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(`1, `2)-RIP and Projected Back-Projection
Reconstruction for Phase-Only Measurements

Thomas Feuillen, Mike E. Davies, Luc Vandendorpe, and Laurent Jacques

Abstract—This letter analyzes the performances of a sim-
ple reconstruction method, namely the Projected Back-
Projection (PBP), for estimating the direction of a sparse signal
from its phase-only (or amplitude-less) complex Gaussian random
measurements, i.e., an extension of one-bit compressive sensing to
the complex field. To study the performances of this algorithm, we
show that complex Gaussian random matrices respect, with high
probability, a variant of the Restricted Isometry Property (RIP)
relating to the `1-norm of the sparse signal measurements to
their `2-norm. This property allows us to upper-bound the
reconstruction error of PBP in the presence of phase noise. Monte
Carlo simulations are performed to highlight the performance
of our approach in this phase-only acquisition model when
compared to error achieved by PBP in classical compressive
sensing.

I. INTRODUCTION

One aspect of compressive sensing (CS) is to reduce the
number of measurements needed to achieve (high) quality
reconstruction of low-complexity signals (e.g., sparse) [6], [8].
Recent research has also focused on reducing the accuracy of
each measurement, e.g., by lowering their resolution (or bit-
depth) in specific quantization contexts [3], [11]–[13]. This pa-
per investigates the consequences of removing the information
about the amplitude of a complex signal, i.e., using only the
measurement phase for the reconstruction. While phase-only
(PO) acquisition can serve as a stepping stone to study new
quantizations schemes, e.g., when quantizing the measurement
phase [5], this sensing is tantamount to a complex form of one-
bit quantization, e.g., extensively studied in one-bit CS [3],
[10], [13].

Oppenheim and co-authors [17], [18] proved in a few
seminal contributions that real, bandlimited signals can be
reconstructed, up to a lost amplitude, from the phase of
their Fourier transform. More recently, for phase-only CS
(PO-CS) with complex Gaussian random matrices, Boufounos
determined that a specific distance between the measurement
phases of two sparse signals encodes their angular distance up
to an additive distortion [4]. While this distortion prevents us
from proving perfect estimation of sparse signal direction, the
author showed experimentally that this is achievable, thanks to
a greedy algorithm enforcing the phase consistency between
the signal estimate and the PO measurements.
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In this context, our contributions are as follows. While
the question of perfect recovery of signal direction remains
open, we here focus on a simple, non-iterative algorithm,
the Projected Back-Projection (PBP, see Sec. II), and show
that this method accurately estimates the direction of sparse
signals in PO-CS (Sec. III). This is possible if the sensing
matrix respects a variant of the RIP, the (`1, `2)-RIP in the
complex field, which was previously introduced for (real) one-
bit CS. Using tools from measure concentration [15], we then
prove that complex Gaussian random matrices satisfy, with
high probability (w.h.p.), the (`1, `2)-RIP if the number of
measurements is large compared to the signal sparsity level
(Sec. IV). Note that the `1-norm of this RIP prevents a simple
proof of this result by recasting the complex field to the real
field. Finally, extensive Monte Carlo simulations confirm that
the PBP estimation error for PO-CS compares favorably to the
one of an unaltered, linear CS scheme (Sec. V).

Notations and conventions: We denote matrices and vec-
tors with bold symbols, e.g., Φ ∈ Cm×n, x ∈ Cn, and
scalar values with light symbols. We will often use the
following quantities: [d] := {1, · · · , d} with d ∈ N; the
complex number i such that i2 = −1; <{λ} (or λ<) and
={λ} (or λ=) are the real and imaginary part of λ ∈ C,
respectively, and λ∗ is its complex conjugate; AH is the
conjugate transpose of A; suppx is the support of x ∈ Cd;
|S| is the cardinality of a finite set S; 〈x,y〉 =

∑d
i=1 xiy

∗
i

is the scalar product between two vectors x,y ∈ Cd; the `p-
norm of x (p ≥ 1) is defined as ‖x‖p = (

∑d
i=1 |xi|p)1/p,

with ‖x‖∞ = maxi |xi| and ‖u‖0 := | supp(u)|, and the
`p,q-norm of A = (a1, · · · ,ad)> ∈ Cd×d′ is ‖A‖p,q =

(
∑d
i=1 ‖ai‖qp)1/q; B̄n := {u ∈ Cn : ‖u‖ ≤ 1}; the Hadamard

product is �; and the angle operator (applied componentwise
onto vectors) reads ∠(ceiφ) = φ for c > 0 and φ ∈ [−π, π].
We denote by Nm×n(µ, σ2) and CNm×n(µ, 2σ2) (dropping
the symbol n if n = 1) the m×n random matrices with entries
independently and identically distributed (i.i.d.) as the normal
distribution N (µ, σ2) and the complex normal distribution
CN (µ, 2σ2) ∼ N(µ<, σ2) + iN(µ=, σ2), respectively, for
some mean µ and variance σ2. An s-sparse x vector belongs to
the set Σ̄ns := {u ∈ Cn, ‖u‖0 ≤ s}. Given g, g′ ∼ N (0, σ2),
the random variable (r.v.) z := |g + i g′| is distributed as the
Rayleigh distribution R(σ) with parameter σ [19].

II. PHASE-ONLY SENSING MODEL

Let us consider a complex s-sparse vector x0 ∈ Σ̄ns .
Given a complex matrix Φ ∈ Cm×n, this work is concerned
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with the following noisy non-linear sensing model [4], which
generalizes one-bit CS [10], [22] to the complex field:

z = signC(Φx0)� ei ξ, (1)

where signC(·) is the complex signum operator, applied
component-wise onto vectors, i.e., signC(λ) = λ/|λ| for
λ ∈ C \ {0}, and ξ stands for a possible corruption of the
measurement phase (with ξi ∈ [0, 2π), i ∈ [m]). The matrix Φ
can be, e.g., a complex Gaussian random matrix (see Sec. IV).

The sensing model (1) thus discards the amplitudes of the
measurements Φx0; estimating x0 from z is possible only
up to a global unknown normalization of x0, i.e., only the
direction x0/‖x0‖2 can be estimated.

We aim to show that the projected back projection (PBP)
algorithm [10], [22] accurately estimates the direction of
complex sparse signals provided the complex sensing matrix
respects a variant of the RIP property (see Sec. III). Given
s ∈ [n], the sensing matrix Φ, and the measurement vector z,
this algorithm is simply defined as

x̂ = Hs
(
ΦHz

)
, (PBP)

where Hs(u) is the hard thresholding operator setting all of
the components of the vector u to zero but the s strongest
in amplitude (which are unchanged). For CS, PBP is often
used as the first iteration of more complex iterative methods
such as iterative hard thresholding (IHT) [2], [22]. Despite
its simplicity, analyzing PBP can thus lead to better iterative
reconstruction algorithms for PO-CS.

III. BOUND ON THE PBP RECONSTRUCTION ERROR

In CS theory, the error of most signal reconstruction al-
gorithms is controlled by the restricted isometry property —
or (`2, `2)-RIP — of the sensing matrix [9]. This amounts to
asking that for some 0 < δ ≤ 1,

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22,

holds true for all sparse vectors x. For instance, if the (real
or complex) matrix Φ respects the (`2, `2)-RIP over all 2s-
sparse vectors and one observes a s-sparse vector from the
model y = Φx0, the error of the estimate x̂ = Hs(Φ

Hy) is
bounded as ‖x0 − x̂‖2 = O(δ) [9], [22].

As will be clear below, the capacity of PBP to estimate a
sparse vector x0 from its complex, phase-only observations z
in (1) depends on the following RIP variant.

Definition. Given δ > 0, the matrix Φ ∈ Cm×n satisfies the
(`1, `2)-RIP(s, δ) if, for all x ∈ Σ̄ns ,

(1− δ)‖x‖2 ≤ ‖Φx‖1 ≤ (1 + δ)‖x‖2.

This property was introduced for real one-bit CS [10],
[20]; with it, specific algorithms (including PBP) yield a good
estimate of a real sparse signal from the sign of its random
measurements. Moreover, provided that m is large compared
to s, different types of real random matrix constructions,
such as Gaussian random matrices [20, Lemma 2.1] [12] or
randomly subsampled Gaussian circulant matrices [7], have
been shown to respect the (`1, `2)-RIP(s, δ) w.h.p..

To bound the reconstruction error of PBP, we first need the
following lemma that is adapted from [10, Lemma 3].

Lemma 1. If Φ satisfies the (`1, `2)-RIP(δ, s) for 0 < δ < 1
and s ∈ [n], then for any vector x ∈ Cn with unit `2-norm
such that suppx ⊂ S ⊂ [n] with |S| = s,∥∥HS(ΦH signC(Φx)

)
− x

∥∥
2
≤
√

5δ.

We can now determine the main result of this section, which
derives from an adaptation of [10, Thm 8] to the complex field.

Theorem 2. If Φ satisfies (`1, `2)-RIP(2s,δ), then the PBP
estimate x̂ of any signal x0 ∈ Σ̄ns with ‖x0‖2 = 1 observed
via (1) with ‖ξ‖∞ ≤ τ respects

‖x0 − x̂‖2 ≤ 2
√

5δ + 4τ. (2)

Proof: Let S0 and T be the s-sparse supports of x0 and
x̂, respectively. Writing S := S0 ∪ T (with |S| ≤ 2s) and
a = ΦHz, we first note that ‖x0 − x̂‖2 ≤ ‖x0 −HS(a)‖2 +
‖x̂ − HS(a)‖2, so that ‖x0 − x̂‖2 ≤ 2‖x0 − HS(a)‖2 since
x̂ is the best s-term approximation of both a and HS(a). The
triangle inequality and Lemma 1 then provide

‖x0−HS(a)‖2 = ‖x0−HS
(
ΦH [signC(Φx0)�exp(i ξ)]

)
‖2

≤
√

5δ + ‖HS
(
ΦH [signC(Φx0)� (1− ei ξ)]

)
‖2.

Since Φ respects the (`1, `2)-RIP(2s,δ), we get, using Hölder’s
inequality and the fact the each measurement has an amplitude
of 1

‖HS
(
ΦH [signC(Φx0)� (1− ei ξ)]

)
‖2

= supu∈B̄n〈Φ(HS(u)), signC(Φx0)� (1− ei ξ)〉
≤ ‖1− ei ξ‖∞ supu∈B̄n ‖Φ(HS(u))‖1
≤ 2‖1− ei ξ‖∞ ≤ 2‖ξ‖∞ ≤ 2τ.

Gathering all bounds provides the result.
Interestingly, (2) shows that one can still accurately estimate

the direction of a complex sparse signal in PO-CS if Φ is
(`1, `2)-RIP(2s, δ) with a small constant δ.

Moreover, as clarified in Sec. IV, (2) allows us to understand
how, for complex Gaussian sensing matrices, the error of PBP
decays when m increases. Indeed, up to some missing log
factors, we prove in Thm. 6 that complex Gaussian random
matrices satisfy the (`1, `2)-RIP(2s, δ) w.h.p. provided m ≥
Cδ−2s for some C > 0. By saturating this condition, we see
that, for noiseless PO-CS, PBP achieves the error

‖x0 − x̂‖2 = O
(

4
√
s/m

)
(3)

when m increases, i.e., which tends to zero for large m.
This evolution of the PBP error meets the one encountered

for real one-bit CS [10] and non-linear CS [21]. However,
this behavior is a bit pessimistic compared to the experimental
decay in O(

√
s/m) reached by simulations (see Sec. V). The

exponent over δ in (2) could thus be improved from
√
δ to δ.

This would then match the performances of PBP in linear
CS (see the beginning of this section) and dithered quantized
CS [14], [22] where it reaches an error bounded by O(δ) for
(`2, `2)-RIP(2s, δ) sensing matrices, i.e., a decay in O(

√
s/m)

for Gaussian random sensing matrices.
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IV. THE (`1, `2)-RIP OF COMPLEX GAUSSIAN MATRICES

While one easily extends the (`2, `2)-RIP of certain random
matrix constructions from the real to the complex fields — e.g.,
by recasting the signal space Cn and measurement domain
Cm to R2n and R2m, respectively [9] — such an extension
for (`1, `2)-RIP matrices is not known.

Fortunately, using the tools of measure concentration [15],
we prove below that complex Gaussian random matrices Φ
respects the (`1, `2)-RIP w.h.p. provided m is large compared
to the signal sparsity. To show this, we first establish that,
given x ∈ Cn, E‖Φx‖1 is proportional to ‖x‖2 since each
random variable |(Φx)i| is Rayleigh distributed.

Lemma 3. Given x ∈ Cn and a random matrix Φ ∼
CNm×n(0, σ2) with σ := 1

m

√
2√
π

, we have

E
[
‖Φx‖1

]
= ‖x‖2.

Proof: By decomposing both the entries of Φ and the
components of x into their real and imaginary parts, we get

‖Φx‖1 =
∑m
i=1 |

∑n
j=1 Φijxj | =

∑m
i=1

∣∣∑n
j=1 g

<
ij + i g=ij

∣∣,
with g<ij := Φ<ijx

<
j − Φ=ijx

=
j and g=ij := Φ<ijx

=
j + Φ=ijx

<
j .

We note that, for all indices i, i′ ∈ [m] and j, j′ ∈
[n], Φ<ij and Φ=ij are Gaussian random variables with
E[Φ<ij ] = E[Φ=ij ] = E[Φ<ijΦ

=
i′j′ ] = 0. Therefore,

g<ij , g
=
ij ∼i.i.d.N (0, σ2|xj |2) and a simple computation pro-

vides Eg<ijg=i′j′ = 0. The r.v.s Γ<i :=
∑n
j=1 g

<
ij and

Γ=i :=
∑n
j=1 g

=
ij are thus independent and distributed as

N (0, σ2‖x‖22) for all i ∈ [m]. Consequently,

E
[
‖Φx‖1

]
=
∑m
i=1 E

[
|Γ<i + iΓ=i |

]
= mE

[
Γ0

]
,

where Γ0 follows a Rayleigh distribution R(σ‖x‖2). Since
E[Γ0] = σ

√
π
2 ‖x‖2 [19] and σ = 1

m

√
2
π , we find

E
[
‖Φx‖1

]
= σ‖x‖2

√
π
2m = ‖x‖2.

We also need this classical result from Ledoux and Tala-
grand [15, Eq. 1.6], see also [12, Lemma 5].

Lemma 4. If the function F is Lipschitz with λ = ‖F‖Lip,
then, for r > 0 and γ ∼ Nm(0, 1),

P
(∣∣F (γ)− E(F (γ))

∣∣ > r
)
≤ 2 exp(− 1

2r
2λ−2).

In our developments, F will be of the following kind.

Lemma 5. The functions G : u ∈ Cm 7→ ‖u‖1 ∈ R+ and
of G′ : (u<,u=) ∈ Rm×2 7→ ‖(u<,u=)‖2,1 ∈ R+ have a
Lipschitz constant equal to

√
m.

Proof: For all u,v ∈ Cm, |‖u‖1 − ‖v‖1| ≤ ‖u− v‖1 ≤√
m‖u − v‖2, which gives the Lipschitz constant of G. The

one of G′ follows from ‖u‖1 = ‖(u<,u=)‖2,1 .

We are now ready to prove the main result of this section.

Theorem 6. Let δ ∈ (0, 1), σ = 1
m

√
2√
π

, and Φ ∼
CNm×n(0, σ2) be a complex Gaussian random matrix. If
m ≥ 36

π δ
−2
[
s log

(
en
s (1+ 6

δ )2
)
+log( 2

η )
]
, then, with probabil-

ity exceeding 1−η, the matrix Φ satisfies the (`1, `2)-RIP(s, δ).

Proof: The proof strategy1 follows the one developed
in [1] for proving that real Gaussian random matrices satisfy
the (`2, `2)-RIP w.h.p.. By homogeneity of the (`1, `2)-RIP, it
is enough to prove that complex Gaussian random matrices
satisfy it w.h.p. for all vectors of Σ̃ns := Σ̄ns ∩ B̄n.

We first show that for a fixed vector x ∈ Cn, ‖Φx‖1
concentrates around ‖x‖2. Using the r.v.s Γ<i ,Γ

=
i defined in

the proof of Lemma 3, we can write

p := P
( ∣∣‖Φx‖1 − ‖x‖2∣∣ > t‖x‖2

)
= P

( ∣∣∑m
i=1

(
(Γ<i )2 + (Γ=i )2

)1/2 − ‖x‖2∣∣ > t‖x‖2
)

= P
( ∣∣∑m

i=1

(
(γ<i )2 + (γ=i )2

)1/2 −m√π
2

∣∣ > tm
√

π
2

)
,

where we defined the independent Gaussian random vectors
γ<,γ=∼i.i.d.Nm(0, 1). Since

∑m
i=1

(
(γ<i )2 + (γ=i )2

)1/2
=

‖(γ<,γ=)‖2,1, Lemma 4 provides

p = P
( ∣∣ ‖(γ<,γ=)‖2,1 −m

√
π
2

∣∣ > tm
√

π
2

)
≤ 2 exp

(
− π

4 t
2m
)

(4)

by considering γ = (γ<,γ=) as a 2m Gaussian random
vector, with the function F (γ) := ‖(γ<,γ=)‖2,1 whose
Lipschitz constant is characterized in Lemma 5. Therefore,
given x and t > 0, we have∣∣‖Φx‖1 − ‖x‖2∣∣ ≤ t‖x‖2
with probability exceeding 1− p ≥ 1− 2 exp

(
− π

4 t
2m
)
.

We now extend this result to all vectors of Σ̃ns by first
determining when this concentration holds for all the vectors
of a ρ-covering of this domain — that is a set such that
all elements of Σ̃ns are no more than ρ > 0 far apart from
an element of this covering — and by finally extending this
property to Σ̃ns by continuity.

Let us first build this covering. We note that Σ̃ns =⋃
S⊂[n]:|S|=s Σ̃n(S), with Σ̃n(S) := {u ∈ B̄n : suppu = S}.

Moreover, Σ̃n(S) is isomorphic to B̄s, and thus to B2s. Since
this last set, and thus Σ̃n(S), can be covered with no more
than (1+ 2

ρ )2s vectors [1], a covering Jρ of Σ̃ns can be reached
by gathering all coverings —

(
n
s

)
in total — so that

|Jρ| ≤
(
n
s

)
(1 + 2

ρ )2s ≤ ( ens )s(1 + 2
ρ )2s.

Interestingly, by design, this covering is such that all x ∈ Σ̃ns
can be written as x = u + r with u ∈ Jρ ⊂ Σ̃ns , r ∈
ρB̄n ∩ Σ̃ns = ρΣ̃ns , with suppx = suppu = supp r.

Using (4), by union bound over all the vectors of Jρ, the
event

Eρ,t :
∣∣‖Φu‖1 − ‖u‖2| ≤ t, ∀u ∈ Jρ, (5)

holds with failure probability pρ,t := P(Ecρ,t) at most

pρ,t ≤ 2
(
en
s

)s(
1 + 2

ρ

)2s
exp

(
− π

4 t
2m
)
.

Let us assume Eρ,t holds and pick an arbitrary x ∈ Σ̃ns .
As explained above, we can write x = u + r with u ∈ Jρ,
r ∈ ρΣ̃ns , and suppx = suppu = supp r.

1An alternative proof consists in using the majorizing measure theorem [16],
which could possibly extend the (`1, `2)-RIP of complex Gaussian matrices
to other low-complexity sets of Rn.
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Using (5), and the properties of the covering, we get

|‖Φx‖1 − ‖x‖2| = |‖Φ(u+ r)‖1 − ‖(u+ r)‖2|
≤ |‖Φu‖1 − ‖u‖2|+ |‖Φ(u+ r)‖1 − ‖Φu‖1|
+ |‖u+ r‖2 − ‖u‖2| ≤ t+ ρ+ ρ‖Φ(ρ−1r)‖1,

where we used multiple times the triangle inequality. However,
ρ−1r ∈ Σ̃ns and we can recursively apply the same develop-
ment to ‖Φ(ρ−1r)‖1, so that

|‖Φx‖1 − ‖x‖2| ≤ (t+ ρ)
∑+∞
k=0 ρ

k = t+ρ
1−ρ .

Setting t = ρ = δ/3 for some 0 < δ < 1, we get
t+ρ
1−ρ ≤ δ. From the analysis of Eρ,t above, we finally obtain
that |‖Φx‖1 − ‖x‖2| ≤ δ holds true for all x ∈ Σ̃ns — i.e.,
the (`1, `2)-RIP is verified — with failure probability at most

p δ
3 ,
δ
3
≤ 2
(
en
s

)s(
1 + 6

δ

)2s
exp

(
− π

36δ
2m
)
.

We conclude the proof by observing that p δ
3 ,
δ
3
≤ η for 0 <

η < 1 if m ≥ 36
π δ
−2
[
s log

(
en
s (1 + 6

δ )2
)

+ log( 2
η )
]

V. SIMULATIONS

We now assess the tightness of our theoretical analysis
through Monte Carlo simulations. We do not aim to demon-
strate the superiority of (PBP) over other methods but to study
the potentialities of such a simple algorithm in PO-CS.

As a first experiment, we have tested the estimation of
complex sparse signals x0 in Cn with n = 256 for dif-
ferent sparsity levels s ∈ [n] and measurement number m.
Two acquisition strategies were compared: the phase-only
acquisition fixed by the model (1), and classical compressive
sensing where we directly acquire the measurement vector
y := Φx0 without alteration. For each combination of s and
m, the performances of both strategies have been tested over
100 000 generations of the sparse signal x0 and the complex
Gaussian random matrix Φ ∼ CN (0, σ2), with σ2 set to
2/(πm2) and 1/m for the phase-only and the CS scenario,
respectively. Each sparse signal x0 was created by picking a s-
sparse support uniformly at random amongst the

(
n
s

)
possible

supports, inserting in this support s i.i.d. complex values
picked uniformly at random before normalizing. We analyzed
the reconstruction error of the signal direction with the metric
E(x0, x̂) := ‖x0−‖x̂‖−1

2 x̂‖2, where x̂ is the (PBP) estimate.
Comparing the two schemes in Fig. 1 for different sparsity
levels, we observe that the reconstruction error achieved from
phase-only measurements exhibits good performances given
the absence of the amplitude information. The experimental
convergence rate is also matching the one of the CS scheme;
it scales as m−

1
2 when m increases instead of the pessimistic

rate in m−
1
4 predicted by the theory in (3). The phase-only

scheme seems to only suffer from a constant loss (in dB) when
compared to the classic model.

In a second experiment, we have studied the performances
of PBP in the presence of phase noise. In this new test, we
kept the same parameters as above, restricting only the sparsity
level and the number of measurements to s = 10 and m = 64,
respectively. The phase noise ξ in (1) was generated according
to a uniform distribution between −τ and τ , with τ ∈ [0, 4π].

−6 −4 −2 0 2 4

−10

0

10

log2(mn )

1
0

lo
g
1
0
(‖
x

0
−

x̂
‖
x̂
‖
‖ 2

)

Fig. 1: (Best viewed in color) Reconstruction error of (PBP) for different
measurement models. (dashed lines) compressive sensing; (solid lines) phase-
only measurements. The colors represent the sparsity, namely s = 2 in red,
s = 4 in blue, s = 10 in green, s = 20 in orange, and s = 50 in pink. The
dotted lines represent the rates of m− 1

2 in gray and m− 1
4 in black.
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Fig. 2: Reconstruction error of (PBP) for noiseless (dashed lines) and noisy
measurements (solid lines) for different τ with s = 10 and M = 64.

As established (2), the reconstruction error E(x0, x̂) increases
almost linearly when τ increases from 0 to π, before saturating
at
√

2 from τ > π. In other words, from that noise level,
phase-only measurements are too noisy and 〈x0, x̂〉 ≈ 0.
Furthermore, the additive nature of the degradation in (2) is
clearly visible when comparing the noiseless in dashed gray
and noisy reconstruction in solid green.

VI. CONCLUSION

In this paper, we have studied how to estimate the direction
of complex sparse vectors from noisy phase-only measure-
ments. We proved theoretically that the estimate yielded by the
projected back projection of noisy phase-only measurement
has bounded and stable reconstruction error provided that the
sensing matrix satisfies an extension of the (`1, `2)-RIP in the
complex field. Moreover, we showed that m × n complex
Gaussian random matrices respect w.h.p. this property with
distortion δ > 0 provided that m is large compared to the
signal sparsity level s, i.e., m = O(δ−2s log( nδs )). The proof
of this result leverages the tools of measure concentration
since the `1-norm prevents a simple recasting of the complex
(`1, `2)-RIP to a real domain of larger dimension. We finally
analyzed the tightness of our theoretical developments through
Monte Carlo simulations. They confirmed that, despite the
lack of amplitude information, we can reach arbitrary high
accuracy on the estimation of sparse signal direction provided
m/s is large, with an experimental error rate decaying as
1/
√
m when m increases, thus faster than our theoretical error

rate in 1/m1/4. The discrepancy between this two rates will
be studied in future work, as well as the impact of phase
quantization and additive noise on the phase-only sensing
model.
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