
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acquisition of visual priors and induced hallucinations in chronic
schizophrenia

Citation for published version:
Valton, V, Karvelis, P, Richards, K, Seitz, AR, Lawrie, S & Series, P 2019, 'Acquisition of visual priors and
induced hallucinations in chronic schizophrenia', Brain, vol. 142, no. 8, awz171, pp. 2523–2537.
https://doi.org/10.1093/brain/awz171

Digital Object Identifier (DOI):
10.1093/brain/awz171

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Brain

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 03. Jul. 2020

https://www.research.ed.ac.uk/portal/en/persons/vincent-valton(a74d5c44-9a21-4cfe-a5d7-4a7dfa4aa403).html
https://www.research.ed.ac.uk/portal/en/persons/stephen-lawrie(841bf308-4c3e-4999-81f0-8f610502291e).html
https://www.research.ed.ac.uk/portal/en/persons/peggy-series(fde737e9-3815-4539-9a22-1666d18eb4c7).html
https://www.research.ed.ac.uk/portal/en/publications/acquisition-of-visual-priors-and-induced-hallucinations-in-chronic-schizophrenia(c371d5c1-a7e6-41bd-83b7-270d2227b51e).html
https://www.research.ed.ac.uk/portal/en/publications/acquisition-of-visual-priors-and-induced-hallucinations-in-chronic-schizophrenia(c371d5c1-a7e6-41bd-83b7-270d2227b51e).html
https://doi.org/10.1093/brain/awz171
https://doi.org/10.1093/brain/awz171
https://www.research.ed.ac.uk/portal/en/publications/acquisition-of-visual-priors-and-induced-hallucinations-in-chronic-schizophrenia(c371d5c1-a7e6-41bd-83b7-270d2227b51e).html


1	  
	  
 

 
Acquisition of visual priors and induced hallucinations  

in chronic schizophrenia 
 
 

Vincent Valton1,2,5,¶, Povilas Karvelis1,¶, Katie L. Richards2,  Aaron R. Seitz3,  
Stephen M. Lawrie2,4, Peggy Seriès1,* 

 
 
 

1 Institute for Adaptive and Neural Computation, University of Edinburgh, UK 
2 Department of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, UK 

3 Department of Psychology, University of California Riverside, CA, USA 
4Patrick Wild Centre, University of Edinburgh, Edinburgh, UK 

5Institute of Cognitive Neuroscience, University College London, London, UK 

 
 

*Correspondence should be addressed to: pseries@inf.ed.ac.uk 
 

¶ These authors contributed equally to this work 
 

 
Running Title: “Learning and Bayesian inference in schizophrenia” 

 
  



2	  
	  
 

 
Abstract 

 
Prominent theories suggest that symptoms of schizophrenia stem from learning deficiencies 

resulting in distorted internal models of the world. To further test these theories, we here use 

a visual statistical learning task known to induce rapid implicit learning of the stimulus 

statistics (Chalk et al., 2010). In this task, participants are presented with a field of coherently 

moving dots and need to report the presented direction of the dots (estimation task) and 

whether they saw any dots or not (detection task). Two of the directions were more 

frequently presented than the others. In controls, the implicit acquisition of the stimuli 

statistics influences their perception in two ways: 1- motion directions are perceived as being 

more similar to the most frequently presented directions than they really are (estimation 

biases); 2- in the absence of stimuli, participants sometimes report perceiving the most 

frequently presented directions (a form of hallucinations). Such behaviour is consistent with 

probabilistic inference, i.e. combining learnt perceptual priors with sensory evidence. We 

investigated whether patients with chronic, stable, treated schizophrenia (n=20) differ from 

controls (n=23) in the acquisition of the perceptual priors and/or their influence on 

perception. We found that, although patients were slower than controls, they showed 

comparable acquisition of perceptual priors, correctly approximating the stimulus statistics. 

This suggests that patients have no statistical learning deficits in our task. This may reflect 

our patients’ relative wellbeing on antipsychotic medication. Intriguingly, however, patients 

experienced significantly fewer hallucinations of the most frequently presented directions 

than controls when the stimulus was absent or when it was very weak (prior-based lapse 

estimations). This suggests that prior expectations had less influence on patients’ perception 

than on controls when stimuli were absent or below perceptual threshold.  

Keywords: Schizophrenia, Inference, Statistical Learning, Hallucinations 
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Introduction 
 

An increasingly popular idea in neuroscience is that perception and decision-making can be 

well described in terms of probabilistic inference processes (Knill and Pouget, 2004; Fiser et al., 

2010; Friston, 2010; 2012). For example, statistical and perceptual learning studies show that 

the perceptual systems continuously extract and learn statistical regularities of the environment 

(for a review in visual perception, see e.g. Seriès and Seitz, 2013). This learning results in the 

construction of internal models of the environment, or expectations, which are used 

automatically and unconsciously to predict and disambiguate perceptual inputs in situations of 

uncertainty and to guide decisions.   

 

In this context, it has been proposed that psychiatric disorders in general, and schizophrenia in 

particular, might be explained in terms of deficits in probabilistic inference (Friston, 2005; Frith 

and Friston, 2012; Adams et al., 2013; Jardri and Denève, 2013, for reviews see: Friston et al. 

2016; Valton et al., 2017; Sterzer et al 2018). Impaired statistical learning and/or inference 

deficits would lead to distorted internal models of the world, which could then explain the 

existence of abnormal beliefs or delusions experienced by patients with schizophrenia, as well 

as their hallucinations.  

 

Two different lines of research support this general idea. First, a number of studies using 

explicit probabilistic learning tasks, such as the “beads task” report that patients with 

schizophrenia show a deficit in integrating probabilistic information resulting in faster 

responses than control subjects, an effect called the ‘jumping-to-conclusions’ bias (Huq et al., 

1988; Speechley et al., 2010; Averbeck et al., 2011; Evans et al., 2012). Interestingly, patients 

with stronger delusional symptoms fare worse at the task than those who do not (Huq et al., 

1988; Speechley et al., 2010), and control subjects displaying delusional ideation also show 

similar impairments at the task (Freeman et al., 2008), suggesting a link between delusions and 

probabilistic inference (Garety et al., 2013; Garety and Freeman 2013). Second, patients with 

schizophrenia do not experience visual illusions in the same way as controls do. For example, 

patients are less susceptible to certain visual illusions such as the hollow-mask illusion (Dima et 

al., 2009; 2010;  Keane et al., 2013; for review see: Silverstein and Keane 2011a; 2011b; 

Notredame et al., 2014). This suggests that they either have different implicit expectations about 

the environment (i.e. they would not have such a strong expectation that faces are convex) or 
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that these expectations do not affect patients’ perception in the same way as observed in 

controls. 

 

A few studies have recently tried to test the impaired Bayesian inference hypothesis more 

directly, but the findings are mixed. Teufel et al. (2015) found that early psychosis and 

schizotypal traits were associated with an increased influence of prior knowledge when 

disambiguating two-tone images. Powers et al. (2017) also reported an increased perceptual 

prior influence in experimentally-induced hallucinations in both patients and controls with 

higher propensity to hallucinatory experiences. Interestingly, however, a series of studies by 

Schmack et al. (2013; 2015; 2017) found an increased influence of cognitive priors on the 

perception of bi-stable stimuli in participants with schizotypal traits and clinical schizophrenia, 

but showed on the contrary a decreased influence of perceptual priors, suggesting that the level 

at which the prior operates in the inference hierarchy might lead to differential effects. Finally, 

Jardri et al. (2017) investigated probabilistic reasoning and found schizophrenia patients to be 

over-counting sensory evidence and under-weighting priors, which they described using a so-

called ‘circular inference’ model. Together these findings paint a complicated picture of 

Bayesian inference in schizophrenia where priors can have either increased or decreased 

influence depending on the task, the stimulus, the type of priors involved (e.g. low-level 

perceptual prior vs. high-level cognitive prior) or depend on particular symptom characteristics 

(e.g. whether patients experience hallucinations vs. delusions, Stephan et al., 2016; Sterzer et 

al., 2018).  

 

A general limitation of these studies however, is that it is typically unclear to what extent the 

effects are driven by deficits in statistical learning (i.e. forming and updating the priors) or 

impaired inference per se. Moreover, past studies usually only qualitatively compared the 

behavioural results they collected with the proposed Bayesian theories. 

 

To address these issues, we simultaneously investigated the implicit acquisition of perceptual 

priors, how these priors are integrated with sensory information and the influence they have on 

perception when stimulus is absent (i.e. experimentally induced hallucinations) in patients with 

schizophrenia. We used a previously developed statistical learning task (Chalk et al., 2010; 

Gekas et al., 2013; Karvelis et al., 2018) that is known to induce the rapid acquisition of the 

statistics of motion stimuli. In this task, participants need to report the direction of motion of a 

cloud of dots (estimation task) and whether they have perceived the dots or not (detection task; 
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on some trials no stimulus is presented). Unbeknownst to the participants, two directions of 

motion are more frequently presented than others. Participants implicitly and unconsciously 

learn those stimulus statistics. This learning influences perception such that: 1) motion stimuli 

are perceived as being more similar to the most frequently presented stimuli than they really are 

(i.e. estimation biases); 2) participants sometimes report perceiving the most frequently 

presented stimuli in absence of visual stimuli (a form of hallucination). In previous work (Chalk 

et al (2010); Karvelis et al (2018)), we showed that Bayesian modelling could be applied to 

individual participants’ performances to quantitatively monitor their acquisition and use of the 

statistics of the stimuli (perceptual prior). We apply the same techniques in the current study to 

compare the perceptual priors acquired by patients with schizophrenia to those of controls.   

 

Materials & Methods 
 

Participants 
 

A sample of 25 (22 male) individuals with psychosis (diagnosed with either DSM-IV 

schizophrenia, n = 21; or schizoaffective disorder, n = 4), and 23 (13 male) controls with normal 

or corrected-to-normal vision were recruited. Patients were recruited from inpatient and 

outpatient adult mental health services across NHS Lothian. Diagnoses were determined using 

the Structured Clinical Interview for DSM-IV (SCID-I; First, Gibbons, Spitzer, & Williams, 

2002). None of the control participants met DSM-IV criteria for a psychotic disorder, bipolar 

disorder, or schizotypal or schizoid personality disorder. Symptom severity was measured with 

the Positive and Negative Syndrome Scale (PANSS) (Kay, Fiszbein, & Opler, 1987), current IQ 

with the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) and pre-morbid 

IQ with the National Adult Reading Test (NART; Nelson, & Willison, 1991). All patients were 

medicated (85% on second generation anti-psychotics, 50% of these were also on mood 

stabilisers). The study was conducted in accordance with the national and international ethical 

standards for human experimentation and research (Declaration of Helsinki, 2013; Good 

Clinical Practice, 2014). All participants provided fully informed written consent. The study 

received ethical approval from the South East Scotland Research Ethics Committee 01 and NHS 

Lothian Research & Development. Following previous studies using the same paradigm (Chalk 

et al. 2010), we determined that 20 participants per group would give us ≥80% power to detect 

the correct acquisition of the prior and significance between groups (see power calculations in 
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supplemental material). We thus aimed to recruit between 20-25 participant per group to 

account for possible exclusions due to poor performance at the task. 

Twenty patients and twenty-three controls successfully performed the task (see below and 

Supplementary Figure 1 for exclusion criteria based on performance). The demographic details 

of the included participants are shown in Table 1.  It is of note that the patients all had relatively 

low levels of symptoms on the PANSS, but ongoing functional impairment. Most were assigned 

a PANSS positive rating of 1 (absent), 2 (minimal/questionable) or 3 (mild) for delusions, 

hallucinatory behaviour, suspiciousness/persecution, and unusual thought content, suggesting 

that they were clinically stabilised and relatively homogenous in their current symptoms (see 

detailed symptoms demographics Table S1 and Suppl. Fig. S6). 

 

Apparatus, Stimuli & Procedure 

 

The setup for this study was similar to that used by Chalk et al. (2010). Motion stimuli 

consisted of a field of dots with a density of 2 dots/deg2, moving coherently (100%) at a speed 

of 9°/s.  

Each trial was composed of two tasks arranged as follows (Fig. 1A): First, participants were 

presented with a fixation point (0.5° diameter) for 400 ms. With the fixation point still on-

screen, the motion stimulus (field of dots) was displayed along with a red bar extending from 

this fixation point. During the presentation of the field of dots, participants were required to 

estimate the direction of motion by aligning the red bar into the perceived direction of motion 

(Estimation task). The angle of this bar was randomized on each trial and participants were 

instructed to focus their gaze on the fixation point throughout the estimation task. The display 

then cleared when either the participant clicked the mouse to validate their choice (estimation) 

or 3000 ms had elapsed. After the estimation, a 200 ms delay was enforced before the detection 

screen was presented. The new screen was divided in two equal areas reading ‘Dots’ and ‘No 

Dots’, giving the participants a two-alternative forced choice (2-AFC). Participants were 

required to move the cursor to the right or the left to indicate whether they detected dots or not, 

and click to validate their choice (Detection task). The cursor then flashed green or red for 

correct or incorrect responses respectively. No time-outs were enforced during the detection 

task. Finally, the screen was cleared for 400 ms before a new trial began. Every 20 trials, 

participants were presented with feedback on their estimation performance in terms of average 

estimation error (in degrees). 
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Design 

 

Participants completed 567 trials (i.e. lasting approximately 40 minutes vs. 850 trials lasting 60 

minutes in Chalk et al. 2010) with opportunities for breaks every 170 trials to prevent fatigue. 

Stimuli were presented at four different randomly interleaved contrast levels. The highest 

contrast level was 1.7 cd/m2 above the 5.2 cd/m2 background. There were 167 trials at zero 

contrast (no stimulus condition) and 67 trials at high contrast. Contrasts of other stimuli were 

determined using a descending 4/1 and an ascending 2/1 staircase on detection performance. 

Throughout the experiment, there were 90 trials with the 2/1 staircase and 243 trials with the 4/1 

staircase. The use of the 2/1 and 4/1 contrast staircases ensures that individual detection 

performances converge to contrast thresholds corresponding to 70.4% and 84.1% correct 

responses respectively (Levitt, 1971; Garcia-Perez, 1998), thus being comparable between 

participants. From the point of view of the observer, this meant that stimulus contrasts 

converged and remained around the limit of visibility, hence creating a lot of uncertainty in the 

stimulus (its presence and its direction). We had more trials in the descending staircase so as to 

facilitate acquisition of the prior.  On a given trial, the direction of motion for the two staircased 

contrast levels could either be 0°, ±16°, ±32°, ±48°, and ±64° with respect to a central reference 

angle. This central reference angle was randomised for each participant.  

 

Unbeknownst to participants, we manipulated their expectations about which motion directions 

were most likely to occur by presenting stimuli moving at ±32° more frequently (resulting in a 

bimodal distribution, Fig. 1B). At the highest contrast level, 50% of trials were at ±32° and 50% 

remaining trials at random directions (i.e. not just the predetermined directions). 

 

Behavioural data analysis 

 

Performance on high contrast trials was used as an indicator of whether participants were 

performing the task adequately. Detection accuracy of at least 70% and estimation root mean 

square error (RMSE) of less than 30 degrees were the minimum criteria. All 23 controls met 

these criteria, while 5 out of 25 patients did not meet at least one of the criteria and thus were 

excluded from further data analysis (Supplementary Fig. 1). 

 

The main data analysis was performed on 2/1 and 4/1 staircased contrast levels and only on 

confirmed trials (i.e. trials where participants validated their choice with a click within 3000 ms 
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in the estimation task and reported seeing dots in the subsequent detection task). The first 100 

trials were excluded from the analysis to allow the staircases to converge to stable contrast 

levels (Supplementary Fig. 2). After removing these trials, the luminance levels achieved by 

the 2/1 and 4/1 staircases were found to be overlapping (Supplementary Fig. 2), thus they were 

combined for all further analysis. Finally, since the distribution of presented directions was 

symmetrical around a central reference angle, the behavioural measures at equal absolute 

distance from the reference angle were averaged together.  

 

In the estimation task, the variance of participants' direction estimates was large. As in previous 

work (Chalk et al., 2010; Gekas et al., 2013), we hypothesized that this variability resulted from 

a proportion of estimations being made randomly. To account for this, we fitted the individual 

estimation responses for each stimulus direction to the following distribution: 
 

1− 𝛼 ∙ 𝑉 𝜇,𝜎 +   𝛼 2𝜋                               (1) 
 
where V(µ, σ) is the circular normal (i.e. von Mises; Mardia, 1972) distribution with mean µ and 

width σ and α corresponds to the proportion of lapse estimations (i.e. seemingly random 

responses). The estimation bias is then defined as the difference between the estimated mean of 

this circular normal distribution µ and the true motion direction, while the estimation variability 

corresponds to the standard deviation σ of that distribution. The lapse rate α enables us to 

capture the proportion of estimation responses that appear random, unrelated to the true motion 

direction. As a first approximation, these are here parameterised as being uniformly distributed 

between ±180◦.  
 
In trials where no stimulus was presented, we reconstructed the probability distributions of 

participants' responses over motion directions using Kernel Density Estimation (Silverman, 

1986; Wand, 1994). The KDE is a non-parametric method used to estimate the probability 

density function from discrete measures of a continuous variable. To do so, a kernel that defines 

the form of the probability density function (e.g. von Mises kernel) was placed at each of the 

observed measurement. Then, all the individual kernels were summed to create the probability 

density function of the random variable (motion direction).  

 

To assess the effects of the acquired expectations in both groups and to simultaneously 

determine whether patients differed from controls, we performed 2-way mixed ANOVA with 

motion direction as a within-subjects factor and group as a between-subjects factor. We ran 



9	  
	  
 

Bonferroni-corrected pairwise comparisons to determine which motion directions were driving 

the effects. To control for possible deviations from normality, we also ran non-parametric tests 

to confirm the parametric 2-way ANOVA findings (see SI). All analysis was done using SPSS 

version 24. To determine the strength of the evidence for the null hypothesis (i.e. finding no 

group difference vs. finding evidence that the groups are similar) we also report Bayes factors 

using the Bayesian statistical software package JASP. We report Kendall correlation 

coefficients whenever the data is ordinal with rank ties and/or strong outliers. 

 

 

Modelling 
To test for individual variability in the underlying perceptual inference and to obtain more direct 

measurements of the acquired expectations, we fitted a range of models to our data. The first 

class of models assumed that the biases were of a perceptual nature, as conceived in the 

Bayesian framework: sensory information is combined with a learned prior of the stimulus 

statistics in a probabilistic way. The simple ‘BAYES’ model assumed that the likelihood 

precision was constrained to be the same across all presented motion directions (corresponding 

to the hypothesis that there was no learning in the likelihood due to the distribution of the 

motion directions). An additional variant of the ‘BAYES’ model tested the hypothesis that the 

lapse estimations were not uniformly distributed but instead were sampled from the acquired 

prior expectations. We call these responses ‘prior-based lapses’ (Fig. 4). This model was termed 

‘BAYES_P’ and was otherwise equivalent to ‘BAYES’.  

Another class of models assumed that task performance could be explained by response 

strategies that do not involve Bayesian integration (heuristic models). According to these 

models, on any given trial participants responses were based solely on either the prior 

expectations or sensory information. We considered four variations of response strategy models 

(see Methods and Supplementary information for details). Below we present the Bayesian 

models as they provided a better explanation to the data (see Figure 5, model comparison).  

 

Bayesian model 

Following the Bayesian framework, we assumed that participants combined sensory 

information (likelihood) with their expectations about the motion direction (prior) on every trial. 

The sensory likelihood of the observed motion direction (θsensory) was parameterised as a von 

Mises circular normal distribution with variance σsensory: 
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plikelihood(θsensory|θ) = V (θ, σsensory)                                        (2) 

                              

The mean of this distribution depended on the actual presented motion direction (θactual), but to 

account for trial-to-trial variability it was sampled from another von Mises distribution centred 

on θactual with variance σsensory (i.e. V (θactual, σsensory)). This is necessary because on any given 

trial the observer does not have direct access to the true motion direction. Therefore, the 

likelihood cannot be centred on the true motion direction, but instead has to be centred on a 

noisy estimate of it (Stocker & Simoncelli, 2006; Kording et al, 2007).  

 

We then hypothesized that participants acquire an approximation of the ‘true’ prior from 

experience (pprior), representing the participants’ expectations of motion directions. The acquired 

priors were parameterized as the sum of two von Mises circular normal distributions, centred on 

motion directions θexpected and −θexpected, each with variance σexpected: 

 

pprior(θ) = 
!
!
  [V (−θexpected, σexpected) + V (θexpected, σexpected)]                    (3) 

 

Combining the prior and the likelihood gives us the posterior probability that the stimulus is 

moving in a direction θ: 

pposterior(θ|θsensory) ∝ plikelihood(θsensory|θ) · pprior (θ)                            (4) 

 

The perceived direction, θperceived, was taken to be the mean of the posterior distribution (almost 

identical results would be obtained by using the maximum instead).  

 

Finally, we accounted for motor noise (related to aligning and clicking the mouse) and lapse 

estimations, such that:  

 

p(θestimate|θperceived) = (1 − αprior-based) · V (θperceived, σmotor) + αprior-based · pprior(θ)           (5) 

 

 where σmotor is the motor noise and αprior-based describes the chance of making an estimation 

response that appears random in that it is unrelated to the actual stimulus. In the model that we 

call ‘Bayes_P’ for ‘Bayes with Prior-based lapse estimations’, we assume that these random 

estimations are drawn from the participants’ acquired expectations – pprior(θ). The motivation for 
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this model came from observing: i) that the lapse responses were found not to be uniformly 

distributed in the data, and ii) that if such random responses are effectively made when the 

stimulus is below detection threshold (a common occurrence since contrasts hover around 

threshold), and thus become invisible for the observer, those responses are formally equivalent 

to what we describe as hallucinations, which seem to be sampled from the prior (see also 

Laquitaine & Gardner 2018 for a related model).  

 

Finally, we also tested variants of this model, where lapse estimations were uniformly 

distributed, rather than following the participants expectations (model ‘BAYES’), or that due to 

increased exposure to stimuli at specific angles, sensory uncertainty σsensory could vary across 

angles (0°, ±16°, ±32°, ±48°, ±64°; model ‘BAYES_var’), or that sensory uncertainty varied 

only at the most presented directions (model ‘BAYES_varmin’ – see Methods and 

Supplementary information for details).  
 
 
Results 
 

Detection performances and contrast levels 
 

Contrast staircases converged to stable luminance levels after about 100 trials for both groups 

(Supplementary Fig. 2); Controls converged to 0.41 cd/m2 (±0.03) for the 2/1 staircase and 

0.46 cd/m2 (±0.03) for the 4/1 staircase, while patients converged to 0.57 cd/m2 (±0.04) for the 

2/1 staircase and 0.62 cd/m2 (±0.05) for the 4/1 staircase. These results confirm previous 

findings (Skottun and Skoyles, 2007) suggesting that patients with schizophrenia display 

significantly poorer contrast-sensitivity in comparison to controls (2/1 staircase: Z = 3.15, p = 

0.002; 4/1 staircase: Z =2.90, p = 0.004, two-tailed rank-sum test).  

 

Statistical learning 
 

First, we investigated whether participants acquired the statistics of the stimulus. To do so, we 

looked at patterns suggestive of statistical learning in each group, namely attractive biases 

towards the most frequent directions, decreased reaction times and improved detection 

performance for the most frequent directions (Fig. 2).  
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Estimation performance 

 

In the analysis of the estimation task, we looked only at the staircase contrasts stimulus trials 

where participants both reported seeing a stimulus and clicked on the mouse during stimulus 

presentation to indicate their estimate of motion direction. 

To investigate whether the participants’ perceived motion-directions were biased, we measured 

the difference between the true motion direction and the motion direction reported by the 

participants. Fig. 2A displays the average estimation bias plotted against the true motion 

direction for each group. Overall, there was a significant effect of motion direction on the 

estimation bias (F(2.45, 100.52) = 15.37, p < 0.001, 𝜂!! = 0.273, Greenhouse-Geisser correction 

ε = 0.613), but no differences between the groups (group main effect: F(1, 41) = 0.83, p = 

0.369, 𝜂!!  = 0.001; with positive evidence for the null hypothesis, BF01 = 3.99); and no 

group*angle interaction (F(2.45, 100.52) = 1.64, p = 0.193, 𝜂!! =  0.038).  Pairwise comparisons 

(with Bonferroni correction) revealed that there was an attractive bias towards ±32° at ±48° and 

±64° (MD = 4.858, p = 0.002; and MD = 14.395, p < 0.001, respectively), but not at ±16° (MD 

= 1.818, p = 0.955). Together, these results confirm that both patients and controls were biased 

towards perceiving motion directions as being more similar to the most frequently presented 

directions than they really were, consistent with having acquired the priors that approximate the 

statistics of the stimulus. 

  

We also investigated whether the effects of acquired prior expectations were reflected in the 

variability of estimations, namely a decrease of variability for the expected directions (Fig. 2B). 

We found a significant main effect of motion direction (F(3.07, 125.69) = 5.18, p = 0.002, 𝜂!! = 

0.112, Greenhouse-Geisser correction ε = 0.766), but no differences between the groups (main 

effect of group: F(1, 41) = 0.02, p = 0.880, 𝜂!! = 0.001; with positive evidence for the null 

hypothesis, BF01 = 3.74); and no group*angle interaction F(3.07, 125.69) = 1.58, p = 0.196, 𝜂!! 

=  0.037). Pairwise comparisons showed that variability at 0° stood out the most, being 

significantly larger than at ±32° and ±48° (MD = 4.680, p = 0.012; and MD = 4.733, p = 0.025, 

respectively), although not different than at ±16° and ±64° (MD = 3.044, p = 0.239 and MD = 

2.990, p = 0.541). The increased variability in the region between the two modes reflects their 

conflicting influence on the percepts in this region.  
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Finally, we analysed lapse estimations, which were captured by the ‘α’ term in Eq. (1) and 

which were assumed to arise from random responses on some of the trials (Fig. 2C). We found 

both motion direction and group main effects to be significant (F(4,164) = 5.76, p < 0.001, 𝜂!! = 

0.123 and F(1, 41) = 6.41, p = 0.015, 𝜂!! = 0.135, respectively), with patients exhibiting fewer 

lapse estimations. Pairwise comparisons revealed that lapse rate at 0° was significantly smaller 

than at all other directions (±32°, MD = 4.814, p = 0.001; ±48°, MD = 6.010, p = 0.007; ±64°, 

MD = 4.951, p = 0.003), except for ±16° (MD = 3.043, p = 0.393). The finding that the 

estimated lapses would depend on the presented motion direction was surprising, since it 

suggests these lapses are not made completely randomly. Below, we show that these seemingly 

random responses can be best described as being sampled from the acquired prior distribution 

(see Modelling results).   

 

Reaction times and Detection Performance 

 

Next, we examined how participants’ acquired expectations influenced reaction times and the 

detection of stimulus. The estimation reaction times (Fig. 2D) show a significant main effect of 

motion direction (F(2.73,111.76) = 10.80, p < 0.001 𝜂!!= 0.209, Greenhouse-Geisser correction 

ε = 0.681). This was driven by decreased reaction times at the most frequent directions as 

revealed by pairwise comparisons: reaction time at ±32° was significantly shorter than at all 

other directions (0°, MD = 0.104, p = 0.001; ±16°, MD = 0.068, p = 0.004; ±64°, MD = 0.139, p 

< 0.001), except for  ±48° (MD = 0.027, p = 1.000). Furthermore, patients were found to also be 

significantly slower than controls (F(1, 41) = 4.11, p = 0.049, 𝜂!! = 0.091), but we found no 

interaction between group and motion direction (F(2.73, 111.76) = 0.66, p = 0.563, 𝜂!! = 0.016). 

Slow reaction time is a hallmark of schizophrenia that has been documented thoroughly in the 

literature in simple reaction-time tasks using visual and/or auditory stimuli (e.g., see 

Nuechterlein, 1977; Fioravanti et al., 2012).  

 

An even more direct way of assessing how the acquired expectations influenced the detection of 

stimulus is to analyse the fraction of trials where participants explicitly report seeing or not 

seeing the stimulus (Fig. 2E). We found that the detection of stimulus was greatly affected by 

the presented motion direction (F(2.36,96.64) = 8.51, p < 0.001, 𝜂!! = 0.172, Greenhouse-

Geisser correction ε = 0.589), with stimulus at ±32° being the most frequently detected direction 

as shown by pairwise comparisons: detection at ±32° was significantly better than at all other 
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directions (0°, MD = 9.59, p = 0.004; ±16°, MD = 6.48, p = 0.001;  ±48°, MD = 6.54, p = 0.001; 

±64°, MD = 12.35, p < 0.001). However, the groups were not found to be different (main group 

effect: F(1,41) = 3.62, p = 0.064, 𝜂!! = 0.081; although there was no evidence for the null 

hypothesis either, BF01 = 0.97); group*motion direction interaction was also non-significant: 

F(2.36,96.64) = 1.11, p = 0.340, 𝜂!! = 0.026).  

 

Overall, these results indicate that, in terms of detection responses (hit rates and reaction-time), 

similar benefits of statistical learning were present in both patient and control groups. Overall, 

behavioural measures suggest that prior effects (e.g. Bias, RT, and Hit rate) became significant 

as early as within first ~100 trials for both patients and controls (see Supplementary Figures 3-

4). 

 

Perceived motion in absence of visual stimuli (hallucinations)  

 

Finally, we investigated whether the acquired statistics about the motion stimulus affected the 

participants’ perception on trials where no stimulus was presented, but where participants 

reported both a motion direction and seeing a stimulus. We refer to this effect as hallucinations. 

These hallucinations in our perceptual task are of course different in terms of content and 

complexity from the visual hallucinations observed in psychosis. However, the underlying 

mechanisms might be informative to the understanding of illusions and hallucinations in 

schizophrenia (Silverstein and Keane 2011a; 2011b; Notredame et al., 2014).  

 

To quantify the probability ratio that participants made estimates that were closer to the most 

frequently presented motion directions relative to other directions, we multiplied the probability 

that participants estimated within 16° of these motion-directions by the total number of 32° 

bins: 

𝑝!"#$% = 𝑝 𝜃!"#$%&#! = ±32 ±16 ° ∙ 𝑁!"#$                (6) 
 

 
This probability would be equal to 1 if participants were equally likely to estimate within 16° of 

±32° as they are to estimate within the other 16° bins.  

 

We found that the median value of ‘pratio’ was significantly greater than 1 for both patients and 

controls (median(𝑝!"#$%) = 2.88, p = 0.003 and median(𝑝!"#$%) = 2.75, p <0.001, respectively; 

two-tailed signed-rank test), indicating that both patients and controls were much more likely to 
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hallucinate the most frequent motion directions as opposed to all other directions (Fig. 3A, B). 

Bayesian statistical analysis provided positive evidence for the groups being the same in this 

measure (BF01 = 3.32).  Finally, hallucinations of the most frequent directions (i.e. 

hallucinations at ±32°±16°) were quick to develop during the course of the experiment: they 

became significant after only 150 trials for both controls (p=0.036, one-tailed signed-rank test; 

Supplementary Fig. 3D) and patients (p=0.035, one-tailed signed-rank test; Supplementary Fig. 

4D).  

 

While both patients and controls hallucinated predominantly towards the most frequently 

presented directions (i.e. prior-based hallucinations), patients exhibited fewer of such 

hallucinations (Fig. 3D; hallucinations within ±16º of ±32º; p = 0.016, two-sided rank-sum test), 

and also exhibited less hallucinations overall (Fig. 3C; p = 0.004, two-sided rank-sum test). We 

wanted to know whether the severity of the symptoms was predictive of the magnitude of this 

effect. However, we found no correlations between the number of hallucinations and the 

PANSS positive, negative, general or total scores nor duration of illness, or between the daily-

dosage of anti-psychotics (Olanzapine equivalent; Leucht et al., 2015) and the total number of 

hallucinations. 

 

We also investigated the distribution of responses when participants estimated the direction of 

motion but reported not seeing any dots. Interestingly, in this subset of trials, and unlike in our 

previous work (Chalk et al, 2010), estimations were also more likely than chance to be made 

around the most frequent motion directions by both patients and controls (median(𝑝!"#!") = 

1.24, p = 0.002 and median(𝑝!"#$%) = 1.41, p = 0.045, respectively; two-sided signed rank test). 

One explanation for this might be habitual effects - when the bar is moved towards the most 

frequent directions out of motor habit. Another possible explanation is that participants might 

have hallucinated stimuli in the expected prior directions, but their confidence about their 

percept being very low, they sometimes chose to report not seeing any dots in the hope to give 

the correct answer (each detection response was followed by immediate feedback). 

 

Modelling results 
 

We fitted the models to the behavioral data and computed the Bayesian Information Criterion (BIC) 

for each participant, which quantifies goodness of fit while penalizing for extra model 

complexity (preventing overfitting). We found that the BAYES_P model had the smallest BIC 
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for both patients and controls (Fig. 5) – indicating best performance, with a difference in BIC 

between the winning model (BAYES_P) and the second best model (BAYES) being larger than 

10. This is equivalent to a log Bayes factor larger than 10, and is considered to be very strong or 

‘decisive’ evidence in favor of the winning model (Kaas & Raftery, 1995). Model fits also 

showed that BAYES_P was much better at fitting lapse estimations, confirming that such 

estimations were sampled from the acquired prior distribution instead of being uniformly 

distributed (Fig. 6C and G). We also ran a random effect Bayesian model selection analysis 

(Rigoux et al., 2014; Daunizeau et al., 2014) to ensure that the favored model was not being 

selected due to a subset of participants in each group. The analysis confirmed that BAYES_P 

was best at describing behavior for both groups (Fig. 5C and D). Moreover, we found a strong 

correlation between the participant’s prior-based lapse rate parameter recovered via BAYES_P 

and their number of hallucinations (τb = 0.657, p < 0.001; Kendall’s correlation; Fig. 7B). This 

suggests that prior-based lapses (in the presence of a (very weak) stimulus) and hallucinations 

(in absence of a stimulus) originate from the same mechanism  (Fig. 7A).  

Finally, we compared patients and controls on the basis of BAYES_P parameter estimates (Fig. 

6I-L). Consistent with the behavioral data analysis, we found no differences in the acquired 

prior expectations (Fig. 6I, J; the mean of acquired prior: p = 0.874, BF01 = 3.32; and the 

uncertainty in the acquired prior: p = 0.401; two-tailed rank-sum test; BF01 = 2.95). There were 

no differences in the precision of sensory likelihood (Fig. 6K, p = 0.742, two-tailed rank-sum 

test; BF01 = 2.96). Lastly, just as in the behavioral data, we found that patients made less prior-

based lapse estimations (Fig. 6L, αprior-‐‑based  : p = 0.024, two-tailed rank-sum test), suggesting 

that patients were less likely to perceive a sample from their prior in the presence of a weak 

(possibly subthreshold) stimulus.  

  

Parameter recovery for model BAYES_P 

To gauge the reliability of our modelling results, we performed parameter recovery for the 

winning BAYES_P model. Parameter recovery consists of simulating synthetic data with 

different sets of known parameter values (‘true parameters’) for a given model and then fitting 

the same model to the synthetic data to estimate and recover these parameters (‘recovered 

parameters’). The strength of correlation between the actual and recovered parameters measures 

the reliability of modelling results. Parameter recovery, just as the parameter estimation from 

behavioral data, is sensitive to any correlations that might be present among the model 

parameters, to the choice of parameter estimation methods and also to the amount of data used 
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for model fitting. Therefore, parameter recovery serves as a crucial step in validating the 

reliability of the modelling results (Palminteri, et al., 2017). 

We found that the winning BAYES_P model recovered parameters very well, which was reflected 

in the coefficient of determination (R2) for all recovered parameters being R2 ≥ 0.84 (Fig. 8).   

 

Discussion 
 

We were interested in testing the emerging model of schizophrenia proposing that the disorder 

could stem from deficits in Bayesian inference (Corlett et al., 2009a, 2009b; Fletcher and Frith, 

2009; Adams et al., 2013; Schmack et al., 2013, 2015, 2017; Teufel et al., 2015; Powers et al., 

2017, Jardri et al., 2017). The experimental paradigm we chose is well suited to quantitatively 

assess the acquisition of sensory priors, how these priors are used in perception, as well as to 

quantify inter-individual variability in the learning and inference process (Chalk et al 2010, 

Karvelis et al, 2018). 

 

Acquisition of visual prior expectations  

 

We found that both the control and patient groups implicitly learned the statistics of the motion 

stimuli and that those expectations modified their perception, consistent with them acquiring a 

Bayesian prior of the stimulus statistics and combining it with sensory evidence, replicating our 

previous results (Chalk et al, 2010). This was reflected by attractive estimation biases towards 

the frequently presented directions, faster reaction times and higher detection rates at these 

directions, as well as hallucinated motion directions in the absence of stimulus predominantly 

following the most frequent directions.  

 

Patients with schizophrenia were not qualitatively, nor quantitatively different from controls in 

the measures used to assess learning of the task statistics. This suggest that while there are 

clearly domain-specific perceptual (e.g. hallucinations) and learning deficits in schizophrenia 

(e.g. jumping to conclusions), our study demonstrates that these deficits are not due to a 

domain-general impairment in the acquisition and/or utilization of statistical information in the 

environment. That is, we find that patients with chronic schizophrenia do not appear to be 

impaired in the acquisition of visual statistical priors in our task. 
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These results are consistent with studies finding no deficit in implicit learning in schizophrenia 

(Kéri et al., 2000; Danion et al., 2001; Marvel et al., 2005; for review see: Gold et al., 2009). In 

contrast with studies that assay explicit statistical learning and inference using more cognitive 

tasks (i.e. usually believed to involve frontal cortical regions), here we measured implicit 

statistical learning of visual stimuli that could be embodied in visual processing areas rather 

than frontal cortices (Kok et al., 2013). In fact, patients with schizophrenia appear relatively 

spared in implicit learning tasks that do not require integrating feedback after each trial (Gold et 

al., 2009). These results are also consistent with our previous study using the same paradigm 

showing intact statistical learning in participants with high schizotypal traits (Karvelis et al, 

2018).  

 

Impact of acquired visual prior expectations 

 

We found no difference between patients and controls as to the influence of the acquired 

expectations on their performance regarding estimation of the motion directions. They were not 

more or less biased towards the most frequent directions, nor more or less variable in those 

estimations.  

Patients were found to differ from controls in three ways, however. First, patients with 

schizophrenia displayed significantly poorer contrast discrimination thresholds and slower 

reactions times, as documented in previous studies. Second, and more interestingly, patients 

reported significantly fewer hallucinations at all directions and fewer hallucinations of the most 

frequently presented motion directions.. Third, patients exhibited fewer prior-based lapse 

estimations than controls on low contrast trials. We argue that prior-based lapses (defined for 

low contrast trials) and hallucinations (defined for no-stimulus trials) are underlined by the 

same mechanism. Because of the convergence of the contrast staircases, contrast levels in our 

task hover around the detection threshold, which means that on a significant number of trials the 

stimulus contrast falls below the participants’ threshold of perception, effectively becoming 

invisible and equivalent to trials with no stimulus. If participants experience hallucinations on 

these trials (and thus report that they have perceived a stimulus), these will be expressed in our 

results as prior-based lapse estimations. In support for this interpretation, we found that there 

were significantly more lapse estimations made on trials when the stimulus contrast was below 

the participants’ 75% detection threshold (based on their individual psychometric curve) than 

when it was above (F(1,84) = 12.61, p < 0.001; Fig. 7A) and we found a strong correlation 

between prior-based lapse rate on threshold contrast trials and number of hallucinations on no-
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stimulus trials (Fig. 7B). Together, this suggests that although patients appear to acquire the 

same prior as controls, they tend to hallucinate this prior less often than controls when there is 

no stimulus, or when the stimulus is below detection threshold. 

Interestingly, this diminished impact of prior expectations in the detection task was not 

observed in our previous work in participants with high schizotypal traits (Karvelis et al, 2018).  

suggesting that it might be characteristic of the chronic state of schizophrenia. 

 

The fact that patients exhibit fewer prior-based lapses and hallucinations suggests that their 

perception is less influenced by their learned prior expectations than control participants. This is 

consistent with previously reported findings suggesting that patients with chronic schizophrenia 

are less sensitive to expectation-driven illusions (e.g. the hollow-mask illusion) than controls 

(Tschacher et al., 2006; Dima et al., 2009; Crawford et al., 2010; Horton and Silverstein, 2011; 

Keane et al., 2013, Notredame et al., 2014). This finding is also in line with results from 

Schmack et al. (2013, 2015), reporting a decreased influence of induced expectations (priors) on 

perception. 

It is intriguing however that the influence of prior expectations is weaker in the detection task, 

but similar to that of controls for the estimation task. This may reflect the fact that conscious 

detection and estimation may depend on different processing stages, with possibly different 

representations for the prior distributions, or involve different mappings between 

representations and responses (Petzschner et al. (2015)).  In future work we will aim to address 

the possible neural substrate for the effects we describe, by modelling how prior distributions 

could modulate visual responses or their read-out (Seriès, Stocker and Simoncelli, 2009) to 

explain differential biases in different dimensions.  

Other factors might contribute to the absence of differences in the estimation bias. 

One factor might be that very few of our patients reported clinically significant levels of 

hallucinations (PANSS items >3), and that this propensity might be more pertinent than the 

diagnosis of schizophrenia per se (Powers et al, 2017).  We found some evidence supporting the 

fact that patients who express fewer or weaker positive symptoms differ more from controls in 

our task than patients who express more or stronger positive symptoms: PANSS Positive 

symptom score and prior-based lapses (estimated via BAYES_P) were close to being negatively 

correlated (τb=-0.314, p= 0.063; Kendall’s correlation; Supplementary Fig. 5A); this 

relationship was also backed up by a much stronger correlation for when lapse estimations were 

estimated directly from the behavioural data using Eq. (1) (τb = -0.465, p = 0.006; Kendall’s 

correlation; Supplementary Fig. 5B). However, it should be noted that no correlation was 
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found between the PANSS Positive symptom score and the number of hallucinations exhibited 

on no-stimulus trials.  

Similarly, the absence of stronger effects might be related to illness duration: weaker estimation 

biases may be characteristic of earlier stages of the illness but may not be detectable anymore in 

our patients as they have been generally ill for a long time, due to medication or compensatory 

mechanisms. We find some support for this idea with a significant correlation between duration 

of illness and magnitude of estimation bias (τb = 0.523, p = 0.003; Kendall’s correlation; 

Supplementary Fig. 5C).  

Finally, since the differences appear only for the detection part of the task, it might be that 

chronic patients have simply developed an increased perceptual threshold. Following this idea, 

patients would require stronger evidence (i.e. sharper posterior) in order to perceive a stimulus 

or to make a decision about the presence of a stimulus. This is consistent with the fact that 

patients required higher stimulus contrasts and integrated information over longer periods of 

time before responding (slower reaction times during the estimation task). We therefore 

hypothesize that it is a possible adaptation strategy used by patients over time to minimize 

responses to stimuli that were not truly present (i.e. their psychotic hallucinations).  

 

Taken together, our results suggest that statistical learning is intact in relatively well patients 

with chronic schizophrenia on stable doses of second generation antipsychotic medication. The 

impact of their acquired priors is also the same as that of controls in the estimation task, but 

weaker in the detection task. These results are surprising in view of the current prominent 

theories proposing that schizophrenia is a disorder of predictive processing or Bayesian 

inference, and suggest ways in which these accounts need to be nuanced. The similarity of 

controls and patients’ performance in our task may however be related to the success of 

treatment or some other adaptive process related to illness duration. Future work will aim at 

testing participants at earlier stages of the illness, and ideally before pharmacological treatment 

has begun.  

 

  



21	  
	  
 

Funding 
VV was supported by grants EP/F500386/1 and BB/F529254/1 for the University of Edinburgh 

School of Informatics Doctoral Training Centre in Neuroinformatics and Computational 

Neuroscience (www.anc.ed.ac.uk/dtc/) from the UK Engineering and Physical Science Research 

Council (EPSRC), and the UK Medical Research Council (MRC). PK was funded by 

Engineering and Physical Sciences Research Council.  PS was supported by the NARSAD grant 

(19271). ARS was funded by NSF Grant BCS-1057625 and NIH grant 1R01EY023582. The 

collaboration between PS and ARS was supported by a Marie Curie Exchange Grant FP7-

PEOPLE-2009-IRSES-247543. Some of this work was completed while PS was visiting the 

Simons Institute for the theory of Computing. Psychophysical testing, neuropsychological 

testing and structured clinical interviews were conducted at the University of Edinburgh, Royal 

Edinburgh Hospital. The funding bodies had no control over the design, analysis or acquisition 

of the data for this study. 

 

Conflict of interest 
In the past three years, SML has received personal financial support from Janssen, Otsuka and 

Sunovion and research grant income from Janssen and Lundbeck in connection with therapeutic 

initiatives for psychosis. The authors VV, PK, KR, PS and ARS have no conflict of interest.  
 

 

 

 

 

 

 

  



22	  
	  
 

 
	  

Characteristics	   Controls	  (n=23)	   Patients	  with	  
schizophrenia	  (n=20)	  

Significance	  level	  
	  p-‐value	  

Gender	  (males)	   13	   17	   0.04	  
Age	  (years)	   33.86	  (12.08)	   39.40	  (9.43)	   0.07	  
Premorbid	  IQ	   115.55	  (4.41)	   113.18	  (8.76)	   0.58	  
Current	  IQ	   117.45	  (7.28)	   111.15	  (10.70)	   0.06	  
PANSS	  Positive	  Scale	   8.86	  (2.29)	   12.55	  (5.01)	   <0.01	  
PANSS	  Negative	  Scale	   8.41	  (2.24)	   12.20	  (5.05)	   <0.01	  
PANSS	  General	  Scale	   22.27	  (6.48)	   26.10	  (8.35)	   0.12	  
PANSS	  Total	   39.55	  (9.22)	   50.85	  (15.86)	   <0.01	  
GAF	   74.81	  (11.42)	   54.75	  (14.36)	   <0.001	  
OLZ	  eq.	  (mg/day)	   -‐-‐-‐	   12.61	  (6.24)	   N/A	  
Illness	  duration	  (years)	   -‐-‐-‐	   13.33	  (9.01)	   N/A	  

	  
 

Table 1. Participants’ demographics. PANSS = Positive and Negative Symptom Scale (lower score is 

better), GAF = Global Assessment of Functioning (higher score is better), OLZ eq. = Olanzapine 

equivalent dosage in mg/day. Values indicate mean and (standard deviation). For gender, group 

comparisons were done using Chi-square test, for all other measures, two-sided Wilcoxon rank-sum test 

was used. See Table S1 and Supplementary Figure 6 for a more detailed description of the clinical 

characteristics. 
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Figure	  1:	  (A) Experimental procedure. Participants were presented with a fixation point followed by the 

motion stimulus and a response bar (red bar) that they were instructed to align to the perceived motion-

direction. The screen was cleared either when participants clicked to validate their estimation or 3000 ms 

had elapsed. A new screen appeared with a two-alternative forced choice task (2-AFC), requiring 

participants to indicate whether they perceived the dots during the estimation task. (B) Probability 

distribution of the motion directions. Unbeknownst to participants, the distribution of motion direction 

was bimodal (i.e. stimuli appeared most often at ±32° from a central direction). The central direction was 

randomised for each participant. 
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Figure 2: Performance on low contrast trials by patients (blue lines) and controls (black lines). (A) Mean 

estimation bias as a function of the true motion direction. (B) Estimation standard deviation (i.e. 

variability) as a function of the presented of motion direction. (C) Lapse estimations as a function of 

motion direction, estimated using (eq. 1). (D) Reaction times during the estimation task as a function of 

motion direction. (E) The fraction of trials in which the stimulus was detected as a function of the 

presented motion direction. The error bars represent within-subject standard error. The vertical dashed 

lines correspond to the most frequently presented motion directions (i.e. ±32°). *, ** and *** indicate 

significance levels at p<0.05, p<0.01, p<0.001 respectively. These results are not affected by any 

violation of the normality assumption (see SI).  
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Figure 3. Estimation responses in the absence of stimulus. (A, B) Distribution of the estimation 

responses by patients and controls, respectively. The vertical grey lines represent reported motion 

directions when no stimulus was present (i.e. hallucinations) pooled across each group. The green line 

denotes the probability distribution of these hallucinations, which was produced using Kernel Density 

Estimation. The red line denotes probability distribution of responses that were followed by participants’ 

reporting seeing no stimulus. The orange line denotes all estimations regardless of the detection 

response. In the main plots the data is averaged across the central motion direction, while the insets show 

the corresponding distributions across the full range.  (C, D) Comparison of patients and controls by (C) 

the total number of hallucinations (p = 0.004, two-sided rank-sum test) and (D) the number of 

hallucinations around the most frequently presented motion directions (within ±16º of ±32º; p = 0.016, 

two-sided rank-sum test). Red horizontal lines denote median values; blue horizontal lines denote 25th 

and 75th percentiles. Black dots denote individual participants, grey areas represent density of the data 

points. * and ** indicate significance levels at p< 0.05 and p<0.01 respectively.  
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Figure 4. Bayesian model of estimation response for a single trial. The actual motion direction (θactual) is 

corrupted by sensory uncertainty (σsensory), and then combined with prior expectations (mean θexpected and 

uncertainty σexpected) to form a posterior distribution. The perceived motion direction (θperceived) then 

corresponds to the mean of the posterior distribution. However, on a fraction of trials, determined by the 

lapse rate (αprior-based), the perceived motion direction is sampled from the prior. Finally, in both cases, the 

response (θestimated) is made by perturbing θperceived with motor noise (σmotor). This results in 4 free model 

parameters: σsensory, σexpected, θexpected and αprior-based. The motor noise (σmotor) is estimated from high contrast 

trials and is used as a fixed parameter. 
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Figure 5. Model comparison and selection. (A,B) Fixed effects model selection using Bayesian 

Information Criterion (BIC) for (A) controls and (B) patients. X-axis measures the relative difference 

between BIC of each model (as indicated on Y-axis) and BIC of BAYES_P (winning model) summed 

across participants. Smaller BIC indicate a better model fit while penalizing for added model 

complexity. For both patients and controls BAYES_P provided the best model evidence, 12 BIC units 

better than BAYES for patients and 146 BIC than BAYES for controls. (C, D) Random effect Bayesian 

model selection for (C) controls and (D) patients. Higher protected exceedance probability indicates a 

model having a higher likelihood of being more frequent among the subjects. For both patients and 

controls BAYES_P was the most likely model. Insets show the distribution of Bayesian Factor for 

BAYES_P vs. BAYES summarized by a boxplot, jittered data scatter and a probability density that was 

estimated using a normal kernel.  
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Figure 6. Model fits and parameter estimates. (A-H) Model fits for the best fitting model BAYES_P 

(green) and the second best model BAYES (yellow), to the behavioral data (black). (A-D) controls and 

(E-H) patients. (A, E) estimation bias, (B, F) estimation variability, (C, G) estimation lapse rate, (D, H) 

prior expectations of each individual (transparent green) and group average (thick green) as estimated 

via BAYES_P model. The vertical dashed lines correspond to the most frequently presented motion 

directions (i.e. ±32°). The error bars represent within-subject standard error.  (I-L) Comparison of 

BAYES_P model parameter estimates of patients and controls. (I) θexpected – the mean of acquired prior 

(p = 0.874, two-tailed rank-sum test; BF01 = 3.32), (J) σexpected – the uncertainty in the acquired prior (p 

= 0.401, two-tailed rank-sum test; BF01 = 2.95), (K) σsensory – the uncertainty of sensory likelihood (p = 

0.742, two-tailed rank-sum test; BF01 = 2.96), (L) αprior-based – prior-based lapse rate (p = 0.024, two-

tailed rank-sum test). Red horizontal lines denote median values; blue horizontal lines denote 25th and 

75th percentiles. Black dots denote individual participants, grey areas represent density of the data 

points. * indicates significance level at p< 0.05. See Suppl. Fig. 7 and 8 for the model fits of individual 

biases.  
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Figure 7. Relationship between lapse estimations and hallucinations. (A) The amount of lapse 

estimations at different stimulus contrast levels. Contrast staircase trials were split into two subsets along 

the 75% detection threshold, which was determined for each individual from their psychometric curves. 

The data then was pooled across both patient and control groups. We found that the number of lapse 

estimations depended on the presented contrast level with more lapse estimations being made at lower 

contrasts (F(1,84) = 12.61, p < 0.001). This supports our interpretation that these estimations can be 

interpreted, at least partly, as hallucinations on trials when the stimulus was too weak to be visible. The 

error bars represent within-subject errors. (B) Prior-based lapses and hallucinations. A strong positive 

correlation between prior-based lapse rate parameter (recovered via BAYES_P model) on low contrast 

trials and number of hallucinations on no-stimulus trials (τb = 0.657, p < 0.001; Kendall’s correlation) 

provided further support that the two phenomena are driven by the same mechanism (i.e. sampling from 

the prior).    
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Figure 8. Parameter recovery with BAYES_P model. (A) θexpected - mean of the prior expectations (R2 = 

0.96), (B) σexpected - uncertainty of the prior distribution (R2 = 0.89), (C) σsensory - uncertainty in the 

sensory likelihood (R2 = 0.84), (D) αprior-based – prior-based lapse rate (R2 = 0.94). X-axes – actual 

parameters used for simulating the data (denoted with the superscript ‘act’), Y-axes – recovered 

parameters (denoted with the superscript ‘rec’) from fitting the model to the simulated data. The dashed 

diagonal line is a reference line indicating perfect parameter recovery. 
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