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Abstract 

In order to simulate undrained conditions using the discrete element method, a constant sample volume is often 

assumed. There are well-recognised problems with these constant-volume triaxial simulations, particularly of 

dense samples, which inhibit quantitative comparison with laboratory experiments. In this paper, four possible 

explanations for these problems with conventional constant-volume simulations of ideal spherical particles are 

explored, each of which has a physical basis: particle crushing, the presence of highly compressible air within 

the sample, or the reduction of stiffness due to particle surface asperities or non-spherical particle shapes. These 

options are explored independently and in combination through implementation in the open-source LAMMPS 

code. In situations where a significant amount of particle crushing occurs, it is important to incorporate this in 

the simulations so that stresses are not over-estimated. There is experimental evidence that irregular particles 

have lower Young’s moduli than the Hertzian spheres often used in DEM. In the absence of particle crushing, 

the most effective method to achieve more realistic stress–strain responses is to reduce the particle shear 

modulus substantially. This approach has the added computational benefit of enabling an increase in the 

simulation time-step. 

Keywords: Discrete element method; pore water pressure; rough surface contact model; particle crushing; 

triaxial test 

  



2 

 

1 Introduction 

Soil is a complex multi-phase material consisting of solid, liquid and gas. Undrained tests permit the behaviour 

of soil to be investigated from which the pore fluid does not have sufficient time to escape when subjected to 

load. Excess pore pressure is generated during shearing under undrained conditions. This excess pore pressure 

controls important soil responses such as liquefaction: the complete loss of soil strength and stiffness [1, 2]. 

Many researchers, e.g., [3–5], have studied undrained soil behaviour using laboratory testing. These tests enable 

us to understand the macro-scale responses of soil such as the stress-strain behaviour but cannot give any 

information on the dynamic changes occurring at the micro-scale that cause the observed macro-scale response. 

In recent years, the discrete element method (DEM) [6] has become very popular in geomechanics research due 

to its ability to capture the macro-scale response of soil while enabling investigation at the micro-scale [7]. 

Generally there are two modeling approaches used by researchers to simulate undrained tests using DEM. The 

first approach involves coupling the DEM code with a suitable fluid-solving code, often computational fluid 

dynamics [8, 9]. However, this adds complications to the simulation and increases the computational cost. 

In the alternative ‘constant-volume’ approach, the sample volume is maintained constant throughout shearing 

and the excess pore water pressure is estimated as [10]: 

∆𝑢 = 𝜎%,'( − 𝜎%(                                                                             (1) 

𝜎%,'(  is the initial confining effective stress at the start of shearing and 𝜎%( is the minor principal effective stress at 

every subsequent time-step in the DEM simulation. Constant-volume (CV) simulations assume that the soil is 

fully saturated and water is incompressible. This approach has been widely adopted, e.g., [10, 11]. The constant-

volume method has the advantage of computational simplicity. However, some problems arise when shearing 

dense samples, stemming from the generation of unrealistically high stresses [12]. Indeed, stresses > 10 MPa are 

often generated in CV simulations which invalidate the underlying assumption of the incompressibility of water, 

e.g., the volume of water compressed to 10 MPa is reduced by 0.5%, given a bulk modulus of 2.2 GPa [12]. The 

assumption of point contact in DEM [13] is also violated, e.g., overlaps reached almost 20% (normalised by 

mean diameter) by the end of the simulations presented by Hanley et al. [12]. Other challenges include strain-

rate sensitivity during simulations [12], even at very low strain rates, unrealistically high small-strain stiffnesses, 
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and the failure of the simulations to capture the volume changes observed during undrained laboratory shearing 

[14–16]. 

These problems mean that an alternative to the constant-volume method should be sought which retains the 

method’s computational efficiency but without the unphysicality for dense soils. The aim of this paper is to 

establish a computationally efficient and physically justifiable alternative to the conventional constant-volume 

method using perfect spheres in DEM. Four alternatives are hypothesised to address the shortcomings of the 

constant-volume method described above:  

1. Particle crushing causes a reduction of the stresses upon shearing. 

2. Air greatly increases compressibility of the pore fluid, causing some changes of sample volume to 

occur. 

3. Particle surface asperities reduce the initial contact stiffness. 

4. Adopting Hertzian spheres to represent non-spherical particles gives an overly stiff response. This can 

be corrected by reducing the particle shear modulus by a factor obtainable from uniaxial compression 

of single particles. 

These options are explored independently and in combination through implementation in the open-source 

LAMMPS code [17]. Based on this study, recommendations are made to improve quantitative agreement with 

laboratory data. 

 

2 Theoretical background 

2.1 Influence of particle crushing 

Particle crushing often occurs during shearing or compression of real sands [18, 19]. DEM simulations of 

triaxial shearing have shown that particle crushing causes the peak stresses to reduce, the volumetric response to 

become more contractive and the position of the critical state line to shift in e–log(p') space [20–22]. Even 

though it can have significant effects, particle crushing is often disregarded in DEM simulations for two reasons: 
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(i) the necessity to simulate fine particles post-crushing is very computationally expensive; (ii) the assumptions 

that are made for reasons of computational tractability can be unphysical, e.g., accepting the loss of solid 

volume from the simulation, imposing a comminution limit or predefining highly idealised fragment size 

distributions. A recently developed crushing model from the literature was adopted for this study [20]; the 

reader is directed to that paper for a detailed discussion of the development and implementation of the model. In 

summary, a particle is deemed to fail when any contact force acting on the particle exceeds a predefined 

crushing force. These crushing forces are experimentally measured from uniaxial compression of single 

particles [23]. The inherent variability in these crushing forces is captured using Weibull statistics in the model. 

Upon failure, the particle’s radius is reduced so that contact is lost with all surrounding particles and its crushing 

force is increased. Fine particles are inserted into the void space to conserve solid volume. Particles can no 

longer fail once a comminution limit has been reached. This particle replacement approach to particle crushing 

has two major advantages compared to the agglomerate breakage approach: the sizes of daughter particles are 

not predefined and the fine fragments are not simulated from the start of the simulation which is 

computationally efficient [20]. 

 

2.2 Influence of air: bulk modulus of water–air mixtures  

The pore fluid is not directly simulated in this research. Instead, the compressibility of the pore fluid is captured 

by allowing the total volume of the periodic cell to vary based on the theory presented in this section. Even 

though the pore fluid is not directly simulated, some of its properties can be estimated by subtraction, e.g., its 

volume must equal the total cell volume minus the solid particle volume. 

One cause of unrealistically high stresses may be the assumption of perfect saturation; in physical experiments, 

samples contain a small fraction of air. Before shearing begins, a B-test is usually performed to approximate the 

degree of saturation of the soil. When B = 1 or 100%, the soil is fully saturated. Typically B = 90–95% during a 

physical undrained triaxial test, meaning that 5–10% of air is present in the soil sample even though it may still 

be considered fully saturated. Since air is highly compressible, the presence of a small percentage of air is likely 

to be influential. 
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The increment of pore pressure	∆𝑢 is the difference between the increments of total stress ∆𝑝 and mean 

effective stress ∆𝑝(: 

∆𝑢 = ∆𝑝 − ∆𝑝(                                                                           (2) 

The mean effective stress and deviator stress can be expressed in terms of principal effective stresses. Since the 

volume change is uniform in the radial direction, i.e., ∆𝜎,( = ∆𝜎%(: 

∆𝑝( =
∆𝜎-( + 2∆𝜎%(

3  

  ∆𝑞 = ∆𝜎-( − ∆𝜎%(                                                                        (3)   

For an undrained triaxial compression test where the intermediate stress ratio b = 0, the loading path is equal to 

∆𝑝 =	∆𝑞 32 . Therefore,  

∆𝑢 = 3
∆𝜎-( − ∆𝜎%(

3 4 − 3
∆𝜎-( + 2∆𝜎%(

3 4 

∆𝑢 = −∆𝜎%(                                                                           (4) 

This change in the minor principal effective stress can be computed from the interparticle contact force data in 

DEM. Eq. 5 is the definition of the bulk modulus, assuming that the soil particles are incompressible:  

𝐾6 = −𝑉𝜂 9∆:
∆;
<                                                                                 (5) 

𝑉𝜂 , the product of porosity and sample volume, is the volume occupied by pore fluid, 𝐾6 is the bulk modulus of 

the pore fluid and ∆𝑉 is the volume change of the soil sample, i.e., the volume change of the pore fluid. 

Reorganising Eq. 5 we get: 

∆𝑉 = − ∆:
=>
?𝑉@:AABCD − 𝑉EFADG@HBIJ                                                              (6) 

𝑉@:AABCD is the total sample volume updated at every time-step during the simulation and 𝑉EFADG@HBI is the fixed 

volume of the solid particles within the soil sample. The minus sign in Eq. 6 indicates that the sample volume is 
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allowed to expand when ∆𝑢 is negative (or ∆𝜎%( is positive) during shearing. Conversely, a positive ∆𝑢 in Eq. 6 

leads to sample contraction, capturing compression of the entrained air that takes place in the physical test. 

Knowing the bulk modulus of the pore fluid, 𝐾6, the volume change at every time-step may be calculated from 

Eq. 6. 𝐾6 is given by [24, 25]: 

-
=>
= 	 -

=K
+ (-MNO)

QR
                                                                        (7) 

𝐾S is the bulk modulus of water, 𝑆A is the degree of saturation of the soil sample and 𝑃F is the absolute fluid 

pressure: the sum of atmospheric pressure and excess pore pressure. The assumption being made is that the 

degree of saturation is high, the pore fluid is homogenous and the air exists in the pore water in the form of well-

distributed bubbles [25]. Dissolution of air into water at high pressure has been neglected. Fig. 1 shows the 

variation of 𝐾6 with 𝑃F according to Eq. 7, taking 𝐾S	as 2.2 GPa. When the degree of saturation is 100%, the 

bulk modulus of the pore fluid is equal to the bulk modulus of water. 𝐾6 is substantially reduced by the presence 

of a small percentage of air at low to moderate pressures relevant to laboratory soil testing.  

 

2.3 Influence of particle surface asperities: rough-surface contact model 

Another explanation for the unrealistically high computed stresses is the perfectly smooth nature of the 

interparticle contact. The presence of surface asperities on real particles reduces the contact stiffness compared 

to smooth spheres during the initial phase of loading. The influence of surface asperities at interparticle contacts 

is discussed by [26–28]. In this research, a DEM contact model developed by Otsubo et al. [29] was adopted 

which includes crushing of asperities. This contact model was created as an extension of a previous model 

developed based on single-particle compression tests which includes surface roughness, 𝑆V, and hardness [30]. 

Otsubo et al.’s model [29] includes three regimes: asperities dominating, a transitional regime and Hertzian 

contact. 𝛿X- and 𝛿X, are the threshold contact displacements at 𝑁 = 𝑁X- and 𝑁X,, respectively, as shown in Fig. 

2. At interparticle contact overlaps less than δT1, the contact response is dominated by crushing of surface 

asperities. This is controlled by two constants, 𝛿- and	𝛿,, which may be experimentally measured. Full details of 

the model are given in [29]. 



7 

 

 

2.4 Influence of using Hertzian spheres to represent non-spherical particles 

The presence of asperities on the surface of the particle is expected to reduce the initial contact stiffness. 

However, experimental data for uniaxial compression of individual particles [31, 32] suggest that the overall 

particle shape may have a much more significant effect on the load–deformation response. For an irregular silica 

gravel particle, the experimentally measured Young’s modulus was found to be 20 times less than the Young’s 

modulus of an equivalent sphere calculated from Hertzian mechanics [33]. 

This experimental result must be reconciled with other experiments [34] which show that increasing the 

particles’ angularity while keeping all other inputs constant gives a stronger bulk stress–strain response. The 

simple addition of rotational resistance, to include some degree of shape irregularity, has a similar effect in 

DEM simulations [35]. The reason for this apparent inconsistency is that non-spherical particles do not behave 

according to Hertzian mechanics of spheres, the adoption of which gives an overly stiff response. In the absence 

of a better understanding of contact mechanics for non-spherical particle shapes, the contact forces and 

stiffnesses calculated using Hertzian mechanics of spheres can be corrected by reducing the Young’s modulus of 

the particle (which is, in reality, an irregular sand grain). This reduction could be calibrated to obtain the correct 

stiffness for an individual particle under uniaxial compression. The reduction in the stiffness of the bulk sample 

is purely a result of reducing the stiffness of each individual particle comprising the sample. The results in [33] 

imply that the bulk stiffness of an assembly of irregular particles would be substantially lower than for perfect 

Hertzian spheres composed of the same material. 

 

3 Code implementation 

All of the simulations were run using a version of open-source, MPI-parallelised LAMMPS code [17]. The 

approaches by which the four hypotheses described in Sections 2.1–2.4 were implemented in LAMMPS are 

discussed in Sections 3.1–3.4, respectively. 
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3.1 Influence of particle crushing 

The particle crushing model described in Section 2.1 was developed by Hanley et al. [20]. The implementation 

of this model in LAMMPS was carried out as part of [20]; the reader is referred to that paper for details. 

 

3.2 Influence of air: bulk modulus of water–air mixtures  

The flowchart in Fig. 3 shows the implementation of the equations described in Section 2.2 in LAMMPS. In 

summary, this version of LAMMPS contains a servo-control algorithm for periodically bounded samples which 

requires the computation of principal effective stresses from interparticle contact forces. ∆𝜎%( is found as the 

change in minor principal effective stress between successive time-steps. This is equal to the negative change in 

the excess pore water pressure, −∆𝑢, i.e., Eq. 4. ∆𝑢 is accumulated and is added to atmospheric pressure, 𝑃FDZ,  

to find 𝑃F, the absolute pore fluid pressure. 

Two limits were imposed in the implementation of the equations described in Section 2.2. The first limit was 

imposed on 𝑃F to avoid the attainment of low pressures which would cause fluid vaporization in reality, and 

beyond that, the attainment of non-physical negative pressures. A limit of 𝑃F ≥ 0.25𝑃FDZ was imposed. This 

predefined limit is the lowest permissible absolute pressure. The upper bound on 𝑃F is the confining pressure, 

𝜎%, at which the effective stress terms become zero. 𝑃F is used to calculate the bulk modulus of the pore fluid, 

𝐾6, using Eq. 7. The volume change of the sample on that time-step is given by Eq. 6, assuming a discontinuous 

jump from time-step 𝑡 to the time-step	𝑡 + ∆𝑡. If the time-step Δ𝑡 were divided into infinitely many smaller time 

increments, the required volume change would be half of that given by Eq. 6. This halved volume increment 

corresponding to a continuous time scenario was implemented in the code. The derivation is given in Appendix 

A. 

The second limit was imposed on absolute volumetric strain on each time-step of 2.3 x 10-9. This value was 

determined through trial and error so that the absolute volumetric strain during shearing did not exceed the 

volume of air present in the pore fluid (5% of the pore fluid). Without this condition, huge values of ∆𝑉 could 

be achieved in single time-step when very stiff particles are used and hence ∆𝜎%( could be unreasonably large. 

This would lead to instability of the proportional servo-controller. Volumetric strains beyond the limit are stored 
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until the following time-step. The stored volumetric strain term is multiplied by a dissipation factor of 0.9999 to 

prevent the accrual of huge stored strains and ensure that critical state is eventually reached. Using 𝐾6 and	∆𝑢, 

the volume change is calculated at every time-step using Eq. 6. 

 

3.3 Influence of particle surface asperities: rough-surface contact model 

The rough-surface contact model described in Section 2.3 was developed by Otsubo et al. [29]. The 

implementation of the model in LAMMPS was carried out as part of [29]; the reader is referred to that paper for 

details. 

 

3.4 Influence of using Hertzian spheres to represent non-spherical particles 

The Young’s modulus of an irregular silica gravel particle measured experimentally by Cavarretta & O’Sullivan 

[33] was 20 times lower than that of an equivalent Hertzian sphere. In this research using Hertzian spheres, the 

shear modulus of the individual particles, G, was reduced by a factor of 20 to compensate for this known 

disparity between experimental data and the Hertzian predictions for spheres. 

An added benefit of this approach is an increase in the stable simulation time-step. For the nonlinear Hertzian 

contact model, the critical time-step based on the Rayleigh wave velocity for the system has the relationship 

∆𝑡@ ∝ 𝐺Mc.d [36]. Thus, reducing G by a factor of 20 increases the time-step by a factor of √20 ≈ 4.5, 

substantially reducing a simulation’s run-time without compromising its stability. 

 

4 DEM model preparation and simulation plan 

Cubic granular specimens of 10 × 10 × 10 mm3 were created which contained 28,309 spheres. The grading used 

was not representative of any specific sand; particle diameters varied between 0.1–1 mm (𝐷50 = 0.516 mm), with 

𝐶𝑢 = 3.004 and 𝐶𝑐 = 0.573 indicating a poorly graded sand. To eliminate boundary effects [37] and to ensure 

homogenous deformation [38], periodic boundary conditions were adopted for this study. The particles were 
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placed randomly within these periodic cells without initial overlaps using a MATLAB code. Parametric studies 

confirmed that these periodically bounded samples contain sufficient particles to ensure a representative element 

volume [37, 39]. The initial particle positions were imported to LAMMPS before each sample was isotropically 

compressed by moving the boundaries under stress control to achieve a specified confining pressure of 150 kPa. 

The friction coefficient was set to zero during the sample preparation process to generate dense samples. This 

friction coefficient was increased to 0.25, based on [40], before shearing each sample at a fixed strain rate of 1 s-

1. This strain rate ensured an inertia number less than 3.6 × 10-5 throughout shearing: lower than the limiting 

value of 7.9 x 10-5 proposed for quasi-static behaviour [41]. Eight triaxial shearing simulations are the principal 

focus of this study: four using the constant-volume method and four using the bulk modulus method. Each 

subset of four simulations consisted of simulations with the simplified Hertz-Mindlin (smooth) [42] and rough-

surface [29] contact models, with shear moduli of 29 GPa or 1.46 GPa. These shear moduli, G, respectively 

represented a physically realistic value for quartz and a reduced value to capture irregularity of the particle 

shape based on Cavarretta and O’Sullivan [33]. The particle density and Poisson’s ratio were set at 2675 kg /m3 

and 0.2, respectively. The local damping coefficient was chosen as 0.2. The bulk modulus of water, 𝐾S, was 2.2 

GPa and the degree of saturation, 𝑆A, of the soil sample was 0.95. Atmospheric pressure was set at 0.1 MPa. The 

surface roughness, 𝑆V, was set at 0.5 x 10-6 m for the rough-surface contact model: similar to that of an LBSA 

sand grain [32]. Values of 𝛿- = 0.82𝑆V and 𝛿, = 1.24𝑆V were used in these simulations, based on experimental 

data [26, 28]. Gravity was not considered and particle crushing was not permitted in these eight simulations.  

It is already well known that particle crushing reduces the peak stresses in a triaxial test, e.g., [20]. Only one 

simulation was run in which particle crushing was considered. This simulation used the constant-volume 

method, simplified Hertz-Mindlin contact model and G = 29 GPa. The parameters of the crushing model were a 

Weibull modulus of 4.2, a limiting comminution radius of 50 μm, and a characteristic stress (σ0) of 760 MPa at 

which 37% of the particles of characteristic diameter 1.29 mm survive. A linear trendline of the form 𝑃I(𝑑) =

𝑎 o p
pq,r

s + 𝑏 relating the probability of survival for particles of diameter d to a stress σ was assumed, based on 

the statistics in [23] for a quartzitic Aio sand. These parameters were identical to those in [20], except a larger σ0 

value was used in this study to limit the amount of crushing that occurred. To obtain a critical state line, three 

supplementary triaxial drained simulations were run at confining pressures of 150, 300 and 500 kPa and two 

constant	𝑝′ simulations were run at 40 and 47 MPa. 
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5 Results and discussion 

5.1 Macro-scale  

Consider firstly the one simulation which includes particle crushing. This is compared to the equivalent 

simulation in which crushing is ignored on Fig. 5. Without crushing, the mean effective stress, 𝑝( , is 28.72 MPa 

at 15% axial strain. The inclusion of particle crushing reduced 𝑝( by 63% at the same strain. However, this 𝑝( is 

much higher than in a laboratory test conducted by Kuwano [43], who obtained 𝑝( = 1.46 MPa at 15% axial 

strain for Dunkerque sand with a confining pressure of 400 kPa. This experimental data are also shown in Fig. 5. 

The stresses generated can be calibrated using σ0 – 760 MPa for this simulation – as an adjustable parameter. 

Using this parameter, a significant amount of crushing occurred; the number of particles increased to 52898 

(28309 particles before shearing) when the sample was sheared to 15% axial strain. The change in particle size 

distribution (PSD) is shown in Fig. 6. Reducing σ0 induces more particle crushing and hence reduces 𝑝′. Hanley 

et al [20] used σ0 = 38 MPa and obtained a huge amount of breakage at high confining pressures in drained 

simulations. 

In situations where a considerable amount of particle crushing occurs, it is important to consider this in the 

simulations to correctly capture the bulk behaviour. However, particle crushing does not fully explain the 

disparity between undrained laboratory tests and constant-volume DEM simulations. The amount of crushing 

that would be required to quantitatively match the stress–strain behaviour for a dense sample would be far more 

than observed in laboratory tests of sands (and would be unachievable with the type of crushing model proposed 

by [20]). Furthermore, undrained tests on dry spherical glass beads conducted by Cui et al [44] observed a 

maximum deviator stress of 440 kPa for a confining pressure of 200 kPa and no particle crushing occurred. This 

indicates that particle crushing is not the only reason for high stresses in constant-volume simulations.  

Considering separately the eight simulations without crushing, all simulations reached a critical state before 

25% axial strain, attaining a similar stress ratio, 𝑞 𝑝(	⁄ , of around 0.72 as shown in Fig. 7, regardless of 

simulation method, contact model or particle stiffness. These plots show behaviour characteristic of dense 

samples: the stress ratio increased abruptly to a peak value upon initial shearing and dropped thereafter to a 

constant value at the critical state [15]. Fig. 8 shows the variation of mean effective stress, 𝑝(, and deviator 
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stress, 𝑞, with axial strain where these quantities are defined by Eq. 3. Using the constant-volume method with a 

Hertzian contact model and particle shear modulus of 29 GPa, the stresses generated at critical state were 95.18 

MPa and 68.14 MPa for 𝑝( and 𝑞, respectively: similar in magnitude to the stresses reported by [12]. Changing 

to a rough-surface contact model allowing for asperity crushing reduced the stresses to 80.72 MPa and 58.42 

MPa, respectively: a reduction of around 15%. Switching from constant volume to the bulk modulus method 

was more effective, leading to a reduction of 56% (41.87 MPa and 29.89 MPa). The most effective method to 

achieve more physically realistic stresses was reducing the shear modulus from 29 GPa to 1.46 GPa, which 

captures the effect of irregular, non-spherical particle shapes when Hertzian mechanics are adopted. This 

yielded a reduction of 94%, to 𝑝( = 5.28 MPa and 𝑞 = 3.83 MPa, compared to using the shear modulus of 

quartz. A 20-fold reduction of G reduced the stresses to around one-twentieth of their former values. In 

combination, using the bulk modulus method with a rough-surface contact model and G = 1.46 GPa led to the 

lowest stress state among these eight simulations of 𝑝( = 3.58 MPa and 𝑞 = 2.55 MPa at critical state. These 

results are quantitatively similar to experimental results [45]. The initial concavity in these stress–strain curves 

matches experimental and simulation data in the literature for undrained triaxial compression of dense sands 

[46, 47]. 

The shear modulus of the bulk soil sample is computed as -
%
 of the slope of a plot of deviator stress against 

triaxial shear strain. As shown in Fig. 9, the shear modulus of the soil samples using a smooth Hertzian contact 

model with a particle shear modulus of 29 GPa were extremely high: 311 MPa initially at 1 x 10-3% strain. By 

considering the particle surface asperities, the shear modulus of the soil sample was considerably reduced (by 

64% initially) compared to smooth Hertzian model. The high stresses generated during shearing may be caused 

by this initial unrealistically stiff response of Hertzian spheres using the particle shear modulus of quartz. Using 

a reduced particle shear modulus of 1.46 GPa, the initial stiffness of the sample was reduced by around 85% 

compared to using the shear modulus of quartz particles. 

The variation of volumetric strain and void ratio with axial strain during shearing are plotted on Fig. 10. The 

four simulations using the constant-volume method do not permit any volumetric strain throughout shearing. 

When the bulk modulus method is used, the samples contract slightly during initial shearing and then dilate until 

critical state is attained. This expansion of each sample’s volume reflects the expansion of the air, principally, 

within the pore fluid as negative pore pressures develop. According to Boyle’s law, the volume increases as the 
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pressure of gas decreases within a closed system. In this implementation, it is noted that the maximum dilation 

achieved is smaller than indicated by Boyle’s law at the limiting pressure of 0.25𝑃FDZ. This is due to the 

volumetric strain limit imposed on each time-step during shearing, which restricted the sample dilation to 1–2% 

at critical state. This is similar to the volume of air within each sample: at 𝑆A = 0.95, 5% of air is present in the 

pore fluid which corresponds to around 1.5% of the total volume of each sand sample. As stresses increase to a 

maximum of 𝑝( = 95.18 MPa for a Hertzian contact model with G = 29 GPa, dilation also increases. 

Fig. 11a shows that the adoption of any of the proposed alternatives to the constant-volume method, i.e., the 

bulk modulus method, the rough-surface contact model to capture crushing of surface asperities, or the reduced 

particle shear modulus to correct for the use of Hertzian spheres to simulate non-spherical particles, all lead to a 

downward shift of the critical state line in e–log(p’) space. Particle crushing at high 𝑝′ causes a similar shift of 

the critical state line [20]. As the stress ratios at critical state are very similar for all simulations (Fig. 7), all 

points are collinear on Fig. 11b: the critical state line in 𝑞 − 𝑝′ space. The slope of this line, M = 0.72, is 

equivalent to a critical state angle of shearing resistance of 18.8°. This angle is much lower than values obtained 

in physical tests. The main reason for this disparity is the simulated particles are spherical and can rotate freely 

whereas, in a real system, interparticle movements are much more inhibited because of interlocking, both at the 

particle level and at the contact level where interlocking of asperities prevents free rotation. 

The mean interparticle overlap normalised by mean particle radius is shown on Fig. 12 as shearing proceeds. 

Regardless of contact model used, the mean overlaps were below 5% in all cases. However, the largest overlap 

exceeded 20%. As the particle shear modulus was reduced from 29 GPa to 1.46 GPa, the mean overlap 

increased slightly but remained below 5%. This is important to quantify because of the fundamental assumption 

of point contact in DEM [13]. The contact area, and hence the interparticle overlap, is significantly larger for the 

rough-surface contact model than for the smooth Hertzian contact model which agrees with Greenwood and 

Tripp [48]. Because the stresses are lower when the presence of air is considered (bulk modulus method), this 

method leads to reduced interparticle overlaps compared to the conventional constant-volume method.  
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5.2 Micro-scale  

The coordination number, Z, is a scalar measure of fabric, i.e., internal topology, within a granular system. It is 

computed as 

𝑍 =
2𝐶
𝑁 																																																																																											(9) 

in which C is the number of particles in contact and N is the number of particles in the sample. In all cases, Z 

decreases immediately upon shearing and attains a constant value of 4.2–5.0 at critical state (Fig. 13).  

The bulk modulus method consistently gives a substantial reduction in coordination number compared to the 

equivalent constant volume simulations. This is expected as dilation is associated with a reduction in contact 

density within a granular assembly. The rough-surface contact model gives a slightly higher coordination 

number than the smooth Hertzian model. Reducing G also increases Z. Both of these methods lead to higher 

mean interparticle overlaps Fig. 12, which is expected to give a small increase in C. The mechanical 

coordination number, Zm, is computed similarly to Z, except those particles with zero or one interparticle contact 

are excluded from the calculation [49]. The trends in Zm on Fig. 13 broadly match those for Z; however, the 

range of Zm values at critical state of 5.4–5.7 is narrower than the range of Z values. These results quantitatively 

agree with Huang et al. [40].  

The deviatoric fabric, 𝜑z, is the difference between the maximum and minimum eigenvalues of the second-

order fabric tensor defined by Satake [50]: 

𝜑z = 𝜑-	 − 𝜑%																																																																																										(10) 

It is widely used to quantify the fabric anisotropy of granular assemblies. Fig. 14 shows the variation of 

deviatoric fabric with axial strain for all simulations considered. 𝜑z is almost zero at the start of shearing of 

each isotropic sample. 𝜑z attains a maximum value of around 0.08 at 5% axial strain before decreasing to a 

stable value between 0.04 and 0.05 at critical state. For same particle shear modulus, the bulk modulus method 

simulations showed slightly higher 𝜑z values at peak and critical state than the constant-volume simulations. 

These results also quantitatively agree with Huang et al. [41]. Reducing G decreases	𝜑z. 
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6 Conclusions 

This paper was introduced with the aim of establishing a computationally efficient and physically justifiable 

alternative to the constant-volume method with ideal spherical particles. Four alternatives were hypothesised, 

each of which has a physical justification: that particle crushing substantially reduces the peak stresses upon 

shearing, that air greatly increases compressibility of the pore fluid, causing some changes of sample volume to 

occur; that particle surface asperities reduce the initial contact stiffness; and that non-spherical particle shapes 

reduce the sample stiffness when Hertzian mechanics for spheres are adopted for the calculation of contact 

forces. All of these hypotheses were explored, both independently and in combination, using triaxial 

compression simulations run using the LAMMPS code. 

When the conventional constant-volume method was used with a Hertzian contact model and particle shear 

modulus of 29 GPa, 𝑝( exceeded 95 MPa at critical state, highlighting one of the main problems with this 

approach. When particle crushing was considered, the stresses were substantially reduced. In principle, the 

parameters controlling the degree of crushing which occurs could be calibrated to give the desired macro-scale 

response. However, the amount of crushing that would be required to give the correct stress–strain response 

would be unrealistically high for a dense sample if a constant-volume simulation with smooth spheres were 

chosen for the DEM. The computational expense of such a simulation would also be prohibitive. 

The most effective method to achieve more realistic stresses was reducing the shear modulus by a factor of 20 

(𝑝( = 5.28 MPa at critical state). This captured the effect of irregular particle shape when Hertzian mechanics 

are adopted, based on experimental measurements of the Young’s modulus of an irregular silica gravel particle 

[33]. This method is also computationally beneficial as the reduced shear modulus allows the simulation time-

step to be increased by a factor of approximately 4.5. Furthermore, this method reduces the small-strain stiffness 

of the sample to more realistic values. Adopting a rough-surface contact model (capturing the effect of asperity 

crushing) or switching to the bulk modulus method (enabling changes of sample volume) were both less 

effective and more computationally expensive than reducing G. All simulations attained similar stress ratios at 

critical state of around 0.72 while the deviatoric fabric was almost unaffected.   
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Appendix A 

The change in sample volume, ∆𝑉, during shearing at every time-step is given by Eq. 6, which is based on a 

discontinuous jump from time-step 𝑡 to time-step 𝑡 + ∆𝑡. However, when Δ𝑡 is divided into infinitely many 

smaller time increments, the required volume change is smaller than the original volume, ∆𝑉. Consider, for 

example, the case where Δ𝑡 is divided into 3 increments (𝑞 = 3), as illustrated in Fig. 15. The black line on Fig. 

15 shows the stress profile for the application of ∆𝜎%( in one step at 𝑡 + ∆𝑡, assuming a linear profile on the 

figure, with the corresponding volume change on the lower figure. The green line is for a similar situation in 

which ∆𝜎%( is applied in three smaller increments. 

Let 𝛼 = |;
=>
	and assume this term is constant throughout the time-step (valid as ∆𝑉 ≪ 𝑉). By using Eq. 4 and the 

definition of 𝐾6 (Eq. 5), 𝛼 can be written as: 

𝛼 =
∆𝑉
∆𝜎%(

																																																																																												(𝐴1) 

The volume change, ∆𝑉-, at point (a) calculated using 𝜎%,F(  is equal to 
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∆𝑉- = 𝛼 3
∆𝜎%(

3 4		 

The volume change, ∆𝑉,, at point (b) calculated using 𝜎%,�(  is equal to 

∆𝑉, = 𝛼 3
∆𝜎%(

3 − 𝑋-4																																																																								(𝐴2) 

where 9∆p�
�

%
− 𝑋-< is the stress difference (𝜎%,�( − 𝜎%,F( ). Similarly, 

∆𝑉% = 𝛼 3
∆𝜎%(

3 − 𝑋,4																																																																								(𝐴3) 

𝑋- and 𝑋, therefore represent the drops in 𝜎%( that result when ∆𝑉-and ∆𝑉, are added, respectively. 

𝑋- =
∆𝑉-
𝛼 	 

𝑋, =
∆𝑉,
𝛼 		 

Substituting 𝑋- and 𝑋, into Eq. A2 and Eq. A3, respectively, we get 

∆𝑉, = 0 

∆𝑉% = 𝛼 3
∆𝜎%(

3 4 

The total volume change over the time-step Δ𝑡 is obtained by summation: ∆𝑉- + ∆𝑉, + ∆𝑉% =
,∆p��

%
. When 𝑞 =

3, the required volume change is thus ,
%
	of the original volume increment, ∆𝑉. When 𝑞 = 4, the volume change 

is equal to	𝛼 9∆p�
�

,
<. For 𝑞 = 5, the volume change is equal to 𝛼 9%∆p�

�

d
<. For odd numbers of increments (𝑞), the 

total volume change is 

	∆𝑉∗ = 𝛼 3
∆𝜎%(

𝑞 4 

For even numbers of increments, the total volume change is  
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∆𝑉∗ = 0 

As 𝑞 → ∞, it is straightforward to show that the total required volume change is equal to 

�∆𝑉G → 𝛼 3
∆𝜎%(

2 4 

This is half of the ∆𝑉 assuming a discontinuous jump from time-step 𝑡 to time-step 𝑡 + ∆𝑡. This volume 

increment for a continuous time scenario was implemented in the code. 
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Figures 

 

Figure 1: Bulk modulus of pore fluid against absolute fluid pressure, both in GPa, calculated from Eq. 7 for a 

range of degrees of saturation from 90% to 100% (fully saturated).  

 

 

Figure 2: Schematic of the rough-surface contact model used in this study, based on [29]. 
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Figure 3: Flowchart showing the implementation of the bulk modulus method in a DEM code. 
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Figure 4: Assembly of particles used in this study. 

 

Figure 5: Mean effective stress (MPa) against axial strain (%) for the constant-volume triaxial simulations with 

and without crushing compared with data from an undrained triaxial laboratory test for a confining pressure of 

400 kPa [43]. 
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Figure 6: Comparison of particle size distributions by number before shearing and at 15% strain for the 

constant-volume triaxial simulation where particle crushing is considered.  
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Figure 7: Plot of stress ratio against axial strain (%) for triaxial shearing of dense samples using the constant 

volume (CV) and bulk modulus (BM) methods, smooth Hertz-Mindlin and rough-surface contact models, and 

particle shear moduli of 29 GPa or 1.64 GPa. The numbers 1–8 denote different combinations of these variables. 

Particle crushing is not considered. 

 

 



28 

 

 

 

Figure 8: Mean effective stress (a) and deviator stress (b), both in MPa, against axial strain (%) for the eight 

triaxial simulations without crushing. 
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Figure 9: Degradation of shear modulus (MPa) against triaxial shear strain (%) for the eight simulations without 

crushing considered. 
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Figure 10: (a) Void ratio and (b) volumetric strain (%) vs axial strain (%) for the triaxial simulations of 28309-

sphere samples denoted as 1–8 in the caption of Fig. 7. Negative volumetric strains indicate dilation. 
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Figure 11: Critical state line in (a) e–log(p’) and (b) q–p’ spaces for a range of constant volume, constant mean 

effective stress and constant minor principal effective stress (drained) using G = 29 GPa and a Hertzian contact 

model. Points beneath this line are for simulations using the bulk modulus method, a rough surface contact 

model and/or a reduced G of 1.46 GPa. 
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Figure 12: Mean interparticle overlap against axial strain, both in %, for the simulations described in the caption 

of Fig. 7. 

 

Figure 13: Plots of coordination number (Z) vs axial strain (%) and mechanical coordination number vs axial 

strain (%) for undrained triaxial simulations conducted using a dense sample containing 28309 uncrushable 

spheres.  
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Figure 14: Deviatoric fabric against percentage axial strain for the eight simulations considered without 

crushing. 

 

Figure 15: Schematic of the volume increment for a continuous time scenario implemented in the code. 

 

 


