

mutation is recessive, which implies that a cell becomes resistant when all of its gene copies are

resistant.

Modelling the dilution of sensitive molecules

For the dilution mechanism, we track the number of sensitive target molecules in each cell.

We assume that at time zero, all cells have n sensitive target molecules and no resistant ones.

When a mutation happens, we suppose that the mutated cell begins to produce resistant target

molecules and ceases to produce new sensitive molecules. At cell division, the sensitive mole-

cules are partitioned between the two daughter cells following a binomial distribution with

probability 0.5. We consider that a cell becomes phenotypically resistant when it contains no

sensitive molecules. In S1 Text we relax this assumption and study the case where a cell is con-

sidered resistant when the number of sensitive molecules falls below a (non-zero) threshold

value (S5 Fig).

Modelling the accumulation of resistance-enhancing molecules

To model the accumulation of resistance-enhancing molecules, we explicitly simulate the pro-

duction ofMp resistance-enhancing molecules per cell cycle and their stochastic division

between daughter cells, via a binomial distribution, at cell division. A cell is considered resis-

tant when it contains more thanMr resistance-enhancing molecules. In all simulations we fix

Mr = 1000 and varyMp to explore a range ofm ¼ Mp
Mr

between 0.1 and 2.

Combining effective polyploidy and molecular dilution

To include both effective polyploidy and molecular dilution, we track explicitly the total

gene copies, the resistant gene copies and the number of sensitive proteins, as explained in

Secs. Modelling effective polyploidy and Modelling the dilution of sensitive molecules. We

assume that the number of resistant proteins produced in one cell cycle is proportional

to the ratio of resistant to total gene copies. Both types of proteins (sensitive and resistant)

are partitioned at cell division following a binomial distribution with probability 0.5. We

consider that a cell becomes phenotypically resistant when it contains no sensitive

molecules.

Simulating a growing infection

We start our simulations with 100 sensitive bacteria. Bacteria reproduce in discrete generations

with doubling time td. Upon reproduction, each bacterium can mutate with probability μ =

10−7. When the population reaches 107 cells, all phenotypically sensitive cells are removed

(killed); this represent antimicrobial therapy. We repeat the simulation 1000 times to obtain

the survival probability as a fraction of simulations in which phenotypically resistant cells

emerge before the population dies out.

Simulating Luria-Delbrück fluctuation tests

To generate mutant size distributions for realistically large population sizes of sensitive cells

required for comparing the model with experimental data, we use an algorithm based on Çin-

lar’s method [94, 95]. The algorithm does not simulate the sensitive population explicitly, but

it generates a set of times {ti} at which mutants emerge from the exponentially growing sensi-

tive population:
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Algorithm 1:
1 Initialize t = 0, s = 0 ti = [];
2 while t � tf do
3 s  s − log(U(0, 1));

4 t 1

ls
log 1� m

mNi
sþ 1

� �
;

5 ti.extend(t)
6 end
7 return ti

Here tf ¼
lnðNf =NiÞ

ls
is the final time, Nf is the final population size, Ni is the initial population

size, ls ¼
lnð2Þ
td
ð1 � mÞ is the growth rate of the sensitive bacteria, td is the doubling time, μ is

the mutation probability and U(0, 1) is a random variable uniformly distributed between 0 and

1. Formally, {ti} are the times generated from a Poisson process over the interval [0, tf] with

rate ðmlselsð1� mÞtÞ0�t�tf .

For each ti, we then calculate the number of generations until the final time tf as

gi ¼
tf � ti
td

: ð4Þ

For all of the simulations in sections Phenotypic delay due to dilution changes the Luria-Del-
brück distribution and biases mutation rate estimates andMutant number distributions may
support the existence of phenotypic delay, we assume td = 60 min. We then simulate each clone

for gi generations, including dilution of sensitive target molecules, and measure the number of

resistant cells for each clone. Finally, we measure the number of resistant cells for each repli-

cate by summing up over all clones.

Approximate Bayesian computation

We use an approximate Bayesian computation method to determine the posterior probabilities

of the non-delay and the dilution model. Briefly, the method relies on generating many (here:

104) independent samples of the simulated experiment mimicking Boe et al. [47] for both

models. Model parameters are sampled from suitable prior distributions, we then select sam-

ples that approximate well the real data, and calculate the fraction of best-fit samples corre-

sponding to each model.

A single sample corresponds to 1104 simulated replicates of the fluctuation experiment at

fixed parameters, for a given model. For each sample, parameters are randomly chosen from

the following prior distributions: log10(μ) uniform on [−10, −8], and log2(n) uniform on [0, 8]

(for the delay model). The tail cumulative mutation function

FðkÞ ¼ Number of experiments yielding � k mutants; 0 � k � 513; ð5Þ

is calculated for each sample i (Fi), and also for the experimental data from Boe et al. [47]

(Fobs). F is undefined for k� 514 as the authors of [47] grouped replicates yielding more than

512 mutants. We then select 100 out of the 2 × 104 (104 from each model) generated samples

with the smallest Euclidean distance ||Fi − Fobs||2 (simulated distributions closest to the experi-

mental data). The proportion of these which come from the phenotypic delay model is an

approximation of the posterior probability that the experimental data was generated by the

delay model (under the assumption that the experimental data was generated by one of the

models). In reality the data generation process is likely to be far more complex than our ideal-

ised models, but the posterior probability of 0.97 implies the delay model provides a superior

explanation compared with the model with no delay.
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To examine the validity of our approach, we performed cross validation. For each model we

randomly chose one sample corresponding to that model. We then computed the probability

the simulated data was generated by the model with phenotypic delay, via the approximate

method detailed above. This was carried out 500 times for each model. The proportion of sim-

ulations that were misclassified (as being with delay when they were not, or vice versa) was low

(0.007, Fig 5c), showing that our model selection framework is able to discriminate between

the two models. We provide a further sensitivity analysis of this inference method in S1 Text,

Section 7.

Supporting information

S1 Text. Supplementary information. Mathematical derivations, additional model variants,

sensitivity analysis.

(PDF)

S1 Table. Numerical values used to generate all graphs. An Excel spreadsheet with multiple

tabs, each corresponding to a single figure.

(XLSX)

S1 Fig. Single-lineage probability of developing resistance. (a) We follow a single bacterium

which has just mutated and has the resistant allele in one of its chromosomes. When it divides,

we choose one of the two daughter cells at random. After a few generations, this cell can

become phenotypically resistant. (b) The probability of the cell being resistant as a function of

the number of generations from the genetic mutation for the dilution mechanism (dots: simu-

lation, lines: theory Eq (S1)). (c) Same as (b) for the effective polyploidy mechanism. (d) Same

as (b) for the accumulation mechanism (only simulations).

(TIF)

S2 Fig. Expected number of generations until a phenotypically resistant cell emerges. We

start with x = 100 cells that just mutated, and repeat the simulation 500 times for each data

point. “Analytic approximation” refers to Eq (S6).

(TIF)

S3 Fig. Biasing the segregation of sensitive molecules at division leads to a decrease in the

phenotypic delay both at the (a) single-cell and (b) population level. Blue curve represents

an unbiased case (p = 0.5), orange curves is the biased case (p = 0.62). In all cases, n = 1000.

(TIF)

S4 Fig. Effect of dependence of the number of target molecules on the doubling time td for

the combined model. (a) Probability of resistance as a function of time (generations) for dif-

ferent doubling times (determined by ploidy c) when the number of target molecules n
depends on td. (b) Same as (a) but for the model in which n does not depend on td. (c) Proba-

bility of survival for a simulated infection (see section 2.3 and Fig 3 in the main text) for a com-

bined model when the number of target molecules depends on the growth rate. (d) Same as

(c) but for the model in which n does not depend on td.
(TIF)

S5 Fig. A partial dilution mechanism decreases the phenotypic delay. (a) Single-cell and

(b) population level simulated experiments as a function of nr, the number of sensitive mole-

cules allowed for resistance to emerge. In all cases, the total number of molecules n = 1000.

(TIF)
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S6 Fig. Maximum likelihood estimates of μ from 1000 simulations mimicking the experi-

ment of Ref. [46] with known μ = 3.98 × 10−9 (black vertical line) for the no-delay model.

The mutation probability can be underestimated by a factor of 2 (95% of simulations yielded

estimates between red vertical lines), whereas Ref. [46] reports a factor of 9.5 difference

between μ obtained from DNA sequencing and fluctuation tests. The Lee et al. result [46] can-

not be thus explained by the no-delay model.

(TIF)

S7 Fig. Sensitivity analysis for model selection. (a) The probability of the Boe et al. data [47]

coming from the delay model as a function of the number of simulation runs. The runs were

randomly sampled from the original bank of simulations and the probability of the delay

model was estimated. The process was repeated 10 times. Error bars are the maximum and

minimum probability estimated, with the centred dot as the mean. (b) The probability estimate

for the probability of the data [47] coming from the delay model as a function of Nthresh.

(TIF)

S8 Fig. Full distribution for the Luria-Delbrück simulations of the dilution model pre-

sented in Fig 4 in the main text. a) Distributions for both models for a fixed μ = 10−7. (b) Dis-

tributions for the case when μ in the dilution model has been adjusted to minimize the

difference to the no-delay model.

(TIF)
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