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Death from liver disease continues to increase in contrast to
other chronic conditions.1,2Cirrhosis of the liver is the result of
prolonged injury to the liver arising from multiple etiologies.
Cirrhosis-related deaths accounted for over a million deaths
globally in 2010 with mortality rates increasing substantially
in theUnited Kingdom.3,4 In theUnited Kingdom, chronic liver
disease accounts for the majority of liver transplantations,
with a relatively lower incidence of transplantations to treat
acute liver failure (ALF) (NHS Interim Report on Liver Trans-
plantation, 2018). ALF is a relatively rare but life-threatening
critical illness with acetaminophen (APAP) poisoning alone
accounting forhalf of ALF cases in theUnited States equating to
nearly 500 deaths annually.5,6 Liver failure arising from either
acute or chronic injury is limited to orthotopic liver transplan-
tation (OLT) as the only curative option. Liver transplantation
alone is inadequate with demand for grafts outweighing
supply of suitable organs. Furthermore, the surgical procedure
carries significant morbidity and mortality, and patients are
committed to life-long immunosuppression.7 Therefore, there
is an urgent requirement for the development of alternative
therapies for acute and chronic liver diseases. Despite the
relative success of therapeutic interventions for specific etiol-
ogies (e.g., novel antiviral therapy for hepatitis C virus infec-

tion, alcohol abstinence for alcoholic liver disease), patients
often present to medical attention late when cirrhosis and
related complications have alreadyoccurred.8 Therefore, there
is a need to explore novel therapies for both acute failure and
chronic liver disease to provide additional therapeutic options
beside organ transplantation.

Cell Therapies for Liver Disease

Cell therapies herald a newera inmedicine, offering alternative
strategies to promote the functional recovery of diseased or
injured tissues. Cell therapies are an attractive therapeutic
approach because they promote the repair of a patient’s own
tissue using a fully defined (i.e., Good Manufacturing Practices
[GMP]-compliant) cellular product that can be produced at
scale, and delivered to patients. In the context of liver disease,
several cell types have been tested in both preclinical animal
models and human trials with varying degrees of success in
termsof safetyand efficacy (see►Table 1). Thefirst evidenceof
the feasibility of cellular therapy for liver disease was gained
from hepatocyte transplantation for metabolic liver dis-
ease.9–11 Two studies performing intrasplenic transplantation
of allogenic hepatocytes in ALF patients with hepatic encepha-
lopathygrade > 3 showedminimal improvement in survival.12

In the group listed for OLT, hepatocyte transplantation
improved cardiovascular stability but did not significantly

Keywords

► macrophages
► cirrhosis
► acetaminophen
► liver immunology
► cell therapy

Abstract Liver failure arising from acute and chronic liver disease is an unmet clinical need that
urgently requires novel therapeutic options in addition to orthotopic liver transplantation.
Cell therapies offer new strategies to recover liver function through the reconstitution of
healthy parenchyma and resolution of tissue pathology. Macrophages are professional
phagocytes that comprise a key part of the innate immune system providing an important
defense mechanism against invading pathogens. Macrophages are an inherently diverse
cell typewith respect to ontogeny, tissue distribution, phenotype, and function. The ability
of macrophages to afford innate immunity, efficiently scavenge apoptotic/necrotic cells,
and modulate local tissue microenvironment makes them an attractive cell therapy
candidate for various diseases. This review aims to outline the rationale and utility of
macrophages to serve as a potential cell therapy for liver disease.
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ameliorate liver function.13 Therefore, hepatocyte transplanta-
tion has only shown utility to bridge to OLT. Experiments in
rodents have shown hepatocytes transferred via the hepatic
portal vein cause significant thrombosis and ischemia-reperfu-
sion injury.14 Even when intrasplenic approach is adopted,
engraftment of hepatocytes is extremely limited as over 90%
of transplanted cells are phagocytosed by Kupffer cells (KCs).15

Since adult hepatocytes have limited availability, there is a
worldwide effort to produce functional hepatocytes fromplur-
ipotent cells to generate a potentially limitless source of hepa-
tocyte-like cells (HLCs) for drug screening and medical use.16

Recently, there have been great advances producing HLCs that
recapitulate the biology of bona fide adult hepatocytes.17 For
instance, HLCs can be derived from induced pluripotent stem

Table 1 Cell therapy strategies that have been trialed for liver disease

Cell type Use Safety Efficacy Strengths and limitations

Hepatocytes25,26 Humans
(small RCTs)

High risk of
thrombosis

Reduction of LDL (familial
hypercholesterolemia)
Reduction of need of factor
VII replacement (congenital
deficiency)
Reduction of ALT and BIL
(biliary atresia)
No efficacy proven in ALF and
other congenital and meta-
bolic diseases (PFIC, OTC, and
ASL deficiency)

Poor engraftment
Difficult expansion
Difficult cryopreservation

iPSCs20 Animals High teratogenic risk Improvement in survival
(50 vs. 0% survival at day 3 in
treatment vs. control)
Reduction of fibrosis
(50% reduction at Sirius red
staining)

Teratogenic
Generate organ buds

Fetal
hepatocytes22

Animals Safe in rats with no
evidence of
oncogenesis at 3 mo

Improvement in bilirubin of
around 50% in Gunn’s rats
Improvement in survival

Isolation from aborted fetus
Poor expansion

HPCs27,35 Animals Little risk of
thrombosis

Not proven Poor engraftment
Easy isolation
Good cryopreservation
No human studies

hBTSC29,30 Humans
(2 case reports)

Safe Improvement of MELD (from
24 to 20) Improvement of CP
score (from 12 to 10) but not
sustained at 1 y

Multipotent

HSCs33,34,36,37 Humans
(RCT and
pilot study)

Safe (no SAR or
SUSAR in RCT)

Transient nonstatistically
significant improvement in
bilirubin in pilot study. No
evidence of improvement in
MELD in large RCT

Poor engraftment
Good ex vivo expansion
Good cryopreservation

FLSPCs31,32 Animals Safe in rats
(small size, can be
used in low numbers)

Improvement in albumin Require regenerative stimuli
to proliferate
Pluripotent
Good cryopreservation

MSCs46,48,49 Humans
(RCT)

Safe (no SAR or
SUSAR in RCT)

Among all markers only Alb
improved with statistically
significance compared with
controls (from 30 to 35)

Easy to expand in vitro
Immunomodulatory

Macrophages78,81 Animals
On-going phase
1/2 clinical trial

Safe (no evidence of
cytokine storm in
mice models)

Improvement in albumin
(�5–10% in treatment
group)
Reduction of fibrosis
(reduction of 25% of collagen
I and hydroxyproline staining
in treatment vs. control)

Immunomodulatory
Antifibrotic

Abbreviations: ALF, acute liver failure; ALT, alanine aminotransferase; ASL, argininosuccinate lyase; CP score, Child–Pugh score; FLSPC, fetal stem/progenitor
cell; hBTSC, humanbiliary tree stemcell; HPC, hepatocyte progenitor cell; HSC, hematopoietic stemcell; iPSC, inducedpluripotent stemcell; LDL, low-density
lipoprotein; MELD, Model for End-Stage Liver Disease; MSC, mesenchymal stem cell; OTC, ornithine transcarbamylase; PFIC, progressive familial intrahepatic
cholestasis; RCT, randomized control trial; SAR, serious adverse reaction; SUSAR, suspected unexpected serious adverse reaction.
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cells (iPSCs) or embryonic stem cells (ESCs). In vitro studies
demonstrate that HLCs can be generated in a stepwise protocol
from iPSCs.18,19 iPSC-derived cells could be sourced from
individual patients to allow production of autologous cells for
transfer back into the same patient.20,21 However, these have
not been tested yet in clinical trials for acute or chronic liver
disease. In parallel, fetal hepatocytes have been proposed as an
alternative strategy to improve engraftment and function.
Preclinical studies provided evidence of fetal hepatocytemeta-
bolic function in rats.22,23 In patients, allogenic fetal hepato-
cytes were transplanted intraperitoneally to seven patients
with ALF but led to recovery in only three subjects with
advanced encephalopathy.24 Several limiting factors preclude
hepatocyte therapy as an effective therapeutic strategy for liver
disease including risk of thrombosis, the unstable ex vivo
phenotype, and poor hepatocyte engraftment.14,25,26 To miti-
gate these limitations, alternative cell types have been consid-
ered, for example, hepatocyte progenitor cells (HPCs). HPCs are
found in adult livers in the canal of Hering and can become
activated after liver injury to repopulate the organ with func-
tional hepatocytes or biliary cells.27 HPCs are an attractive
option for cell transplantation due to their small size (5–15
µm), reduced risk of embolism, ease of cryopreservation, toler-
ability toward ischemia, andminimal immunogenicity.27How-
ever, HPCs are a relatively scarce cell type in adult liver, and
engraftment represents a major obstacle for clinical use,
although recentwork showed coating the cellswith hyaluronic
acidprovidedamodest improvement inengraftment inmice.28

Furthermore, the differentiation of human HPCs to mature
hepatocytes has not yet been convincingly demonstrated. HPCs
are present in fetal liver in high numbers and can be easily
isolated and cultured. Therefore, fetal human biliary tree stem
cells (hBTSCs) have been considered for HPC therapy.29 hBTSCs
have been tested in two case reports in cirrhotic patients after
transplantation of 4 to 6 � 107 cells via the hepatic artery.
Although this technique appeared safe, biochemical improve-
ments were only transitory suggesting limited efficacy.30

Another approach involves use of fetal stem/progenitor cells
(FLSPCs), highly proliferative precursor cells of endodermal
origin with the capacity to form hepatocytes and bile duct
epithelial cells (sourced from rats at ED14). Although FLSPCs
have not yet been tested in humans, they have been shown to
repopulate large areas of rat parenchyma, maintain high pro-
liferation rates, and retain differentiation potential posttrans-
plantation even after cryopreservation.31,32 In contrast to the
poor replicative capacity of ex vivo hepatocytes, hematopoietic
stem cells (HSCs) are highly proliferative with the ability to
transdifferentiate into mature hepatocytes thereby represent-
ing an appealing cell therapy for liver disease.33–35 A rando-
mized-controlled trial of HSC-like bone marrow-derived
mononuclear cell transfer to 30 cirrhotic patients on the OLT
waiting list suggested transient improvement of albumin in
treated subjects. However, this was not statistically significant
and the overall liver function did not improve as per the Child–
Pugh score.36 Moreover, a U.K.-based clinical trial recently
reported that CD-133þ HSC therapy in conjunction with
granulocyte-colony stimulating factor (G-CSF) did not improve
liver function in cirrhotic patients.37 Mesenchymal stem cells

(MSCs) are multipotent cells that can be readily isolated from
adult bone marrow or umbilical cord tissue and can expand in
vitrowith capacity to differentiate into several lineages includ-
ing hepatocytes.38–40 MSCs are known to exhibit immunomo-
dulatory functions and have been shown to reduce
inflammation, reduce injury, and protect against hepatocyte
apoptosis in several liver injury (acute liver injury [ALI])
models.41–45 MSCs have also been tested in cirrhotic patients
demonstratingminor improvements in liver synthetic function
and Model for End-Stage Liver Disease (MELD) score, although
MSCs require further evaluation in larger clinical trials with
predefined primary endpoints.46–49 Studies to date have
involved small numbers of patientswith short-term endpoints,
thus evidenceof long-termbenefit andaclear understandingof
the mechanism of action of MSCs is required.50 In summary,
various cell therapies hold potential to provide new strategies
to treat liverdisease.However,manycell therapycandidatesare
not yet ready to be tested in clinical trials. Engraftment
represents a major obstacle in diseased liver tissue for various
cell therapies designed to improve hepatic function. Further
work to elucidate themechanismsof actionofeach cell therapy
candidate will help design early clinical trials to test safety and
efficacy. Data from clinical trials are currently at an early stage
and have only showed limited success at best so far.49,51–53

Role of Macrophages in Liver Disease

The liver contains the largest population of tissue resident
macrophages in the body in the form of KCs located within
the hepatic sinusoids.54,55 In the steady state, KCs provide
important hepatic innate immunity by efficiently phagocy-
tozing gut-derived pathogens (e.g., Escherichia coli and bac-
terial products) from portal blood, thereby providing an
immunological barrier between the gut and the systemic
circulation.56 KCs are also highly adapted to remove apopto-
tic debris (principally dead erythrocytes), particulatematter,
and are involved in the clearance of several serum proteins
(►Fig. 1A and B).57,58 KCs have been shown to be implicated
in the early activation of the innate immune system after a
hepatotoxic event, for example, during APAP overdose. Hepa-
tocyte necrosis releases a plethora of proinflammatory sig-
nals, including several danger-associatedmolecular patterns
(DAMPs), chemokines, and cytokines that can activate resi-
dentmacrophages via Toll-like receptor signaling resulting in
the recruitment of circulating monocytes and other inflam-
matory cells to the liver.59,60 However, recent studies have
shown in ALI, there is a substantial loss of KCs at peak injury
leading to a deficit in hepatic innate immunity.61,62 During
APAP-induced liver injury, uncontrolled inflammation
resulting from massive hepatocyte necrosis coupled with
KC loss results in a sepsis-like condition termed systemic
inflammatory response syndrome (SIRS)—a major determi-
nant of clinical outcome inpatientswith APAP-inducedALI.63

Likewise, in chronic end-stage liver disease, when KC-
mediated barrier function is diminished, patients are prone
to developing bacterial and fungal infections representing a
major trigger of acute-on-chronic liver failure.64,65 Clearly,
liver resident KCs are critical in maintaining important
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Fig. 1 Q4Q4
Q4(A) Kupffer cells (KCs) are liver resident macrophages located within the hepatic sinusoids that comprise part of the mononuclear

phagocyte system. (B) KCs possess several important functions in the steady state including providing barrier function against gut-derived
bacteria, scavenging of damaged/aged erythrocytes, and clearance of several serum proteins. (C) During chronic liver disease, hepatic
myofibroblasts (activated hepatic stellate cells) deposit excessive amounts of collagen replacing hepatocytes impacting liver function. (D)
Transfer of bone marrow-derived macrophages (BMDMs)/monocyte-derived macrophages (MDMs) have shown efficacy in liver fibrosis models
with evidence of collagen regression, myofibroblast apoptosis, and enhanced recruitment of innate immune cells. (E) During acute liver injury, a
transient loss of KCs occurs alongside massive hepatocyte necrosis causing a deficit in barrier function. (F) Supplementing the macrophage pool
during acute liver injury is a potential strategy to restore hepatic barrier function. Alternatively activated macrophages (AAMs) in particular
possess a high capacity for efferocytosis to resolve necrosis and in turn reduce inflammation and promote liver repair.
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innate immunity and are fundamentally implicated in the
pathology of liver disease.

Macrophage Therapy for Liver Fibrosis

Chronic liver disease is fundamentally distinct pathology from
ALI resulting from long-term iterative injury with an inflam-
matory basis arising from various etiologies. Ultimately,
chronic liver disease results in the deposition of large quan-
tities ofextracellularmatrix (ECM). The substitutionofhealthy
parenchymawith scar tissue (ECMproteins comprisingmainly
collagens) can develop into cirrhosis characterized by reduced
liver function, portal hypertension, and related complica-
tions.66 Human and mouse macrophages express several
members of the matrix metalloproteinase (MMP) family of
endopeptidases, including MMP8, MMP9, and MMP12.67–71 A
subset ofMMPs have properties allowing them to unwind and
cleave collagenhelices affording themcollagenolytic activity, a
natural process that occurs in development and wound heal-
ing.72 Therefore, macrophages represent a key cell type impli-
cated in the metabolism of ECM and tissue remodeling.73 The
deranged architecture, inflammatory niche, and excessive
ECM in fibrotic liver provide significant barriers for the
engraftment and long-term functionality of transplanted cells.
Novel strategies that target the existing hepatic scar tissue
directly, using either cells or biologics, are gaining attention as
an alternative to hepatocyte transplantation.74 Novel carrier
systems (e.g., liposomes75 or mannosylated conjugated pro-
teins76) have been developed to target endogenous KCs to
modulate macrophage function in situ (for expert review on
targeting endogenous macrophages for liver disease, refer to
Tacke77). In parallel, transfer of exogenous macrophages (e.g.,
syngeneic, autologous, or allogeneic cells) represents an alter-
native technique to modulate the hepatic microenvironment.
Intravenous injection of bone marrow-derived macrophages
(BMDMs) tomicewithestablishedcarbon tetrachloride (CCl4)-
induced liver fibrosis resulted in less collagen deposition,
fewer hepatic myofibroblasts (activated hepatic stellate cells),
and enhanced recruitment of host monocytes and neutrophils
—a further source of MMP9.78 Importantly, liver synthetic
function was improved in fibrotic mice after BMDM delivery
evidenced by increased serum albumin levels. In this study,
macrophages were injected via the hepatic portal vein, a
dosing route that may be unsuitable in cirrhotic patients
due to associated coagulopathy and portal hypertension.
However, a more recent study showed that transfer of classi-
cally activated macrophages (CAMs) administered to fibrotic
mice via tail vein also resolved collagen efficiently.79 Further
mechanistic insight from this study revealed that recruited
natural killer cells were a major source of tumor necrosis
factor-related apoptosis-inducing ligand that promoted myo-
fibroblast apoptosis. In addition, intravenous delivery of mur-
ine ESC-derivedmacrophages recapitulatedfibrosis resolution
observed with primary macrophages, although a greater
number of cells were required to achieve efficacy.80 These
studiesprovideevidence thatdisease-modifyingmacrophages
can be administered peripherally. Translational studies have
since demonstrated that primary human monocyte-derived

macrophages (MDMs) sourced from healthy donors have
antifibrotic activity after intrasplenic cell transfer to fibrotic
immunocompromisedmice.81However, safety concerns exist
using myeloid cell transfer approaches given that several
groups have reported injurious responses after transplanting
immature cell types in disease models, for example, bone
marrow precursor cells and monocytes.78,82,83 These findings
underscore the importance of using defined protocols that
yield highly enriched populations of fully mature cells quali-
fied by a robust set of maturity markers.

In contrast to the emergency setting of ALF, the relatively
slow progression of compensated liver cirrhosis (median
survival > 12years8) provides a therapeuticwindowavailable
over a longer timeframe assuming complications can be
managed and disease-inducing factors controlled (e.g., anti-
viralmedication, cessationofalcohol consumption). Therefore,
this timeframe allows the collection of a patient’s ownmono-
cytes for macrophage differentiation (typically 7 days) before
infusion back into the patient, that is, autologous cell therapy.
Moore et al demonstrated that MDMs sourced from cirrhotic
patients are phenotypically similar to healthy donor-derived
macrophages in terms of MMP expression and surface marker
composition.81 Furthermore, intrasplenic transplantation of
healthy human MDMs to an immunocompromised mouse
model of liver fibrosis elicited regression of collagen, and
reduction of liver injury markers. This work provided the
platform to build a GMP-compatible pipeline to generate
clinical-gradehumanMDMs for potential therapeutic applica-
tions.84Adifferentiationprotocol nowexistswith clear release
criteria for functionally mature human macrophages (25F9hi,
CD206hi, CCR2lo) using a defined serum-free, antibiotic-free
method. Safety and efficacy studies of autologousmacrophage
therapy are now underway in a Phase I/II first-in-human
clinical trials for the treatment of liver cirrhosis. Exogenous
macrophage delivery has shownpromise inpreclinicalmodels
to elicit collagen regression and stimulate hepatic function
(►Fig. 1C and D).

Macrophage Efferocytosis and Acute Liver
Injury

Macrophages are exquisitely adapted to recognize and
remove dead or dying cells from the system. Macrophages,
including KCs, express a repertoire of cell surface receptors
including Mer,85 phosphatidylserine receptors,86 lectins,87

and scavenger receptors88 that recognize motifs on dying
cells to initiate and facilitate their internalization and degra-
dation. Macrophage-mediated removal of dead cells, known
as efferocytosis coined from the Latin term “efferre”: “to
bury,” is thought to be a prerequisite for the resolution of
inflammation by clearing the inflammatory source to allow
the restitution of injured tissue.89,90 During liver injury (e.g.,
during APAP overdose), there is a sudden and massive
chemical insult to the liver, causing widespread hepatocyte
necrosis that occurs rapidly after drug ingestion.91 In the
clinic, severe toxicity can bemitigated via the timely infusion
of N-acetylcysteine (NAC; a sulfhydryl donor that boosts
hepatocyte antioxidant capacity to prevent hepatocyte
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death). However, in patients who present late (i.e., later than
10 hours of APAP ingestion), NAC has much reduced effi-
cacy,92 and APAP-induced liver injury (APAP-ALI) can result
in more than 50% hepatocyte necrosis providing a massive
source of inflammatory mediators and DAMPs.59,93,94 In
addition to hepatocyte necrosis, recent evidence showed
there is a transient but significant loss in viable KCs at
peak injury, which results in a diminished barrier function
and reduced phagocytic capacity in the liver.61,62 The gut
lumen contains a huge source of bacteria and bacterial
products, which can translocate to the liver parenchyma
via the hepatic portal vein. KCs provide important innate
immunity by recognizing and engulfing bacteria to maintain
homeostasis.55A recent study described a further population
of MDMs that exist in the liver capsule to provide innate
immunity against peritoneal pathogens.95 APAP-ALI is
known to drastically reduce numbers of hepatic KCs, and
therefore impair the performance of the mononuclear pha-
gocyte system in the liver.62 For example, the clearance of
circulating microaggregated albumin is compromised in
patients with APAP-ALF.61 Indeed, the lack of innate immu-
nity predisposes ALF patients to risk of developing serious
bacterial and/or fungal infections.96 In a study involving 50
ALF patients, 28 out of 30 patients that died had a detectable
bacterial infection and all the deaths that occurred after
7 days of hospital admission were attributed to microbial
infection.97 Furthermore, a separate study reported fungal
infections (candida and aspergillus) in 32% of ALF patients, in
which fungal infection led to a major cause of death in 7 of
the 16 infected patients.98 Indeed, antimicrobial drugs have
been trialed as a prophylactic treatment to ALF-associated
infections but have resulted in only marginal benefit.98,99

These reports suggest that impaired barrier function result-
ing from ALI risks the development of serious systemic
infections that are a major determinant of clinical outcome.

The combination of massive hepatocellular necrosis and
diminishedclearancefunctionspromotesuncontrolled inflam-
mation. In APAP-induced ALF patients, this is recognized as
SIRS and represents a key determinant of clinical outcome
risking multiorgan failure and death.63,100 Several experimen-
tal strategies tomodulate hepatic immune function during ALI
are now gaining attention.101 Tissue macrophage populations
are controlled, in part, through CSF 1 receptor (CSF1R) stimula-
tion, which promotes the survival, proliferation, and differen-
tiation of cells in themacrophage lineage.102Mice treatedwith
a modified CSF1 fusion protein (CSF1-Fc) demonstrated
enhanced hepatic clearance capacity by increasing numbers
of both resident and infiltrating macrophages in the liver.103

Importantly, CSF1-Fc treatment also increased macrophage
accumulation at the necrotic regions and reduced serum
alanine aminotransferase activity in mice with APAP-ALI. The
hepatoprotective role of macrophages has been demonstrated
by several groups. Chemical ablation of KCs in mice exhibited
aggravated hepatic vascular permeability in liver sinusoidal
endothelial cells (LSECs) after APAP-ALI.104 Furthermore, mice
lackingKCsand infiltratingMDMsshowsustainednecrosis and
elevated serum transaminases after APAP-ALI, suggesting
macrophages are required for necrosis resorption.105–107

Timely removal of necrotic tissue is required for appropriate
wound healing. Macrophages also possess paracrine function-
ality and are a major source of anti-inflammatory cytokines
and growth factors. KCs can secrete interleukin (IL)-10 upon
activation, apotent immunosuppressivecytokinethathasbeen
shown to be hepatoprotective during APAP-ALI.107–109 Infil-
trating macrophages in particular have also been shown to
express high levels ofVegf, a proangiogenic cytokine associated
with neovascularization in chronic injury models.110 Hepatic
macrophages isolated from APAP-injured mouse liver stimu-
lated LSEC proliferation and migration in vitro suggesting
paracrine proangiogenic function.105 Macrophages are also
knowntoexpressseveralWNT ligands,111,112whichareknown
to stimulate β-catenin signaling in hepatocytes during liver
regeneration.113 CSF1R-mediated hepatic macrophage accu-
mulation induced a modest but significant increase in hepa-
tocyte proliferation after partial hepatectomy suggesting
macrophages may promote parenchymal cell division,
although specific factors underpinning this have not been
identified.103 Macrophages can adopt a variety of phenotypes
in response to their microenvironment. Alternatively activated
macrophages (AAMs) have been shown to exhibit a greater
capacity for efferocytosis in vitro (discussed further below).114

Boosting thehepaticmacrophagepool to restorehepatic innate
immunity, promote efferocytosis of necrotic cells, suppress
inflammation, and stimulate hepatocellular proliferation
may be an attractive strategy for the treatment of ALI
(►Fig. 1E and F).

Relevance of Macrophage Phenotype and
Function

Macrophages are an inherently plastic cell type capable of
acquiring a spectrum of phenotypes in response to stimuli
from the microenvironment. Traditionally, this phenotypic
axis was defined simplistically as “M1” macrophages (classi-
cal-activation with enhanced bactericidal properties), versus
“M2”macrophages (alternative-activation with enhanced tis-
sue remodeling properties), which has provided a useful
framework despite calls for a more nuanced nomenclature.115

Functional analysis of different macrophage phenotypes can
be achieved by polarizing cells in vitro using defined factors
(e.g., lipopolysaccharide and interferon γ to produce CAMs, or
IL-4/-13 to produce AAMs). As discussed earlier, CAMs out-
performed standard BMDMs in terms of their role in collagen
regression.79Polarizedmacrophagesmayoffergreaterefficacy
or improved safety profiles since a polarized cell population is
phenotypically more uniform. One safety concern that exists
with macrophage therapy is the risk of transplanted macro-
phages acquiring a potentially deleterious phenotype in
response to microenvironmental cues in a diseased organ.
Polarizing macrophages ex vivo using high concentrations of
recombinant cytokinesprior to transplantmay reduce this risk
since there is some evidence that polarized macrophages can
retain their phenotype epigenetically. 116 Safety studies that
test macrophage phenotype and persistence in relevant dis-
ease models are warranted. In the setting of ALI, efficient
efferocytosis of necrotic material is required to suppress
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inflammation. Numerous groups have reported that AAMs
have enhanced phagocytic function versus standard BMDMs
or CAMs.80,117,118 Therefore, transferring AAMs or by promot-
ing hepatic macrophage phagocytosis may represent a ther-
apeutic strategy in the setting of ALI.

Highly defined macrophages with desired characteristics
may indeed provide more precise therapy. Tissue-resident
macrophages are known to display unique gene expression
profiles with considerable diversity among macrophage popu-
lations.119 While macrophages share a common set of func-
tions, tissue-specific functionsdoexist, for example, osteoclasts
perform efficient bone resorption in contrast to microglia,
which support neuronal circuit development.120,121 In the liver,
KCs are highly specialized at removing damaged erythrocytes
fromthecirculation.122KCs express several genes involvedwith
lipid and iron metabolism including several scavenger recep-
tors, which are enriched in KCs versus other macrophage
populations.123 Tissue-resident macrophages, including KCs,
develop from embryonic precursors with the capacity to pro-
liferate and self-renew.124,125 During APAP-ALI, approximately
half of KCs are lost at peak injury but recover through prolifera-
tion over several days.62 During this time, circulating inflam-
matory monocytes infiltrate the liver and differentiate into
short-lived MDMs. Blood monocytopenia resulting from mas-
sive influx of circulating monocytes into the liver has been
associatedwithpoorprognosis inpatients.126 Ithasbeenshown
experimentally thatMDMs can repopulate the liver andacquire
self-renewal properties, but only under specific conditions.123

ESC-derived macrophages may resemble tissue-resident
macrophages more closely with lower expression levels of
Myb (a HSC transcription factor) compared with BMDMs.80

The source of exogenous macrophages may have implications
on the phenotype, function, and persistence of these cells in
tissues after administration.

In summary, evidencesuggests thatmacrophagesplayakey
role in the initiation and resolution phases of both acute and
chronic liver disease. The barrier function provided by KCs is
essential to prevent bacteremia and systemic inflammation.
Supplementing hepatic macrophage populations using exo-
genous cell transfer or by cytokine-induced endogenous
macrophage expansion are clinically relevant strategies that
have thepotential to augmenthepatic innate immunityduring
liver disease. Methods to generate clinical-grade primary
human macrophages have recently been described allowing
these cells to be evaluated in prospective clinical trials.

Main Concepts and Learning Points

• Kupffer cells are liver resident macrophages that possess
several important functions in liver tissue, including
providing barrier function against gut-derived pathogens.

• Macrophages play distinct roles in the initiation and
resolution phases of liver injury, therefore are intrinsi-
cally implicated in liver disease pathophysiology.

• Patients with both acute and chronic liver disease have a
perturbed phagocytic system thereby being at risk of
developing serious bacterial/fungal infections.

• Strategies that restore hepatic innate immunity during
liver disease through direct cell transfer or cytokine-
induced macrophage replacement are gaining attention.

• Primary human macrophages can now be manufactured
tomeetGMP standards and clinical trials to test safety and
efficacy in liver disease are underway.
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