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Abstract: Remyelination is limited in the majority of multiple sclerosis (MS) lesions despite the
presence of oligodendrocyte precursor cells (OPCs) in most lesions. This observation
has led to the view that a failure of OPCs to fully differentiate underlies remyelination
failure. OPC differentiation requires intricate transcriptional regulation, which may be
disrupted in chronic MS lesions. The expression of few transcription factors have been
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differentially compared between remyelinating lesions and lesions refractory to
remyelination. In particular, the oligodendrocyte transcription factor myelin regulatory
factor (MYRF) is essential for myelination during development, but its role during
remyelination and expression in MS lesions is unknown. To understand the role of
MYRF during remyelination, we genetically fate mapped OPCs following lysolecithin-
induced demyelination of the corpus callosum in mice and determined that MYRF is
expressed in new oligodendrocytes. OPC-specific Myrf deletion did not alter
recruitment or proliferation of these cells after demyelination, but decreased the density
of new glutathione S-transferase π positive oligodendrocytes. Subsequent
remyelination, in both the spinal cord and corpus callosum is highly impaired following
Myrf deletion from OPCs. Individual OPC-derived oligodendrocytes, produced in
response to demyelination, showed little capacity to express myelin proteins following
Myrf deletion. Collectively, these data demonstrate a crucial role of MYRF in the
transition of oligodendrocytes from a premyelinating to a myelinating phenotype during
remyelination. In the human brain, we find that MYRF is expressed in NogoA and CNP-
positive oligodendrocytes. In MS, there was both a lower density and proportion of
oligodendrocyte lineage cells and NogoA+ oligodendrocytes expressing MYRF in
chronically demyelinated lesions compared to remyelinated shadow plaques. The
relative scarcity of oligodendrocyte lineage cells expressing MYRF in demyelinated MS
lesions demonstrates, for the first time, that chronic lesions lack oligodendrocytes that
express this necessary transcription factor for remyelination and supports the notion
that a failure to fully differentiate underlies remyelination failure.
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Abstract 39 

Remyelination is limited in the majority of multiple sclerosis (MS) lesions despite the presence of oligodendrocyte 40 

precursor cells (OPCs) in most lesions. This observation has led to the view that a failure of OPCs to fully 41 

differentiate underlies remyelination failure. OPC differentiation requires intricate transcriptional regulation, which 42 

may be disrupted in chronic MS lesions. The expression of few transcription factors have been differentially 43 

compared between remyelinating lesions and lesions refractory to remyelination. In particular, the oligodendrocyte 44 

transcription factor myelin regulatory factor (MYRF) is essential for myelination during development, but its role 45 

during remyelination and expression in MS lesions is unknown. To understand the role of MYRF during 46 

remyelination, we genetically fate mapped OPCs following lysolecithin-induced demyelination of the corpus 47 

callosum in mice and determined that MYRF is expressed in new oligodendrocytes. OPC-specific Myrf deletion did 48 

not alter recruitment or proliferation of these cells after demyelination, but decreased the density of new glutathione 49 

S-transferase π positive oligodendrocytes. Subsequent remyelination, in both the spinal cord and corpus callosum is 50 

highly impaired following Myrf deletion from OPCs. Individual OPC-derived oligodendrocytes, produced in 51 

response to demyelination, showed little capacity to express myelin proteins following Myrf deletion. Collectively, 52 

these data demonstrate a crucial role of MYRF in the transition of oligodendrocytes from a premyelinating to a 53 

myelinating phenotype during remyelination. In the human brain, we find that MYRF is expressed in NogoA and 54 

CNP-positive oligodendrocytes. In MS, there was both a lower density and proportion of oligodendrocyte lineage 55 

cells and NogoA+ oligodendrocytes expressing MYRF in chronically demyelinated lesions compared to 56 

remyelinated shadow plaques. The relative scarcity of oligodendrocyte lineage cells expressing MYRF in 57 

demyelinated MS lesions demonstrates, for the first time, that chronic lesions lack oligodendrocytes that express this 58 

necessary transcription factor for remyelination and supports the notion that a failure to fully differentiate underlies 59 

remyelination failure. 60 

 61 

Keywords: remyelination, multiple sclerosis, MYRF, oligodendrocyte, Cre-loxP 62 

 63 

 64 
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Introduction 65 

Multiple sclerosis (MS) is characterized by inflammatory CNS demyelination and is one of the most 66 

common causes of chronic motor disability in young adults [60]. Remyelination occurs in MS [49, 51], which is 67 

sufficient to restore conductance in experimental models [55] and potentially protect axons from degeneration [16, 68 

26, 32, 44]. However, remyelination is often incomplete [46] with a lower percentage of remyelinating shadow 69 

plaques relative to demyelinated plaques at all ages [20] despite fewer acute inflammatory lesions with disease 70 

chronicity [19, 36]. While oligodendrocyte precursor cells (OPCs) and some premyelinating oligodendrocytes are 71 

found within chronically demyelinated MS lesions [7, 34, 61, 62], these lesions contain few oligodendrocytes 72 

capable of remyelination. This has led to the hypothesis that a failure of OPCs to fully differentiate causes 73 

remyelination failure in MS [14, 15, 34]. Oligodendrocyte differentiation requires intricate transcriptional regulation 74 

during development, but the role of many key transcription factors remain untested during remyelination [12]. We 75 

hypothesized that remyelination failure could result if the chronic lesion environment inhibits the expression of 76 

essential transcription factor(s) needed for oligodendrocyte differentiation or myelin gene expression. 77 

Myelin regulatory factor (MYRF) is a transcription factor expressed in oligodendrocytes [5, 6, 11] and is 78 

essential for developmental myelination [11]. MYRF can directly bind putative enhancer sequences of myelin genes, 79 

such as Mbp and Plp, to induce their expression [5] and together with the transcription factor Sox10, synergistically 80 

promote myelin gene expression [11, 25]. Genetic deletion of Myrf during development results in a near complete 81 

failure to differentiate into late-stage myelinating oligodendrocytes yet does not overtly affect the specification of 82 

OPCs [11]. Therefore, Myrf deletion during development mirrors what is observed in chronically demyelinated MS 83 

lesions; OPCs are maintained within the CNS but cannot fully differentiate. At this time, no study has investigated 84 

the role of MYRF during remyelination nor its expression in MS lesions.  85 

Here, we examined the function of MYRF during remyelination. By genetically fate mapping OPCs 86 

following lysolecithin (LPC) demyelination in the corpus callosum of mice, we found that MYRF was expressed in 87 

new oligodendrocytes. When Myrf was deleted in OPCs, their recruitment and proliferation within the lesion were 88 

not affected, but their capacity to differentiate into new oligodendrocytes was greatly diminished. OPC 89 

differentiation stalled at the premyelinating stage with recombined cells unable to express myelin proteins, 90 

ultimately inhibiting remyelination in both the corpus callosum and in the spinal cord. In human white matter, 91 

MYRF was expressed in Sox10+ oligodendrocyte lineage cells, which often co-labelled with the mature 92 
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oligodendrocyte marker NogoA. In the centres of chronic active MS lesions, there was a reduction in the density of 93 

MYRF+Sox10+ cells relative to both shadow plaques and normal-appearing white matter (NAWM). Additionally, 94 

fewer Sox10+ oligodendrocyte lineage cells, and Sox10+NogoA+ oligodendrocytes expressed MYRF in the lesion 95 

centres relative to shadow plaques, indicating these cells lacked expression of a necessary transcription factor for 96 

differentiation and myelination. Collectively, these data demonstrate that Myrf is essential for remyelination in the 97 

rodent CNS and its failure to be expressed in oligodendrocytes in chronic MS lesions is associated with 98 

remyelination failure. 99 

 100 

Materials and Methods 101 

Transgenic Mice and Experimental Design 102 

Myrffl/fl mice [11], which have LoxP inserted around exon 8 of Myrf, were crossed with PDGFRα-CreERT2 103 

mice [52]. The Cre-mediated recombination of Myrf in the Myrffl/fl mice was predicted to result in the production of 104 

a truncated protein that lacks the DNA-binding domain found in exon 8 and the C-terminus of the protein due to a 105 

frame shift, ultimately making the protein non-functional [11, 40]. Myrffl/fl PDGFRα-CreERT2 (P-Myrffl/fl) mice 106 

were used to induce selective recombination and Myrf deletion in a portion of platelet-derived growth factor receptor 107 

α (PDGFRα)+ cells and Myrffl/wt PDGFRα-CreERT2 (P-Myrffl/wt) littermates were used as controls. Myrffl/wt mice 108 

demonstrate no phenotype following recombination compared to mice wildtype for Myrf [11, 40]. For genetic fate 109 

mapping experiments, Myrffl/fl PDGFRα-CreERT2 lines were subsequently crossed with Rosa26R-eYFP (YFP) Cre-110 

inducible reporter mice [56] or ROSA26-mGFP (mT/mG) [42] to induce, via Cre-mediated recombination, 111 

cytoplasmic or membrane-tethered fluorescence, respectively. Both Cre and inducible reporter genes were 112 

heterozygous in all experiments. All animals were genotyped prior to experiments via standard protocols. Myrffl/fl 113 

mice were also crossed with PLP-CreERT2 and Rosa26-YFP mice to produce Myrffl/wt
 and Myrffl/fl PLP CreERT2 114 

Rosa26-YFP mice to induce recombination in oligodendrocytes following tamoxifen injection.  115 

Tamoxifen administration 116 

Tamoxifen (T5648, Sigma) was dissolved in corn oil (C8267, Sigma) at 20mg/ml. P-Myrffl mice received 117 

intraperitoneal injections (100mg/kg) once daily for five days starting two days prior to lysolecithin demyelination. 118 

For Myrffl/wt PLP CreERT Rosa26 YFP and Myrffl/fl PLP CreERT Rosa26 YFP mice, 4-hydroxytamoxifen (H7904, 119 

Sigma) was dissolved in corn oil at 10mg/mL and 1mg was administered by intraperitoneal injection once per day 120 
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for five consecutive days. Tamoxifen improves the speed of remyelination at relatively low doses (0.5-2.0 121 

mg/kg)[22] and results in cellular stress at high doses (75mg/kg) indicated by the upregulation of the Atf3 122 

transcription factor [9]. To control for tamoxifen-mediated effects, all mice were treated with the same tamoxifen 123 

regiment except for a group of mice for qPCR and another for lesion size analysis at 3 days post lesion (DPL) which 124 

were injected with corn oil alone. We found that tamoxifen had no effect on lesion size at 3 DPL (tamoxifen treated 125 

0.473 ± 0.099 mm2 versus non-tamoxifen treated 0.376 ± .027 mm2, P=0.355 Student’s T-Test) suggesting that 126 

tamoxifen does not alter the susceptibility to lysolecithin-mediated demyelination. 127 

Real-time quantitative PCR 128 

2mm3 blocks of the anterior corpus callosum and cortex were collected from P-Myrffl/fl and P-Myrffl/wt mice 129 

12 days after the last tamoxifen or oil injection and flash frozen. RNA was extracted and reversed transcribed as 130 

previously described [48]. Primers for recombined Myrf [31] were normalized relative to β-actin and CT values were 131 

determined by automatic baseline and auto-threshold. ΔΔCT method was used to compare relative gene expression 132 

between groups [38]. 133 

Lysolecithin demyelination 134 

1% lysophosphatidylcholine (lysolecithin L1381, Sigma) was dissolved in sterile phosphate-buffered saline 135 

(PBS) by sonication. Mice were deeply anaesthetized using a 3% isoflurane-oxygen mixture (Baxter) and a small 136 

hole was drilled with a dentist drill to allow for the insertion of a glass capillary attached to a 5 µL Hamilton syringe 137 

into the brain tissue. A total of 2µL was injected at a rate of 50nL/min by a pump (Precision Scientific Instruments) 138 

into the corpus callosum at the coordinates 1.4mm anterior to bregma, 1mm lateral of bregma and 2.1mm deep from 139 

the cortical surface. The glass capillary was retained in place for at least five minutes post injection to reduce reflux 140 

along the needle track.  Mice received buprenorphine twice daily to alleviate pain (0.03mg/kg) for the first two days 141 

post-surgery and 1mL Ringer’s solution. The overlying skin was sutured. For lysolecithin demyelination of the 142 

cervical spinal cord, surgeries were conducted as above with the following differences. A laminectomy of the C4 143 

vertebrae was performed with fine surgical rongeurs. Injections were placed at a 30 degree angle relative to vertical 144 

and just lateral to the midline in the dorsal column to a depth of 0.5mm ventral to the dorsal surface. A total of 145 

0.5µL of lysolecithin was injected at a rate of 50nL/min. The overlying musculature and skin were sutured.  146 

Tissue processing 147 
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For immunohistochemical analysis of tissue, mice were deeply anaesthetized and transcardially perfused 148 

with PBS followed by 4% paraformaldehyde (04042, Fisher Scientific). Spinal cords or brains were dissected and 149 

postfixed in paraformaldehyde for either eight hours or overnight for brains. Tissue was then cryoprotected in 150 

ascending sucrose solutions before being embedded in OCT, frozen, and stored at -80o Celsius. Tissue was sectioned 151 

coronally at 20µm thickness using a cryostat (HM-525, Thermo Scientific) and sections were thaw-mounted onto 152 

slides (12-550-15, Fisher Scientific).  153 

To prepare tissue for electron microscopy, mice were deeply anaesthetized then perfused with 0.01M PBS 154 

before receiving 1% glutaraldehyde (16221, Electron Microscopy Sciences) with 4% paraformaldehyde at 4º C. The 155 

area of demyelination was immediately dissected into 1mm3 cubes and postfixed in 2% glutaraldehyde. Tissue was 156 

washed three times in 0.1M cacodylate buffer with 5.3mM CaCl2 before being placed in 1% osmium tetroxide 157 

(19190, Electron Microscopy Sciences) with 1.5% potassium ferrocyanide (BDH) for 1.5 hours. Tissue was then 158 

dehydrated through ascending alcohol washes before embedding in Spurr resin.   159 

Immunohistochemistry 160 

Slides were thawed prior to staining and rehydrated with PBS. Sections were blocked using 10% donkey 161 

serum dissolved in PBS with 0.1% Triton. Primary antibodies (Supplementary Table 1) were applied overnight at 162 

room temperature in a humid chamber, washed, then appropriate donkey Dylight or Alexa Fluor secondary 163 

antibodies (Jackson ImmunoResearch Laboratories, Inc) were applied for two hours. Slides were subsequently 164 

washed and coverslipped using Fluoromount-G (0100-01, Southern Biotech). Prior to myelin stains, delipidation 165 

was performed using ascending and descending ethanol washes followed by PBS washes before the blocking step. 166 

Cell counts and quantifications on mouse tissue 167 

Imaging on mice was performed on a Zeiss Axio-Observer M1 inverted spinning disc confocal microscope 168 

using Zen 2011 or Zen 2 software. Tiled confocal merged images of the entire demyelinated zone in the corpus 169 

callosum were captured with a 40x oil immersion objective (numerical aperture 1.3) using a distance of 1µm 170 

between the individual optical sections. For cell counts, the lesion was defined by either the absence or obvious 171 

damage of myelin based on myelin basic protein (MBP) or 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP) 172 

stains. The lesion area was defined by the presence of the astrocyte scar (increased GFAP+ density) for the analysis 173 

of the contribution of recombined cells to remyelination and analyses of the number of nodes of Ranvier. Five to 174 

seven sections were analyzed per animal beginning with the lesion epicenter. For analyses of the oligodendrocyte 175 
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density in the uninjured CNS, the corpus callosum contralateral to the lysolecithin injection were examined for 176 

PDGFRα+ and glutathione s-tranferases pi isoform (GSTπ)+ cells in the area dorsal of the ventricle. 177 

To quantify node of Ranvier density systematic random sampling was conducted in the lesion and nodes of 178 

Ranvier were counted in 50µm x 50µm areas. Mature nodes of Ranvier were defined as punctate clusters of 179 

Ankyrin-G (AnkG) flanked by two punctate Caspr-positive paranodes [41]. Typically, over 1000 nodes were 180 

counted over 5-6 sections per animal. The density of SMI312+ axons were thresholded on ImageJ (NIH) and 181 

quantified as a percentage of lesion area. The volume of demyelinated tissue in P-Myrffl/fl YFP and P-Myrffl/wt YFP 182 

was examined by manually outlining the area of the intact corpus callosum that was MBP-negative. 183 

To determine the area of demyelination that had been remyelinated by recombined cells in Myrffl/fl 184 

PDGFRαCreERT2 mT/mG and Myrffl/wt PDGFRαCreERT2 mT/mG mice, the lesion was imaged for GFP, MBP 185 

and GFAP. The ImageJ plugin ‘RG2B Colocalization’ was used to determine the area of GFP and MBP 186 

colocalization within the manually defined GFAP+ lesion. 187 

Electron microscopy  188 

Resin blocks with lysolecithin lesions were sampled every 250μm to determine the lesion epicenter. At the 189 

epicenter, 1μm semithin sections were cut on an ultramicrotome (Ultracut E, Reichert-Jung) and stained briefly in a 190 

1% toluidine blue and 2% borax solution then coverslipped with Permount (SP15, Fisher Scientific). Rank analysis 191 

was performed [30] by two blinded raters on images of semithin sections of the whole dorsal column taken with a 192 

63x oil immersion objective (numerical aperture 1.3) on a Zeiss, Axio Imager.M2 microscope. Each section was 193 

scored independently for the presence of thinly myelinated axons. When discrepancies in the ranking occurred, the 194 

average score was taken. For electron microscopy, ultrathin (90nm) sections of the lesion epicenter were collected 195 

and stained with Reynold’s lead citrate and uranyl acetate to enhance contrast then imaged at 10000-12500x primary 196 

magnification on a Zeiss EM910. 197 

Human tissue analysis 198 

Human brain tissue was used with the approval of the UBC Clinical Research Ethics Board of the 199 

University of British Columbia (H01-70430). Patient information as well as the number of lesions analyzed for non-200 

MS controls and MS patients is displayed in Supplementary Table 2. Sections (5µm) from formalin-fixed paraffin-201 

embedded tissue were obtained on microtome (1512, Leitz) and all lesions were stained on adjacent slides with luxol 202 

fast blue (LFB), and immunohistochemically for class II human leukocyte antigen (HLA II), MBP and CNP for 203 
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lesion classification according to histological criteria [4, 59]. Only lesions within the subcortical or periventricular 204 

white matter were examined. NAWM was examined at least 1.0 cm distant from a lesion in an area lacking 205 

inflammation.  For immunohistochemical staining, slides were first deparaffinized then antigen retrieval was 206 

performed by heating slides in pH 6.0 10mM sodium citrate buffer for ten minutes. Blocking was performed in 10% 207 

normal donkey serum in PBS Tween. Primary antibodies were applied overnight in a humid chamber before 208 

washing and applying appropriate Alexa Fluor conjugated secondary antibodies (Jackson ImmunoResearch 209 

Laboratories) at 1:200 for two hours. Slides were washed with PBS then stained with 0.30% (0.15% in slides with 210 

NogoA) Sudan black in 70% ethanol (4197-25-5, Sigma) for three minutes before being washed again in PBS and 211 

coverslipped with Fluoromount-G. An adjacent control slide for each lesion was stained simultaneously with 212 

secondary antibodies, Hoechst (1:10000) and Sudan black but lacked primary antibodies for comparison of 213 

background fluorescence. Cells were considered positive only if their fluorescence was substantially higher than 214 

background fluorescence as assessed on control slides imaged with the same exposure settings. Systematic random 215 

sampling was used within the lesion area manually defined on the Zen 2 software by Sudan black staining and cross-216 

referenced with adjacent slides with HLA II and LFB staining. At least twenty 100µm x 100µm areas were 217 

examined in all lesions. Chronic lesions had 60 100µm x 100µm areas counted to increase the likely of detecting 218 

oligodendrocyte lineage cells.  219 

Statistical Analyses 220 

Statistical analyses were conducted on Statistical Package for Social Sciences software (IBM) and 221 

Graphpad (Prism) version 6.0. Parametric statistics were used assuming data met requirements for normality, tested 222 

by the Shapiro-Wilk test. For comparisons between two normally distributed groups, Student’s t-test was used with 223 

or without the Welch correction depending on whether assumptions of the homogeneity of variance were met, 224 

analyzed by with Levene’s test. The Mann-Whitney U-test was used to compare P-Myrffl/fl to controls when the data 225 

was not normally distributed or was ordinal. A one-way ANOVA followed by Tukey’s or Tamhane’s post hoc test 226 

depending on whether there was equal homogeneity of variance between groups was used to compare three or more 227 

groups at one time point. For comparisons of cell counts between groups at different time points post-lysolecithin 228 

injection, a two-way ANOVA was run followed by Tukey’s post hoc test. A unit was considered an individual 229 

animal or MS lesion. Individuals performing surgeries, cell counts and imaging were blinded to mouse genotype by 230 

a third party. For all tests, statistical significance was obtained if P<0.05 and all statistical tests were two-tailed. Data 231 
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are presented as the mean ± standard error of the mean. On graphs ns = not statistically significant, * = P≤0.05, ** = 232 

P≤0.01, ***P≤0.001 unless otherwise specified. 233 

 234 

Results 235 

MYRF is expressed in new oligodendrocytes during remyelination 236 

The role of many oligodendrocyte transcription factors remains unstudied during remyelination, including 237 

MYRF. To investigate if MYRF is expressed in new oligodendrocytes during remyelination, we fate mapped OPCs 238 

using a tamoxifen-inducible Cre reporter line (Rosa26-eYFP) [56] in conjunction with an OPC inducible Cre-239 

recombinase (PDGFRα-CreERT2) [52]. Mice were heterozygous for the Myrf floxed allele (Myrffl/wt). Myrf is 240 

haplosufficient and its function in oligodendrocytes is unchanged versus mice with two copies of the gene [11]. To 241 

induce reproducible demyelination, mice received an injection of lysolecithin into the genu of the corpus callosum 242 

(Fig. 1a). Remyelination following lysolecithin demyelination involves a stereotypic evolution [13]. OPCs 243 

proliferate and are recruited in the first 5 DPL, which is followed by prominent oligodendrocyte differentiation 244 

between 5-10 DPL and remyelination by ~14 DPL (Fig. 1a). Lysolecithin was very toxic to oligodendrocyte lineage 245 

cells and the majority of MYRF+ cells were lost at 3 DPL (Fig. 1b). However, by 7 and 14 DPL, MYRF+ cells 246 

increased in density relative to 3 DPL (Fig. 1c). Recombined yellow fluorescent protein positive (YFP+) cells rarely 247 

expressed MYRF at 3 DPL (10.28 ± 4.16%) but by 7 DPL 37.5% ± 4.00% of recombined cells expressed MYRF. 248 

To identify the cells expressing MYRF during remyelination, we assessed co-immunoreactivity of YFP with CC1 249 

for oligodendrocytes (Fig. 1e) and PDGFRα for OPCs (Fig. 1f). While MYRF was not found expressed in OPCs 250 

(Fig. 1f), new oligodendrocytes (YFP+CC1+) were frequently observed to express nuclear MYRF staining at 7 DPL 251 

in P-Myrffl/wt YFP mice (Fig. 1e). Collectively, MYRF+ cells were lost after lysolecithin-induced demyelination, 252 

and OPCs differentiate into new oligodendrocytes that express MYRF during remyelination. 253 

 254 

Inducible deletion of Myrf from OPCs is sufficient to reduce MYRF expression within new oligodendrocytes 255 

To uncover MYRF’s function during remyelination, Myrffl/fl PDGFRα CreERT2 Rosa26-eYFP mice (P-256 

Myrffl/fl YFP) were produced to delete Myrf and visualize OPCs and their progeny when tamoxifen had been 257 

administered. New oligodendrocytes (YFP+CC1+) in P-Myrffl/fl YFP mice were less likely to express MYRF (Fig. 258 

1e, g). Total MYRF density in P-Myrffl/fl YFP mice declined by 32% at 7 DPL and 45% at 14 DPL relative to 259 
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controls (Supplementary Fig. 1S e). The MYRF antibody used here, raised against the N-terminus, should be 260 

capable of detecting the predicted truncated, non-functional protein product of the recombined allele. Nevertheless, 261 

the protein produced appears to be unstable and is only weakly detected in most recombined oligodendrocytes ([31] 262 

and Supplementary Fig. S1, 2, Fig. 1e, g). To explicitly determine if the inducible knockout effectively recombined 263 

Myrf, we examined the relative expression using a PCR primer sequence specific to recombined myrf mRNA 264 

lacking exon 8 [31]. P-Myrffl/fl
 mice had increased levels of recombined myrf in the brain compared to P-Myrffl/fl  265 

mice without tamoxifen (Fig. 1h). Taken together, conditional deletion of Myrf in OPCs was effective at reducing 266 

MYRF expression within new oligodendrocytes during remyelination.    267 

 268 

MYRF is not required for recruitment or proliferation of OPCs but is crucial for their complete maturation into new 269 

oligodendrocytes following demyelination. 270 

OPC recruitment is crucial for timely remyelination [47], and OPC proliferation is required for sustained 271 

oligodendrogenesis [53]. To determine directly if OPC recruitment or proliferation was altered by Myrf deletion, 272 

sections from P-Myrffl/fl YFP and P-Myrffl/wt YFP mice were examined for PDGFRα and the cell proliferation 273 

marker Ki67 to label cells in active stages of the cell cycle [54]. Both the non-recombined PDGFRα+ OPCs and 274 

recombined subpopulation expressed Ki67 after lysolecithin demyelination (Fig. 2a, d, e). Myrf deletion from OPCs 275 

did not alter the density of OPCs (Fig. 2b), the density of proliferating OPCs (Fig. 2c), the overall percentage of 276 

proliferating OPCs (Fig. 2f) or proliferation within recombined OPCs (Fig. 2g). Therefore, MYRF is not required 277 

for OPC proliferation or recruitment to demyelinated lesions. 278 

To determine how Myrf deletion from OPCs affects their subsequent differentiation and maturation during 279 

remyelination, we first examined whether recombined cells continued to express the OPC marker PDGFRα or have 280 

differentiated and express CC1 (Fig. 3a). At 3, 7 and 14 DPL the percentage of recombined cells that expressed CC1 281 

or PDGFRα did not differ between P-Myrffl/fl YFP and P-Myrffl/wt mice (Fig. 3b, c). Given that CC1 was expressed 282 

early after lysolecithin-induced demyelination before the onset of significant remyelination (Supplementary Fig. 283 

S3), we reasoned that MYRF might be dispensable for early differentiation of oligodendrocytes into a 284 

premyelinating phenotype, but crucial for the expression of later markers of oligodendrocyte differentiation. At 7 285 

DPL, a time point in which CC1+ cells were abundant within the lesion, staining with the oligodendrocyte marker 286 

GSTπ, indicates that GSTπ+ cells are largely absent from the lesion (Supplementary Fig. S3). However, by 14 DPL, 287 
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GSTπ+ cells were found throughout the lesion (Fig. 3d), suggesting GSTπ labels a later stage of oligodendrocyte 288 

development relative to CC1. Recombined cells from P-Myrffl/fl YFP and P-Myrffl/wt YFP mice were examined for 289 

GSTπ and CNP expression at 7 and 14 DPL (Fig. 3d, e, f). In P-Myrffl/fl YFP mice, a lower percentage of 290 

recombined cells expressed CNP (Fig 3g) and GSTπ (Fig. 3h) relative to controls at 14 DPL. There was also an 291 

overall decrease in the total density of GSTπ+ cells in P-Myrffl/fl YFP mice, despite recombination in only a portion 292 

of OPCs (Fig. 3i). Thus during remyelination, markers expressed later in the differentiation of OPCs into 293 

oligodendrocytes, like GSTπ, were increasingly diminished relative to early differentiation markers like CC1 294 

following Myrf deletion. 295 

 Decreased expression of GSTπ could not be accounted for by increased differentiation of OPCs into other 296 

cell types including astrocytes, as Myrf deletion did not increase the proportion of cells expressing GFAP during 297 

remyelination and over 95% of recombined cells have nuclear Olig2 suggesting they remain within the 298 

oligodendrocyte lineage (Supplementary Fig. S4). In sections from a complimentary cohort of P-Myrffl/fl and P-299 

Myrffl/wt mice lacking the Rosa26-eYFP inducible reporter, sections were co-stained with Olig2 in combination with 300 

stage-specific markers of oligodendrocyte maturation to ensure that changes in OPC and oligodendrocyte densities 301 

could not be attributable to labelling of CC1 or PDGFRα in other cell types (Supplementary Fig. S5). Like in 302 

inducible reporter-positive mice, we found no change in OPC recruitment (Supplementary Fig. S5 b, e), or the onset 303 

of differentiation (Olig2+CC1+ cells) at 5 DPL but a decrease in Olig2+ density and Olig2+CC1+ oligodendrocytes 304 

at 10 DPL (Supplementary Fig. S5 d, f). Collectively, these data indicate MYRF is not required for OPC 305 

proliferation, recruitment or initial differentiation but is required for the expression of late-stage oligodendrocyte 306 

markers during remyelination.  307 

 308 

Myrf deletion from OPCs leaves new oligodendrocytes prone to apoptosis 309 

Increased apoptosis occurs in the optic nerve of Myrffl/fl Olig2 Cre mice during development [11] and in the 310 

adult spinal cord following inducible Myrf deletion from mature oligodendrocytes [31]. To determine whether the 311 

absence of Myrf increases apoptosis of oligodendrocytes following demyelination, we examined cleaved caspase-3 312 

(CCasp3) expression in P-Myrffl/fl and P-Myrffl/wt mice (Fig. 4a, b). We found no overall difference in CCasp3+ cell 313 

density between P-Myrffl/fl and P-Myrffl/wt mice at either 5 or 10 DPL (Fig. 4c), likely because the majority of the 314 

apoptotic cells co-labelled with the pan-leukocyte marker CD45 (Fig. 4b) or the microglial/macrophage marker Iba1 315 
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(Fig. 4d, e). However, occasional CC1+CCasp3+ cells were observed (Fig. 4f). The density of CC1+ 316 

oligodendrocytes undergoing apoptosis was increased by approximately 4-fold at 10 DPL in P-Myrffl/fl mice (Fig. 317 

4g). Similarly, the percentage of oligodendrocytes that were CCasp3+ was higher at 10 DPL (Fig. 4h). However, 318 

oligodendrocytes comprised the minority of apoptotic cells, even in P-Myrffl/fl mice (Fig. 4i). The truncated protein 319 

predicted to be produced in P-Myrffl/fl mice is unlikely to be directly apoptotic to oligodendrocytes as recombined 320 

oligodendrocytes persist in Myrffl/fl PLP-CreERT2 mice for weeks following Myrf deletion (Supplementary Fig. 2S 321 

and [31]). During remyelination, oligodendrocytes are overproduced [21], similar to developmental myelination, and 322 

compete for axonal-derived cues necessary for survival [2, 3]. New oligodendrocytes lacking Myrf undergo 323 

apoptosis, presumably due to impaired stabilization, ensheathment or access to axonal-derived cues. Collectively, 324 

these data suggest impairing the later stages of oligodendrocyte differentiation by deleting Myrf leaves 325 

oligodendrocytes vulnerable to apoptosis during remyelination.  326 

 327 

Myrf deletion from OPCs does not induce overt demyelination, astrogliosis, or inflammation in the first two weeks 328 

following recombination 329 

There is a continual production of new oligodendrocytes in adulthood [29, 52]. Myrf deletion from OPCs 330 

inhibits the formation of new oligodendrocytes during motor learning [40, 63] and could plausibly induce 331 

demyelination by impairing the differentiation of new oligodendrocytes in the healthy CNS. To determine if Myrf 332 

deletion resulted in demyelination in the healthy CNS during the first two weeks, we assessed myelin status by 333 

staining the uninjured side of the corpus callosum contralateral to lysolecithin injection with the myelin protein 334 

MBP (Fig. 5a, a’, e, e’). We observed no overt signs of demyelination of the uninjured corpus callosum 14 DPL in 335 

P-Myrffl/fl YFP mice and GSTπ+ oligodendrocytes were readily observed (Fig. 5b, b’, f, f’). Electron microscopy 336 

revealed compact myelination in both control and P-Myrffl/fl YFP mice at 14 DPL in the uninjured corpus callosum 337 

and spinal cord (Fig. 6c). Astrogliosis (Fig. 5c, c’, g, g’) was not observed nor clustering of microglia or obvious 338 

changes in their morphology (Fig 5d, d’, h, h’), in either P-Myrffl/fl YFP or P-Myrffl/wt YFP mice. The total density of 339 

GSTπ+ oligodendrocytes (Fig. 5k) and PDGFRα+ OPCs (Fig. 5l) did not differ at 14 DPL in the contralateral non-340 

injected corpus callosum. However, when the recombined subpopulations were examined for GSTπ (Fig. 5i) or 341 

PDGFRα (Fig. 5j), a higher percentage were found to express PDGFRα in P-Myrffl/fl YFP mice compared to P-342 

Myrffl/wt YFP mice (Fig. 5m). Recombined cells in P-Myrffl/fl YFP mice rarely expressed GSTπ (2.41% ± 0.83%), 343 
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whereas in P-Myrffl/wt YFP mice, 15.10% ± 3.83% expressed GSTπ. Thus, Myrf deletion from OPCs prevents the 344 

formation of new late-stage oligodendrocytes in the healthy brain as well as the demyelinated brain, but does not 345 

result in overt demyelination, astrogliosis or inflammation during the first two weeks after deletion. 346 

 347 

MYRF is essential for remyelination 348 

Myrf deletion lowered the density of new GSTπ+ oligodendrocytes in response to demyelination, and as a 349 

consequence should reduce the efficiency of remyelination. We examined remyelination in semithin sections of the 350 

dorsal column 14 DPL in P-Myrffl/fl and P-Myrffl/wt mice (Fig. 6a). The spinal cord has larger calibre axons relative 351 

to the corpus callosum allowing remyelinated axons to be easily distinguished based on their thinner myelin. This is 352 

in contrast to the corpus callosum, which has many smaller axons (< 1µm) that do not always demonstrate thinner 353 

myelin during remyelination [1]. In the spinal cords of control mice, numerous thinly myelinated axons, suggestive 354 

of remyelination, were found (Fig. 6b, c). In contrast, there was a scarcity of thinly myelinated axons in P-Myrffl/fl 355 

mice (Fig. 6b, c) that was confirmed by blinded rank analysis (Fig. 6d). We also examined the presence of MBP 356 

staining in the corpus callosum to determine the extent of demyelination following lysolecithin injection in P-357 

Myrffl/fl YFP and P-Myrffl/wt YFP mice. (Fig. 6e, f). The volume of demyelination (area lacking MBP staining) did 358 

not differ at 3 or 7 DPL, indicating Myrf deletion from OPCs did not leave the callosum more susceptible to myelin 359 

loss. However, by 14 DPL there was a larger demyelinated area in P-Myrffl/fl YFP mice compared to controls (Fig. 360 

6e) suggestive of impaired remyelination. Thus, in two cohorts of animals, in two different regions of the CNS, 361 

MYRF was crucial for effective remyelination. 362 

Remyelination can restore conductance [55], likely in part through clustering of sodium channels [18]. 363 

Clustering of sodium channels at nodes of Ranvier does not typically occur in the absence of oligodendrocytes and 364 

myelination in the CNS [39]. To assess whether Myrf deletion from OPCs impaired the restoration of nodes of 365 

Ranvier in lysolecithin-demyelinated lesions in the corpus callosum, we stained tissue with AnkG—to identify the 366 

sodium channel scaffolding protein at the nodes—and Caspr to label paranodes. We counted nodes of Ranvier as 367 

those with punctate Caspr surrounding AnkG staining (Fig. 6i) [41]. Myrf deletion reduced the density of nodes of 368 

Ranvier within the lesion (Fig. 6g). Less axons within the lesion could also diminish node of Ranvier density, but no 369 

differences in the density of SMI312+ axons were observed (Fig 6h). Thus, these data suggest a reduction of node of 370 

Ranvier density is due to reduced oligodendrogenesis and not due to axon loss.  371 
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To examine axon-oligodendrocyte contact and remyelination directly in recombined cells, we crossed P-372 

Myrffl/fl and P-Myrffl/wt mice with a reporter line (mT/mG) that expressed Cre-inducible membrane-anchored GFP 373 

(Fig. 7a) [42]. The membrane-anchored inducible GFP allows for the visualization of ensheathment and myelination 374 

of axons by new oligodendrocytes [29]. At 28 DPL in P-Myrffl/wt mT/mG mice, OPCs were recruited to the lesion, 375 

differentiated, and extended processes that co-label with MBP (Fig. 7b, d, e). In contrast, recombined cells in P-376 

Myrffl/fl mT/mG mice increased in density near the lesion but rarely co-label with MBP (Fig. 7b, d, e). There was a 377 

large reduction in the capacity of recombined cells to produce myelin at 28 DPL (Fig 7c). While non-recombined 378 

cells produced myelin normally in P-Myrffl/fl mT/mG mice, this was not sufficient to compensate for the recombined 379 

cells and resulted in incomplete remyelination even at 28 DPL (Fig. 7c). Taking advantage of the larger axon calibre 380 

in the spinal cord relative to the corpus callosum, we examined ensheathment and myelination of individual axons 381 

by new oligodendrocytes in the dorsal column. While new oligodendrocytes (CC1+GFP+) were found to wrap 382 

axons and produced MBP in control P-Myrffl/wt mT/mG mice following demyelination (Fig. 7f, g) new 383 

oligodendrocytes in P-Myrffl/fl mT/mG mice occasionally ensheathed axons but failed to express MBP (Fig. 7f, h). 384 

These data demonstrate that MYRF is required for the expression of myelin proteins in new oligodendrocytes. 385 

Notably, Myrf deletion from OPCs does not prevent the formation of myelinating Schwann cells (P0+) from 386 

recombined cells following demyelination in the spinal cord (Supplementary Fig. S6).  387 

 388 

MYRF expression within oligodendrocytes is correlated with successful remyelination in MS 389 

Remyelination often fails in MS [20, 46]. The expression of few transcription factors has been differentially 390 

compared in human tissue between remyelinated ‘shadow plaques’ and chronically demyelinated lesions. Given the 391 

crucial role of MYRF in rodent remyelination, we examined MYRF and the oligodendrocyte-lineage marker Sox10 392 

[58, 64] in both the healthy white matter and in periventricular and subcortical white matter lesions (Fig. 8a, b). 393 

MYRF was expressed in Sox10+ cells (Fig. 8c). Faint MYRF immunoreactivity was observed along blood vessels 394 

or in myelin sheaths/debris. However, MYRF was not typically detected in Iba1+ microglia or GFAP+ astrocytes in 395 

NAWM (Supplementary Fig. S7). In NAWM, MYRF was expressed in cells with strong NogoA expression 396 

(Supplementary Fig. S8), CNP+ cells in remyelinated shadow plaques (Fig 8d), and in NogoA+ cells within the 397 

active rims and centres of chronic lesions (Fig. 8e). CNP and NogoA are established markers of differentiated 398 
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oligodendrocytes in human tissue [34, 35, 50], and our data demonstrate that MYRF is expressed in 399 

oligodendrocytes in the human CNS. 400 

To assess whether MYRF expression is associated with remyelination in MS, we quantified the density of 401 

Sox10+MYRF+ cells within lesions and NAWM. The density of both Sox10+ oligodendrocyte lineage cells and 402 

Sox10+MYRF+ oligodendrocytes were reduced in the centre of chronic lesions relative to shadow plaques, chronic 403 

active lesion rims and NAWM, indicating a depletion of both oligodendrocyte lineage cells and MYRF-expressing 404 

oligodendrocytes within chronic lesions (Fig. 8f, g Supplementary Fig. S9). The percentage of Sox10+ cells 405 

expressing MYRF was also reduced in chronic lesion centres relative to shadow plaques and NAWM (Fig. 8h). We 406 

next examined NogoA, Sox10 and MYRF staining in chronic active lesions, NAWM and shadow plaques. Fewer 407 

Sox10+ cells expressed strong NogoA in chronic active lesion centres relative to shadow plaques (Supplementary 408 

Fig. S8 b), suggesting an accumulation of OPCs relative to oligodendrocytes. However, there was also a decreased 409 

percentage of Sox10+ strongly NogoA+ oligodendrocytes expressing MYRF within chronic active lesion centres 410 

relative to both chronic lesion rims, shadow plaques, and NAWM (Fig. 8i), indicating there was also a population of 411 

differentiated oligodendrocytes unable to express detectable MYRF specifically in lesion centres. Collectively, the 412 

increased density and capacity of oligodendrocytes to express MYRF in areas of remyelination demonstrates that 413 

MYRF is associated with successful remyelination in the MS lesions examined.  414 

 415 

Discussion 416 

Many transcription factors crucial for developmental myelination remain poorly characterized during 417 

remyelination, including MYRF. Using an inducible deletion of Myrf from OPCs concurrent with a focal 418 

demyelinating lesion, we demonstrated that MYRF is not expressed in OPCs in the healthy or demyelinated CNS, 419 

and their proliferation and recruitment to demyelinated lesions is not altered by Myrf deletion. However, genetic fate 420 

mapping revealed that in the absence of Myrf, OPCs initially differentiate but are unable to robustly express late-421 

stage oligodendrocyte markers or myelin proteins. Thus, Myrf deletion from OPCs stalls their differentiation at the 422 

premyelinating stage during remyelination (Supplementary Fig. S10). In human white matter, Sox10+NogoA+ 423 

oligodendrocytes were found to be positive for MYRF protein expression. We encountered fewer Sox10+MYRF+ 424 

cells in chronically demyelinated lesions. Additionally, a lower proportion of oligodendrocyte lineage cells 425 

expressed MYRF in chronic lesion centres compared to shadow plaques or NAWM indicating a strong association 426 
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of MYRF expression with remyelination in MS. Collectively, our findings implicate MYRF in orchestrating myelin 427 

regeneration in both the rodent and human CNS. 428 

 429 

Oligodendrocyte lineage cells in chronic MS lesions lack expression of the transcription network required for 430 

myelination 431 

In chronic MS lesions, we find a deficiency of MYRF-expressing oligodendrocytes relative to shadow 432 

plaques and NAWM. MYRF together with Sox10 constitute an essential regulatory network that drives myelin gene 433 

expression [25]. The lack of MYRF expression in Sox10+ cells from chronic lesions could be a result of an 434 

accumulation of OPCs relative to oligodendrocytes, supporting the notion that remyelination failure results from 435 

impaired OPC differentiation [34, 61, 62]. Accordingly, we find a lower percentage of Sox10+ cells express strong 436 

NogoA within chronic lesions centres relative to NAWM, suggestive of a failure to initially differentiate. However, 437 

we also detect a population of Sox10+NogoA+ oligodendrocytes unable to express MYRF within chronic lesion 438 

centres. NogoA is not typically expressed in OPCs [35], suggesting that these cells have differentiated but fail to 439 

express MYRF and would, therefore, be unable to remyelinate. These data raise the possibility that even if OPCs are 440 

able to initially differentiate, the inhibitory environment of the chronic MS lesions examined may prevent MYRF 441 

expression, the later stages of differentiation, and subsequent remyelination. In mice, we demonstrated that MYRF is 442 

crucial for the survival of newly generated oligodendrocytes, so an inability to express MYRF in oligodendrocytes 443 

may leave them vulnerable to apoptosis. Over time, this could contribute to the severe depletion of oligodendrocytes 444 

observed in most chronic MS lesions.  445 

Nonetheless, in all chronic active lesions examined occasional Sox10+MYRF+ cells are found, suggesting 446 

there is a population of oligodendrocytes expressing the necessary transcription factors for remyelination, yet these 447 

cells are apparently unable to successfully remyelinate these lesions. This finding is in accordance with previous 448 

research which indicates a population of myelin proteolipid protein expressing (PLP+) oligodendrocytes fail to 449 

radially wrap axons and successfully remyelinate in the majority of chronically demyelinated lesions [7]. 450 

Collectively, these data imply remyelination failure in chronic lesions may be multifactorial. OPC differentiation 451 

failure, which we define as the inability transition from a proliferative OPC to post-mitotic oligodendrocyte, along 452 

with myelination failure, or the inability to wrap axons and deposit myelin, may both contribute to remyelination 453 

failure. Conduction deficits in axons of chronically demyelinated lesions may inhibit effective differentiation [21] 454 
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and/or stabilization of oligodendrocyte wraps and subsequent myelination [24]. Additionally, inhibitory substrates 455 

on axons such as polysialylated-neural cell adhesion molecule[8], myelin debris [33, 48], extracellular molecules 456 

like fibronectin [57] and chondroitin sulfate proteoglycans (CSPGs) [30] may inhibit remyelination. Together these 457 

and other factors could leave oligodendrocyte lineage cells in chronic MS lesions unable to express MYRF and 458 

subsequently remyelinate axons.  459 

Eliciting MYRF expression within oligodendrocyte lineage cells of chronic lesions may be a crucial step to 460 

promote remyelination in MS. A greater understanding of the signaling pathways that induce MYRF expression 461 

within premyelinating oligodendrocytes and the inhibitory influence of chronic MS lesions on these pathways will 462 

be of critical importance for designing new therapeutics to overcome remyelination failure. Deletion of extracellular 463 

signal–regulated kinases 1/2 (ERK1/2) in oligodendrocytes reduced the expression of myrf during development and 464 

in the healthy CNS [27]. Conversely, sustained activation of the ERK1/2 increases myrf expression and reinitiates 465 

myelination in quiescent oligodendrocytes in the uninjured and demyelinated CNS [28]. The antifungal agent 466 

miconazole, which results in the sustained phosphorylation of ERK1/2 in OPCs, has been shown to accelerate 467 

remyelination [43]. Targeting the phosphorylation of ERK1/2 with miconazole or other compounds may stimulate 468 

MYRF expression and possibly overcome the inhibitory milieu of the chronic lesion and enhance remyelination.  469 

 470 

The Role of MYRF in Remyelination Broadly Recapitulates Developmental Myelination 471 

During both developmental myelination and remyelination, OPCs proceed through the same stages of 472 

maturation from OPC to myelinating oligodendrocyte [12, 17]. This process requires the differential expression of 473 

transcription factors at distinct stages of maturation [10]. We find that during remyelination, MYRF was expressed 474 

with the onset of differentiation at the premyelinating stage after the downregulation of the OPC mitogen receptor 475 

PDGFRα, and nearly concurrent with the expression of CC1. Given that MYRF is not expressed in OPCs during 476 

remyelination, it is not surprising its deletion does not alter OPC recruitment or proliferation.   Recombined cells 477 

lacking MYRF can initially differentiate but have reduced expression of the more mature markers GSTπ and CNP 478 

and ultimately fail to express the myelin protein MBP. Thus, during remyelination, MYRF has a unique combination 479 

of characteristics amongst oligodendrocyte transcription factors; it is only expressed after initial OPC differentiation, 480 

regulates the transition from premyelinating to myelinating oligodendrocyte, and is crucial for myelin gene 481 

expression.  482 
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 Myrf deletion from OPCs will be a useful tool to examine the extent and mechanisms by which remyelination 483 

protects axons 484 

Oligodendrocytes have been theorized to support axonal survival [44]. While many studies [23, 37, 45] 485 

provide strong support for an essential role of oligodendrocytes in the health of axons, little causative evidence 486 

exists that oligodendrocyte remyelination is sufficient to preserve axons during inflammatory demyelination. This is, 487 

in large part, due to the difficulty of decoupling oligodendrogenesis and remyelination from inflammation and other 488 

degenerative processes during demyelination. Several therapies targeting remyelination in MS are entering clinical 489 

trials, and it will be crucial to determine the relative effectiveness and timeframe by which remyelination may 490 

prevent axon loss following inflammatory demyelination. 491 

P-Myrffl/fl mice may be an excellent model to assess the sufficiency and mechanisms by remyelination 492 

protects axons following demyelination. Lesions in P-Myrffl/fl mice resemble those of chronic MS lesions, in that 493 

these lesions contain OPCs and premyelinating oligodendrocytes, but few oligodendrocytes capable of 494 

remyelinating axons. Inducible Myrf deletion from OPCs does not result in overt signs of demyelination, reactive 495 

astrogliosis, or inflammatory lesions during the timeframe of our study, which could confound an interpretation of 496 

the role of remyelination on axonal health. MYRF is also not expressed in OPCs nor alters their proliferation or 497 

recruitment to areas of demyelination. Given that non-recombined cells can remyelinate normally in P-Myrffl/fl mice, 498 

a higher recombination efficiency of Myrf from OPCs would have been ideal. A second PDGFRα CreERT2 line 499 

developed independently to the one used in this study has a higher recombination efficiency throughout the CNS 500 

[29]. This line combined with autoimmune or cuprizone demyelination should result in long-term demyelination and 501 

thus be a suitable tool to assess the efficacy, rate, and mechanisms by which new oligodendrocytes and 502 

remyelination may protect axons from degeneration and enhance recovery following remyelination failure.  503 

Collectively, our work demonstrates that MYRF is essential for successful remyelination by acting as a 504 

master regulator crucial for the transition of oligodendrocytes from a premyelinating to myelinating phenotype. We 505 

establish, for the first time, that chronic MS lesions lack oligodendrocytes that express this necessary transcription 506 

factor for remyelination. Eliciting MYRF expression in oligodendrocyte lineage cells may be essential for 507 

overcoming remyelination failure in MS. 508 
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Figure Legends 539 

Fig. 1 MYRF is expressed in new oligodendrocytes following focal demyelination. a Schematic of the transgenic 540 

mice used, lysolecithin injection location and experimental timeline. b Micrographs of MYRF and YFP expression 541 

in demyelinating lesions at 3, 7 and 14 DPL in P-Myrffl/wt YFP mice. Dashed line demarcates the approximate lesion 542 

boundary. c Quantification of MYRF+ cell density demonstrates increased density in P-Myrffl/wt YFP mice between 543 

3 and 7 DPL (P=0.013) and 3 and 14 DPL (P<0.001). d Quantification indicating an increase in the percentage of 544 

recombined cells (YFP+) which are also MYRF+ by 7 DPL (P=0.001) and 14 DPL (P<0.001) relative to 3 DPL. e 545 

Micrographs demonstrating that some recombined cells have differentiated and express the mature oligodendrocyte 546 

marker CC1, which often co-label with MYRF (arrowheads) in P-Myrffl/wt YFP mice 7 DPL. In P-Myrffl/fl YFP 547 

mice, many recombined cells have either faint or undetectable expression of MYRF in newly differentiated 548 

oligodendrocytes (arrows). f Micrograph indicating MYRF is not expressed in PDGFRα+ cells in lesions or adjacent 549 

to lesion boundaries (dashed line). g Quantification demonstrating the percentage of recombined oligodendrocytes 550 

(CC1+YFP+)  that express MYRF is reduced at 7 DPL (P<0.001), and 14 DPL (P=0.016) in P-Myrffl/fl YFP relative 551 

to P-Myrffl/wt YFP mice.  h Quantification using primers specific for recombined myrf (lacking exon 8) shows there 552 

is an increase in expression within the brain of P-Myrffl/fl mice treated with tamoxifen (P=0.036) compared to P-553 

Myrffl/fl mice that did not receive tamoxifen. Two-way ANOVA followed by Tukey’s post hoc test in c, g and 554 

Tamhane’s post hoc test in d. n=4-6 mice per group per timepoint in c, d and g. Kruskal-Wallis test followed by 555 

Dunn’s test, n=3-4 per group in h. Scale bars are 50 µm in b and 20µm in e and f 556 

Fig. 2 MYRF is not required for OPC recruitment or proliferation in demyelinated lesions. a Representative 557 

photomicrographs of lesion epicentre stained for CNP and Ki67 or YFP and PDGFRα in P-Myrffl/wt YFP and P-558 

Myrffl/fl YFP mice 3 DPL. Dashed line demarcates approximate lesion boundary.  b Quantification of PDGFRα+ cell 559 

density indicates there is no difference between P-Myrffl/fl YFP and P-Myrffl/wt YFP mice at any time point. c 560 

Quantification demonstrating Ki67+PDGFRα+ cell density does not differ between P-Myrffl/wt YFP and P-Myrffl/fl 561 

YFP mice at 3, 7 or 14 DPL, but declines between 3 DPL and 7 DPL in both groups (P-Myrffl/wt YFP P<0.001, P-562 

Myrffl/fl YFP P=0.002). d Single optical confocal section demonstrating co-labelling between YFP, PDGFRα, and 563 

Ki67 (arrowheads) in P-Myrffl/wt YFP and e P-Myrffl/fl YFP mice. Arrows indicate YFP+PDGFRα+Ki67- cells. f 564 

Quantification indicating the percentage of PDGFRα+ cells which express Ki67 does not differ between P-Myrffl/fl 565 
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and P-Myrffl/wt mice at any time point, but declines between 3 and 7 DPL in both P-Myrffl/wt YFP (P<0.001) and P-566 

Myrffl/fl YFP (P<0.001) mice. g Quantification demonstrating the percentage of recombined OPCs 567 

(YFP+PDGFRα+) that are Ki67+ does not differ between P-Myrffl/wt YFP and P-Myrffl/fl YFP mice at any time point 568 

examined but declines between 3 and 7 DPL in both P-Myrffl/wt YFP (P<0.001) and P-Myrffl/fl YFP (P<0.001) mice. 569 

Scale bars are 50µm in a and 10µm in d, and e. Two-way ANOVA followed by Tukey’s post hoc test for b, c, f, g. 570 

n=4-6 mice per group per timepoint. 571 

Fig. 3 Myrf deletion does not alter the transition from an OPC to premyelinating oligodendrocyte, but inhibits the 572 

later stages of oligodendrocyte differentiation during remyelination. a Photomicrographs of a single optical confocal 573 

section of the lesion at 7 DPL. Recombined cells within lesions express either CC1 (arrowheads) or PDGFRα 574 

(arrows), in both P-Myrffl/wt YFP and P-Myrffl/fl YFP mice. b Quantification demonstrating the percentage of 575 

recombined cells that are CC1+does not differ at any time point examined between P-Myrffl/wt YFP and P-Myrffl/fl 576 

YFP mice but increases in both groups between 3 and 14 DPL (P-Myrffl/wt YFP P<0.001, P-Myrffl/fl YFP P<0.001). c 577 

Quantification of demonstrating the percentage of recombined cells that are PDGFRα+ does not differ between P-578 

Myrffl/wt YFP and P-Myrffl/fl YFP mice at any time point examined; but the percentage of cells declines in both 579 

groups between 3 and 14 DPL (P-Myrffl/wt YFP P=0.003, P-Myrffl/fl YFP P=0.002). d Representative 580 

photomicrograph of lesion epicentre 14 DPL in both P-Myrffl/wt YFP and P-Myrffl/fl YFP mice stained for YFP, 581 

GSTπ and CNP. Dashed lines demarcate lesion boundaries. e Single optical section demonstrating considerable co-582 

labelling between YFP, GSTπ (arrowheads) and CNP in P-Myrffl/wt YFP mice 14 DPL. f Recombined cells in P-583 

Myrffl/fl YFP mice rarely express GSTπ. g Quantification demonstrating that the percentage of recombined cells that 584 

are CNP+ (P=0.021) and h GSTπ+ (P<0.001) declines in P-Myrffl/fl YFP compared to P-Myrffl/wt YFP mice at 14 585 

DPL i Quantification indicating the total GSTπ+ cell density is reduced within the lesion at 14 DPL in P-Myrff/fl 586 

YFP compared to P-Myrffl/wt YFP mice (P=0.043). All statistical comparisons in b, c, g, h, i used a two-way 587 

ANOVA followed by Tukey’s post hoc test, n=4-6 mice per group per timepoint. Scale bars are 20µm in a, e and f 588 

and 50µm in d  589 

Fig. 4 Oligodendrocytes are more prone to apoptosis following Myrf deletion from OPCs during remyelination. a 590 

Representative photomicrographs of demyelinated lesion stained for MBP and CCasp3 at 5 and 10 DPL in both P-591 

Myrffl/wt and P-Myrffl/fl mice. Dashed line demarcates approximate lesion boundary. b Micrograph of the lesion 592 
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epicentre stained with CD45 and CCasp3 in P-Myrffl/wt and P-Myrffl/fl mice at 10 DPL. The majority of CCasp3+ 593 

cells associate with CD45. c Quantification of total CCasp3+Hoechst+ (apoptotic) cell density. d Single optical 594 

confocal section demonstrating that CCasp3+ is expressed in CD45+ cells (arrowhead), and many cells also express 595 

the microglia/macrophage marker Iba1 in both P-Myrffl/wt and e P-Myrffl/fl mice. f Single optical confocal section at 596 

10 DPL in P-Myrffl/fl mice, with single channels of Hoechst, CC1 and CCasp3. Arrowhead indicates 597 

CC1+Hoechst+CCasp3+ cell. g Quantification indicating CC1+CCasp3+ density is higher in P-Myrffl/fl compared to 598 

P-Myrffl/wt mice at 10 DPL (P=0.039). h Quantification demonstrating increased percentage of CC1+ cells are 599 

CCasp3+ in P-Myrffl/fl compared to P-Myrffl/wt mice at 10 DPL (P=0.028). i Quantification revealing an increase at 600 

10 DPL in the percentage of apoptotic cells that express CC1 in P-Myrffl/fl relative to P-Myrffl/wt mice (P=0.028). 601 

Two-way ANOVA followed by Tukey’s post hoc test to determine individual group differences for c, g, h and i. 602 

n=4-5 mice per group per timepoint.  Scale bars are 50µm in a, 20 µm in b and 5 µm in d, e, and f  603 

Fig. 5 Myrf deletion from OPCs does not induce overt demyelination, astrogliosis or inflammation but reduces the 604 

number of new oligodendroctyes in the healthy brain two weeks following tamoxifen injection. P-Myrffl/wt
 YFP and 605 

P-Myrffl/fl YFP mice were examined on the contralateral side of the corpus callosum (CC) to the lysolecithin lesion 606 

14 DPL. Representative photomicrographs of staining with a, a’ MBP, b, b’ GSTπ, c, c’ GFAP and d, d’ Iba1. 607 

Enlarged images of e, e’ MBP, f, f’ GSTπ, g, g’ GFAP and h, h’ Iba1. i Single merged confocal optical section in 608 

the corpus callosum contralateral to lysolecithin lesion in P-Myrffl/wt mice 14 DPL demonstrating occasional 609 

YFP+GSTπ+ oligodendrocytes (arrowhead). Single channel micrograph showing i’ YFP and i” GSTπ. j Single 610 

merged optical section in the corpus callosum contralateral to the lysolecithin lesion of P-Myrffl/wt mice 14 DPL 611 

demonstrating co-labelling between YFP and PDGFRα (arrowheads). Arrows indicate PDGFRα+ cells which did 612 

not recombine (YFP-). Single channel image showing j’ YFP and j” PDGFRα. Quantification showing no 613 

difference in cell density of k (GSTπ+) and l (PDGFRα+) cells in the contralateral side of the corpus callosum 614 

between P-Myrffl/wt and P-Myrffl/fl mice. m Quantification demonstrating recombined cells are unable to differentiate 615 

into CNP+ (P=0.027) or GSTπ+ (P=0.032) oligodendrocytes and a greater percentage remain PDGFRα+ (P=0.016) 616 

in P-Myrffl/fl YFP relative to P-Myrffl/wt YFP mice. Student’s T-Test in k and l and Mann Whitney U Test in m, n=4-617 

5 mice per group. Scale bars are 100µm in (a-d) and (a’-d’) and 20µm in (e-h),(e’-h’), i, i’, i’’ and j, j’, j’’ 618 
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Fig. 6 Myrf deletion from OPCs inhibits remyelination. a Schematic demonstrating the location of lysolecithin 619 

injections into the dorsal column of the C4 spinal cord and location of semi-thin and electron micrographs. b 620 

Semithin sections at the C4 spinal cord level stained with toluidine blue from P-Myrffl/wt and P-Myrffl/fl mice. There 621 

are few myelinated axons in P-Myrffl/fl mice. c Electron micrographs of the uninjured and 14 DPL C4 spinal cord in 622 

P-Myrffl/wt and P-Myrffl/fl mice. d Ranking analysis in P-Myrffl/fl and P-Myrffl/wt mice, demonstrates there is less 623 

remyelination in P-Myrffl/fl mice (P=0.030). e Quantification of the volume of spared tissue that is MBP-negative 624 

within the corpus callosum. At 14 DPL, there is a reduction in the MBP-negative volume in P-Myrffl/wt
 YFP relative 625 

to P-Myrffl/fl YFP mice (P=0.028).  f Overview of lesion epicentre in the corpus callosum stained with MBP at 3, 7, 626 

and 14 DPL in P-Myrffl/wt YFP and P-Myrffl/fl YFP mice. MBP is expressed throughout the corpus callosum at 14 627 

DPL in P-Myrffl/wt YFP in contrast to P-Myrffl/fl YFP mice. g Quantifications indicating node of Ranvier density in 628 

the corpus callosum is reduced (P=0.047) but h SMI312+ axon staining does not differ between P-Myrffl/wt YFP and 629 

P-Myrffl/fl YFP mice at 14 DPL (P=0.754) in the corpus callosum.  i Example micrograph of a subset of lesion 630 

demonstrating notably fewer punctate Caspr flanking AnkG, in P-Myrffl/fl YFP relative to P-Myrffl/wt YFP mice at 14 631 

DPL. Mann Whitney U Test used in d, e and g, Student’s T-test in h. n=4-6 mice per group per time point. Scale 632 

bars are 50µm in b and f, 20µm i and 2 µm in c 633 

Fig. 7 New oligodendrocytes are unable to effectively remyelinate in P-Myrffl/fl mT/mG mice. a Schematic of the 634 

transgenic lines used and experimental timeline. All mice were perfused 28 DPL. b Overview of lysolecithin lesion 635 

in the corpus callosum stained for GFP and MBP in P-Myrffl/wt mT/mG and P-Myrffl/fl mT/mG mice. c 636 

Quantification demonstrating reductions in the amount of myelin generated by recombined cells within the lesion 637 

(GFP+MBP+) in P-Myrffl/fl mT/mG relative to P-Myrffl/wt mice (green bars, Mann Whitney U test, P=0.006) but 638 

myelin generated by non-recombined cells (GFP-MBP+) does not change (clear portion of bars, T-Test, P=0.236). 639 

There is less overall MBP in P-Myrffl/fl mT/mG mice in the lesion (total of bars, T-Test, P=0.020). n=6 mice per 640 

group. d Single optical section of the corpus callosum with axons in cross section reveals co-labelling of GFP with 641 

MBP in P-Myrffl/wt mT/mG mice but almost no GFP+MBP+ sheaths in P-Myrffl/fl mT/mG mice. e Processes from 642 

CC1+GFP+ oligodendrocytes (arrowheads) are seen to align along myelinated fibers and co-label with MBP 643 

(yellow) in P-Myrffl/wt mT/mG mice adjacent to lesion epicentre but CC1+GFP+ cells rarely have processes which 644 

co-label with MBP in P-Myrffl/fl mT/mG mice. f Single optical confocal coronal section taken at the C4 level of the 645 

spinal cord of P-Myrffl/wt mT/mG and P-Myrffl/fl mT/mG mice stained with SMI312, MBP, GFP and CC1. Arrows 646 
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indicate GFP+CC1+ cell bodies. g Enlarged image of individual oligodendrocyte processes from P-Myrffl/wt mT/mG 647 

mice. Within the lesion, numerous GFP+ process surround axons and co-label with MBP indicative of new 648 

myelination. h Occasional GFP+CC1+ oligodendrocytes wrap axons in P-Myrffl/fl mT/mG mice, but rarely express 649 

MBP. In g and h arrowheads demarcate GFP+MBP+ myelin, and arrows indicate GFP+ processes wrapping axons 650 

that are MBP-negative. Scale bars are 50µm in b,10 µm in d, e and f and 5µm in g and h 651 

Fig 8 Successful remyelination in MS lesions is associated with MYRF expression in oligodendrocytes. a 652 

Micrographs of human MS lesions and NAWM stained with luxol fast blue (LFB). Demyelination is observed in 653 

active and chronic active plaques, whereas faint LFB staining is present in shadow plaques. b Class II HLA 654 

reactivity is perilesional in chronic active plaques, and found throughout the lesion in active plaques. c Co-labelling 655 

between MYRF and the oligodendrocyte lineage marker Sox10 is seen in NAWM. MYRF is primarily nuclear, as 656 

indicated by co-labelling with Hoechst. d Single optical confocal section demonstrating MYRF is expressed in 657 

CNP+ cells within shadow plaques (arrowheads). Arrows indicate CNP+MYRF-negative cells. e Example 658 

micrographs of single optical confocal sections in chronic active lesion centres and rims demonstrating MYRF is 659 

typically expressed in Sox10+NogoA+ oligodendrocytes (arrowhead).  Arrows denote Sox10+NogoA+ cells which 660 

lack MYRF. f Less Hoechst+Sox10+ cells are observed in the centre of chronic active lesions relative to active 661 

lesions (P=0.042), chronic active rim (P<0.001), shadow plaques (P=0.026), NAWM (P<0.001), and non-MS 662 

(P<0.001).  g Less Hoechst+Sox10+MYRF+ cells in chronic lesion centres compared to all other groups (active 663 

lesions P=0.016, chronic active rim P=0.002, shadow plaques P=0.012, NAWM P<0.001, and non-MS P<0.001). h 664 

The percentage of Hoechst+Sox10+ cells that express MYRF is reduced in chronic active lesions relative to shadow 665 

plaques (P=0.041), NAWM (P<0.001) and non-MS white matter (P<0.001). i The percentage of Sox10+NogoA+ 666 

oligodendrocytes which express MYRF is reduced in chronic active lesion centres relative to NAWM (P<0.001), 667 

shadow plaques (P<0.001), and chronic active rims (P<0.001). Horizontal lines with vertical dashes above 668 

quantifications in f-i indicate all statistically significant post hoc tests relative to the group with the larger vertical 669 

line.  One-way ANOVA followed by Tukey’s post hoc for f, g, h, i.  Scale bars are 500 µm in a and b, 50µm in c, 670 

20µm in d and 10µm in e. * = statistical significance 671 
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