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Higher-Order Convolution PML (CPML) for FDTD
electromagnetic modelling

Antonios Giannopoulos

Abstract—A new simple formulation for incorporating a
higher-order perfectly matched layer (PML) stretching function
within a convolution PML (CPML) implementation in finite-
difference time-domain (FDTD) electromagnetic modelling codes
is developed. Obtaining in closed form the corresponding time
domain impulse response of the inverse of a number of higher-
order PML stretching functions enables the efficient and simple
implementation of such higher-order PMLs using recursive
convolution, in the same way as it was introduced initially for
the complex frequency shifted (CFS) PML. This new higher-
order CPML exhibits excellent performance that is comparable
to the performance shown by other higher-order PML formu-
lations whilst it retains the advantage of a relatively simpler
implementation.

Index Terms—Absorbing Boundary Conditions, Finite Differ-
ence Methods, Perfectly Matched Layer, Recursive Convolution,
FDTD, PML

I. INTRODUCTION

ONE of the most successful and popular PML implemen-
tations used in FDTD [1], [2] is the Convolution PML

as introduced by Roden and Gedney [3]. Some of the reasons
for the popularity of the CPML are that it is media agnostic,
as it is based on a stretched co-ordinate PML formulation [4],
[5], and that the use of a direct implementation in the time
domain of a recursive convolution results in a rather simple
and efficient implementation. The key design idea behind the
CPML approach is the exploitation of an efficient scheme for
performing a recursive convolution in the time domain, firstly
introduced in mainstream FDTD modelling for incorporating
frequency dispersive materials [6]. To implement such an
approach the impulse response of the inverse of the PML’s
stretching function, defined in the frequency domain, should
be available in closed form and specified primarily via an
exponential function. For a standard (i.e. a single) CFS pole
a relatively simple closed form expression for the required
impulse response is easily derived and this has been the basis
for the CPML formulation as was presented for the first time
in [3]. A trapezoidal recursive convolution (TRC) scheme was
used by default, mainly due to the arrangement of the field
components involved in the convolution integral which ensured
that CPML is a second order accurate numerical scheme [7] as
is the main FDTD algorithm. Obviously, it is the exponential
nature of the time domain impulse response that allowed
for the recursive evaluation of the otherwise computationally
demanding convolution integrals.
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For a number of FDTD modelling problems it has been
shown that a second order PML stretching function can
improve the performance of the PML absorbing region as
demonstrated by Correia and Jin who introduced the idea and
the first such PML formulation [8] and soon after showcased
the improvement in performance [9]. Subsequently, a number
of PML formulations have been developed to accommodate
such more complex stretching functions [10]–[13]. Until now,
however, it appears that no attempt has been reported in the
literature, to apply directly the design idea that has led to
the original CPML approach, in implementing a higher-order
PML. This possibly could be due to the increase in complexity
and tediousness in obtaining the impulse response of higher-
order PML stretching functions in closed form. An attempt
however, to use the CPML approach for a 2nd order PML
has been reported in [14] but this was based on what appears
to be the creation of a system of interdependent simpler first
order recursive convolutions. Although the attempt appeared
to perform well, the authors reported stability issues and they
did resort to recommending restricting the range of PML
parameters. No further development of this approach has been
presented or followed further.

In this paper, first, a general formula in closed form for
the impulse response of the inverse of higher-order PML
stretching functions is presented, and then used to implement
in FDTD a higher-order PML using the CPML approach.
It will be shown that the resulting formulation retains the
simplicity of the original CPML, is numerically efficient
and can be easily introduced in FDTD codes that already
implement the standard CPML with minimum effort.

II. THEORY

Maxwell’s equations in frequency domain and in stretched
co-ordinates can be presented compactly as

ωD̃i =
1

sj

∂H̃k

∂j
− 1

sk

∂H̃j

∂k
(1)

ωB̃i =
1

sk

∂Ẽj
∂k
− 1

sj

∂Ẽk
∂j

(2)

using the cyclic notation (i, j, k) ∈ (x, y, z), (y, z, x), (z, x, y),
where su with u ∈ (i, j, k) is a higher-order PML stretching
function defined by

su =

M∏
m=1

(κum +
σum

αum + ωε0
) (3)

where M is the number of general CFS poles that make up the
higher-order stretching function and its individual terms are of
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the general form presented originally in [15]. Using s̄ = s−1

and converting to time domain
∂Di

∂t
= s̄j(t) ?

∂Hk

∂j
− s̄k(t) ?

∂Hj

∂k
(4)

∂Bi
∂t

= s̄k(t) ?
∂Ej
∂k
− s̄j(t) ?

∂Ek
∂j

(5)

It has been shown in [3] that for M = 1, for which (3) reduces
to the standard CFS-PML stretching function, s̄u(t) is

s̄u(t) =
δ(t)

κu
− σue

−t(αuκu+σu
ε0κu

)

ε0κ2
u

u(t) (6)

where δ(t) and u(t) are the Dirac delta and the Heaviside step
functions respectively. Using Laplace transforms, and although
not formally proven for all positive M , it has been verified
with the help of a computer algebra program [16] that for up
to at least M = 10 the impulse response of 1/su with a PML
stretching function, as defined in (3), takes the general form

s̄u(t) =
δ(t)

M∏
m=1

κum

− 1

ε0

M∑
m=1

e
−t(αumκum+σum

ε0κum
)

σum

M∏
l=1
l 6=m

Λum,l

κ2
um

M∏
l=1
l 6=m

Ξum,l

u(t)

(7)

where the following are introduced to simplify the presentation
and m, l ∈ (1 . . .M) with l 6= m

Λum,l = αumκum − αulκum + σum

Ξum,l = αumκumκul − αulκumκul + κulσum − κumσul
(8)

The case of interest here and for most practical applications
is when M = 2 and the PML stretching function takes a form
that has been shown that it can improve performance [8] for
some FDTD modelling problems. The impulse response for
M = 2 obtained easily from (7) is

s̄u(t) =
δ(t)

κu1κu2

−
e
−t(αu1κu1+σu1

ε0κu1
)
σu1

Λu1,2
u(t)

ε0κ2
u1

Ξu1,2

−
e
−t(αu2κu2+σu2

ε0κu2
)
σu2

Λu2,1
u(t)

ε0κ2
u2

Ξu2,1

(9)

Introducing (9) into (4), to apply the CPML concept as
presented in [3], results in
∂Di

∂t
=

1

κj1κj2

∂Hk

∂j
+ζj(t)?

∂Hk

∂j
− 1

κk1κk2

∂Hj

∂k
−ζk(t)?

∂Hj

∂k
(10)

where

ζu(t) =−
e
−t(αu1κu1+σu1

ε0κu1
)
σu1Λu1,2u(t)

ε0κ2
u1

Ξu1,2

−
e
−t(αu2κu2+σu2

ε0κu2
)
σu2Λu2,1u(t)

ε0κ2
u2

Ξu2,1

(11)

defining the discrete impulse response as

Z0u(q) =

∫ (q+1)∆t

q∆t

ζu(τ)dτ

=−
σu1

Λu1,2

ε0κ2
u1

Ξu1,2

∫ (q+1)∆t

q∆t

e
−τ(

αu1
κu1

+σu1
ε0κu1

)
dτ

−
σu2

Λu2,1

ε0κ2
u2

Ξu2,1

∫ (q+1)∆t

q∆t

e
−τ(

αu2
κu2

+σu2
ε0κu2

)
dτ

(12)

can arrive at

Z0u(q) = au1e
−q∆t(αu1κu1+σu1

ε0κu1
)

+ au2e
−q∆t(αu2κu2+σu2

ε0κu2
)

(13)

where au1
and au2

are defined as

au1
=

σu1
Λu1,2

κu1
(αu1

κu1
+ σu1

)Ξu1,2

(
e
−∆t(

αu1
κu1

+σu1
ε0κu1

) − 1

)
(14)

au2
=

σu2
Λu2,1

κu2
(αu2

κu2
+ σu2

)Ξu2,1

(
e
−∆t(

αu2
κu2

+σu2
ε0κu2

) − 1

)
(15)

The general form of an FDTD update of (10) can then be
constructed

Dn+1
ii+1/2,j,k

−Dn
ii+1/2,j,k

∆t
=

1

κj1κj2

H
n+1/2
ki+1/2,j+1/2,k

−Hn+1/2
ki+1/2,j−1/2,k

∆j
+

N∑
q=0

Z0j (q)
H
n−q+1/2
ki+1/2,j+1/2,k

−Hn−q+1/2
ki+1/2,j−1/2,k

∆j

− 1

κk1κk2

H
n+1/2
ji+1/2,j,k+1/2

−Hn+1/2
ji+1/2,j,k−1/2

∆k
−

N∑
q=0

Z0k(q)
H
n−q+1/2
ji+1/2,j,k+1/2

−Hn−q+1/2
ji+1/2,j,k−1/2

∆k

(16)

that can be simply written as

Dn+1
ii+1/2,j,k

−Dn
ii+1/2,j,k

∆t
=

1

κj1κj2

H
n+1/2
ki+1/2,j+1/2,k

−Hn+1/2
ki+1/2,j−1/2,k

∆j
+ ψn+1

Dij1
+ ψn+1

Dij2

− 1

κk1κk2

H
n+1/2
ji+1/2,j,k+1/2

−Hn+1/2
ji+1/2,j,k−1/2

∆k
− ψn+1

Dik1
− ψn+1

Dik2

(17)

introducing the ψDium CPML memory variables that conve-
niently allow us to compute recursively and efficiently the
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discrete convolutions in (16) and are simply updated using

ψn+1
Diu1

= bu1ψ
n
Diu1

+ au1

H
n+1/2
ji+1/2,j,k+1/2

−Hn+1/2
ji+1/2,j,k−1/2

∆k

(18)

ψn+1
Diu2

= bu2
ψnDiu2 + au2

H
n+1/2
ji+1/2,j,k+1/2

−Hn+1/2
ji+1/2,j,k−1/2

∆k
(19)

with

bu1 = e
−∆t(

αu1
κu1

+σu1
ε0κu1

) and bu2 = e
−∆t(

αu2
κu2

+σu2
ε0κu2

) (20)

It is important to state that it has not yet been shown that such a
PML stretching function of order higher than 2 improves the
performance to a level that justifies the extra computational
resource required to implement it. However, a 3rd order PML
was implemented, tried and tested to further verify the validity
of (7) and of the approach. However, its performance was
found to be about the same as an optimised 2nd order PML.

In terms of stability it is important to note that for any PML
the following conditions should be satisfied [11]

<(su) ≥ 1 and =(su) > 0 (21)

however, in higher-order PMLs these conditions can become
more cumbersome to verify. For a 2nd order PML that is built
using the product of a standard PML stretching function (i.e.
α1 = 0) and of a CFS-PML one, as presented in [8], using
α2 > σ1 and κ2 ≥ 1 ensures that the conditions in (21)
are satisfied for all frequencies [11]. Extensive numerical tests
have been carried out for the 2nd order CPML presented here
and have not indicated any stability problems that require any
other different restrictions imposed for its application.

Another aspect to be highlighted is the fact that the CPML
memory variables are not in exact time synchronisation with
the rest of the FDTD update equations [17, pp. 66], [7]. This
is evident by examining (17) as the equation is time centred
at the n + 1/2 instance whereas the PML memory variables
that are used represent the values of the discrete convolutions
at n+1. This is easy to rectify as shown in [7] but the CPML
does work well without such synchronisation as pointed out
in [17, pp. 66] and is supported by the results obtained here.

III. NUMERICAL RESULTS

To demonstrate the effectiveness and performance of the
higher-order CPML presented here numerical examples are
used that have been employed previously [11], in assessing
other similar higher-order PML formulations. This way, a
better comparison can be made between approaches for im-
plementing higher-order PMLs.

In the following, for building all PMLs used here, σopt is
given by [18]

σopt =
m+ 1

150π∆l
(22)

Fig. 1. TEz FDTD model of a PEC sheet with an electric current source at
its centre including a 10-cell thick PML. The Ey field is sampled at point A
on the edge of the PEC sheet 3 cells away from the PML boundary.

where m is the order of the relevant polynomial scaling used.
Further, in obtaining an estimate of PML errors, at the required
testing points, the following formula is used

Errordb|ni,j = 20 log10

‖E|ni,j − Eref|ni,j‖
‖Erefmax |i,j‖

(23)

and reference solutions have been obtained using suitably
large FDTD models so no appreciable contribution from their
truncation boundaries were affecting their solution.

A. Line Source over finite 2D PEC Sheet

A TEz FDTD grid is used for the 2D numerical test. The
model comprises an electric current source oriented in the y
direction centred over a perfect electric conductor (PEC) sheet.
The current of the source has the following time signature

I(t) = −2
(t− t0)

tw
e−(

t−t0
tw

)2 (24)

where tw = 26.53 ps and t0 = 4tw. The model, illustrated in
Fig. (1), is built using 126×26 1 mm uniform cells and the Ey
field component is sampled at A which is placed at the edge
of the 100 cell PEC sheet only 3 FDTD cells away from the
PML inner boundary which was built using 10 cells. The time
step ∆t of the simulation was set to be ∆t = 0.99∆l/c

√
2.

Errors from terminating the FDTD grid using a 10-cell
standard PML, a CFS-PML, the 2nd order CPML presented
here as well as a 2nd order RIPML [11] and a 2nd order CFS-
PML as developed in [8] have been calculated. For a standard
PML the parameters used were σ = 0.5σopt, and κmax = 8
employing the same polynomial grading of order m = 4 for
both. The CFS-PML parameters where obtained from [11] as

κ = 1 + κmax

(x
d

)m
σ = 1.1σopt

(x
d

)m
, α = 0.05

where κmax = 11 and m = 4. d is the thickness of
the PML and x is distance from the inner PML interface
(x ∈ [0, d]). Similarly, for building the mixed 2nd order CPML
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Fig. 2. Errors in the Ey field component at point A for 2D TEz PEC sheet
models terminated using either a 10-cell PML, a CFS-PML, and the new 2nd
order CPML.

its parameters were set to the same ones used to test the
RIPML formulation of [11] and were

κ1 = 1

σ1 = σ1opt

(x
d

)6

, α1 = 0

κ2 = 1 + κ2opt

(x
d

)3

σ2 = σ2opt

(x
d

)2

, α2 = α0 + σ1

where α0 = 0.09, κ2opt = 7, σ1opt = 0.175/(150π∆l) and
σ2opt = 2.5/(150π∆l)

In Fig. (2) the PML errors from the standard PML, CFS-
PML and the mixed 2nd order PML using the CPML formu-
lation are presented. It is clear that the new 2nd order CPML
performs very well as expected. In Fig. (3) the error obtained
using the new CPML 2nd order formulation is compared
with the error obtained when using the RIPML [11] and
for the same PML parameters. They are clearly very similar,
something that does indicate that the absence of exact time
synchronisation in the standard CPML does not affect its
performance as much as it has shown to do in simple (i.e.
first order) PML applications as has been observed in [19]
and [7]. To investigate further the small variations between
these errors in Fig. (4) the cumulative errors obtained using

Error|ni,j =

n∑
m=1

‖E|mi,j − Eref|mi,j‖
‖Erefmax |i,j‖

(25)

from the mixed 2nd order PMLs using the new CPML
formulation, a time-synchronised version of it following the
suggestion of [7], the RIPML of [11] and the first formulation
of a higher-order PML as presented by Correia and Jin [8],
are presented. What is observed is that the cumulative errors
are very close and follow the same pattern. However, it is
clear that the errors for the time-synchronised CPML and
RIPML are almost identical and similarly almost identical are

0 250 500 750 1000 1250 1500

Iterations

-200

-180

-160

-140

-120

-100

-80

-60

E
rr

o
r 

(d
B

)

2nd Order CPML

2nd Order RIPML

Fig. 3. Errors in the Ey field component at point A for 2D TEz PEC sheet
models terminated using either a 10-cell new 2nd order CPML or a 2nd order
RIPML.
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Fig. 4. Cumulative errors, obtained using (25), in the Ey field component
at point A for 2D TEz PEC sheet models terminated using 10-cell 2nd order
PMLs using the new CPML, a time-synchronised version of it, RIPML and
the formulation of [8].

the errors from the normal CPML and the method presented in
by Correia and Jin [8]. Analysing the formulation of Correia
and Jin it is clear that it is not time-synchronised either.
Although the differences are small the cumulative errors do
indicate that a time-synchronised formulation might have a
small advantage.

B. Hertzian dipole response from a thin PEC plate

A 3D FDTD model, as illustrated in Fig. (5), of an elongated
thin PEC plate has been used to evaluate the performance
of the higher-order CPML formulation. The FDTD grid of
51×126×26 cells [2], used a uniform spatial step of ∆l = 1
mm and a time step ∆t = 1.906 ps. Above the thin plate,
having dimensions of 25× 100 mm, a z-directed source, with
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z

x

y

Fig. 5. A z-directed (Jz) electric current dipole source placed 1 mm above
the corner of a 25× 100 mm thin plate. The Ey field component is sampled
1 mm away from the plate’s opposite corner [2].

a time variation as used in the previous 2D example and given
by (24), was placed 1 mm above one of the corners of the PEC
sheet. The Ey field output was obtained 1 mm away from the
diagonally opposite corner. Only three cells separated the edge
of the target and the inner surface of the 10-cell thick PMLs.
The time-dependent errors calculated using (23) are presented
in Fig. (6) for a 10-cell PML, CFS-PML, a 2nd order new
CPML and from the 2nd order RIPML [11]. The standard
PML parameters where set as σ = 0.7σopt, and κmax = 11
employing the same polynomial grading of order m = 4 for
both and the parameters for the CFS-PML where [11]

κ = 1 + κmax

(x
d

)m
σ = 1.1σopt

(x
d

)m
, α = 0.05

where κmax = 7 and m = 4. Finally, the parameters for the
new 2nd order CPML and for RIPML were set as defined for
the previous 2D example but with σ1opt = 0.275/(150π∆l),
σ2opt = 2.75/(150π∆l) and α0 = 0.07 instead [11].

It is evident from Fig. (6) that the new 2nd order CPML
formulation improves the performance of the boundary condi-
tion in a similar way in the 3D case as it does for the previous
2D case. The performance is very similar to that obtained by
RIPML and the errors become practically identical if a time
synchronised version of CPML [7] is used.

IV. CONCLUSION

Although CPML is one of the most popular PML implemen-
tations, a simple extension of the original CPML approach
to use higher-order PML stretching functions was not, until
now, available. Obtaining in closed form the impulse response
of the inverse of such higher-order PML stretching functions
allowed the application of the recursive convolution approach
that resulted in an equally simple process as used for the
standard CPML by Roden and Gedney. One key observation
that differentiates the higher-order CPML from most of the
other higher-order PML formulations is that the updates of the
memory variables, supporting the evaluation of the recursive
convolutions, are all independent from each other and can be
updated in any order. This is not the case in other formulations
(e.g. RIPML [11]) where a specific order of updating of the
memory variables must be followed. This further simplifies the
update of existing FDTD codes, that already use the standard
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Fig. 6. Errors in the Ey field component obtained one cell away from a PEC
thin plate. The FDTD model was terminated using either a 10-cell PML, a
CFS-PML, the new 2nd order CPML and a 2nd order RIPML.

CPML, as in addition all memory variable update equations
retain the same exact form. Time synchronising the higher-
order CPML does not appear to alter greatly its performance
but in terms of errors it does make it practically equivalent to
the RIPML formulation.
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