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RESEARCH

Challenges in detecting evolutionary forces in language 
change using diachronic corpora
Andres Karjus1, Richard A. Blythe1,2, Simon Kirby1 and Kenny Smith1
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2 School of Physics and Astronomy, University of Edinburgh, UK
Corresponding author: Andres Karjus (a.karjus@sms.ed.ac.uk)

Newberry et al. (Detecting evolutionary forces in language change, Nature 551, 2017) tackle an 
important but difficult problem in linguistics, the testing of selective theories of language change 
against a null model of drift. Having applied a test from population genetics (the Frequency 
Increment Test) to a number of relevant examples, they suggest stochasticity has a previously 
under-appreciated role in language evolution. We replicate their results and find that while the 
overall observation holds, results produced by this approach on individual time series can be 
sensitive to how the corpus is organized into temporal segments (binning). Furthermore, we 
use a large set of simulations in conjunction with binning to systematically explore the range of 
applicability of the Frequency Increment Test. We conclude that care should be exercised with 
interpreting results of tests like the Frequency Increment Test on individual series, given the 
researcher degrees of freedom available when applying the test to corpus data, and  fundamental 
differences between genetic and linguistic data. Our findings have implications for selection 
testing and temporal binning in general, as well as demonstrating the usefulness of simulations 
for evaluating methods newly introduced to the field.

Keywords: language evolution; language change; selection; drift; corpus-based; temporal binning

1 Introduction
All natural languages change over time. The way each new generation of speakers pro-
nounces their words is subtly different from their parents, new words replace old ones, 
marginal grammatical paradigms become the norm, and norms dissolve. Many authors 
have suggested that language change, like other evolutionary processes, involves both 
directed selection as well as stochastic drift (Sapir 1921; Jespersen 1922; Andersen 1990; 
McMahon 1994; Croft 2000; Baxter et al. 2006; Van de Velde 2014; Steels & Szathmáry 
2018). Systematically quantifying the relative contribution of these two processes — par-
ticularly with reference to individual time series — is an open problem.

There are a number of ways in which selective biases may influence language change. 
For example various cognitive biases have been postulated as important in the evolu-
tion of language (Haspelmath 1999; Croft 2000; Kirby, Cornish & Smith 2008; Fay et al. 
2010; Smith, Tamariz & Kirby 2013; Enfield 2014; Tamariz et al. 2014) and one might 
therefore expect to see manifestations of these in instances of language change. Selective 
advantage stemming from sociolinguistic prestige of (the users of) competing variants 
has been shown to play a considerable role in change, both via competition between 
forms within the language community as well as borrowing from other languages (Labov 
2011; Hernández-Campoy & Conde-Silvestre 2012). A foreign or novel variant may also 
be selected for by virtue of filling a lexical or morphosyntactic gap (McMahon 1994; Trask 
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1996). The form of a variant alone may convey a selective advantage. For example, it has 
been observed that, all other things being equal, speakers prefer shorter forms that take 
less effort to utter (Zipf 1949; Kanwal et al. 2017) and limited iconicity can be advan-
tageous (Dingemanse et al. 2015). Various usage and acquisition properties have been 
shown to be predictors of success (Kershaw, Rowe & Stacey 2016; Calude, Miller & Pagel 
2017; Grieve, Nini & Guo 2018; Monaghan & Roberts 2019). There is also evidence that 
certain phonetic changes are more likely than others, due to the articulatory and acoustic 
properties of human speech sounds (Ohala 1983; Baxter et al. 2006). In certain circum-
stances there may be even qualitative evidence of directed selection, such as knowledge of 
previous activities of some authoritative language planning body, prescriptive grammars, 
or other exogenous forces (Rubin et al. 1977; Anderwald 2012; Ghanbarnejad et al. 2014; 
Daoust 2017).

It is a reasonable hypothesis that, given adequately large and representative samples 
of language use over time (i.e., corpora), signatures of selection should be inferable from 
the usage data alone. This idea has recently been explored in a number of works (Hahn 
& Bentley 2003; Bentley 2008; Reali & Griffiths 2010; Blythe 2012; Sindi & Dale 2016; 
Amato et al. 2018), and has been also applied to domains of cumulative cultural evolu-
tion beyond language (Kandler, Wilder & Fortunato 2017; Kandler & Crema 2019). One 
of the more ambitious attempts is that of Newberry et al. (2017), who employ a stand-
ard method borrowed from the field of population genetics, which also deals with the 
 inference of selection in a population and the assessment of drift in evolution. We will 
henceforth refer to this work as “Newberry et al.” (an earlier version of the paper is Ahern 
et  al. 2016). They use the Frequency Increment Test (Feder, Kryazhimskiy & Plotkin 
2014), or FIT for short, and make an explicit connection with the Wright-Fisher model 
(Wright 1931; Ewens 2004) of neutral stochastic drift (not unlike a previous similar con-
tribution, Sindi & Dale 2016).

Newberry et al. consider three grammatical changes in the English language. Their main 
focus is the (ir)regularization of past-tense verbs (e.g. the change from irregular snuck to 
regular sneaked), a topic that has been of some interest (Lieberman et al. 2007; Cuskley 
et al. 2014; Gray et al. 2018). They also investigate the change in periphrastic do (say 
not that! becoming don’t say that!), the evolution of verbal negation (from the Old English 
pre-verbal to the Early Modern English post-verbal), and possible phonological neighbor-
hood effects (which we will not discuss here). They use data from the Corpus of Historical 
American English (Davies 2010) and the Penn Parsed Corpora of Historical English (Kroch 
& Taylor 2000). Their method consists of calculating the relative frequencies of alterna-
tive forms in a corpus (e.g., the relative frequency of the irregular past tense form snuck 
against that of the regular sneaked), placing the count data into variable-length temporal 
bins, and running the FIT on the resulting time series. Ultimately, the test yields a p-value 
under the null hypothesis of change by drift alone. They also infer the “effective popula-
tion size” of the verbs and show that the strength of drift (in a subset of verbs with a FIT 
p > 0.2) correlates inversely with corpus frequencies, echoing the analogous observation 
about small populations in genetics.

The FIT points towards selection being operative in some cases, while labelling others 
(in fact, most changes in past-tense forms) as changes stemming from drift. In this work, 
we replicate this analysis (using Newberry et al.’s original code; see the Data Availability 
section in the end). We highlight an important methodological issue that arises when 
applying the FIT to linguistic data and which should be taken into account in future 
applications of the FIT (and similar tests) to identify cases of selection from linguistic 
corpora. The key issue lies in the construction of the time series via binning counts (e.g. 
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from a corpus), and the application of the test in question to such time series, but we also 
draw attention to issues more specific to diachronic language data. While the FIT may be 
an appropriate test in some cases, we show that an incautious application of the FIT to 
linguistic data can end up incorrectly identifying cases of drift as cases of selection, and 
missing subjectively clear cases of selection.

While the approach of applying a test of selection to corpus-based time series shows 
promise as a method of linguistic analysis, we believe these issues deserve further inves-
tigation. We briefly explain the technical aspects of temporal binning and the FIT in the 
next subsections.

1.1 Linguistic corpora and data binning
In quantitative research on language dynamics, words and grammatical constructions 
are often equated with alleles (Reali & Griffiths 2010). This analogy is motivated by the 
observation that a given “underlying form” may have two or more (near-) synonymous 
actualizations or “surface forms” (e.g. as in the sneaked–snuck case which are both actual-
izations of sneak.past). Word variants are not quite like alleles though. Organisms inherit 
genetic material from their parents, and one can (in principle) test for the presence of a 
particular allele in each individual in the population over time. In the context of language 
use, the notions of parents, offspring and generations are more diffuse than they are in 
genetics. What is done in practice when analysing time series is to construct an artificial 
“generation” by collecting together all instances of the word variants under considera-
tion that fall within a specific time window (or “bin”). Particularly troublesome is that 
fact that a given lexeme may not occur in a given corpus in a particular period of time, 
which means having to widen the bin to obtain a meaningful frequency. Such absences 
may occur simply because of the finite size of the sample: any corpus is in the end just a 
sample from a population of utterances. The smaller the corpus, the smaller the chance a 
lexeme has to occur. It may also be because people talked and wrote about other topics in 
that time window, which did not require the use of this particular sense. A corpus may be 
large, but not well balanced, in the sense that it does not cover all the relevant genres or 
topics of the time. Incidentally, this is a point of critique directed by Pechenick, Danforth 
& Dodds (2015) at another widely used diachronic corpus, the Google Books N-grams 
dataset.

To understand the issue of binning (or temporal segmentation) in more detail, let us 
consider for a moment a fictional corpus of a daily newspaper, spanning two centuries. 
Our goal is to count the occurrences of two competing spelling forms of a word and opera-
tionalise these as relative frequencies in a time series. The smallest possible temporal 
sample would consist of the text that makes up one daily issue of the paper (yielding a fine 
grained time series of about n = 73000 data points). One could also aggregate (bin) all the 
texts from one month (n = 2400), year (n = 200), decade (n = 20) or century (n = 2). 
However, there is no single ideal way to bin the data. A century, with only two data points, 
may be too large a chunk, as it may miss processes taking place in between — and it is 
difficult to infer anything about the dynamics of the change from two data points. A day 
is likely too small a sample, since the word (in either spelling) might not occur every day, 
unless it is a particularly commonly used one.

In corpus-based language research either years or decades therefore seem the most com-
monly used bins. Regardless, a decision has to be made regarding how to bin corpus data; 
our point here is to show that this decision (which potentially constitutes an additional 
researcher degree of freedom, since different binning decisions may yield different results) 
influences the outcome of analyses which use tests like the FIT to identify selection.
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1.2 The Frequency Increment Test
The FIT (Feder, Kryazhimskiy & Plotkin 2014) belongs to a family of methods conceived 
to detect selection in time series genetic data, with intended application to population 
genetics experiments and historic DNA samples. All of them boil down to looking for 
certain patterns in time series of allele frequencies (Nishino 2013; Terhorst, Schlötterer 
& Song 2015; Schraiber, Evans & Slatkin 2016; Iranmehr et al. 2017; Taus, Futschik & 
Schlötterer 2017; Vlachos & Kofler 2018) (see Malaspinas 2016; Vlachos et al. 2019: for 
reviews). Such approaches rely on the presumption that a change driven by selection 
would look different, or leave different “signatures”, from a change happening due to 
stochastic drift.

The FIT works as follows. Relative frequencies in the range (0, 1) are transformed into 
frequency increments Y according to

(1) − − − −= − − −1 1 1 1( )/ 2 (1 )( )i i i i i i iY v v v v t t

where vi is the relative frequency of a variant at a measurement time ti. The rationale 
behind this rescaling is that, under neutral evolution, the mean increment vi–vi–1 (i.e. the 
change in frequency of vi from time ti–1 to time ti) is zero, and its variance is proportional to

(2)
− − −

− −1 1 1( ) ,1 ( )i i i iv v t t

i.e. the expected variance under drift is large when we are looking at the changes in fre-
quency between two widely separated time points (i.e. ti–1 and ti are far apart) or when 
values of vi are close to 0.5 (i.e. changes in frequency driven by drift will tend to be small 
when the variant is very rare and vi is close to 0, or very common and vi is close to 1).

The FIT relies on the Gaussian approximation of the Wright-Fisher diffusion process. 
When the variant frequency vi is not too close to either of the boundary values 0 or 1 
and the time between successive measurements is sufficiently small, the random vari-
ables Yi can be approximated as having a normal distribution with a mean of zero and a 
variance that is inversely proportional to an effective population size (which is taken to 
be constant over time). Thus a test under the null hypothesis of drift amounts to a test of 
how likely the transformed increments Yi are under the assumption that they are drawn 
from a normal distribution with a mean of zero, as would be the case under drift: this can 
be evaluated using a one-sample t-test test under the assumption of normally-distributed 
increments with a zero mean and equal variance.

In this context, a failure to reject the null indicates a failure to reject the hypothesis 
of drift. On the other hand, if the null hypothesis is rejected, than the changes may be 
due to some non-neutral process. In this work, we check for the normality assumption 
using the Shapiro-Wilk test. Homoscedasticity (the assumption that the underlying dis-
tributions have equal variances) is less straightforward; we explore its relevance in the 
Supplementary Appendix.

The authors of the Frequency Increment Test (Feder, Kryazhimskiy & Plotkin 2014) note 
that its power increases with the number of sampled time points, but also that it has low 
power in cases of both very weak (near-drift) and very strong selection coefficients. The 
latter leads to a situation where fixation to a variant happens swiftly within the sampling 
interval (the range of the time series), making the rest of the time series uninformative. The 
frequencies should also be far from absorbing boundaries (i.e., situations where one variant 
is at (or near) 0% and the other at 100% of the population), which might pose a particular 
problem in corpus-based time series analysis: since linguistic change is (classically) believed 
to follow an S-shaped trajectory (Blythe & Croft 2012), a change which takes place near 
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the start or end of a given corpus would throw off the test, since most of the length of the 
given time series would be (near-)stationary. Similarly, if a corpus (equivalent to the “sam-
pling period” in a genetics experiment) is too “short”, it might only chronicle a segment of 
a longer change process.

2 The FIT and binning decisions in linguistic corpora: A reanalysis of English 
past tense verb regularization
We focus here on the main result of Newberry et al. — the application of the FIT for 
assessing time series of verb form frequencies in order to determine if the observed pat-
terns of change for 36 English verbs results from stochastic drift or selection. Technical 
data processing details described in this section are based on the Supplementary Informa-
tion of Newberry et al., their code, and M. Newberry, p.c.

They construct a time series for each of 36 pre-selected verbs using 200 years of data in 
the Corpus of Historical American English (COHA), by counting how many times the regu-
lar past tense form occurs relative to the total number of instances of either the regular 
or irregular form. The yearly verb count series are then binned (grouped) into a number 
of variable-width quantile bins n(b) = ln(n(v)), where n(v) is the sum of both (regular 
and irregular) past tense form tokens of the verb counted across the entire corpus. For 
example, light.past occurs n(v) = 8869 times in the corpus, resulting in ln(n(v)) = 10 
bins to group the years where the verb occurs. The first bin contains years 1810–1863 
(and contains 897 tokens), the second 1864–1886 (890 tokens) and so on, up to the tenth 
(1994–2009, 884 tokens). Since the grouping is by years (years being the time resolution 
of the corpus), the bin size varies slightly in the exact number of tokens falling into each 
bin. More frequent verbs thus get more bins (up to 13), whereas less frequent verbs get 
fewer bins (down to 6). For each verb in each bin, the relative frequency of its regular 
past tense form in [0, 1] is calculated. Since the FIT assumes relative frequencies in (0, 1), 
Laplace +1 smoothing is applied to count values in bins where one of the variants has no 
occurrences at all in this section of the corpus.

As discussed above in the section on corpus binning, some temporal segmentation pro-
cess is necessary. The binning procedure applied by Newberry et al. is somewhat different 
from the more common strategy of using fixed length bins such as years or decades. The 
advantage of their approach is that there is guaranteed to be data in every bin (whereas a 
low frequency lexeme might be entirely absent in a fixed-width bin), the bins are roughly 
the same size in terms of tokens, and the resulting increments tend (although are not guar-
anteed) to be normally distributed with equal variance. These properties are beneficial 
for the FIT, more likely yielding normally distributed increments with less sampling noise 
(Feder, Kryazhimskiy & Plotkin 2014). It should be noted though that the resulting bins 
differ quite widely in their temporal granularity — e.g. in the example above, the longest 
bin covers the earliest 53 years of the corpus, the shortest covers the most recent 15 years, 
and different verbs will use different time windows depending on their frequency in the 
corpus. Since the COHA is smaller on the early end (less tokens per year) and bigger on 
the more recent end, variable-width bins of the verb data are systematically longer in the 
early 1800s compared to the 20th century ones (cf. the Supplementary Appendix for more 
discussion).

The series of relative frequencies based on the resulting bins are fed into the Frequency 
Increment Test to assess whether one may reject the null hypothesis of drift and assert 
that a given trajectory is therefore probably a product of selection. Newberry et al. set the 
FIT α = 0.05 but also report results for α = 0.2. They conduct the Shapiro-Wilk normal-
ity test on the transformed frequency increments, as the FIT assumes the increments to be 
normally distributed.
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We replicate their original results, using their code, and furthermore explore the con-
sequences of manipulating the size of the bins, in two ways. We present results for both 
binning strategies. That is, variable-width bins, n(b) = cln(n(v)), where c is an additional 
arbitrary constant, and c = 1 recovers the Newberry et al. procedure; and fixed-width 
bins, each set to a fixed duration in years.

Importantly, the fixed-width binning approach necessitates the introduction of an addi-
tional parameter: since some bins may end up with no or few occurrences of either form 
of a verb, we set a threshold of minimum 10 total occurrences for a relative value to be 
calculated in a bin; otherwise the bin is excluded before applying the FIT (hence also 
reducing the number of bins that make up the time series). As the FIT assumes values in 
(0, 1), smoothing of boundary values is required. But if there is only a single occurrence 
of a verb in a bin (meaning the single present form would be at 100%, the other at 0), 
then the +1 smoothing would force the relative value to be 50–50, which is undesirable. 
Similar distortions would happen with small frequency values, hence the threshold of 10. 
See the Supplementary Appendix for more discussion on the differences between these 
approaches and how different minimal frequency thresholds affect the results. A more 
conservative threshold (such as 100) would yield more reliable bins (and less noisy time 
points), but given the size of COHA, most verbs don’t have 100 occurrences per year (or 
some even in 5 years), which would preclude testing in shorter fixed bins.

Figure 1 shows the results of these various analyses, in terms of how many verbs (out of 
the 36) allow us to reject the null hypothesis of drift, given the thresholds mentioned in 
the original work, as well as taking into account the normality assumption of the FIT (see 
above). We use the Shapiro-Wilk normality test, following Newberry et al. (this test is of 
course subject to low power in small samples as well). Out of the 466 time series analyses 
summarised in Figure 1 (36 verbs times 13 binning choices, minus two series with not 
enough data points), 63% of the FIT p-values are eligible to be interpreted at Shapiro-Wilk 
α = 0.1.

We find that binning strategy does have an effect on the results, both in variable and 
fixed binning. Importantly, in broad strokes, the picture presented by Newberry et al. 
holds. They found that 6 out of 36 verbs undergoing selection; since the majority of verbs 
do not give a positive signal for selection, they interpret this as indicating that language 
change is often primarily stochastic. Looking at a wider range of binnings, we find that 
in most cases, there are indeed 5 ± 2 verbs that get flagged as undergoing selection at FIT 
α = 0.05, consistent with their conclusion. However, the specific verbs that are flagged 
as undergoing selection vary depending on the binning strategy. There are 4 verbs for 
which selection is detected in most binning choices — light, smell, sneak, wake (inciden-
tally the ones with the strongest inferred selection coefficient, given the original binning, 
cf. EDT1 in Newberry et al.). There are also between 9 and 11 verbs (in variable-width 
binning; depending on how stringently the normality assumption is observed) which pro-
vide a robust absence of significant indications of selection, where the FIT p-value never 
drops below 0.2 regardless of binning. However, for the remaining verbs the decision as to 
whether or not they are undergoing selection depends on the binning choices. That being 
said, Newberry et al. do draw attention to the fact that results of applying the FIT come 
with a certain margin of error and report their false discovery estimates (30% for verbs 
with a FIT α = 0.05, 45% at 0.2).

Given that binning leads to different sample sizes of increments for the underlying t-test, 
those in turn being based on differing distributions of the tokens, some variance in the 
p-values is to be expected (not unlike in a replication of an experiment). The interpretation 
of our results and the appropriate conclusion regarding the sensitivity of the FIT test to 
binning strategy ultimately depends on one’s intention in carrying out a tests of selection in 
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the first place. If the goal is to test a large set of series to determine general tendencies, as is 
the case for Newberry et al. then this approach may well be good enough — the qualitative 
result of Newberry et al. does broadly apply in most binning strategies.

However, most individual time series seem rather sensitive to binning, in the sense that 
the p-values fluctuate across conventional α levels between binnings. No verbs show an 
unambiguous signal of selection. For example, drift is not rejected in the time series of 
wed using the Newberry et al. binning, while it is when the number of variable-width bins 
is multiplied by 2. The verb sneak is significant at α = 0.05 in almost all the variable-
width binnings, but in none of the fixed length ones; awake is significant in only a single 
explored binning strategy (variable-width with c = 0.5) and there are 4 more such verbs 
particularly sensitive to binning (the 1-year bins notwithstanding).

The no-binning results (i.e., using the default 1-year bins of COHA without further 
binning) differ visibly from the rest, but the normality assumption is also mostly vio-
lated. Given the small and variable bin sizes (tokens per bin), the same is likely true for 
the homoskedasticity assumption (although how much that matters and how to set a 
threshold is not clear, cf. the Supplementary Appendix). Most importantly, using “default” 

Figure 1: Results of applying the FIT to time series constructed based on 200 years of COHA 
frequency data. The verbs are ordered by overall frequency (low on the left). The constant 
c determines the number of variable length bins via n(b) = cln(n(v)). c = 1 corresponds to 
 Newberry et al.’s original results. 10 years corresponds to fixed bin length of 10 years, etc; 
“no bin” refers to no additional binning on top of the default yearly bins in the corpus. The 
colour of each point corresponds to the result of the FIT test of a verb time series in each 
binning (orange: p < 0.05, gold: 0.05 ≤ p < 0.2, light blue: p ≥ 0.2). The shape corresponds to 
the  Shapiro-Wilk test result (filled circle: p ≥ 0.1, hollow square: p < 0.1, likely not normal), 
with cases of selection meeting the normality assumption highlighted by a larger circle. The 
column of numbers on the left displays the (rounded) median of the bins to years ratio in the 
given binning strategy. Only years where the verb occurs are counted (exclusion of sparse bins 
also leads the median in the no-binning version to be below 1). The listed variable (panel a) 
and fixed-width strategies (b) yield comparable binning ratios, e.g. the “c = 1” version is com-
parable to 20-year fixed-width. In summary, the results presented here demonstrate that the 
FIT is sensitive to the strategy used for binning.
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1-year bins leads to testing on series where the increments are often based on very small 
samples, which is not desirable for any statistical test.

These evaluations obviously depend on the choice of α thresholds for the FIT and the sup-
porting normality test — for example, a more stringent FIT α would lead to more verbs being 
classified as unambiguous cases of drift. In any case, if the intention is to test a particular 
example of linguistic change for selection (something a linguist may well be interested in), 
things become difficult. The issue diminishes if there is sufficient data on the variants, but 
that does not seem to be the case for many of the verbs tested here, given the size of COHA.

All in all, these findings merit a further investigation into the inner workings of the 
Frequency Increment Test and its applicability to corpus-based time series, which we will 
conduct in the following two sections.

3 The behaviour of the Frequency Increment Test in artificial time series
We construct a number of artificial examples (Figure 2) to probe the behaviour of the FIT 
on time series of length and character similar to those investigated in the original paper 
(which contained between 6 and 13 time points). The FIT can be shown to yield robust 
results for a certain range of series (as already shown by the subset of binning-insensitive 
verbs in the previous section). Yet we also observe a number of scenarios — time series 
that could be plausibly derived from linguistic corpora — where the results of the FIT 
are perhaps not what one might expect, from a language science point of view. To put it 
another way, this is the section where we push the FIT and see if it breaks. The next sec-
tion demonstrates scenarios where the results of the FIT remain robust.

Figure 2: Artificially constructed time series of fictional variant relative frequencies (thick black 
lines, in (0, 1)); time on the x-axis. The rescaled increments (after adjusting for absorption) are 
shown as dotted grey lines with dash points, and their distribution is shown on the left side 
as a violin plot. Points of interest discussed in this section are highlighted with red on some 
panels. The FIT and Shapiro-Wilk test p-values are reported in the corners. This figure depicts 
a number of realistic scenarios where applying the FIT would yield unexpected results, due 
to either the range of the time series derived from the corpus (a, b), a difference in the num-
ber of data points (c), the sensitivity of FIT to near-zero values (d, e), and how stringently the 
assumption of the normality of the distribution of increments is being observed (e). This figure 
illustrates reasons to exercise caution when applying a test like the FIT to linguistic time series.
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Each series in Figure 2 may be interpreted as the percentage of a variant of some fictional 
linguistic element over time (after binning). We calculate the FIT p-value of each series, 
as well as the Shapiro-Wilk test p-values. Figure 2.a draws attention to how the temporal 
range of the time series (or that of the coverage of the corpus) can lead to quite different 
conclusions. Both 2.a.1 and 2.a.2 are different ends of the same series (the overlap high-
lighted with the red circle). The series, if analysed as a whole, would yield a pFIT = 0.02, 
but neither end on its own holds sufficient data to reject drift (nor is the FIT technically 
applicable, if the assumption of normality is observed). This perspective may explain the 
case of the purportedly drift-driven regularization of the verbs spill and burn, which are 
brought up in Newberry et al. as examples where drift alone is sufficient to explain the 
change, but which are problematic because the regular forms were already highly frequent 
by the early 19th century where the COHA coverage starts. spill starts out with a share of 
55% regular forms in the first bin given the variable-width binning strategy; burn is at 86% 
regular. Under fixed decade binning, burn is 36% regular in the first bin, increasing to 62% 
and then to 82%, indicating a sharp increase characteristic of strong selection rather than 
drift (but obscured by the variable binning approach).

This example also points to a case where different evolutionary domains (genetics, lan-
guage) might have different expectations about what a reasonable time-series character-
istic of selection should look like. The FIT assumes the Wright-Fisher as the underlying 
model (reasonably so in population genetics). The long tail of near-zero values followed 
by a sudden increase in 2.a.1 is something that is unlikely to be observed in a Wright-
Fisher model with constant selection strength parameter. However, from a linguistic point 
of view, this is a very natural series: a recent innovation or borrowing will be represented 
in the corpus as an increase preceded by a period of zero frequencies as far back as the 
corpus goes; this pattern could be explained as a recent change in fitness (e.g. a change in 
the subjective sociolinguistic prestige of a word).

A similar case is presented in Figure 2.b.1: if the time series chronicles both strong 
selection for one variant, and subsequent selection for the competing variant, then a blind 
application of the FIT will invariably indicate drift. Using only (either) half of the series 
as input to the test would yield a p-value indicating selection. knit is a verb undergoing a 
somewhat similar process, with usage spiking towards the regular (observable under finer 
binnings), followed by mostly irregular usage. Figure 2.b.2 is an example of the behaviour 
of FIT if the corpus coverage is too wide. The S-curve in the middle would yield a FIT 
p-value of 0.02 — in fact, it is the exact same curve as in Figure 2.c.2 (highlighted by the 
red dots). Yet the S being surrounded by (near-)absorption values, the FIT would indicate 
drift (were the test to be used despite the possible non-normality of the distribution).

In the case of real data, the part of the time series depicting the long period of no change 
could in principle be clipped away. This is straightforward if the “tail” consists of zeroes, 
but less so given small near-boundary values. Similarly, only the part of the time series far 
enough from the boundaries could be analysed (keeping in mind the specifics of the FIT, 
see above). However, any such solutions would introduce yet another researcher degree 
of freedom (what part of the series to include in the analysis) (cf. Simmons, Nelson & 
Simonsohn 2011).

Figure 2.c further illustrates how the FIT result is affected by a change in the way the time 
series is operationalised (e.g., using a different number of bins). 2.c.1 and 2.c.2 are S-curves 
with identical parameters, differing only in length (by 2 data points). Yet their FIT p-values 
are notably different (see the next section for more on sensitivity to binning differences). 
As expected, the FIT is sensitive to small changes if the sample is small (being based on the 
t-test). This may explain to some extent the changes in FIT p-values of short time series, 
between similar binnings differing only by a few points in length (cf. Figure 1). However, 
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fewer bins can also lead to a lower p, if it results in a less jagged time series (likely the case 
for e.g. burn; cf. Section 4 for the effects of binning on drift series).

The examples so far however have had more to do with particularities of pre-test data 
manipulation. Figure 2.d illustrates a property of the FIT, its sensitivity to changes near 
the boundaries. 2.d.1 and 2.d.1 differ only by the value of the fourth data point, but the 
resulting FIT p-value is quite different (and furthermore the Shapiro-Wilk test indicates 
departure from normality in the increment distribution due to the outlier). The issue of 
applicability of the FIT to series with increments departing from normality is further 
illustrated with the last pair of series. 2.e.1 is a typical S-curve often observed in language 
change, but the non-normal distribution of its increments would disallow the interpreta-
tion of the FIT p-value (that would otherwise indicate a clear case of selection).

We observe that in general, for longer series exhibiting monotonic increase (characteris-
tic of strong selection), the distribution of the increments quickly veers into the non-nor-
mal (as indicated by the Shapiro-Wilk p-value; other normality tests behave similarly; see 
also the Supplementary appendix). Time series composed of random values drawn from 
a uniform or normal distribution (or log-normal with small σ) — i.e., the kind of series 
that should exhibit no selection — tend to have increments distributed approximately nor-
mally, as long as the series is away from the boundary values. However, the increments 
of S-shaped curves tend towards a bimodal distribution. Increment distributions of are 
severely skewed when a series is shaped like an S-curve but with a sharp “bend”, a straight 
line (linear increase or decrease), and when a series include long periods of no change.

The assumption of normality could of course be relaxed. However, we observe that this 
would lead to at least one additional issue, in the form of false positives stemming from 
the sensitivity of the FIT to small near-boundary changes, illustrated by 2.e.2. Given a 
long enough series of random values (here sampled from a normal distribution) with a 
near-zero mean and small standard deviation, the FIT often yields a small p-value (the 
same applies to samples from the uniform and log-normal distributions; this effect is not 
observed when the mean is away from the boundaries). Such series would however use-
fully get flagged as having non-normal increment distributions.

This is also likely why the otherwise flat-lining series for tell in Newberry et al. ends up 
being included in the discussion as a possible case of selection (at FIT p = 0.12, with a red 
flag of Shapiro-Wilk p = 0.001). Among the 12 bins of its series (under the original varia-
ble-width quantile binning procedure), it has only a few once-per-bin occurrences of regu-
lar telled after the initial three bins — a total of 4 singleton occurrences spread out over 
the span of a century. The +1 absorption adjustment forces the zeroes for telled in the rest 
of the bins to be ones as well. The observed fluctuations (and resulting FIT p-value) in the 
series only reflect the slightly fluctuating token frequency of tell, which ranges between 
9189 and 11940 in the variable-width bins. Keeping the relative frequency value constant 
after the third bin instead (at the value equal to the third bin to avoid bias) would result 
in a FIT p = 0.21.

These last four usages of the regular past form telled in COHA all occur in the fiction part 
of the corpus, all appearing to reflect the intention of the author to convey a particular 
kind of character (not used randomly as per a drift model). This would be an example of 
how an archaic variant can re-surface — quite possible in a language with a long written 
record, where speakers need not necessarily even directly “inherit” a variant from the pre-
vious generation. In that case, telled could be said to have been selected for, due to having 
increased fitness in a specific (stylistic) niche, and its usage is not due to random varia-
tion in the utterances of the speakers (or drift). However, as shown above, this possible 
(occasional) selection is not what the FIT is picking up on in this case, but rather simply 
the fluctuating frequency of tell.
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Meaning change can also give rise to apparent re-emergence of variants. The occurrence 
of a form does not guarantee that it is being used in the same meaning or function that it 
had in another period or context (an implicit assumption in Newberry et al.). For example, 
the aforementioned spill in COHA quickly converges to the regular past tense spilled, but 
occasional usages of the irregular spilt still occur, yielding what appears to be a randomly 
fluctuating time series. On closer inspection, the latter appear to be mostly adjectival usages, 
not actual past tense verbs, and often turn up in the lexicalized (or “fossilized”) phrase of 
cry over spilt milk. Examples like that of the time series of telled and spilt, or the series in 
Figure 2.a.2 and e.2. may possibly be seen as edge cases from the perspective of population 
genetics — the original domain of the Frequency Increment Test and related approaches. 
However, as highlighted here, they are examples of not particularly uncommon processes 
(lexicalization, stylistic usage of unusual variants) in the domain of language.

Finally, one might argue the examples in Figure 2 are not really counterexamples to 
the utility of the FIT, being representative of cases where the FIT is, strictly speaking, not 
designed to apply in the first place, such as series with not-quite-normal increments, long 
flat segments, and values near the boundaries. Excluding these however would mean exclud-
ing a fair share of language change scenarios easily observable in corpora, such as changes 
starting at zero as in cases of linguistic innovations, ongoing changes stretching beyond the 
bounds of a corpus, and many S-curves typical of language change (and series in general 
where the underlying selection coefficient is likely not constant). Yet dismissing these as 
invalid points of concern would also mean dismissing the FIT as a broadly applicable test of 
selection for the domain of language change.

In the next section, we turn to simulations to explore the behaviour of the FIT beyond 
that of a few specific series (Section 4), before finally trying to reconcile these conflicting 
viewpoints (Section 5).

4 The effect of binning frequency data for time series: A simulated example
Here we attempt to further explore the “parameter space” of applying the FIT to simu-
lated data with known properties of selection strength and binning. (code to replicate 
these results: see the Data availability section in the end). We use the Wright-Fisher model 
(Ewens 2004) to simulate a large number of time series using the following parameters: 
population size N = 1000 (N here does not refer to the “population” of speakers, but is 
analogous to the sum of parallel variants in a corpus bin, e.g. the sum of the counts of lit 
and lighted in a given year); selection coefficients s in [0, 5]; 200 generations (the latter 
emulating COHA, where the minimal time resolution is 1 year, and there is 200 years of 
data). The update rule for this model is as follows. Given nt “mutants” (e.g., regular past 
tense forms) in generation t, each individual in the next generation is a mutant individual 
with probability

(3)
+

=
+ + −
(1 )

(1 ) ( )
t

t t

n s
q

n s N n

Otherwise, it is the wild type (e.g., irregular past tense forms). Where s = 0 we have 
random drift; higher values of s given an increasingly strong selective advantage to the 
mutant variant.

Each series (200 data points) is binned into a decreasing number of bins (i.e., [200, 4], 
of length [1, 50]), and the FIT is applied to every binned version. The simulation for each 
combination of selection strength and bin length is replicated 1000 times. In summary, in 
this section we vary the selection strength s and binning, while keeping N and the number 
of generations constant.
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Importantly, we also apply binning to the series post-simulation the same way one would 
apply binning to corpus counts, as discussed above. The obvious difference from corpus-
based time series is that the latter usually do not come from a population with a stable 
size (total lexeme frequency usually varies in addition to variation in its variants), and are 
often not continuous (gaps where a lexeme might be completely absent). Since our artifi-
cial series do not suffer from these problems, variable-width and fixed-length binning yield 
identical results, and we can simply use the latter.

We explore two scenarios, where the competing “mutant” variant starts out at 50% of 
the population and where it starts out at 5%. The former is useful for exploring the effects 
of binning at low s and false positive rates, the latter for exploring high s and false nega-
tives. Obviously, any specific s thresholds and ranges discussed in this section apply to this 
specific experiment and would likely be somewhat different given series of different length 
and N (cf. the Supplementary Appendix for some further exploration).

4.1 Drift and low selection
Figure 3 depicts how the results of the FIT change depending on binning, given a time series 
with low selection (s = 0.01, bottom row) and no selection (s = 0, top row; corresponds to 
the leftmost column of pixels on the panels in Figure 4). At zero selection, the FIT has a rea-
sonable false positive rate of around 5% at α = 0.05. Binning such series into a smaller num-
ber of bins causes an increase in the share of p-values below 0.05 (presumably because noise 
is smoothed out). Binning appears to affect the s = 0.01 range even more (bottom row).

Figure 4 represents the entire parameter space explored in this experiment for the 50% 
start condition. Each pixel on the heat maps corresponds to a parameter combination 
of selection strength (horizontal axis) and number of bins (vertical axis). The vertical 
axis starts with 200 or no binning, corresponding to bin length 1 — and running up to 
4 bins, with bin length 50, being the result of 200 data points squeezed into the 4 bins. 
Minimal binning — compressing 200 generations into 100 bins of length 2 — appears to 
make the clearest immediate difference: the share of p < 0.05 is consistently about 10% 

Figure 3: The distribution of FIT p-values given 1000 series from the Wright-Fisher model (200 
generations, starting at 50%). The panels are arranged from left to right reflecting increased 
binning. The small inset panels display how binning affects a single example series. p-values 
below 0.05 are coloured red (left of the dashed line), above 0.05 in blue. Note the log10 x-axis. 
This figure illustrates that the false positive rate is susceptible to increasing when the series 
are binned (top row). At non-zero but low s, differences between binning and no binning can be 
more pronounced (bottom row). See Figure 4 for the full exploration of the parameter space.
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higher between the binned and non-binned series when s is low (observe the bottom two 
“shifted” looking pixel rows in Figure 4.a.2).

The 50% start is suitable for exploring low selection, as in the case of lower starting val-
ues, many such series hit absorption or “run into the ground”, and the resulting mostly-zero 
series would violate the normality assumption (of its underlying Gaussian approximation 
of the diffusion process). However, the higher s range in Figure 4.a.2 could be interpreted 
as a model of the situation where a change is only partially chronicled by a corpus, e.g. 
Figure 2.a.2 in Section 3. Selection becomes understandably difficult to detect in very short 
series regardless of the underlying selection coefficient.

4.2 High selection
The 5% start is suitable for exploring high selection, as with higher starting values, many 
high-selection time series reach absorption fast, yielding series not meeting the increment 
normality assumption. Figure 5 depicts distributions of FIT p-values under different bin-
nings, given time series with a moderately high s of 0.04, and the incoming variant starting 
out at 5%. This appears to be the subset of series where the FIT works very well and is most 
insensitive to binning choices.

Beyond that, things become more complicated. Our reanalysis of the 36 verb time series 
in Section 2 indicated that it is series exhibiting the strongest selection that would remain 
consistent in terms of their FIT result across the different binnings. However, as illustrated 
in Figure 6, it seems too high selection can have the inverse effect, as this is where false 

Figure 4: FIT p-values of time series generated using the Wright-Fisher model (with the “mutant” 
variant starting at 50%), across a range of selection coefficients (x-axis, note the log scale), 
binned into a decreasing number of bins (y-axis). Left in pink and green (a): % of time series 
with FIT p < 0.05, in 1000 replicates. Right in red and blue (b): mean FIT p-value. The bottom pair 
(a.2, b.2): the same data, but series with a Shapiro-Wilk p < 0.1 have been removed before calcu-
lating the percentages and means. The white rectangle: the range of s and binning explored in 
Newberry et al. The vertical black line highlights the s explored in Figure 3. A consistent colour 
across a column of pixels indicates robustness to binning choices under the corresponding s, 
while variable colouring indicates sensitivity to binning.

200
100
67
50
40
34
29
25
23
20
19
17
16
15
14
13
12
11
10
9
8
7
6
5
4

0 0.01 0.1 1 2 3 4 5
selection strength parameter

nu
m

be
r o

f b
in

s

% p<0.05
5

10

20

30

40

50

60

70

80

90

100

a.1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
23
25
29
34
40
50

0 0.01 0.1 1 2 3 4 5
selection strength parameter

bin length
mean p

<0.01

<0.05

<0.1

<0.2

 0.2

b.1

200
100
67
50
40
34
29
25
23
20
19
17
16
15
14
13
12
11
10
9
8
7
6
5
4

0 0.01 0.1 1 2 3 4 5
selection strength parameter

nu
m

be
r o

f b
in

s

% p<0.05
5

10

20

30

40

50

60

70

80

90

100

a.2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
19
20
23
25
29
34
40
50

0 0.01 0.1 1 2 3 4 5
selection strength parameter

bin length

mean p
<0.01

<0.05

<0.1

<0.2

 0.2

b.2



Karjus et al: Challenges in detecting evolutionary forces in language changeArt. 45, page 14 of 25  

negatives begin to crop up under too much binning (e.g. with 10 bins, >10% at s = 0.07, 
>90% at s = 0.1). That is, if the increment normality assumption is being be strictly 
observed — if it is, then the results of the test are not valid any more at this range (cf. 
white area in Figure 6.a.2). This illustrates that the FIT has a maximum selection strength 
for which it is effective. At higher selection strengths, i.e. above 0.06.0.1 in our toy model, 
sensitivity to binning and violations of the normality assumption both become problematic, 

Figure 6: FIT p-values of time series generated using the Wright-Fisher model (with the “mutant” 
variant starting at 5%), across a range of selection coefficients (x-axis, note the log scale), 
binned into a decreasing number of bins (y-axis). Left in pink and green (a): % of time series 
with FIT p < 0.05, in 1000 replicates. Right in red and blue (b): mean FIT p-value. The bottom pair 
(a.2, b.2): the same data, but series with a Shapiro-Wilk p < 0.1 have been removed before calcu-
lating the percentages and means. The white rectangle: the range of s and binning explored in 
Newberry et al. The vertical black line highlights the s explored in Figure 5. A consistent colour 
across a column of pixels indicates robustness to binning choices under the corresponding s, 
while variable colouring indicates sensitivity to binning.
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Figure 5: The distribution of FIT p-values given 1000 Wright-Fisher series with strong selec-
tion (200 generations, starting at 5%). The panels are arranged from left to right reflecting 
increased binning. The small inset panels display how binning affects a single example series. 
p-values below 0.05 are coloured red (left of the dashed line), above 0.05 in blue. Note the 
log10 x-axis. The red value in the bottom left corner shows the percentage of p-values below 
0.05. This figure illustrates the s range where the FIT is most robust to binning, retaining a 
small and stable false negative rate (i.e. the inverse of the percentage value in the corner).
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yielding results with a high false negative rate (if the assumption is relaxed; cf. Figure 6.a.1) 
or results which are invalid (if it is observed; 6.a.2). Incidentally, this also is the s range 
where S-curves characteristic of language change begin to form (cf. the Supplementary 
appendix).

In summary, these results indicate that if one is to take the same ensemble of language 
changes, with known selection strength, and apply different binning protocols, one could 
easily end up drawing very different conclusions depending on the bin length and the nor-
mality assumption threshold, if the conclusions are based solely on applying a test such 
as the FIT. However, if awareness of these limits is maintained, then the FIT works well 
on time series with moderately strong selection, and reasonably well (with the caveat of 
somewhat increased false positives rate under binning) on time series generated by a zero 
or low selection coefficient.

5 Discussion
We started out by focussing on the study of the (ir)regularisation of the past tense of 36 
English verbs in Newberry et al. specifically their finding that drift cannot be rejected 
in most cases, leading to the claim of the “an underappreciated role for stochasticity in 
language evolution” (Newberry et al. 2017: 223). The conclusion of our reanalysis sec-
tion — that their broad conclusion stands but that the FIT is sensitive in specific instances 
to the chosen binning strategy — prompted further investigation of the properties and 
range of potential applicability of the FIT. In the following sections, we demonstrated that 
the FIT yields reasonable results in a certain subset of possible time series, yet perhaps 
less expected results in others, when applied to a variety of series with different lengths, 
shapes and underlying selection coefficients.

The fundamental issue is that corpus data has to be operationalised one way or another 
if one is to apply a time series analysis that is based on variant frequencies. There is as yet 
no single best method to do so, and the additional researcher degree of freedom is prac-
tically unavoidable. Also, unlike microbial experimental data — for which the FIT was 
designed originally — the beginning and end of a corpus in terms of temporal coverage 
may not necessarily overlap with the beginning and end of a language change trajectory. 
The implications of these scenarios on the FIT approach were explored in Figures 2 and 
4. Any test based on increment signatures is likely to miss a significant change, if it is 
recorded by very few data points. This could be either due to data sparsity or low number 
of bins, very high underlying selection, or the change happening in the middle of an oth-
erwise long series. This could be remedied to an extent by only considering the bins of a 
corpus or the segments a time series where a change “looks like” it is taking place — but 
that introduces yet another parameter or researcher degree of freedom.

In what follows, we attempt to summarize our findings and distil them into actionable 
guidelines for applying tests of selection to linguistic corpus-derived time series.

5.1 Limitations for linguistic selection testing
Besides the fact that caution should be exercised when its statistical assumptions are 
not met (as with any statistical test), the following should be taken into account when 
applying the FIT or a similar test of selection to corpus data. s continues to refer to the 
 selection coefficient driving the process of change (assuming an underlying Wright-Fisher 
like  process; see Section 1.2 for related discussion). Obviously, a test of  selection being 
carried out implies that s is actually unknown to the tester — the guidelines sketched 
here are meant to draw attention to situations where it might be beneficial to inspect 
the results more carefully. In terms of the input data quality, the results of a test can be 
misleading if the time series:
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• chronicle only a part of a change (beginning or end);
• are too short (too few data points or bins);
• are too long (if covering multiple events, variable s);
• based on greatly variable bin sizes (avoidable with variable-width binning, which 

leads to variable bin lengths).

In terms of the types and shapes of possible series, binning can lead to unpredictable results 
in the case of FIT (and its assumption of increment normality is likely violated) in time series:

• which are S-curves (non-normal increments);
• where s may be suspected to vary over time (e.g. S-curves with long tails);
• where s = 0 (binning increases false positives);
• with a very high s (sharp changes, quick fixation);
• with tiny near-boundary fluctuations;
• where such values are introduced by smoothing (absorption adjustment).

The high s and absorption issue can be avoided by either excluding any series with a 
long span of zeroes or by making a choice to clip the post-absorption part of the series. 
That may leave a variable number of very few data points, and of course requires some 
consistent method of choosing the clipping point. The tiny fluctuations issue is typically 
caused by occasional occurrences of the less popular variant of a pair or set with a very 
high underlying total token frequency. Such series can be avoided by checking for the 
normality of increments.

As exemplified in this contribution, the way data is handled can in some cases drive 
the results of a test of selection. An application of such a test — particularly if it is bor-
rowed from a different domain — should thus take into account the nature of the data. 
In the case of time series derived from diachronic corpora, a number of issues require 
attention. These include corpus size and normalisation (Gries 2010), quality of corpus 
tagging (cf. Supplementary appendix), genre (Szmrecsanyi 2016) and topic (Karjus et al. 
2020) dynamics, representativeness and composition (Lijffijt, Säily & Nevalainen 2012; 
Pechenick, Danforth & Dodds 2015; Koplenig 2017). For example, imbalances in genre or 
register can easily lead to a drifty-looking series, if the usage of a variant differs between 
them. It is also not clear how the interplay of multiple, possibly opposing sources of selec-
tion (inherent properties of the variant, sociolinguistic prestige, top-down language plan-
ning, etc.) could be captured by a single test. Properties inherent to language can make a 
difference, such as the aforementioned re-use of archaic variants from the written record 
(Section 3), or meaning change, which may reasonably resolve competition between vari-
ants as they go on to inhabit different niches (automatic methods exist to detect the latter, 
cf. Dubossarsky et al. 2019). This relates to the issue of determining what variants do and 
which do not actually compete with one other for the same meaning or function, often 
referred to in sociolinguistics as the problem of the envelope of variation (cf. Walker 2010).

5.2 Opportunities for linguistic selection testing
On the bright side, despite these concerns, the Frequency Increment Test and presumably 
similar tests are likely reliably applicable to time series derived from linguistic corpus 
data when:

• the series covers the entire change (yet if possible also excludes near-boundary 
values);

• the assumptions of the test are checked for;
• the underlying s can be assumed to be constant;
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• the interplay of s ranges and binning is taken into account (simulations help);
• the corpus is large, representative and consistently balanced over time for genre, 

style and topics;
• the target token count for each time bin is large (>∼100, cf. the Appendix);
• the semantics of the pair (or set) of variants remain the same;
• the set of variants yielding the relative frequencies can be assumed to be competing, 

and the set contains all the competitors for a meaning or function.

Besides these rules of thumb, it would be beneficial in most cases to have some principled 
mechanisms to:

• evaluate multiple possible binning choices for the robustness of the test results;
• deal with the “leftover” flat part of the series before and after the change being 

analysed;
• distinguish drift and the effects of variable s over time.

Possible use cases in linguistics involving the FIT (or a similar test) presumably fall on 
a spectrum where on the one end the subject of a study would be a single change in the 
history of a language, and the aim would be to determine if that change has occurred due 
to drift or due to individuals consistently selecting for one of the variants, owing to its 
perceived higher fitness. On the other end would be the evaluation of a very large set of 
linguistic time series derived from a corpus, with the aim to reveal general patterns and 
dynamics of language change processes. The study of 36 English verbs by Newberry et al. 
falls closer towards this end of the spectrum.

When the subject of a study is a single change (or a few), and the result hinges on a sin-
gle test result, then we would naturally advise to take the preceding concerns into careful 
consideration, from data sampling and preparation to the specifics of a given selection 
test, while being mindful of the involved researcher degrees of freedom. If a study veers 
toward the other end of the spectrum, involving a large set of series, then its design would 
largely come down to a choice between two approaches.

One could either take a “big-data” approach, feeding the test with a very large set of time 
series to explore the role of selection and drift in language change, checking for only the 
minimal statistical assumptions of the test. The upside is that, hopefully, despite the con-
cerns specific to corpora and language, true patterns would emerge, given enough data. The 
downside is of course the danger of garbage in, garbage out.

Or alternatively, one could take the approach of also trying to check for the various linguis-
tic assumptions in addition to the statistical ones, filtering out unsuitable series. This would 
hopefully lead to better language science. On the downside, this requires the meticulous 
introduction of a number of extra parameters, or researcher degrees of freedom. Furthermore, 
the results might not be representative of general language change dynamics in the end, if 
based on testing only a niche subset of series “suitable” for a given test — of which there 
might not be that many either. In other words, no free lunch.

5.3 Future prospects
The multitude of points listed above might sound like a lot of limitations. However, we 
would not by any means conclude that efforts to detect selection in linguistic data should 
be abandoned. The idea of detecting selection in diachronic linguistic data based on shapes 
or signatures is not new and remains an open challenge (Bentley 2008; Reali & Griffiths 
2010; Blythe 2012; Sindi & Dale 2016; Amato et al. 2018). At the same time, methods for 
detecting selection continue being improved in the field of population genetics (Nishino 
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2013; Terhorst, Schlötterer & Song 2015; Schraiber, Evans & Slatkin 2016; Iranmehr et al. 
2017; Taus, Futschik & Schlötterer 2017; Vlachos & Koer 2018).

Perhaps it would be useful to draw a distinction between exploratory and confirmatory 
findings. In essence, this strand of research (including Newberry et al.) has remained 
exploratory. Simulations with controlled properties allow for an evaluation of the per-
formance of a test or model under various conditions and suspected confounds (cf. also 
Kauhanen 2017). However, to the best of our knowledge, there is currently no objective 
way to evaluate such methods or compare their accuracy against one another, in terms 
how well they reflect the actual selection biases operating on the level of the speaker, that 
may eventually give rise to a change in the consensus on the population level — a sample 
of which is (the only thing that is) eventually observable in a diachronic corpus. It would 
therefore be useful to distinguish between approaches that test for selection, and those 
that more accurately generate (albeit potentially interesting and worthwhile) hypotheses. 
The latter may be useful e.g. when positing causes of language change — be they linguis-
tic, social, or cognitive in nature. If drift cannot be rejected, then theorising about possible 
“causes” of the change is unnecessary.

The difficulties with binning suggest that trying to manipulate the data to make it look 
more like the underlying Wright-Fisher model — i.e., coarse-graining individual instances 
of use to construct the continuously-varying variant frequencies that the model predicts 
— is not the way to go. An alternative procedure would be to include the process of sam-
pling these instances of use to build the corpus as part of the model. For example, given 
some time series x(t) generated by the Wright-Fisher model, then at an instant t this model 
says that we should expect to encounter one of the two word variants with probability 
x(t). In an ideal world, one would then maximise the likelihood of the observed sequence 
of tokens with respect to the parameters of the Wright-Fisher model (i.e., the selection 
strength and effective population size). This procedure looks to be somewhat computa-
tionally demanding, and may prove intractable for large corpora. However, such a proce-
dure could in principle be applied to token counts as they appear in a corpus, without the 
need for pre-processing (such as binning) and the researcher freedom associated with it.

Another domain besides language which has attracted similar genetics-inspired model-
ling approaches is that of archaeology, particularly datasets of (pre-)historical artefacts 
(Bentley & Shennan 2003). Similar concerns have followed: “time-averaged assemblages” 
of variants in cumulative cultural evolution (essentially binned data) can easily introduce 
bias in various tests (Premo 2014; Crema, Kandler & Shennan 2016). Diachronic datasets 
(e.g. those based on the archaeological record, but similarly, corpora) only provide sparse, 
aggregated frequency information, which may be the reflection of a variety of neutral 
or selective transmission processes at the individual level (Premo 2014; Crema, Kandler 
& Shennan 2016; Kandler, Wilder & Fortunato 2017; Kandler & Crema 2019). Since 
these underlying processes cannot be directly observed (particularly in prehistoric data), 
Kandler, Wilder & Fortunato (2017) suggest shifting the focus from identifying the single 
individual-level process that likely produced the observed data — to excluding those that 
likely did not. A corpus being a sample of individual utterances, this suggestion is worth 
consideration. Although the written record tends to have more metadata than the archaeo-
logical, the author of an utterance, along with their selective biases, is often unknown.

Detecting signatures of selection and drift in the evolution of language (and other 
domains of cumulative culture) remains an interesting prospect. It would be informative 
to see a comparison of the FIT-like selection detection methods that have been developed 
in population genetics or archaeology, applied to linguistic data, and systematically eval-
uated. If the issues listed in the sections above could be solved, then this would certainly 
improve possibilities for exciting linguistic inquiry, inviting answers to questions such as, 
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do lexemes experience stronger drift than syntactic constructions? What is the relationship 
of selection and niche (Laland, Odling-Smee & Feldman 2001; Altmann, Pierrehumbert & 
Motter 2011) in language change? Are some parts of speech more susceptible to change 
via selection than others? (M. Newberry, p.c.) What is the role of drift in creole evolu-
tion? (Strimling, Jansson & Parkvall 2015) In semantic change? (Hamilton, Leskovec & 
Jurafsky 2016) Are some languages changing more due to drift than others? (and if that 
relates to community size; Atkinson, Kirby & Smith 2015; Reali, Chater & Christiansen 
2018) Can different types of selection be distinguished, e.g. top-down planning, grassroots 
(Amato et al. 2018), momentum-driven (Stadler et al. 2016)?

6 Conclusions
We find ourselves witnessing an exciting time for linguistic research, where more and 
more data on actual language usage is becoming available, encompassing different lan-
guages, dialects, registers, modalities, but also centuries. At the same time computational 
means for analysing big data have become readily accessible, hand in hand with the 
development of methods providing new insight into how languages function, change and 
evolve over time. Alongside and perhaps interlinked with these developments, language 
as a domain of scientific investigation has attracted interest in recent decades from fields 
traditionally not engaged in linguistic research, such as physics and biology.

We evaluated the proposal of Newberry et al. (2017), consisting of the application of 
the Frequency Increment Test as a method for determining whether any time series con-
structed from corpus frequencies of competing variants is a case of selection or a case of 
change stemming from stochastic drift. We found that while some of the original results 
remain robust to binning choices, other do not. Based on constructed and simulated exam-
ples, we find that while the results of the FIT can be robust given a subset of suitable series, 
there are scenarios where they affected by the way the diachronic corpus data are binned.

We advocate that in the interest of reproducibility, binning, like any other data manipu-
lation and operationalisation procedures, should be explicitly described in a contribu-
tion (as it is by Newberry et al.) — but additionally, if the results change given different 
choices, this should also be reported. Beyond data operationalisation, we drew attention 
to issues specific to linguistic data that should be taken into account to ensure quality 
of testing results, as well as to work in cultural evolution where it has been shown that 
the inference of individual transmission processes from population-level frequency aggre-
gates is susceptible to error and should be handled with care.

To conclude, identifying the role and prevalence of stochastic drift in language change is 
an important goal, but our results suggest that great care should be exercised when apply-
ing such tests to linguistic data, in order for the results to not be biased by issues specific 
to the domain as well as properties of a particular test.
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