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MULTI-SCALE OCTAVE CONVOLUTIONS FOR ROBUST SPEECH RECOGNITION

Joanna Rownicka, Peter Bell, Steve Renals

Centre for Speech Technology Research, University of Edinburgh, UK

ABSTRACT
We propose a multi-scale octave convolution layer to learn ro-
bust speech representations efficiently. Octave convolutions
were introduced by Chen et al [1] in the computer vision field
to reduce the spatial redundancy of the feature maps by de-
composing the output of a convolutional layer into feature
maps at two different spatial resolutions, one octave apart.
This approach improved the efficiency as well as the accu-
racy of the CNN models. The accuracy gain was attributed
to the enlargement of the receptive field in the original in-
put space. We argue that octave convolutions likewise im-
prove the robustness of learned representations due to the use
of average pooling in the lower resolution group, acting as
a low-pass filter. We test this hypothesis by evaluating on
two noisy speech corpora – Aurora-4 and AMI. We extend
the octave convolution concept to multiple resolution groups
and multiple octaves. To evaluate the robustness of the in-
ferred representations, we report the similarity between clean
and noisy encodings using an affine projection loss as a proxy
robustness measure. The results show that proposed method
reduces the WER by up to 6.6% relative for Aurora-4 and
3.6% for AMI, while improving the computational efficiency
of the CNN acoustic models.

1. INTRODUCTION

Deep convolutional neural networks (CNNs) with 2D con-
volutions and small kernels [2], have achieved state-of-the-
art results for several speech recognition tasks [3, 4, 5, 6,
7]. The accuracy of those models grows with their complex-
ity, leading to redundant latent representations. Several ap-
proaches have been proposed in the literature to reduce this
redundancy [8, 9, 10, 11, 12], and therefore to improve their
efficiency.

Octave convolutional layers [1] address the problem of
spatial redundancy in feature maps by learning feature rep-
resentations at high and low resolutions. The low resolution
processing path increases the size of the receptive field in the
original input space, which is a plausible explanation of the
improved performance for image classification. We extend
the octave convolution concept to multi-scale octave convo-
lutional layers, which include lower resolution feature maps
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with a higher compression rate (reduction by more than one
octave), and the use of more than two feature map tensor
groups in order to learn representations at multiple scales.

Multi-scale processing have been previously proposed for
a variety of speech recognition tasks [13, 14, 15, 16, 17]. In
deep CNN acoustic models, some of the feature maps may
need to represent information which varies at a lower rate,
such as the characteristics of the speaker or background noise,
compared to the information necessary for phonetic discrim-
ination. Spatial average pooling in a low resolution group of
feature maps can be interpreted as a form of low-pass filter-
ing, providing smoothed representations of the observed data,
potentially leading to improved performance.

We investigate the use of multi-scale octave convolutional
layers for robust speech recognition, and attempt to shed more
light on the explainability of the models by evaluating the ro-
bustness of the learned representations using an affine trans-
formation loss to measure the similarity between clean and
noisy encodings.

2. MULTI-SCALE OCTAVE CONVOLUTIONS

An octave convolutional layer [1] factorizes the output feature
maps of a convolutional layer into two groups. The resolution
of the low-frequency feature maps is reduced by an octave –
height and width dimensions are divided by 2. In this work,
we explore spatial reduction by up to 3 octaves – dividing by
2t, where t = 1, 2, 3 – and for up to 4 groups. We refer to
such a layer as a multi-octave convolutional (MultiOctConv)
layer, and an example with three groups and reductions of one
and two octaves is depicted in Fig. 1.

In a vanilla CNN the convolutions have the same spa-
tial resolution throughout the network. A multi-octave con-
volutional (MultiOctConv) layer has feature maps reduced
by multiple octaves. Let the input feature tensor be X ∈
Rcin×h×w, where cin denotes the number of input channels
and h and w correspond to the spatial dimensions. In a Multi-
OctConv layer working at 3 resolutions,X is factorized along
the channel dimension into X = {X1, X2, X3}. The first
group tensor, X1, is a representation at the same spatial scale
as X . The spatial dimensions of the second and third group
tensors, X2 and X3, are reduced by one and two octaves re-
spectively. The dimensions of the input tensors X1, X2 and
X3 are described in Fig. 1. The fraction of the channels for



Fig. 1. Multi-octave convolution scheme for 3 resolution
groups. Red and green arrows show the connections for the
initial and final MultiOctConv layers, respectively. N cor-
responds to the total number of groups in the MultiOctConv
layer (N = 3 in this example). αn is a fraction of channels
corresponding to group n. h and w are spatial dimensions.

each group is denoted with αn ∈ [0, 1], where
∑N
n=1 αn = 1

for N resolution groups in the MultiOctConv layer. For sim-
plicity, we use the same αn for input and output represen-
tations within the same scale group. Similarly, the output
tensors are also factorized into Y = {Y 1, Y 2, Y 3}. Their
dimensions are also described in Fig. 1. To compute Y 1,
Y 2 and Y 3 we operate directly on the factorized input ten-
sors X1, X2 and X3. Inter-frequency information update is
implemented as a sum of feature maps from different reso-
lution groups (we also experiment with disabling the inter-
frequency exchange paths, keeping only the intra-frequency
connections). To be able to sum those representations for
a desired output scale, the spatial dimensions of the tensors
must be the same. For this reason, two operations are em-
ployed: spatial average pooling pool(X, p) and bilinear in-
terpolation upsample(X,u), where p is the kernel size and
stride for the the 2D pooling layer and u is the upsampling
factor. The output MultiOctConv representations are there-
fore computed as

Y1 = f(X1;W 1→1) + upsample(f(X2;W 2→1), 2)+

+upsample(f(X3;W 3→1), 4)

Y2 = f(X2;W 2→2) + upsample(f(X3;W 3→2), 2)+

+f(pool(X1, 2);W 1→2)

Y3 = f(X3;W 3→3) + f(pool(X1, 4);W 1→3)+

+f(pool(X2, 2);W 2→3)

where f(.) is the convolution function and Wnin→nout ∈
Rcin×k×k×cout is the convolution filter for a k × k kernel.
We call the information update “intra-frequency” when nin =
nout, and “inter-frequency” when nin 6= nout. It is impor-
tant to note that the convolution operates on the tensors com-
pressed with average pooling and on the tensors before up-

Fig. 2. Proposed method to measure the robustness of learned
representations.

sampling, making the design more efficient. The number
of parameters in the MultiOctConv layer is the same as in
a vanilla convolutional layer.

Robustness of learned representations

To evaluate the robustness of learned representations, we
compare clean and noisy Aurora-4 samples. The similarity
between them is measured using the Mean Squared Error
(MSE) loss of an affine projection y of N clean to noisy
samples (Eq. 1), to take into account permutations of hid-
den representations and to ensure invariance of the metric to
affine transformations of the encodings. The number of units
in layer y and the dimensionality D of xh is 1024.

θ∗ = argmin
θ

1

ND

N∑
i=1

∥∥y(x(i)
h,clean, θ)− x

(i)
h,noisy

∥∥2 (1)

We use the Aurora-4 test sets and compare clean encod-
ings xh,clean with noisy encodings xh,noise, obtained as the
activations from the last convolutional layer with a forward
pass through a trained model. Both hidden representations
were obtained for CNN and octave CNN (OctCNN) models.
Also, for intra-model comparison, we evaluate the loss with
the encodings from high and low-resolution groups (paths
Y 1→1 and Y 2→1). This analysis aims to evaluate if the low-
resolution groups for noisy samples are indeed more similar
to the clean ones than the high-resolution encodings, suggest-
ing more robust representations. We optimize the parameters
of y with back-propagation using a fixed number of 3 epochs
and we report the loss for Aurora-4 test sets.

3. EXPERIMENTAL SETUP

Aurora-4 [18]: We evaluate our models on the simulated
multi-condition Aurora-4 dataset, consisting of ∼15h of au-
dio for training and ∼9h for testing. The test set is divided
into 4 subsets: A, B, C, and D. Subset A contains clean-
condition recordings, subset B has 6 noise types added to the
recordings (car, babble, restaurant, street, airport, train), sub-
set C is recorded with a mismatched microphone, and subset
D is recorded with a mismatched microphone and with noise



added. In our experiments, we use multi-condition GMM-
HMM forced alignments as targets for CNN training. The
number of CD states for Aurora-4 is 3422.
AMI [19]: AMI contains ∼100h of meeting recordings, cap-
tured by an independent headset microphone (IHM), single
distant microphone (SDM), and multiple distant microphones
(MDM), where the mics are combined using the Beamfor-
mIt [20] toolkit. We train our models using the MDM data
and evaluate the models for all 3 types of recordings to ana-
lyze the effect of mismatched training/testing conditions. We
use the suggested train/dev/eval data split [21], and we evalu-
ate the models on both dev and eval sets. The number of CD
states for AMI is 3984.
Features: In our experiments, we use 40-dimension mel-
scaled filterbank (FBANK) features with {-5,..,5} context for
splicing, resulting in a 40× 11 input feature map.
Models: Our baseline CNN model [22] consists of 15 convo-
lutional and one fully-connected layer. We use 3 × 3 kernels
throughout the network. We start with 64 output channels in
the first layer and double them after 3 and 9 layers. We use
batch normalization in every convolutional layer, and ReLU
afterwards (unless a reverse order is noted). The initial learn-
ing rate is 0.001. We use early stopping for training.

4. RESULTS

We present our results in terms of accuracy and robustness
on Aurora-4 and AMI, as well as in terms of the computa-
tional cost, which is calculated as the number of multiply-
accumulate operations (MACCs) performed for a single input
feature map. The cost reduction when using octave convo-
lutions stems from reduced dimensions cin, cout, h, and w
compared to a vanilla convolutional layer.

Aurora-4: Results for Aurora-4 are presented in Table 1.
We replace vanilla convolutional layers of our baseline model
(CNN) with OctConv and MultiOctConv layers. We first eval-
uate which layers can be replaced and find that all but the first
layer, operating directly on the input representation, should be
replaced for the best performance. This approach (L2-L15) is
also the least costly. Reducing the ratio of low-resolution rep-
resentations to 0.125 improves the WER for the mismatched
microphone scenario C, but not for all test conditions. Apply-
ing batch normalization after ReLU is beneficial for test set C
and D. For OctCNN models, the WER for test set D dropped
by∼ 0.4% with a compression by one octave, and by another
∼ 0.4% with a reversed batch normalization and ReLU order.

The biggest differences between the MultiOctCNN mod-
els can be observed for test set D. The models with the lowest
WERs are the ones with a spatial reduction by 2 or 3 octaves,
and with 2 or 3 groups. This indicates that multi-scale oc-
tave convolutions seem to be an effective, as well as an effi-
cient design for processing speech with background noise and
channel mismatch. For MultiOctCNNs, batch normalization

Fig. 3. MSE affine transformation loss to measure the similar-
ity of ”clean” and ”noisy” encodings (xh,clean and xh,noisy).
”all” corresponds to the output of the last convolutional layer
(Conv15), ”high” and ”low” correspond to its Y 1→1 and
Y 2→1 branch, respectively.

after ReLU also gives a performance boost for test set D, with
a drop to 13.57%.

To further evaluate the robustness of the latent represen-
tations we measured the MSE between the (projected) repre-
sentations (Fig. 3). The loss for the activations at the output
of Conv15 (”all”) is similar for CNN and OctCNN models for
test sets B and C, but lower for test set D for OctCNN, indi-
cating that the learned representations are more robust, con-
tributing to lower WERs. As expected, within-model compar-
ison of the loss show that the representations at low resolution
are more similar to the clean encodings from test set A than
the ones at high resolution. We believe that this effect im-
proves the robustness of latent representations and results in
a decreased WER.

AMI: Results for AMI are presented in Table 2. In contrast to
the Aurora-4 findings, better performance was achieved with
an all OctCNN model (L1-L15). This is an interesting find-
ing, and we believe that the multi-scale processing of the in-
put feature space is beneficial for AMI MDM because of the
reverberation in the data. The reverbarated input time×freq
representation can be viewed as a spatially redundant one,
therefore the OctConv layer applied to the input representa-
tion is effective. Unfortunately, the only MultiOctConv model
superior to the baseline CNN is the one with 3 groups with a
spatial reduction by 1 and 2 octaves. This result indicates that
the spatial redundancy for this architecture for AMI MDM
is not degrading the performance. However, in terms of the
computational cost, we can reduce the #MACCs by a factor
of 1.8 with only a small WER increase for a model with 4
resolution groups.

5. CONCLUSIONS

We have presented multi-scale octave CNN models for robust
and efficient speech recognition. We build on Chen et al [1],



Model OctConv α (low → high) 21 22 23 #MACCs (M) A B C D Avg.
CNN - [0, 1] - - - 174.7 2.19 4.68 4.22 14.53 8.69
OctCNN L1-L3 [0.2, 0.8] X - - 167.6 2.19 4.74 4.32 14.83 8.85
OctCNN L1-L15 [0.2, 0.8] X - - 126.9 2.22 4.61 4.30 14.40 8.61
OctCNN L2-L15 [0.2, 0.8] X - - 126.2 2.02 4.65 4.35 14.16 8.52
OctCNN † L2-L15 [0.2, 0.8] X - - 126.2 2.22 4.82 4.22 13.72 8.41
OctCNN L2-L15 [0.125, 0.875] X - - 143.1 2.11 4.56 4.07 14.55 8.63
MultiOctCNN L2-L15 [0.1, 0.1, 0.8] X X - 120.6 1.98 4.51 4.11 14.00 8.37
MultiOctCNN L2-L15 [0.1, 0.1, 0.8] X - X 119.5 2.02 4.59 3.92 13.82 8.31
MultiOctCNN † L2-L15 [0.1, 0.1, 0.8] X - X 119.5 2.28 4.81 4.04 13.76 8.41
MultiOctCNN L2-L15 [0.1, 0.1, 0.1, 0.7] X X X 94.3 2.30 4.88 4.18 14.06 8.58
MultiOctCNN ‡ L2-L15 [0.1, 0.1, 0.1, 0.7] X X X 94.3 2.24 4.89 4.07 14.22 8.64
MultiOctCNN L2-L15 [0.2, 0.8] - X - 115.7 2.15 4.77 4.07 13.77 8.39
MultiOctCNN L2-L15 [0.125, 0.875] - X - 136.3 2.09 4.56 4.22 14.32 8.54
MultiOctCNN L2-L15 [0.2, 0.8] - - X 113.5 2.09 4.54 3.94 14.03 8.39
MultiOctCNN L2-L15 [0.125, 0.875] - - X 134.9 2.02 4.50 4.17 13.87 8.32
MultiOctCNN † L2-L15 [0.125, 0.875] - - X 134.9 2.32 4.73 4.24 13.57 8.31

Table 1. WERs [%] for Aurora-4 test sets A, B, C and D for octave and multi-octave CNNs. Notation explanation for both
tables: ”OctConv” column indicates where a Conv layer was replaced with an OctConv or MultiOctConv. 21, 22 and 23

correspond to the factor of spatial dimension reduction. Models with batch normalization after ReLU are denoted by †. Models
without the inter-frequency exchange paths are denoted by ‡.

IHM SDM MDM
Model OctConv α (low → high) 21 22 23 #MACCs (M) dev eval dev eval dev eval
CNN - [0, 1] - - - 175.2 33.4 38.3 49.1 54.0 43.9 48.0
OctCNN L1-L3 [0.2, 0.8] X - - 168.2 33.0 38.1 49.0 54.1 43.8 47.9
OctCNN L2-L15 [0.2, 0.8] X - - 126.7 33.0 37.7 48.9 54.0 43.7 47.7
OctCNN L1-L15 [0.2, 0.8] X - - 127.5 32.2 37.2 48.3 53.5 43.1 47.3
OctCNN L1-L15 [0.125, 0.875] X - - 144.1 32.5 37.4 48.2 53.3 42.9 47.2
OctCNN† L1-L15 [0.125, 0.875] X - - 144.1 33.2 38.3 48.8 54.3 43.7 48.0
MultiOctCNN L1-L15 [0.1, 0.1, 0.8] X X - 121.6 32.8 38.1 48.9 53.9 43.7 47.9
MultiOctCNN L1-L15 [0.1, 0.1, 0.8] X - X 120.4 33.3 38.5 49.2 54.5 44.1 48.4
MultiOctCNN L1-L15 [0.1, 0.1, 0.1, 0.7] X X X 95.2 33.7 38.7 49.5 54.6 44.1 48.4
MultiOctCNN ‡ L1-L15 [0.1, 0.1, 0.1, 0.7] X X X 95.2 33.2 38.3 49.3 54.5 44.0 48.5
MultiOctCNN L1-L15 [0.125, 0.875] - X - 136.9 33.6 38.6 49.7 54.6 44.3 48.4
MultiOctCNN L1-L15 [0.125, 0.875] - - X 135.4 32.9 38.1 49.1 54.3 43.8 48.0

Table 2. WERs [%] for models trained on AMI MDM and evaluated on IHM, SDM and MDM conditions.

applying the method to robust ASR and extending it to mul-
tiple resolution groups with a spatial reduction of more than
one octave. Our experiments confirm that multi-scale pro-
cessing of the hidden representations is not only more com-
putationally efficient, but also improves the recognition. Sim-
ilarity measures between clean and noisy encodings indicate
that multi-scale processing in a deep CNN acoustic model im-
proves the robustness of learned representations, especially
in the additive noise and mismatched microphone scenario.
The gain of the octave convolutions was also observed for
AMI MDM data with significant reverberation, when applied
to the input feature space. However, the model performance
for AMI MDM was not improved with multi-octave convo-
lutions. More careful tuning of the α hyperparameter could
improve the results, as it controls the ratio of multi-scale fea-
ture maps in the model, enabling both learning of fine-grained

representations preserving the details necessary for phonetic
discrimination, as well as smoothed, more invariant represen-
tations improving the robustness of the model. It would also
be possible to set α layer-by-layer to enable the fractions of
channels at different resolutions to vary according to the depth
of the representation.

We proposed a single projection layer MSE loss to mea-
sure the robustness as an affine relationship of clean and noisy
hidden representations, and to improve the explainability of
our models. We confirmed that the noisy lower resolution
representations are more similar to the clean counterparts
than high resolution representations, and thus are more ro-
bust. However, we did not investigate the reason for the
increased similarity, leaving future work to ascertain if the
lower resolution group corresponds to better speaker or noise
characteristics, or more invariant phonetic representations.



6. REFERENCES

[1] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan,
Yannis Kalantidis, Marcus Rohrbach, Shuicheng Yan,
and Jiashi Feng, “Drop an octave: Reducing spatial re-
dundancy in convolutional neural networks with octave
convolution,” in Proceedings of the IEEE International
Conference on Computer Vision, 2019, pp. 3435–3444.

[2] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” in ICLR, 2015.

[3] Tom Sercu, Christian Puhrsch, Brian Kingsbury, and
Yann LeCun, “Very deep multilingual convolutional
neural networks for LVCSR,” IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), 2016.

[4] Tom Sercu and Vaibhava Goel, “Advances in very deep
convolutional neural networks for LVCSR,” in Proc. In-
terspeech, 2016.

[5] Dong Yu, Wayne Xiong, Jasha Droppo, Andreas Stol-
cke, Guoli Ye, Jinyu Li, and Geoffrey Zweig, “Deep
convolutional neural networks with layer-wise context
expansion and attention,” in Proc. Interspeech, 2016.

[6] Yanmin Qian and Philip C Woodland, “Very deep con-
volutional neural networks for robust speech recogni-
tion,” IEEE Spoken Language Technology Workshop
(SLT), 2016.

[7] T. Tan, Y. Qian, H. Hu, Y. Zhou, W. Ding, and K. Yu,
“Adaptive very deep convolutional residual network for
noise robust speech recognition,” IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing, vol.
26, no. 8, pp. 1393–1405, Aug 2018.

[8] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf, “Pruning filters for efficient Conv-
Nets,” in ICLR, 2017.

[9] J. Luo, H. Zhang, H. Zhou, C. Xie, J. Wu, and W. Lin,
“ThiNet: Pruning CNN Filters for a Thinner Net,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 41, no. 10, pp. 2525–2538, 2019.

[10] Gao Huang, Shichen Liu, Laurens van der Maaten, and
Kilian Q. Weinberger, “CondenseNet: An Efficient
DenseNet Using Learned Group Convolutions,” 2018
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2752–2761, 2017.

[11] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian
Sun, “ShuffleNet v2: Practical guidelines for efficient
CNN architecture design,” in ECCV, 2018, pp. 116–
131.

[12] Mingxing Tan and Quoc V. Le, “EfficientNet: Rethink-
ing Model Scaling for Convolutional Neural Networks,”
in ICML, 2019.

[13] Mohamed Hesham Farouk, Application of Wavelets in
Speech Processing, Springer Publishing Company, In-
corporated, 2013.

[14] M. Gupta and A. Gilbert, “Robust speech recognition
using wavelet coefficient features,” in IEEE Workshop
on Automatic Speech Recognition and Understanding
(ASRU), 2001.
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