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Abstract 26 

The well-known vicariance and dispersal models dominate in understanding the allopatric 27 

pattern for related species and presume the simultaneous occurrence of speciation and 28 

biogeographic events. However, the formation of allopatry may postdate the species 29 

divergence. We examined this hypothesis using DNA sequence data from 3 chloroplast 30 

fragments and 5 nuclear loci of Dipelta floribunda and D. yunnanensis, two shrub species 31 

with the circum Sichuan Basin distribution, combining the climatic niche modeling approach. 32 

The best-fit model supported by the approximate Bayesian computation (ABC) analysis 33 

indicated that, D. floribunda and D. yunnanensis diverged during the mid-Pleistocene period, 34 

consistent with the largest glacial period in the Qinghai-Tibet Plateau (QTP). The historically 35 

inter-specific gene flow was identified, but seemed to have ceased after the last interglacial 36 

period (LIG), when the range of D. floribunda moved northward from the south of the 37 

Sichuan Basin. Further, populations of D. floribunda had expanded obviously in the north of 38 

the Sichuan Basin after the last glacial maximum (LGM). Relatively, the range of D. 39 

yunnanensis expanded before the LGM, and reduced during the post-LGM especially in the 40 

north of the Sichuan Basin, reflecting the asynchronous responses of related species to the 41 

contemporary climate changes. Our results suggested that complex topography should be 42 

considered in understanding the distributional patterns even for closely related species and 43 

their demographic responses.  44 

 45 

 46 

Keywords: allopatric pattern, asynchronous demographic responses, hABC, introgression, 47 

the Pleistocene climate change, the Sichuan Basin  48 

49 



1 Introduction 50 

It is important to test hypotheses regarding to the biogeographic drivers and processes of 51 

the distribution pattern for related species (Macarthur, 1972; Crisp et al., 2011; Usinowicz et 52 

al., 2017). The vicariance and long-distance dispersal (LDD) models which are tested and 53 

employed in many studies, provide two major hypotheses that can explain disjunct 54 

distributions (Ball, 1975; Crisp et al., 2011). In the vicariance model, geographic barriers 55 

develop and divide a large population into separate parts, and prevent gene flow between 56 

them (Ball, 1975). In contrast, the dispersal model requires that organisms overcome 57 

geographic barriers to migration and establish new populations on the other side of that 58 

barrier (Nathan, 2008). Both will ultimately lead to allopatric speciation, hence; the speciation 59 

event should be timed as occurring soon after the disjunction was established. However, for 60 

plants that occur in regions with complex topographies, neither of these two traditional 61 

paradigms may be appropriate to explain the pattern of allopatry. Complex topography can 62 

provide ecological gradients, for example along mountain slopes (Badgley et al., 2017), and 63 

in theory parapatric speciation may occur along such a gradient, followed by allopatry at a 64 

later time if one or both species then moves its native range. In the present study, we aim to 65 

test this hypothesis using a case study of two shrub species of Dipelta endemic to western 66 

China.  67 

Mountains and valleys which formed accompanying with the uplift of the Qinghai-Tibet 68 

Plateau (QTP) in western China (Clark et al., 2005; Wang et al., 2012, 2014), can restrict 69 

dispersal and lead to species divergence and allopatric pattern (Endler 1977; Smith et al., 70 

2014; Steinbauer et al., 2016). Recent studies suggest that the uplifts of the QTP and adjacent 71 

mountains has played important roles in the diversification of highland plants in western 72 

China (Wang et al., 2005; Qiu et al., 2011; Wen et al., 2014; Favre et al., 2015; Sun et al., 73 



2017; Xing & Ree, 2017). The landscape complexity provides steep ecological gradients 74 

along the mountain slope (Favre et al., 2015; Liu et al., 2014), and potential refugia for plants 75 

during climatic extremes such as the Pleistocene glacial cycles. It therefore provides 76 

opportunities for both retaining high levels of plant diversity, and generating new lineages 77 

(Qiu et al., 2011; Liu et al., 2012). However, the biogeographical processes underlying 78 

divergence are still unclear for most plants here, restricting our ability to explain the origin 79 

and distribution of plant diversity in western China (Liu et al., 2014).  80 

Dipelta Maxim. (Caprifoliaceae) includes three species endemic to the west of China (Fig. 81 

1; Table 1), and occur in mid/high-elevation montane forests but never in valleys (Yang & 82 

Landrein, 2011). Dipelta elegans Batal. is an endangered species and thus was not focused 83 

presently. Populations of Dipelta floribunda Maxim. and D. yunnanensis Franch constitute a 84 

near-circular distribution surrounding the Sichuan Basin (Fig. 1), a region with an area larger 85 

than 260,000 m2 and an elevation ~400 m at the bottom of the basin. Dipelta floribunda 86 

occurs around the Qin-Ba Mountains to the north and east of the Sichuan Basin, whereas D. 87 

yunnanensis occurs to the south and west of the basin, in most of the Hengduan Mountains 88 

(Fig. 1). The annual mean temperature and precipitation in the habitats of both species are 89 

much lower than those at the bottom of the Sichuan Basin (Wang et al., 2013), constituting a 90 

geographic barrier to their dispersal. Althrough the distribution of these two species is close 91 

(nearest population less 100km), our three-years field investigations (2015-2017) haven’t 92 

found hybrids and contact zones between species. These two species were combined into a 93 

system to investigate the biogeographic role of a medium scale geographic barrier, 94 

specifically a climatically unavailable low-altitude region, in the formation of a local 95 

disjunction between closely related species.  96 



Three hypotheses might explain how this species pair speciated and how the allopatric 97 

pattern formed. First, as the vicariance model suggested (Ball, 1975; Crisp et al., 2011), if the 98 

formation of the Sichuan Basin had driven the initial divergence between D. floribunda and D. 99 

yunnanensis, the divergence time would be consistent with the formation of the Sichuan Basin 100 

during the Neogene period (Shi et al., 1998; Clark et al., 2005; Wang et al., 2012; He et al., 101 

2013; Wang et al., 2014). Second, species divergence could have been initiated through a 102 

dispersal event from one side of the Sichuan Basin to the other, as the LDD model proposed 103 

(Nathan, 2008; Crisp et al., 2011). The divergence time thus would be later than the formation 104 

of the basin but consistent with the LDD event. In the 1st and 2nd models, the formation of 105 

allopatric pattern would be in synchrony with the divergence. Third, speciation occurred 106 

without the present geographic barriers, possibly by local ecological speciation along a 107 

gradient within the western China. If so, a consistent difference in ecological preference 108 

between the species would exist, and these different preferences may form before the 109 

formation of allopatric pattern. In the 3rd model, the initial divergence between D. floribunda 110 

and D. yunnanensis could be independent of the formation of the Sichuan Basin and the 111 

allopatric pattern.  112 

To evaluate and compare these hypotheses, we aimed to assess the following questions: 1) 113 

When did the divergence between D. floribunda and D. yunnanensis occur? 2) Are there 114 

ecological differences between the two species? 3) What role did the Sichuan Basin play in 115 

the formation of allopatric pattern? 4) Has the basin influenced their responses to climatic 116 

changes, after their divergence? 117 

2 Material and Methods 118 

2.1 Sampling 119 



We collected a total of 547 individuals from 56 populations throughout the ranges of D. 120 

floribunda and D. yunnanensis (Table 1). The number of individuals collected from each 121 

population was between 1 and 20, and these were always spaced at least 100m apart. Fresh 122 

leaves were collected and dried immediately using silica gel. In addition, Dipelta elegans, 123 

Diabelia serrata (Sieb. & Zucc.) Land. and Kolkwitzia amabilis Graebn. were collected and 124 

used as outgroups in our analyses below. All voucher specimens collected from each 125 

population were deposited in Southwest Forestry University Herbarium (SWFC). The latitude, 126 

longitude and altitude of each sampling site were recorded using an eTrex GPS (Garmin).  127 

2.2 DNA extraction, amplification and sequencing 128 

We used EZ-10 Spin Column Plant Genomic DNA Purification Kits (Sangon Biotech, 129 

Shanghai, China) to extract total genomic DNA from 547 individuals, and 1% agarose gels 130 

was used for testing the quantity of genomic DNA isolating from the all of individuals.   131 

To identify cpDNA regions with sufficient variation, we randomly selected 12 shrubs of 132 

D. yunnanensis and 12 of D. floribunda to conduct preliminary screening of primer pairs for 133 

three highly variable regions: psbA-trnH, psbB-psbF and trnL-trnF. All were determined to be 134 

useful. For nuclear markers, fresh leaves of D. yunnanensis were gathered in Lijiang 135 

(population YL) to transcriptome sequencing. The sequencing was performed on HiSeq 136 

sequencing platforms at BGI-Shenzhen. For further details on RNA extractions, transcriptome 137 

sequencing, and assembly, see Ju et al. 2015. Then we developed primers of 5 species-138 

specific low-copy nuclear loci (23311, 38541, 41398, 45367, 56546) following the procedures 139 

described by Ye et al. (2017). Therefore, a total of eight DNA fragments from chloroplast and 140 

nuclear genomes were sequenced to determine the genetic variation of D. floribunda and D. 141 

yunnanensis (Table S1).  142 



Polymerase chain reaction experiments were performed using the S1000 Thermal Cycler 143 

(Applied Biosystems, Foster City, California, USA) in a volume of 25 μL containing 1 μL 144 

(~10 ng) DNA template, 12.5 μL Taq PCR Mix (Sangon Biotech), 9.5 μL double-distilled 145 

H2O, and 1 μL (5 pmol) of each primer. The PCR program consisted of 5 min of initial 146 

denaturation at 94 °C; followed by 30 cycles of denaturation at 94 °C for 30 s, annealing at 147 

specific temperature (52 °C-58 °C, Table S1) for 45 s, extension at 72 °C for 1 min, and a 148 

final extension at 72 °C for 10 min. We also used 1% agarose gels to check the quantity of all 149 

PCR products. Finally, 223 and 547 individuals were amplified successfully in each of the 5 150 

nuclear DNA loci and of the 3 cpDNA loci, respectively. All DNA fragments that were 151 

amplified successfully were sequenced using the amplified forward primer with an ABI 3730 152 

XL genetic analyzer (Applied Biosystems, Foster City, USA). We used program MEGA 153 

version 5.0 (Tamura et al., 2011) to check whether the SNPs and indels (insertions and 154 

deletions) were consistent with the chromatogram peaks manually, and to proofread variable 155 

sites. For nrDNA diploid sequences, we used DnaSP version 5.0 (Librado & Rozas, 2009) to 156 

determine the phases of each heterozygous sites. All sequences have been deposited into 157 

GenBank (NO. MG993626-MG994796).  158 

2.3 Analyses of cpDNA sequences  159 

We aligned sequences at each cpDNA fragment independently, and deleted indels using 160 

MEGA version 5.0 (Tamura et al., 2011). The numbers of polymorphic sites for each cpDNA 161 

fragment were counted by manual. Based on the concatenated cpDNA sequences, we 162 

calculated the average gene diversity within populations (HS), total gene diversity (HT), and 163 

the coefficients of genetic differentiation (GST and NST) for each Dipelta species using 164 

PERMUT (available at http://www.pierroton.inra.fr/genetics/labo/Software/Permut/). To test 165 

the chloroplast genomic differentiation among populations and between species, the analysis 166 



of molecular variance (AMOVA) was performed using ARLEQUIN version 3.5 with 167 

significance tested using 10,000 permutations (Excoffier & Lischer, 2010).  168 

We used DnaSP v5.0 to determine haplotypes based on concatenated cpDNA, and counted 169 

the number of haplotypes for each of 56 populations. Then we inferred the genealogical 170 

relationships of all cpDNA haplotypes using NETWORK version 5.0.0.1 (available at 171 

http://www.fluxus-engineering.com/sharenet.htm) and dated the divergence between species 172 

using BEAST version 1.7.5 (Drummond et al., 2012). For BEAST analysis, we employed a 173 

Yule speciation prior and a uncorrelated lognormal relaxed clock model. We used jmodeltest 174 

version 2.1.10 (Darriba et al., 2012) to choose the appropriate nucleotide substitution model 175 

which was the HKY+I model. The Monte Carlo Markov chain was set for 50 million 176 

generations with parameters sampled every 10000 generations in BEAST analysis. The 177 

substitution rate (μ) of three cpDNA loci was estimated to be 4.18×10-8 - 4.61×10-8 by the 178 

ABC toolbox (see detail below). Tracer version 1.6 was used to assess the convergence and 179 

effective sample sizes (ESS) for all parameters. After discarding the first 3000 trees as burn-in, 180 

the rest of trees were summarized in a maximum clade credibility (MCC) tree with 181 

TreeAnnotator version 1.7.5. Finally, the MCC tree was visualized in FigTree version 1.4.2 182 

(available at http://tree.bio.ed.ac.uk/software/figtree/).  183 

2.4 Analyses of nrDNA sequences 184 

Sequences also were edited and aligned manually using MEGA5 (Tamura et al., 2011). All 185 

polymorphic and heterozygous sites were visually confirmed and separated. For each of 5 186 

nuclear loci, and within each species, we computed the number of segregating sites (S), 187 

Watterson’s θw (Watterson, 1975), nucleotide diversity π (Tajima, 1983), and the minimum 188 

number of recombinant events Rm (Hudson & Kaplan, 1985), Tajima’s D (Tajima, 1989), 189 

number of haplotypes (Nh) and haplotype diversity (He), Fu and Li’s D*  and F* (Fu & Li, 190 

http://tree.bio.ed.ac.uk/software/figtree/


1993; Fu, 1997), and Fay and Wu’s H (Fay & Wu, 2000) using DnaSP v5.0 (Librado & Rozas, 191 

2009). Meanwhile, the multi-locus Hudson–Kreitman–Aguade test (Hudson et al., 1987) was 192 

used to evaluate the fit of data to the neutral model. The sequences of Diabelia serrate were 193 

used as the outgroup. For each nuclear locus, we used NETWORK version 5.0.0.1 (available 194 

at http://www.fluxus-engineering.com/sharenet.htm) to construct median-joining networks of 195 

nuclear haplotypes determined by DnaSP v5.0.  196 

To examine the population structure, we used two approaches. First, the Wright’s fixation 197 

index (FST) was estimated for each locus using ARLEQUIN version 3.5 (Excoffier & Lischer, 198 

2010). Second, the admixture model implemented in STRUCTURE version 2.3.4 (Pritchard 199 

et al., 2000) was used to assess individual clustering. In STRUCTURE analysis, polymorphic 200 

sites with r > 0.7 after Bonferroni correction (Fisher’s exact test) were deleted due to likely 201 

linkage disequilibrium. Twenty independent runs were performed for each number of 202 

populations (K) from 1 to 10 with 1×105 MCMC steps of burn-in, followed by 1×106 steps 203 

using an admixture model with correlated allele frequencies. The best number of clusters was 204 

inferred using the original method (Pritchard et al., 2000) and the ΔK statistic of (Evanno et 205 

al., 2005). Finally, DISTRUCT version 1.1 (Rosenberg, 2004) was employed to draw the 206 

graphics.  207 

2.5 Testing hypotheses of historical gene flow 208 

We tested five models of species divergence between D. floribunda and D. yunnanensis 209 

based on sequences at all nuclear and chloroplast DNA loci from all samples of 56 210 

populations, using the approximate Bayesian computation (ABC) approach implemented in 211 

the ABCTOOLBOX software package (Wegmann et al., 2010). All models began with the 212 

divergence of D. yunnanensis from D. floribunda at a time point labeled “T”. Model 1 213 

assumed no gene flow after divergence (Fig. 2a), whereas Models 2-5 all assumed historical 214 



gene flow following divergence.  Models 2 and 3 assumed that gene flow continued after 215 

divergence, and in Model 2 it continued until the present, whereas in Model 3 it ceased at 216 

time T1 as required by the ancient migration model (Roux et al., 2016). Models 4 and 5 217 

assumed secondary contact between the species from the time T2 onwards; in Model 4 this 218 

continued until the present, whereas in Model 5 it ceased at time T1.  219 

For each species, we computed five statistics to summarize population genetic information: 220 

the number of polymorphic sites (S) and private S, Tajima’s D, Fu’s Fs and nucleotide 221 

diversity (π). For the two species together, we computed three more statistics: the total S, 222 

index of population differentiation (FST) and πxy using ARLEQUIN version 3.5 (Excoffier & 223 

Lischer, 2010). All of these statistics were calculated independently for both cpDNA and 224 

nrDNA loci, making 26 statistical values in total. We used the R function ‘pls’ in 225 

ABCTOOLBOX package (Wegmann et al., 2010) to extract 11 partial least-squares (PLS) 226 

components based on the summary statistics generated by simulation under each of 5 models, 227 

for decreasing the redundancy of statistics. Conversion equations were inferred from the 228 

10,000 samples simulated by a standard simulating algorithm for each of five models.  229 

The simulator fastsimcoal (Excoffier & Foll, 2011) was employed to simulate samples for 230 

each of 5 models. A total of 5,000,000 simulated samples were generated. For each model, the 231 

best 10,000 simulated samples were retained and used to compute the marginal density and 232 

Bayes Factor (BF), which was used to determine which model is the best. The regression 233 

adjustment general linear model (GLM) was used to generate posterior distributions of all 234 

parameters in the best model.  235 

2.6 Testing current gene flow 236 

We measured migration rate (mc) using BAYESASS 1.3 (Wilson and Rannala, 2003) to 237 

estimate short-term gene flow between D. floribunda and D. yunnanensis based on sequences 238 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287295/#b55


at all 5 nuclear loci. This software estimates migration rates over the past 2-3 generations 239 

using Markov chain Monte Carlo techniques and does not assume that populations are in 240 

migration-drift or Hardy-Weinberg equilibrium. Initial runs showed that convergence was 241 

reached using 5 × 106 Markov Chain Monte Carlo (MCMC) iterations. We ran the program 242 

for 5 × 107 MCMC iterations with a sampling interval of 1000, following the burn-in of 5 × 243 

106. We used the Brownian motion model with FST calculations of θ and M as starting 244 

parameters, and Metropolis-Hastings sampling and uniform prior distributions to estimate θ 245 

(range, 0-100; delta, 10) and M (range, 0-00; delta, 0). 246 

2.7 Testing synchronous changes of population sizes 247 

We tested the hypothesis that these two species had shifted their population sizes 248 

synchronously using ABCTOOLBOX software (Wegmann et al., 2010), based on sequence 249 

variation at the nuclear and chloroplast DNA loci. Because STUCTURE analysis of variation 250 

at 5 nuclear loci above revealed two clusters within D. floribunda, to reduce the effects of 251 

intra-specific substructure, we should analyze each cluster respectively. However, the sample 252 

sizes of HL and NZ are too low to do test of population expansion, thus we deleted HL and 253 

NZ. Finally, samples from 30 populations of D. yunnanensis and 24 populations of D. 254 

floribunda were used in this hypothesis test of synchronous changes. To assess the 255 

synchronization in population size change, we introduce a new parameter φ which is a scale 256 

factor used to alter the timing parameter of population expansion (Fig. 2b). The null 257 

hypothesis (model A) here was that these two species shifted their population sizes 258 

synchronously (φ = 1). When φ > 1, the population size of D. yunnanensis shifted earlier than 259 

the shift of D. floribunda (model B) and the reverse scenario (φ < 1) represented a later 260 

change of the population size of D. yunnanensis (model C). Therefore, our test here is a 261 



simplified version of the hierarchical approximate Bayesian computation (hABC) model for 262 

two species, which can allow species-specific parameters to vary independently (Chan et al., 263 

2014). The simulation and estimation procedures are similar to those in testing historical gene 264 

flow above.  265 

2.8 Species distribution modeling (SDM) 266 

To explore the niche differentiation and distributional changes of D. yunnanensis from D. 267 

floribunda, we used the MAXENT program (Phillips & Dudík, 2008) to conduct testing of the 268 

ecological niche models of either species and projected their potential distributions during 269 

three periods: the present, the last glacial maximum (LGM, 21 kya), the last interglacial (LIG, 270 

120-140 kya). Distribution information including 100 localities from D. yunnanensis and 170 271 

localities from D. floribunda was gleaned from our field records and the Chinese Virtual 272 

Herbarium (CVH, available at http://www.cvh.ac.cn/). We downloaded the environmental 273 

dataset of 19 climate variables with spatial resolutions of 30 arc seconds from the WorldClim 274 

database (http://www.worldclim.org, CCSM) as environmental layers. To reduce the 275 

correlation between environmental variables, we examined pairwise correlations among the 276 

19 variables and deleted variables with Pearson correlation coefficient (r) > 0.7. This reduced 277 

to 8 the number of environmental variables. These 8 variables (Table S2) were used to model 278 

the distributional ranges of each evolutionary lineage. We used 80% of the species records for 279 

training and 20% for testing the model in Maxent analysis. The accuracy of the model’s 280 

performance was evaluated based on the area under the receiver operating characteristic curve 281 

(AUC; Fielding & Bell, 1997) and the true skill statistic (TSS; Allouche et al., 2006) using an 282 

ensemble modelling approach in BIOMOD2, and graphics were drawn using DIVA-GIS7.5. 283 

3 Results 284 

3.1 Genetic variation of cpDNA sequences  285 

http://www.worldclim.org/


We successfully sequenced three cpDNA fragments (psbA-trnH, psbB-psbF, trnL-trnF) 286 

across all sampled individuals from 56 populations without missing sites. All indels were 287 

excluded from subsequent analyses because of difficulty in alignment. The total length of 288 

concatenated sequences was 1937 bps (psbA-trnH: 245 bps; psbB-psbF: 779 bps; trnL-trnF: 289 

913 bps) after deleting indels. We identified a total of 29 polymorphic sites and 30 haplotypes 290 

(Table S2). Twenty-one haplotypes (H10-H30) were present in D. yunnanensis and 11 291 

haplotypes (H1-H11) were present in D. floribunda.  Two haplotypes (H10, H11) were shared 292 

by D. yunnanensis and D. floribunda (Figs. 1, 2). The total genetic diversity is higher in D. 293 

yunnanensis (HT=0.908, HS=0.144) than in D. floribunda (HT=0.633, HS=0.113). The 294 

coefficient of genetic differentiation Nst is significantly larger than Gst for each of D. 295 

yunnanensis and D. floribunda, indicating significant spatial genetic structure within species 296 

(Table S3).  297 

The AMOVA analysis (Table S4) revealed that 52.29% of molecular variation was 298 

distributed between species (FCT = 0.52, P < 0.01). The intra-specific population fixation 299 

indexes (FST) were 0.92 and 0.83 (P < 0.01) for D. yunnanensis and D. floribunda, 300 

respectively. These high levels of differentiation indicated restricted movements of 301 

chloroplast genomes among intra-specific populations, and also between species. The 302 

genealogy of 30 haplotypes showed that most sampled individuals were grouped into two 303 

clades comprising 22 haplotypes (clades 1 & 2; Figs. 3, 4). The remaining 8 haplotypes 304 

formed a third, more weakly supported group (Grade 3; Fig. 4), which was sister to clade 2.  305 

However, the haplotype network gives what may be a clearer picture, with haplotypes H8-306 

H15 forming Grade 3, from which clades 1 and 2 are independently derived.  Clade 1 (H15-307 

H30) occurs only in D. yunnanensis, and comprises 277 out of 309 individuals of that species 308 

examined.  Likewise, Clade 2 (H1-H7) occurs only in D. floribunda, comprising 195 of 238 309 



individuals of D. floribunda examined (Figs. 3, 4). The remaining 32 and 43 individuals of 310 

the two species comprised the Grade 3 (Figs. 3, 4). The dating tree inferred by BEAST 311 

suggested that the first (crown) divergence among these haplotypes occurred 430 Kya years 312 

ago (Ma; 95% HPDI: 0.26-0.66), assuming a generation time of 10 years.  313 

3.2 Genetic diversity at nuclear loci 314 

The diploid sequences were aligned and phased for each of the five nuclear loci. No indels 315 

was found in any of the nrDNA loci examined. The total length of alignments was 2069 bps 316 

and the length of each locus ranged from 315 bps to 577 bps, with mean length 414 bps. The 317 

neutrality tests for each locus indicated no significant signal of selection (Table 2, S5).  318 

The average value of total nuclear nucleotide variation was slightly higher in D. floribunda 319 

(θw = 0.0062, π = 0.0057) than in D. yunnanensis (θw = 0.0054, π = 0.0055). The minimum 320 

number of recombination events (Rm) was from 2 to 3 in D. floribunda and from zero to 6 in 321 

D. yunnanensis. For D. yunnanensis, the mean Tajima’s D values (-0.0070) were negative, 322 

and the average Fu’s F* (1.08) and Li’s D* (0.80) were positive. For D. floribunda, the mean 323 

Tajima’s D value (-0.25) was negative, whereas the mean Fu’s F* (1.08) and Li’s D* (0.70) 324 

were positive.  325 

Networks for each of the five nuclear loci did not detect any polymorphic sites with a fixed 326 

difference between the species, and were some shared haplotypes found (Fig. S1). Significant 327 

population differentiations within and between species were found (Table 3). The 328 

STRUCTURE analysis revealed that the likely number of clusters across all sampled 329 

individuals was K = 2 (Fig. 5). The first cluster comprised individuals from 24 populations of 330 

D. floribunda, and the second cluster was composed of the remaining two populations of D. 331 

floribunda (NZ, HL) and all populations of D. yunnanensis.  332 

3.3 Inter-specific divergence and gene flow 333 



Based on both chloroplast and nuclear DNA sequences, model comparison by ABCtoolbox 334 

showed that two models bear BFs larger than 3.0, relative to the model 2 which assumed 335 

continual gene exchange between species from splitting to the present. The model 5 was the 336 

best fit to our data with the highest BF = 3.90 (Fig. 2a). The second best model is model 3, of 337 

which BF = 3.78 was slightly lower than model 5. Both models identified gene exchange after 338 

divergence and recent reduction or even cessation of inter-specific gene flow. However, 339 

model 5 assumed a period of primary isolation between D. yunnanensis and D. floribunda. 340 

The divergence time (Tdiv) between D. yunnanensis and D. floribunda was estimated by 341 

ABCtoolbox at 628 029 – 1 023 500 years ago (assuming 10 years per generation), consistent 342 

with the mid-Pleistocene climatic transition between 700 000 – 1 250 000 years ago. Taking 343 

into account the younger divergence estimate from BEAST (see above), this gives an age 344 

range of 430 – 1024 ka (thousand years ago) for the divergence event. The cessation of inter-345 

specific gene flow (T1) was dated at 48 – 6734 years ago, in the Holocene period. The 346 

estimated parameters indicated that the effective population size of D. yunnanensis was 347 

slightly larger (not significantly so) than that of D. floribunda (Table 4).  348 

Recent migration rates (m) by the BAYESASS showed that gene flow are low either from 349 

D. floribunda to D. yunnanensis (0.0267, 95% CI 0.005-0.043) or opposite direction (0.0026, 350 

95% CI 0.0005-0.042). This estimation indicated rare gene exchange between these two 351 

species, consistent with the ABCtoolbox test above.  352 

3.4 Asynchronous changes of population sizes 353 

The simulations in the hABC framework showed that model B (φ > 1, BF = 50595.4) was 354 

better supported than model A (φ = 1, BF = 1.0) and model C (φ < 1, BF = 3×10-134), 355 

indicating that D. yunnanensis and D. floribunda responded asynchronously to the Pleistocene 356 

climate changes (Fig. 2b). For both species, signals of population expansion were detected. 357 



For D. floribunda, the estimated timing of population expansion was 16.68 thousand years 358 

ago (ka; 95% HPDI: 1.35 - 394.29), during the post-glacial period. The estimated φ was 2.01 359 

(95% HPDI: 1.00 - 73.93), indicating that populations of D. yunnanensis expanded much 360 

earlier, at around 33.58 ka, before the LGM period but not earlier than the Last Interglacial 361 

(LIG) period.  362 

3.5 The distributional prediction of the two species during three periods 363 

AUC and TSS values indicated high levels of predictive performance for both species 364 

(Table 2). For D. floribunda, AUC and TSS values were 0.98 and 0.89, respectively. For D. 365 

yunnanensis were 0.95 and 0.84, respectively. The results of ecological niche modeling (Fig. 366 

6) showed that the similarities (D and I) between the climatic niches occupied by D. 367 

floribunda and D. yunnanensis were significantly lower than would be expected from random 368 

sampling. The projected distributions of these two species at present encompassed most of 369 

sampling locations. During the LGM period, the range of D. floribunda was narrow and 370 

scattered, relative to the current distribution, and it seemed to have been restricted mainly to 371 

the north and east of the Sichuan Basin. Conversely, D. yunnanensis was mainly distributed in 372 

the west and south of the basin as far south as Myanmar and Laos, but might have occupied 373 

some areas to the north of the basin. During the LIG period, these two species were likely 374 

distributed adjacently in the south and west of the basin.  375 

From the LGM to the present, the range of D. floribunda expanded but the range of D. 376 

yunnanensis seems to have either remained stable or reduced, following expansion during the 377 

LIG-LGM period.  Surprisingly, the distribution of D. floribunda appears to have integrally 378 

moved northwards by some distance during the LIG-LGM period, spanning the Sichuan 379 

Basin. Conversely, D. yunnanensis experienced in situ expansion in the southwest of the basin 380 

from the LIG to the present.  381 



 382 

4 Discussion  383 

It is important to examine the role of geographic barriers in the process of species 384 

divergence (Endler, 1977; Abbott et al., 2008; Avise, 2012; Grant & Grant, 2017). In the 385 

present study, we tested the effects of the Sichuan Basin on the divergence of two montane 386 

species, D. floribunda and D. yunnanensis. The analyses of chloroplast and nuclear sequence 387 

variation showed high differentiation between species and among intra-specific populations 388 

(Fig. 1; Tables 3, S3, S4), indicating limited dispersal ability for both species. The divergence 389 

event between species was dated during the mid-Pleistocene period, between 430 and 1,024 390 

Ka depending on the analysis used (Table 4; Fig. 4); hence they diverged long after the 391 

Sichuan Basin formed, which was during the Neogene. Species distribution modeling (SDM) 392 

suggested that the two taxa might have shared a range during the LIG, meaning that allopatry 393 

between the species formed, or was resumed, during the LIG and LGM, continuing until the 394 

present (Fig. 6). Consistent with this, reduction of interspecific gene flow after the LIG was 395 

supported by the ABC analysis (Fig. 2a; Table 4).   396 

 397 

4.1 Asynchronous responses to climate change 398 

Demographic analyses based on the chloroplast and nuclear sequence variation recovered 399 

signals of asynchronous population expansion (Fig. 2b). hABC and SDM analysis together 400 

(Figs. 2b, 6) suggested that D. floribunda expanded in the north of the Sichuan Basin at 401 

around 16.68 ka, i.e. after the LGM (~20 ka), although ENM suggests it could have occupied 402 

parts of that range during the LGM (Fig. 6). Such post-glacial range expansion is seen in 403 

many other plants from western China (Qiu et al., 2011; Liu et al., 2012). 404 



In contrast, the last detectable population expansion in D. yunnanensis was ~33580 years 405 

ago, a little before the LGM began, following which SDM suggested that it maintained a 406 

near-stable distribution in the south of the basin and the Hengduan Mountains (Fig. 6).  407 

Consistent with this, hABC analysis suggested that the expansion timing of D. floribunda was 408 

more recent than the expansion of D. yunnanensis, as shown in model B (φ > 1).  Furthermore, 409 

the greater number of haplotypes, and steps between them, in Clade 1 relative to Clade 2, 410 

likewise is consistent with expansion within the former (and hence D. yunnanensis) having 411 

occurred somewhat earlier.  Hence D. floribunda’s last major expansion was after the LGM, 412 

whereas that for D. yunnanensis was before it, indicating profoundly different and 413 

asynchronous demographic responses to Pleistocene climate changes. That the range of D. 414 

yunnanensis changed little after the LGM could be explained if D. yunnanensis responded to 415 

the climate changes of the time by shifting altitudes (Fig. 6). 416 

ENM suggests that the Sichuan Basin would have remained unavailable to these species 417 

through the LIG and LGM as well as the present, forming a constant barrier. Especially 418 

during the LGM, both species seemed distributed in the north of the basin, despite D. 419 

yunnanensis not occurring there at present, indicating a profound post-LGM range shift for 420 

that species.  Genetic similarity to D. yunnanensis in population HL and NZ of D. floribunda 421 

(Figs. 1, 5), might be the result of genetic swamping of D. yunnanensis by immigrant material 422 

of D. floribunda.   423 

The presence of the basin likely reduced the area available for contact between these 424 

species whether they were distributed on opposite sides of it, as during the present.  Without it, 425 

there could have been many more contact points towards the centre of the species’ shared 426 

range.  Hence the basin potentially restricts contact, gene flow and competition between these 427 

species, but thereby also might promote genetic swamping for isolated populations.  428 



Moreover, by reducing available routes from north to south, it might have restricted and 429 

delayed recolonization, perhaps enhancing asynchronous demographic responses. 430 

4.2 The effect of basin isolation on the divergence between D. floribunda and D. 431 

yunnanensis 432 

The estimated time of divergence between D. floribunda and D. yunnanensis (430 – 1,024 433 

ka) is consistent with the onset of the Naynayxungla Glaciation (0.5 – 0.8 Ma) in the Qinghai-434 

Tibet Plateau (Zheng & Rutter, 1998; Zhang et al., 2000; Shi 2002; Zheng et al., 2002), and 435 

also broadly consistent with the mid-Pleistocene climatic transition 0.7 – 1.25 Ma (Ciaranfi et 436 

al., 2005; Head et al., 2008). Between species divergence and the LIG, it is possible that gene 437 

flow between the species was intermittent or even continuous (Model 3; Fig. 2a; Table 4).  438 

However, gene flow during and after the LIG appears highly likely (Models 3 or 5; Figs. 2a, 6; 439 

Table 4). 440 

The nature of ABC analysis is to assign relative probabilities to different models, meaning 441 

that in this case less supported models cannot be rejected entirely based on this analysis alone.  442 

Despite this, evidence from haplotype relationships and STRUCTURE analysis provide 443 

further insight into gene flow between these species, and can be used to assess these models. 444 

The SDM analysis showed that these two species might have been co-distributed in the 445 

southwest of the Sichuan Basin before and during the LIG period (Fig. 6a), providing 446 

opportunities for hybridization and gene exchange, in which case that the Sichuan basin was 447 

less of a barrier to them then than it is now.  448 

Theoretical and simulated studies suggest that geographic isolation would contribute to 449 

speciation even in the presence of gene flow (Nosil, 2008; Abbott et al., 2013; Sousa & Hey, 450 

2013). Nevertheless, the biogeographic processes of speciation in most plants are still unclear. 451 

In the present study, we compared the models allowing primary or secondary contacts (Fig. 452 



2a). If geographic isolation contributed to the differentiation between D. floribunda and D. 453 

yunnanensis, then models that predict a complete cessation of gene flow for some period after 454 

speciation should perform better than those that predict ongoing gene flow following 455 

speciation; our analysis showed consistent results. Indeed, the best performing model was that 456 

predicting gene flow for a period, but ceasing some time before the present (Model 3, Fig. 2a). 457 

Models allowing recent gene flow (2 and 4) were not supported, which fits well with ENM 458 

analyses that indicate sympatry during the LIG, but not afterwards (Fig. 6). Genetic migration 459 

estimates by BAYESASS also indicated that current gene flow is rare detectable between two 460 

species.  461 

4.3 Range expansion and interspecific gene flow 462 

Taking the two species together, cpDNA haplotypes fall into three clear groups: two large, 463 

well-supported monophyletic clades, 1 and 2, comprise only material of D. yunnanensis and 464 

D. floribunda, respectively (Figs. 3, 4, S2). The remaining eight haplotypes comprise the 465 

Grade 3, whose relationships are poorly supported; this comprises four haplotypes from D. 466 

yunnanensis, two from D. floribunda, and two that are shared. Notably, all three of these 467 

haplotype groups exhibits a very distinctive geographical range: the Grade 3 comprises the 468 

four most northerly populations of D. yunnanensis plus neighbouring populations from the far 469 

west of and D. floribunda’s range, plus two southeastern outliers of D. floribunda. All 470 

remaining material from the centre of D. floribunda’s range has Clade 2 haplotypes (except 471 

for a few plants from population SNJ), whereas all remaining populations of D. yunnanensis 472 

have Clade 1 haplotypes (Fig. 1).   473 

Such a pattern, with admixture among early branching haplotypes, could suggest lineage 474 

sorting, but this alone cannot explain the strong geographical structuring of clades. However, 475 

the haplotype network (Fig. 3) shows a pattern where two particular haplotypes (H25 for 476 



Clade 2, and either H22 or H23 for Clade 1) were ancestral to a burst of cpDNA haplotype 477 

divergence. Effectively, these particular haplotypes diverged many daughter haplotypes, 478 

while those from the Grade 3 diverged few or none. This can be explained if haplotypes H25 479 

and H22/H23 were the only haplotypes present in material that was undergoing range 480 

expansion, which in turn implies a biogeographic barrier limiting the number of within-481 

species lineages that could move past it.  Therefore, the Sichuan Basin might have acted as a 482 

filter during these range shifts, causing founder or extreme leading edge effects, reducing 483 

within-species diversity. 484 

The situation in D. yunnanensis may be more complex, with a clade within Clade 1 485 

possibly indicating more than one wave of expansion. Nonetheless, the existence of the 486 

monophyletic, geographically well-defined clades within each species is highly consistent 487 

with episodes of range expansion, as indicated by our other analyses. Based on ENM, the 488 

expansion in D. yunnanensis might have been southward, following the LIG (Fig. 6), but the 489 

picture is less clear for D. floribunda. The Sichuan basin might have separated the Clade 2 490 

material of this species from Grade 3 material during the LGM (Fig. 6). 491 

What gene flow there appears to have been between these two species involves mainly, 492 

but not only, those populations that have the Grade 3 haplotypes. Haplotype H3 diverged 493 

from H4 around 600000 years ago (Figs. 3, 4), yet both are shared between the species (Figs. 494 

3, 4), indicating that at least one has jumped between species since that time. Otherwise, some 495 

haplotype admixture across the Grade 3 could be attributable to lineage sorting, especially H2, 496 

which occurs well away from other Grade 3 haplotypes in population SNJ of D. floribunda. 497 

With haplotype data alone, one could infer that material of both species to the NW of the 498 

Sichuan Basin was ancestral, that material to the west (floribunda) and south (yunnanensis) 499 



resulted from later waves of expansion, and that very limited gene flow had followed, 500 

involving the older populations.  501 

STRUCTURE (Fig. 5) reveals two populations (HL and NZ) that match D. floribunda for 502 

morphology and geographic range, but cluster with D. yunnanensis, probably indicating past 503 

hybridization between species (Muir & Schlotterer, 2005; Petit & Excoffier, 2009). The two 504 

populations are distant from each other, and NZ is well separated from D. yunnanensis by the 505 

basin, implying that it received floribunda germplasm either via a dispersal event across the 506 

basin, or a relict population left over from when it was distributed on the north side during the 507 

LGM (Fig. 6). Either way, the fact that no neighbouring populations are affected suggests that 508 

introgression occurred after the most recent episode of range expansion. This, plus the two 509 

shared haplotypes between the species, provides evidence for sporadic gene flow between 510 

them, and an indication that some of it may have been post-LGM. From this, ABC model 1 511 

(allopatric speciation with no subsequent gene flow) can be confidently rejected. Conversely, 512 

the rarity of interspecific gene flow according to our data also indicates that the current 513 

allopatric pattern surrounding the Sichuan Basin at least minimizes inter-specific gene flow 514 

(Fig. 2a; Table 4). Overall, both allopatric and other speciation modes are possible, such as 515 

ecological niche divergence, but complex-post-divergence history would obscure their signal. 516 

5 Conclusion 517 

We used a case study of two Dipelta species to test the hypothesis of the basin isolation 518 

on the species evolution. The ABC, hABC and SDM analyses all supported the post-519 

divergence formation of allopatric distribution and asynchronous demographic shifts. The 520 

extreme northward movements of D. floribunda from the south to the north of the Sichuan 521 

Basin after the LIG, causing the formation of allopatric pattern of these two species, occurred 522 

much later than the species divergence event. Subsequently, these two species responded to 523 



the Pleistocene climate changes asynchronously because the Sichuan Basin increased the 524 

difficulty in colonizing suitable habitats for D. floribunda. CpDNA haplotype patterns within 525 

both species are consistent with independent demographic expansions within each of them, 526 

whereas cpDNA and nuclear evidence reveal occasional instances of gene flow between them. 527 

Species-specific biological attributes have been repeatedly indicated to be the main 528 

determinants of diversification and demographic patterns (Smith et al., 2014; Papadopoulou 529 

& Knowles, 2016; Prates et al., 2016). However, our results highlight that complex 530 

topography should be considered in understanding the distributional pattern and asynchronous 531 

responses of closely related species.  532 
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Tables  699 
Table 1 The information of sampling locations of Dipelta floribunda and D. yunnanensis. The 700 

numbers of individuals used for chloroplast and nuclear DNA sequencing are represented by N1 and 701 

N2, respectively. N represents the number of chloroplast haplotypes identified in each population.  702 
Population Sample location (all in China) Longitude Latitude Altitude N1 N2 Haplotypes (N) 

Dipelta yunnanensis 

BS Tianlinxian GX 106°13.5′ 24°17.833′ 1292 14 5 H24(14) 

CH Wuchuanxian GZ 108°07′ 28°40.783′ 1108 5 5 H24(5) 

LLX Longlixian GZ 106°54.667′ 27°18.733′ 1350 8 5 H27(2) H25(6) 

ML Mulixian SC 101°16.7′ 27°55.933′ 2269 13 5 H29(13) 

YXX Yuexixian SC 102°27.083′ 28°45.35′ 2588 9 2 H28(9) 

HY Hongyaxian SC 102°51.517′ 29°29.3′ 2100 12 6 H30(9) H29(3) 

ZJ Zhaojuexian SC 102°33.65′ 27°49.867′ 2824 2 2 H24(2) 

LJS Pugexian SC 102°25.933′ 27°19.25′ 3050 8 6 H29(8) 

HD Ludingxian SC 102°02′ 29°43.95′ 2310 15 3 H29(15) 

YE Emeishan SC 103°28.933′ 29°36.217′ 2433 10 2 H30(10) 

WC Wenchuanxian SC 103°35.167′ 31°36.817′ 2337 7 6 H10(2) H9(1) H8(4) 

DJY Dujiangyan SC 103°33′ 31°03′ 1986 6 1 H11(6) 

BX Baoxingxian SC 102°50.383′ 30°36.567′ 2100 4 4 H15(3) H14(1) 

DY Xilingxueshan SC 103°09′ 30°40.2′ 2250 15 6 H15(15) 

CWL Chayuxian XZ 98°27.8′ 28°28.583′ 1920 16 5 H22(16) 

JZ Jiaozixueshan YN 102°53.717′ 26°05′ 2730 12 6 H18(12) 

YL Yulongxueshan YN 100°15.967′ 27°02′ 2800 8 3 H29(8) 

JZS Jizushan YN 100°22.05′ 25°28.783′ 2800 16 6 H23(7) H16(5) H17(4) 

HTX Hutiaoxia YN 99°57.4′ 27°21.3′ 2737 15 4 H29(15) 

BR Wengshuixiang YN 99°42.244′ 28°00′ 3105 11 5 H29(5)H21(6) 

BZL Benzilan YN 99°09′ 28°17.29′ 3131 8 3 H21(5) H19(3) 

LP Lanpingxian YN 99°24.361′ 26°27.682′ 2650 13 5 H23(13) 

BD Yezhizhen YN 99°04′ 27°40.459′ 2754 8 0 H21(1) H20(7) 

LD Langduxiang YN 99°41.983′ 27°49.983′ 3282 7 4 H29(7) 

MS Meilixueshan YN 98°51.24′ 28°28.73′ 2875 9 2 H21(9) 

MD Gongshanxian YN 98°19.383′ 28°10.35′ 2390 14 6 H22(14) 

YG Huapingxian YN 101°25.483′ 26°37.95′ 1320 11 6 H29(11) 

YM Yimenxian YN 102°16.396′ 24°61.886′ 1600 7 2 H23(7) 

YMX Yanmenxiang YN 98°53.569′ 28°04′ 2910 14 4 H21(14) 

JF Jinfoshan CQ 107°11.017′ 28°58.7′ 1350 12 6 H26(2) H24(10) 

D. floribunda 

LX 

       

Lixian GS 105°02′ 33°41.567′ 1563 8 5 H3(8) 

ZKQ Tielouxiangzhaikeqiao GS 104°27.833′ 32°54.4′ 1743 13 4 H3(13) 

TLX Tielouxiangcaoheba GS 104°27.833′ 32°54.4′ 1650 4 4 H9(4) 

BKZ Bikouzhen GS 105°14.75′ 32°44.983′ 1659 20 1 H3(20) 

DBZ Danbaozhen GS 104°44.814′ 32°51.099′ 1208 13 5 H9(6) H8(1) H3(6) 

ZQX Zhouquxian GS 105°23.449′ 33°34.182′ 1928 17 5 H3(17) 



DCX Tianshuitaohuagou GS 105°43.25′ 34°34.917′ 1169 4 1 H3(4) 

DC Tianshuidangchuan GS 106°08′ 34°20.15′ 1596 4 3 H3(2) H1(1)H7(1) 

CX Chengxian GS 105°49.811′ 33°43.322′ 1460 8 3 H3(8) 

HX Huixian GS 105°45.365′ 34°03′ 1413 7 1 H3(7) 

XYS Guchengxian HB 111°18.783′ 32°07′ 611 1 1 H4(1) 

YRZ Shenlongjiayangrizhen HB 110°50′ 31°45.4′ 864 5 5 H3(5) 

SNJ Shenlongjiasongbaizhen HB 110°38.617′ 31°45.35′ 978 7 6 H3(5) H12(2) 

JS Jishou HN 109°35.433′ 28°19.917′ 584 7 5 H13(7) 

FH Fenghuangxian HN 109°30.15′ 28°15.6′ 824 12 5 H13(12) 

XXX Xixiangxian SX 107°32.033′ 32°42.567′ 1299 12 6 H3(10)H6(1)H5(1) 

NZ Nanzhengxian SX 106°57.45′ 32°45.1′ 1050 13 6 H3(13) 

XY Xunyangxian SX 109°34.667′ 32°58.617′ 1290 12 2 H7(12) 

YX Yangxian SX 107°40.917′ 33°26.45′ 830 15 5 H3(15) 

PL Pinglixian SX 109°14.917′ 32°05′ 1201 9 3 H7(9) 

BJ Baojishi SX 107°13.967′ 34°21.867′ 867 2 2 H7(2) 

NS Ningshanxian SX 108°18.567′ 33°18.733′ 882 13 4 H3(11) H2(2) 

GY Guangyuanxibeixiang SC 105°44.083′ 32°33.817′ 800 13 6 H3(13) 

WCX Wangcangxain SC 106°29.55′ 32°32.5′ 690 8 5 H3(8) 

HL Huanglong SC 103°49.25′ 32°45.05′ 3301 5 1 H9(4) H8(1) 

PW Pingwuxian SC 104°31.2′ 32°37.6′ 1407 6 4 H9(6) 

Abbreviations: GX, Guangxi; GZ, Guizhou; SC, Sichuan; XZ, Xizang; YN, Yunnan; CQ, Chongqing; 703 

GS, Gansu; HN, Hunan; HB, Hubei; SX, Shaanxi.  704 



Table 2 Nucleotide variation, nucleotide diversity, haplotype diversity and neutrality tests at five nuclear loci for Dipelta yunnanensis and D. floribunda. 705 

Species Locus 
Total 

Haplotype 

diversity 
Recombination Neutrality tests 

N L S(singl). θwt πt Nh He Rm 4Ner D D* F* H 

D. yunnanensis 

23311 250 343 14(1) 0.00669 0.00681 16 0.7496 2 3.00 0.04088 0.85712 0.65612 -3.53157 

38541 250 416 13(2) 0.00473 0.00443 18 0.821 3 18.00 -0.15088 0.70147 0.45926 -0.0808 

41398 250 315 13(0) 0.00677 0.00587 15 0.800 1 2.00 -0.61670 0.92647 0.39977 0.8303 

45367 250 577 23(0) 0.00654 0.00798 31 0.911 6 8.00 0.45828 1.86375** 1.55371 1.7741 

56546 250 418 6(0) 0.00235 0.00263 7 0.677 0 0.00 0.23349 1.04717 0.91315 0.4662 

Average 250   0.005472 0.005544     -0.006986 1.079196 0.796402 -0.108354 

D. floribunda 

23311 196 343 15(0) 0.00747 0.00722 19 0.869 2 6.00 -0.24294 1.60808* 1.07781 -1.2089 

38541 196 416 10(0) 0.00411 0.00213 13 0.424 2 14.00 -1.12587 1.33137 0.52624 -0.9970 

41398 196 315 18(3) 0.00976 0.00814 20 0.813 2 9.00 -0.43758 0.04962 -0.16831 1.2018 

45367 196 577 14(1) 0.00415 0.00440 15 0.800 2 11.00 0.15406 0.89179 0.73558 1.6819 

56546 196 418 14(0) 0.00572 0.00669 13 0.709 3 8.00 0.42674 1.52684 1.33319 1.0822 

Average 196   0.006242 0.005716     -0.245118 1.08154 0.700902 0.352 

Abbreviations: N, sample size; L, length in base pairs; S, number of segregating sites; π, nucleotide diversity; θ, Watterson's parameter; Rm, the minimum 706 

number of recombinant events; Nh, number of haplotypes; He, Nei's haplotypic diversity; D, Tajima’s D statistic; H, Fay and Wu’s H; D*, F*, Fu and Li’s D*, 707 

F* test; Significant level: *0.01≤ P < 0.05; ** 0.001 ≤ P < 0.01; ***P < 0.001.708 
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 709 

Table 3 Genetic differentiation of the five nuclear loci for Dipelta yunnanensis and D. 710 

floribunda. 711 

Species 
Locus 

Average 
23311 38541 41398 45367 56546 

DY 0.39081*** 0.34968*** 0.53696*** 0.36509*** 0.59930*** 0.448368*** 

DF 0.40922*** 0.47459*** 0.29449*** 0.54062*** 0.43416*** 0.430616*** 

DY vs. 

DF 
0.68504*** 0.70627*** 0.61164*** 0.57469*** 0.67537*** 

0.650602*** 

Abbreviations: DY indicates Dipelta yunnanensis, DF indicates Dipelta floribunda. 712 

Significant level: * P < 0.05, **P < 0.01 and ***P < 0.001. 713 

 714 

Table 4 Estimates of the posterior distributions of all parameters for the best model (Model 5).  715 

Model Parameter Na Ny Nf T1 T2 T Myf Mfy 

ancient SC 
Mode 24484 29492  21295  48.63  19155.79  62802.94  

1.26E-

07 

2.06E-

06 

HPD 95% Lower 3810 7655  5527  10.00  45.40  5463.87  
1.00E-

09 

1.45E-

09 

HPD 95% Upper 217916 150193  113621  29831.84  557557.90  999700.71  
7.39E-

03 

1.56E-

02 

PC 
Mode 24484 24484  16876  6734.11  - 102350.51  

1.32E-

05 

3.85E-

07 

HPD 95% Lower 3637 8402  5790  14.51  - 5463.49  
1.45E-

09 

1.20E-

09 

HPD 95% Upper 207994 136842  103533  52127.87  - 999746.75  
1.56E-

02 

1.56E-

02 

 716 

717 
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 718 

Figure legends 719 

Fig. 1 Geographical distribution of 30 cpDNA haplotypes identified from the two Dipelta 720 

species. The pie charts reflect the frequency of haplotype occurrence in each population. 721 

Haplotype colours were shown in legend. The maps were made using DIVA-GIS 7.5 722 

(www.diva-gis.org).  723 

 724 

Fig. 2 Schematic diagram of five models designed for testing the most likely speciation 725 

patterns (a) and synchronous changes of population sizes (b) with Approximate Bayesian 726 

Computation (ABC). Bayes-Factors (BFs) are shown in top left corner of each panel. The 727 

black arrows represent migration rate between the two Dipelta species, T indicate divergence 728 

time of the two Dipelta species, T1 in model 3 indicate a time point that there is no gene flow 729 

after this time point, T1 in model 4 denote a time point that there is no gene flow before this 730 

time point, T2 and T1 in model 5 indicate two time point that there is gene flow between 731 

these two time point.  732 

Abbreviations are as follows: DY, D. yunnanensis; DF, D. floribunda; Na, effective 733 

population size of ancestral species; migration between diverging lineages (Mfy, Myf); Ndy 734 

and Ndf, long-term equilibrium effective population size of D. yunnanensis and D. floribunda, 735 

respectively. 736 

 737 

Fig. 3 Median-joining network of cpDNA haplotypes inferred by NETWORK. 738 

 739 

Fig. 4 Phylogenetic relationships among cpDNA haplotypes and divergence time estimation 740 

generated from BEAST. Numbers above the branches were posterior probabilities (PP) for 741 

main clades. A-E indicate main node ages. 742 

 743 

Fig. 5 Population cluster analysis with plot of the delta K (ΔK) (a) and the Ln P(D) ± SD (b) 744 

using STRUCTURE (K=2, 3 and 4) based on five low-copy nuclear gene dataset (c). 745 

 746 

Fig. 6 Ecological niche modelling predicted distributional range for each of the two Dipelta 747 

species at three periods: (a) The Last Interglacial (LIG), (b) The Last Glacial Maximum 748 

(LGM) (c) The Present time;. (d) The background tests.  749 
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