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Abstract

Natural languages make prolific use of conventional constituent-ordering patterns
to indicate ‘who did what to whom’, yet the mechanisms through which these regu-
larities arise are not well understood. A series of recent experiments demonstrates
that, when prompted to express meanings through silent gesture, people bypass
native language conventions, revealing apparent biases underpinning word order
usage, based on the semantic properties of the information to be conveyed. We ex-
tend the scope of these studies by focusing, experimentally and computationally,
on the interpretation of silent gesture. We show cross-linguistic experimental evi-
dence that people use variability in constituent order as a cue to obtain different in-
terpretations. To illuminate the computational principles that govern interpretation
of non-conventional communication, we derive a Bayesian model of interpretation
via biased inductive inference, and estimate these biases from the experimental
data. Our analyses suggest people’s interpretations balance the ambiguity that is
characteristic of emerging language systems, with ordering preferences that are
skewed and asymmetric, but defeasible.
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1 Introduction

1.1 Language production without conventions: evidence from silent2

gesture

When people do not have an existing set of linguistic rules to use to communicate,4

they use principles for structuring their utterances that are independent of their native

language. This has been observed in lab experiments where naı̈ve adult participants6

are asked to describe simple events using only gesture and no speech (silent gesture).

The silent gesture paradigm has been used to investigate several core features of lan-8

guage, such as how a communication system can be bootstrapped through iconicity

(Fay, Arbib, & Garrod, 2013). In particular, the paradigm has provided notable in-10

sight into the origins of the ordering of Subject, Object and Verb in human language.1

For instance, it has been shown that when people describe transitive actions through12

space in this paradigm, they prefer SOV word order, irrespective of the dominant order

of their native language (Goldin-Meadow, So, Özyürek, & Mylander, 2008). Given14

the dominance of SOV in emerging language systems (e.g., Padden, Meir, Sandler,

& Aronoff, 2010), it has been suggested that SOV may have been important in the16

emergence of language in humans (Newmeyer, 2000; Givon, 1997). However, more

recent publications show that under certain circumstances SOV is not the dominant or-18

der (Meir, Lifshitz, İlkbasaran, & Padden, 2010; Langus & Nespor, 2010; Gibson et al.,

2013; Hall, Mayberry, & Ferreira, 2013; Schouwstra & de Swart, 2014; Schouwstra,20

2017). Investigation of this variability in word order has sparked a debate about the

mechanisms that play a role when people communicate in the absence of a shared22

linguistic system, and, indirectly, about the conventionalisation of word order in the

emergence of language. The silent gesture paradigm is relatively new, and many ques-24

tions are still unanswered. However, two semantic distinctions, that between reversible

and non-reversible events and that between extensional and intensional events, have26

been studied in some detail, and provide a picture of how semantic information can

1We recognise that in improvised gesture, where there are no linguistic conventions for word order, the
(syntactic) terms Subject, Object, and Verb are not meaningful. We will use them as a convenient shorthand
for the more appropriate terms Agent, Patient and Action.
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influence word order in emerging language.28

1.2 Semantic properties influence constituent structure in silent

gesture production30

Whether or not an event is reversible (typically events in which there are two animates,

such as ‘woman kicks man’) influences the word order that is used (Gibson et al., 2013;32

Hall et al., 2013). The usage of SOV ordered strings drops for reversible events, and

SVO usage becomes more likely.2 Various explanations for the phenomenon have been34

offered, but there is no conclusive evidence for whether the pattern is rooted in com-

municative or cognitive principles (or even potentially the result of modality-specific36

processes; (Gibson et al., 2013; Hall et al., 2013; Kline, Salinas, Lim, Fedorenko, &

Gibson, 2017).38

Another semantic effect on word order variation was observed by Schouwstra and

de Swart (2014), who compared two semantic classes of transitive events: extensional40

and intensional events. The former is a class of events in which a direct object is

manipulated in an action through space, similarly to the motion events used by Goldin-42

Meadow et al. (2008). Some examples are throwing (‘pirate throws guitar’) or carrying

(‘princess carries ball’) events. Intensional events (e.g., ‘pirate searches for guitar,’44

‘princess thinks of ball’, but also ‘cook hears violin’ and ‘witch builds house’) are typ-

ically described using intensional verbs, and for the interpretation of such descriptions,46

the intension (meaning) of their arguments, and in particular the direct object, is more

important than the extension (object in the world). This makes the direct object more48

abstract, and possibly non-existent or non-specific.

Schouwstra and de Swart (2014) show that in silent gesture, participants prefer to50

use SVO word order over SOV for intensional events, and SOV order over SVO for

extensional events. They observe that word order flexibility on the basis of such mean-52

ing differences in the verb do not exist in fully conventional languages, and argue that

2Note that more recently, it was argued that rather the effect might be the result of a preference to describe
human participants first, and this would mean that reversibility is not the crucial factor (Kocab, Lam, &
Snedeker, 2018; Meir et al., 2017). These studies discuss evidence from silent gesture and emergent sign
languages, but the effect is well established in spoken language production too (Branigan, Pickering, &
Tanaka, 2008).
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they are typical for situations where there are no (or where there is only a limited set54

of) linguistic conventions: people use their cognitive biases (rooted in the semantic

properties of events) and build their improvised utterances flexibly, according to these56

biases. This position contrasts with previous hypotheses in which word order in emerg-

ing language systems is seen as something rigid rather than variable (Newmeyer, 2000;58

Goldin-Meadow et al., 2008). The distinction between intensional and extensional

events turns out to be of influence on constituent order, not only in the gestural domain,60

but also in the vocal domain, as shown in a study in which participants improvise to

produce non-word sounds to convey information (Mudd, Kirby, & Schouwstra, 2018),62

a finding that is interesting given potential issues about modality specificity; see above,

and Kline et al. (2017).64

All in all, the improvised gesture paradigm can reveal pressures that are important

when there is no system of linguistic conventions in place, and thus help reveal the66

process that takes us from no language to full linguistic regularity in a controlled labo-

ratory setting. This setting allows us to study not only improvised production, but also68

other processes that play a role in language use, such as interpretation, communicative

interaction, cultural transmission. In this paper we will take one step from improvised70

gesture production toward full linguistic systems, by focusing on the interpretation of

improvised gesture, and comparing it to its production. We will do this by employing72

a novel combination of a silent gesture experiment and an experimentally-informed

Bayesian model.74

1.3 Silent gesture: production vs. interpretation

If silent gesture is to offer a comprehensive test ground for communication without76

existing conventions, it should not only concern production, as communication is a

process with two directions: production and interpretation. These two directions may78

exert different pressures in the emergence of a language system (Burling, 2000; Mac-

Donald, 2013).80

The interpretation of strings in the silent gesture paradigm has received little atten-

tion, with the exception of two recent studies: one in which participants are asked to82
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recognise the intended meaning of silent gesture strings in a timed forced choice setup

(Langus & Nespor, 2010), and one in which participants are asked to choose an inter-84

pretation for ambiguous reversible events (Hall, Ahn, Mayberry, & Ferreira, 2015).

Langus and Nespor (2010) asked adult participants to watch video clips of gesture86

sequences describing simple transitive events through space in a two alternative forced

choice task. Participants, native speakers of Italian (SVO) and Turkish (SOV), saw88

video clips in all possible orderings of S,O and V. Both groups of participants showed

fastest reaction times for SOV ordered video clips, which shows that, like in production,90

SOV order is preferred in improvised gesture comprehension, independently of the

dominant order of the native language of the observer. In other words, when naive92

observers are presented with improvised gesture, they by-pass the dominant patterns of

their native language. Langus and Nespor (2010) claim that this effect is due to the fact94

that in this task, participants disregard their computational system of grammar.

Hall et al. (2015) focused on the interpretation of reversible events, and come to96

very different conclusions. They showed participants silent gesture strings that were

made up of an action and two animate participants, in three possible orders (Action-98

Participant1-Participant2, Participant1-Action-Participant2, Participant1-Participant2-

Action). Each order was ambiguous: it was not made explicit which participant had the100

role of agent and which patient. For each string, participants were asked to choose an

interpretation from two line drawings: one with the first participant in the role of agent,102

and one with the second participant in the role of agent. They found that participants

take the element mentioned first in the gesture string to be the agent, i.e., ‘woman man104

push’ is interpreted most robustly with the woman in the role of the pusher.

They conclude that interpretation of these ambiguous strings is governed by a se-106

mantic constraint, ‘agent first’, and they emphasise the difference between interpreta-

tion and production: the latter is motivated by production constraints—i.e., gesturers108

will often use their own body to take on roles of the event participants, and using SOV

word order involves more ‘role switches’ than using SVO order, which makes SVO110

more fluent than SOV (Hall et al., 2013; Hall, Ferreira, & Mayberry, 2014).

To summarise, silent gesture investigates the cognitive constraints that play a role112
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when a system of linguistic conventions is not in place. Investigating production and

interpretation of silent gesture can help us gain insight into how these two processes114

contribute to an emerging linguistic system. From what we have seen above it is not

entirely clear how production and interpretation, in the absence of linguistic conven-116

tions, relate to each other. Hall et al. (2015) emphasise the difference between silent

gesture production and interpretation. They postulate procedural, production-related118

constraints for production, and a semantic heuristic (‘agent first’) for interpretation.

Langus and Nespor (2010), on the other hand, emphasise the similarities between silent120

gesture production and interpretation: both are governed, not by grammatical rules, but

by cognitive constraints.122

We add crucial evidence to the question whether production and interpretation of

improvised language are intrinsically similar or rather different from each other. Pre-124

senting a silent gesture interpretation experiment, along with a Bayesian computational

model for the experimental task, we will point out in which respects production is cru-126

cially different from interpretation, in emerging language situations. Our starting point

is the semantic differences between extensional and intensional events that are driving128

word order variability in silent gesture production (Schouwstra & de Swart, 2014). We

ask if participants will use these semantic principles when they interpret silent gesture,130

and what this can tell us about their underlying biases. Our interpretation experiment is

the first to mirror a silent gesture production task, and this allows us to investigate the132

link between meaning and word order, not only qualitatively (‘does word order influ-

ence the meaning an interpreter derives?’), but also quantitatively: by specifying com-134

putational principles that sub-serve interpretation of silent gesture under uncertainty,

we are able to reason backwards from experimental results to a quantitative estimate136

of the cognitive biases guiding word order usage. Our estimates of participants’ biases

align with the pattern of results observed independently in production experiments: our138

results suggest skewed but defeasible event-class-conditional word-order preferences,

whose effects on silent-gesture interpretation may be mediated by more general princi-140

ples of inference under uncertainty.
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Figure 1: The figure depicts different stages of an ambiguous action being acted out. This action can be
interpreted as ‘build’ or as ‘climb’. The experiment investigates if the order of the constituents in a gesture
sequence has an influence on the interpretation of such ambiguous actions.

2 Experiment: improvised gesture interpretation142

To test if the order of constituents influences the way in which participants interpret

gesture strings, we presented participants with video clips of gesture strings with an144

ambiguous action (verb) gesture plus its two arguments. An example of an ambiguous

action gesture is shown in figure 1. This gesture can be interpreted as a climbing action,146

but also as a building action. Together with the constituents ‘witch’ and ‘house’, this

results in two possible interpretations: ‘witch climbs house’ (an extensional event), and148

‘witch builds house’ (an intensional event). We construed videos in two possible or-

ders, SOV and SVO.3 We hypothesised, based on the production results in Schouwstra150

and de Swart (2014), plus the similarities between production and interpretation found

in Langus and Nespor (2010), that the gesture order would have an influence on inter-152

pretation, and predicted that, when engaged in a dual forced choice task (that presents

the two possible interpretations as answer options), participants would be more likely to154

interpret SVO ordered gesture strings as intensional events than as extensional events,

and vice versa.156

3Two example videos (‘princess sleeps-on / dreams-of book’) are included in the supporting material.
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2.1 Method

2.1.1 Participants158

Forty one native speakers of Dutch (16 male, 25 female) were recruited from the

Utrecht University library in Utrecht, the Netherlands, and forty native speakers of160

Turkish (12 male, 28 female) were recruited from the Bogazici University library in

Istanbul, Turkey. Note that Dutch is an SVO language in main clauses, while Turkish162

is SOV. None of the participants received monetary compensation.

2.1.2 Materials164

We created video clips showing three gestured elements: an actor, a patient and an

action. The three elements for each video were recorded separately, and for each video166

clip, three fragments were concatenated using white flash transitions. The actions in

each video were ambiguous: they could be interpreted as an extensional verb, or an168

intensional verb. For each ambiguous action, we created two ambiguous gesture se-

quences: one in SVO order and one in SOV order, resulting in 12 pairs of videos. Note170

that for each pair of differently ordered strings, we used exactly the same video ma-

terial (but ordered differently). The twelve pairs of ambiguous strings were randomly172

distributed over two versions such that each version consisted of 6 SOV videos and 6

SVO videos, while at the same time, each ambiguous action occurred only once per174

version.

Four filler items were created: videos of gesture sequences with unambiguous ac-176

tions (two intensional and two extensional). For each ambiguous video, two line draw-

ings were made, that represented the two alternative interpretations for the ambiguous178

items. For each filler, we created one line drawing depicting the right answer, and one

depicting the same actor and patient, but a different action.180

2.1.3 Procedure

The participants were shown videos on a laptop screen in a two alternative forced182

choice task; pictures of the corresponding intensional and extensional events were
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shown as the two answer possibilities. First, two practice items with unambiguous184

verbs were shown, followed by the ambiguous items and fillers. The items were pre-

sented in random order, and the order was different for each participant. The two186

answer possibilities were shown before each video and again afterwards.4 The order of

the two answer possibilities was randomly determined. The experiment took about ten188

minutes to complete.

2.2 Analysis and results190

The data were analysed using a logit mixed effects regression, implementing the lme4

package (Bates et al., 2015) in R (R Core Team, 2014).5 Our model analysed the192

fixed effects of gesture-order and native language (both sum coded) on the interpreta-

tion. Participant was included as random intercept6 and random slopes of gesture-order194

were included for item. The model revealed that participants were slightly more likely

to choose an extensional response, as indicated by the model intercept: β = 0.759,196

S E =0.415, p =0.067. A significant effect of gesture-order was found (β = 0.414,

S E =0.103, p <0.001), but no effect of native language (β = 0.001, S E =0.086,198

p =0.984).7 Figure 2 depicts the proportions of videos interpreted as extensional

events, by gesture order.200

Accuracy for the filler items was almost at ceiling level, with 98% overall accuracy,

and at most 1 wrong answer per participant.202

4Showing the answer possibilities before the gesture videos was necessary, because a pilot experiment
suggested that the task was too hard when we did not show the answers first.

5All data and code are provided in the supplementary material folder.
6Including random slopes of gesture order resulted in high correlations between fixed and random effect;

moreover, the model that implements both random slopes does not reveal an improved fit over the model that
was eventually used (χ2=0.000, p=.99).

7Upon re-analysis of the video clips we decided to exclude two videos from the results: ‘Pirate
drops/searches ball’ and ‘Girl kisses/thinks of doll’. These two videos differ from the others in the sense
that the ambiguous actions they depict consist of two sub-gestures, (a ‘drop’-gesture followed by a ‘search’
gesture for the former, and a ‘think of’ gesture followed by a ‘kiss’ gesture for the latter) whereas for all
other ambiguous actions, only one gesture is used. Including the two deleted item in the analysis still yields
significant main effect of gesture-order: β = 0.302, S E =0.075, p <0.001.
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Figure 2: On the left: main interpretation results. Mean proportions of videos in-
terpreted as extensional event are shown for SOV and SVO video orders. Error bars
indicate 95% confidence intervals. The results show that participants were more likely
to interpret SOV ordered videos as extensional than SVO videos. On the right: pro-
duction results from Schouwstra & de Swart (2014) for comparison. Proportion of
strings in SOV order are displayed by event type (extensional and intensional). Error
bars indicate 95% confidence intervals. These results show that in production partici-
pants strongly prefer SOV for extensional events, and SVO for intensional events.

10



2.3 Baseline study

To further investigate the overall preference for extensional interpretations, and to es-204

tablish a baseline measure for each individual ambiguous action (independent of word

order) we carried out an additional experiment. This experiment presented partici-206

pants with the ambiguous action gestures only, instead of strings containing actor, ac-

tion and patient gestures. Data was collected online (N=40; all participants except208

one were native speakers of English), on a crowdsourcing platform (Crowdflower; see

www.crowdflower.com).210

Like in the full-string experiment, participants were presented with ambiguous ex-

perimental items (10) and fillers (4), presented in random order in a two alternative212

forced choice task. For each trial, the participant would first see the two possible inter-

pretations, presented as line drawings. Subsequently, the participant observed a video214

of an ambiguous action gesture; they then saw the two line drawings again, and were

asked to select the drawing that they thought best matched the gesture in the video.216

Ten experimental responses plus four filler responses per participant were collected.

Because the task was a two alternative forced choice task, there were no missing data218

points.

2.4 Results: preference for extensional events220

To compare the overall preference for extensional events in the full-string experiment

to that in the verb-only experiment, we merged the data sets. We then ran a logit mixed222

effects regression to model interpretation, with Experiment (verb-only vs full-string,

null-coded) as fixed effect, and random intercepts and random slopes of experiment224

for item. A preference for extensional interpretations in the Verb experiment was re-

flected in the model intercept: β = 0.953, SE =0.368, p <0.01. Crucially, no significant226

effect of experiment was observed (β = -0.215, SE =0.2659, p <0.419). From this

we conclude that the two experiments saw no difference in the level of preference for228

extensional events.
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2.5 Results: model with baseline values230

To use the verb-only experiment results as a by-item baseline for the original (full-

string) study, we calculated the proportion of extensional interpretations for each item,232

resulting in ten baseline values. We incorporated these baseline values into the data

for the full-string experiment, by creating normalised responses per trial: we took nu-234

meric conversions for the responses per trial (1 for extensional and 0 for intensional),

and subtracted the baseline value (based on the item ID), adding 1 to the resulting236

value.8 A linear mixed effects model was performed on these normalised values, tak-

ing gesture-order and native language as fixed effects, and random intercepts for item238

and participant, as well as random slopes for Gesture-order on item. The full model re-

vealed a significantly better fit than the reduced model which only had native language240

as a predictor (χ2=7.99, p<.001), while no significant difference was found between

the full model and the model that omitted native language as a predictor (χ2=0.21,242

p=.90).

2.6 Discussion244

There are two main conclusions we can draw from the experimental results. First

of all, the order in which the ambiguous gesture strings were presented did indeed246

influence the way they were interpreted by participants: a video clip was more likely to

be interpreted as an extensional event when it was presented in SOV order than when248

it was presented in SVO order, and vice versa. The fact that variability between SOV

and SVO is picked up as a cue for interpretation shows that this variability, as it occurs250

in production, matters for communication.

The second important conclusion is that – in comparison to the results of the pro-252

duction experiment – the effect of word order on meaning in interpretation is mod-

est. For comparison, the right hand graph in figure 2 depicts the effect of meaning on254

word order, taken from the production results presented in Schouwstra and de Swart

(2014). What does this quantitative difference tell us about the nature of word-order256

biases in this context? Given the striking asymmetries in production, it is tempting to
8The latter was done to ensure all values were above 0. The resulting values were all between 0 and 2.
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expect similarly striking asymmetry in interpretation. This expectation may be mis-258

leading, because interpretation involves reasoning under uncertainty. If participants

are accounting for this uncertainty, then the impact of the word order biases may be260

dampened.

For example, the interpretation task – perhaps more so than the production task –262

is implicitly interactive: participants are interpreting the behaviour of another speaker.

Participants have no knowledge of the speaker’s linguistic system, and may be ac-264

counting for this uncertainty when making their decisions. A learner following these

principles may be forced to consider disfavoured ordering systems that would be un-266

likely to play a role in the participant’s own spontaneous productions: for all but the

most strongly biased learners, this could lead to a scenario in which low-level ordering268

preferences can drive striking asymmetries in improvised production, but these asym-

metries are attenuated by uncertainty during interpretation. To apply a classic analogy:270

production can be likened to repeatedly flipping a weighted coin to decide SOV or

SVO, one for Extensional and one for Intensional events, where the bias of the coin272

corresponds to a low-level semantic bias; interpretation, on the other hand, forces an

ideal observer to account for the fact that the gesturer may be holding completely dif-274

ferent coins - a more abstract consideration which could lead to uncertainty. In addition

to these considerations, any a priori bias the observer has toward one event class over276

the other could dilute the influence of word-order biases (in a way that would not play

a role during production).278

These factors, which we will discuss in greater detail below, may break the direct

link between biases evident in production and their impact on interpretation. Drawing280

conclusions about word-order biases from interpretation implicitly assumes a model of

participants’ decisions. In the next section, we develop an explicit model, and use the282

model to estimate participants’ biases from our experimental data.
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3 Model: A computational Analysis of Gesture Inter-284

pretation

The role of word-order biases in interpretation of improvised gestural communication286

has, to the best of our knowledge, received no formal attention whatsoever. While

the experimental literature reviewed in section 1.3 provides intriguing hypotheses –288

such as the hypothesis that independent heuristics drive production and interpretation

(Hall et al., 2015) – there remains no general computational framework for deriving290

and testing their quantitative predictions. Here we present a model which allows us

to test a simple model of interpretation against the experimental data. Our model is292

based around the the idea that non-conventional gestural communication recruits simi-

lar biases to production, but the effects of those biases may be mediated by uncertainty.294

Our approach is to lay out a simple computational model which formalises the logic

discussed here and elsewhere in related literature: the model can be tested against the296

experimental data, and can act as a benchmark against which alternative accounts can

be contrasted.298

The central abstraction in our analysis is that participant behaviour can be pro-

ductively broken down into two components: a set of preferences or dispositions that300

favour the use of particular orderings in particular contexts; and a procedure for em-

ploying these preferences when reasoning about the gesture orderings produced by302

another individual – in contexts where the intended meaning is unknown and must be

reverse-engineered.304

The Bayesian framework provides a natural model for this division of labour. This

approach to statistical inference specifies a simple formula describing how a rational306

learner should update its beliefs about the nature of an unobserved mechanism respon-

sible for generating an observed set of data: under this perspective, the task of a learner308

(e.g. a language learner) is to evaluate competing hypotheses about the nature of the un-

derlying mechanism in light of the data observed (Perfors et al, 2011). In particular, the310

framework allows us to explicitly model biases as prior distributions. The principles

underpinning Bayesian inductive inference align with human learning in many psy-312
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chological domains (Chater, Oaksford, Hahn, & Heit, 2010; Griffiths, Chater, Kemp,

Perfors, & Tenenbaum, 2010). With respect to language, models of probabilistic ra-314

tional inference have been applied to numerous aspects of linguistic structure (Chater

& Manning, 2006), including word order generalisations in artificial grammar learning316

(Culbertson & Smolensky, 2012), and have been used to model the pragmatic princi-

ples underpinning production and interpretation of speech (Goodman & Frank, 2016;318

Frank & Goodman, 2012; Goodman & Stuhlmüller, 2013), but have not previously

been explored as a model for the learning mechanisms that sub-serve improvised ges-320

ture.

Interpretation of improvised, not-yet-conventionalised communication is a partic-322

ularly exciting focus for computational modelling of this sort because, in terms of the

structure of the computational problem facing the interpreter, it has a distinctive char-324

acter that is a-typical of linguistic communication: the interpreter is – knowingly -

largely or completely in the dark with respect to the gesturer’s linguistic system. This326

distinguishes improvised gesture from typical artificial language learning scenarios in

which the learner is explicitly taught new conventions.328

In other words, the improvised gesture interpreter, who we know has certain pro-

duction preferences, is faced with data from a producer, but it is unknown to this inter-330

preter if the producer was acting according to a system of conventions. Whether and

how interpreters account for this uncertainty, and accordingly lean on their own biases332

in the absence of helpful evidence about the gesturer, is an open question with impor-

tant implications for emerging language systems. By constructing an inferential model334

for the experimental task at hand, we can make inroads on this question in a simple

problem where, thanks to existing results (Schouwstra & de Swart, 2014), we already336

have a good impression of people’s biases in production, allowing cross-validation of

our conclusions.338

3.1 Interpreting Gestures through Bayesian Inference

Our model casts gesture interpretation as probabilistic inductive inference from an or-

dered gesture g to an unobserved intended meaning m. Given the principles of Bayesian
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inference, we model selection of a meaning as a random sample from the posterior dis-

tribution over meanings given an observed gesture, p(m|g): the learner arrives at pos-

terior beliefs by combining its prior expectations p(m) about the relative probability

of meanings m, and the likelihood of observing gesture g if m were the true intended

meaning. Under this model, the probability of choosing a meaning m as the intended

meaning behind an observed gesture g is given by:

p(m|g) =
p(g|m)p(m)

p(g)
, (1)

where p(g) is simply a normalising constant9. Learners’ a priori expectations about340

the probability of each event type, p(m), can be captured with a single parameter λ,

such that λ = p(m = Extensional) = 1 − p(m = Intensional). However, the likelihood342

p(g|m) of observing a gesture g in the event that the gesturer were expressing meaning

m is not inherently specified by that meaning. Rather, it reflects the gesturer’s system344

for associating meanings and ordering patterns. To interpret the utterances of another

speaker, we must make some assumption about the speaker’s system for producing346

utterances. This principle has been central to models of pragmatic language processing

(Goodman & Frank, 2016), and is just as important in situations like ours where no348

existing linguistic conventions are established.

3.2 Probabilistic Conditional Word-order Usage350

Let ~p = (pext, pint) be a simple probabilistic model describing preferential usage, condi-

tional on semantic properties of the verb, of the two possible orderings for subject-first352

gestures composed of a single verb and object (SVO and SOV)10. Here pext is the proba-

bility of employing SVO to express an Extensional event: p(g = SVO|m = Ext) = pext;354

likewise pint is the probability of using SVO to express an Intensional event: p(g =

9The constant p(g) = p(g |m = Ext)p(m = Ext)+ p(g |m = Int)p(m = Int) captures the degree of evidence
conveyed by the gesture, summed over both possible hypothesised event types.

10For brevity, we will call these S-First gestures. The model describes the computations that underpin
usage of just these two orderings: though more are possible, we are interested primarily in the balance of
SVO and SOV, and as such we ignore alternatives, though note that the model could easily be extended to
reserve probability mass for alternative orderings. This is a reasonable simplification since our experiment
concerned just SOV and SVO.
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SVO|m = Int). The probabilities of employing SOV for Extensional and Intensional356

events respectively are p(g = SOV|m = Ext) = 1 − pext and p(g = SOV|m = Int) =

1 − pint.358

An underlying system of associations ~p is tacitly assumed in equation 1, since

p(g|m) is a function of ~p. In our experiment, which featured no labelled examples360

or feedback, participants faced an inherent uncertainty about the gesturer’s system ~p.

For example, the gesturer could be speaking a language that does not condition the362

ordering of verbs and their objects on this semantic distinction, consistently expressing

both extensional and intensional events using SVO (i.e. pext = pint ≈ 1) or SOV364

(i.e. pext = pint ≈ 0). Likewise, these ordering patterns could be in free variation

(pext = pint = 1/2), strong complementary conditioned usage (i.e. pext = 1, pint = 0366

or pext = 1, pint = 0), weaker complementary usage (i.e. pext = 1 − pint), or anything

in between. We aim to compute a probability model for the decisions of a learner who368

accounts for this uncertainty.

3.2.1 Accounting for Uncertainty about ~p370

One simple way to achieve this computationally is to model a learner who considers

all possible systems ~p, accounting for the implications each variant entails for her de-

cision11. Crucially, such a learner need not treat all ~ps as equally plausible. We allow

the computation to reflect a weighted sum, taken over a prior distribution p(~p) which

specifies the learner’s biases over the space of possible systems. This is how we model

the influence of inductive biases on inference whilst also accommodating the uncer-

tainty inherent in the learner’s observations. Under these assumptions the probability

11Technically, we assume the learner considers all systems ~p that could have generated the observed ges-
ture. An infinitesimally small subset of possible systems ~p represent a mis-specified model for the gesturer
under certain observations (observed gesture orderings). For example, if the learner observes an SVO gesture,
the system ~p = (0, 0) is a mis-specified model of the world, since neither event type could have generated the
data under this model: as a result, the posterior distribution p(m|g, ~p) over event types is improper, being zero
for both types of meaning, leading to p(g) = 0. So in equation (2), a misspecified model of the gesturer will
make no contribution to the sum, even if it reserves probability mass under the prior p(~p), since p(m|g, ~p)
will evaluate to zero whatever the meaning. We thank Simon Kirby for raising this point.
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of choosing meaning m after observing gesture g is:

p(m|g) =

"
~p

p(m|g, ~p)p(~p) dpext dpint (2)

Here p(m|g, ~p) is given by equation (1), with the conditioning on ~p made explicit.

The quantity p(~p) can be understood to reflect the learner’s prior beliefs: cognitive372

biases for conditional association of ordering patterns and semantic properties of the

verb. These biases impose probabilistic preferences on the space of possible associ-374

ation systems, and can be modelled with the Beta distribution (see Appendix A for

details): p(~p) = p(pext)p(pint) = Beta(pext;αext, βext) · Beta(pint;αint, βint). The shape376

and strength of these preferences are determined by the prior parameters αext, βext, αint,

and βint. An intuitive way to view these parameters is as pseudo-counts, or counts that378

are added to the observed counts when predicting the probability of an outcome (α

being the pseudo-count for SVO gestures, and β for SOV).380

3.3 Results

3.3.1 Model Predictions382

We analysed three versions of the model and compared their predictions to the exper-

imental data (figure 3). A baseline unbiased version of the model (M0), in which we384

fixed neutral priors over meanings (λ = 1/2) and event-ordering association systems

(αext = βext = αint = βint = 1), is unsurprisingly the poorest predictor of the exper-386

imental data, affording participants’ responses a combined log-likelihood of -256.98:

this model predicts fifty-fifty interpretation responses to both SOV and SVO gestures,388

failing to capture the asymmetry in responses across ordering patterns, and the overall

preference for Extensional events.390

In order to ask whether the experimental result is being driven by general pref-

erences for one event type over another, and not by conditional associations between392

events and ordering patterns, we computed the predictions of a semi-biased version of

the model (M1): here we fixed a neutral prior over association systems (αext = βext =394

αint = βint = 1) but fit λ to the experimental data. The maximum-likelihood estimate

18



SVO SOV SVO SOV SVO SOV SVO SOV
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
P

ro
po

rti
on

Proportion of Gestures Interpreted as Extensional Events

M0
Predictions
M1
Predictions
M2
Predictions
Experimental
Results

Figure 3: Comparison of model predictions and experimental results. The biased model (M2), but not the
unbiased (M0) or the event-biased (M1) model, predicts both experimental results: asymmetric responses
to SOV and SVO gestures, and an overall preferences for Extensional events. Model predictions show the
predicted probability of interpreting SVO/SOV gestures as Extensional events p(m = Ext|g = SVO, α, β) and
p(m = Ext|g = SOV, α, β).

is λ̂ = 0.68: this model affords the data a combined log-likelihood of -225.00. The396

model-fit suggests a slight overall preference for Extensional events independent of

gesture ordering, and this is reflected in the model’s predictions (figure 3). This bias is398

in line with the results of our baseline experiment presented above, in which an overall

proportion of 0.68 of actions were interpreted as extensional events. We found of λ400

to be one of the most consistent parameter estimates in our model. Though M1 is a

better fit to the data than M0, it nevertheless fails to capture the assymmetry between402

responses to SVO and SOV gestures.

These versions of the model suggest that – to account for the pattern of exper-404

imental results – the learning model we have described must include a non-neutral

preference for some systems of event-ordering association over others. We fit the full406

model (M2) to the experimental data, by inferring maximum-likelihood estimates (see

Appendix A for details) for p(~p). Drawing inferences about the shape of this prior408

is challenging: but possible under the relatively weak assumption that participants’
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constituent ordering preferences are approximately complementary across event-types:410

however strongly I prefer one ordering pattern for Extensional events, that’s how

strongly I prefer the alternative ordering pattern for Intensional events. More for-412

mally, we limit the space of possibilities for p(~p) by assuming p(pext) ∼ Beta(α, β) and

p(pint) ∼ Beta(β, α), thereby reducing the parameter space to two dimensions rather414

than four.

This assumption may seem restrictive, but is justified by both theoretical and prac-416

tical considerations. In practical terms, the space of possible priors defined by allowing

four freely varying parameters is too broad to make reliable inferences about their val-418

ues given the model we defined and the available data: many possible priors lead to

equivalent or near equivalent values for p(m|g), so the experimental data cannot choose420

between alternative priors reliably 12. A natural solution is to reduce the number of

model parameters to create a space of possible priors in which we can perform reliable422

inference. Moreover, this reduction can even be a desirable restriction if there are the-

oretical reasons to focus on a particular subspace of priors, and it is possible to check424

that the reduction does not also lead to a dramatic reduction in the likelihood of the

data (compared to the higher-dimensional model). In our case, both of these conditions426

are met (more details below).

Fixing p(m) at its maximum-likelihood value inferred from M2 (λ = 0.68), the428

maximum-likelihood parameter estimates for p(~p) are α̂ = 0.9 and β̂ = 1.18, afford-

ing the data a combined log-likelihood of -215.98, correctly predicting participants’430

chosen interpretation with average probability 0.77. Figure 3 demonstrates the close

correspondence between the model’s predictions and participants’ responses in our ex-432

periment.

A natural concern is that we are building in the assumption that SVO and SOV are434

used to communicate the semantic distinction in a somewhat complementary way, by

assuming p(pext) ∼ Beta(α, β) and p(pint) ∼ Beta(β, α). In addition to the practical436

issues raised above, there are a number of theoretical reasons that this should not be

a major concern. First, whilst we aren’t able to identify a single best-fitting prior in438

12This is a common obstacle in model fitting, and is often referred to in technical terms as weak identifia-
bility. Appendix D includes MCMC samples from the posterior distribution over these parameters.
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the four-dimensional case, we are able to identify the maximum of the data likelihood

function in this model (achievable under multiple ”best-fitting” priors). Crucially, this440

maximum value is identical to the maximum value achievable under the two-parameter

”complementary priors” model (−215.98). In other words, the assumption of comple-442

mentary biases does not reduce the likelihood of the data, suggesting that we should

prefer the two-parameter version on grounds of parsimony anyway.444

Second, we also analysed alternative assumptions within the restriction that only

two parameters define the prior, and found these to be inferior. For example, rather446

than assuming ”complementary” priors across event types (αext = βint, αint = βext),

we could assume independent priors which are each defined by a single parameter,448

such that p(pext) ∼ Beta(α, α) and p(pint) ∼ Beta(β, β), or identical priors defined

by two parameters, so that p(pext) ∼ Beta(α, β) and p(pint) ∼ Beta(α, β). Neither of450

these assumptions can explain the data as well as the ”complementary prior” assump-

tion: respectively, the maximum of the likelihood function in these models is −216.92452

and −225.03. Maximum likelihood analysis favours the complementary priors model,

although the independent single-parameter model achieves relatively comparable log-454

likelihood, and may therefore also be worthy of further investigation as an alterna-

tive description of participants’ biases. Taken together, these analyses suggest that the456

”complimentary priors” assumption is justified over alternatives, both practically and

theoretically, so we will proceed to focus on this case.458

3.3.2 Inferred Priors

Figure 4 shows the inferred prior p(~p). First, the model suggests a clear asymmetry in460

ordering preferences across event types: the prior favours SOV for Extensional events,

and SVO for Intensional events. Second, the prior demonstrates a bias toward regular-462

ity: consistent usage of the favoured ordering is preferred over variable usage (prob-

ability density peaks close to 0 for Extensional events and 1 for Intensional events).464

This aspect of the prior is in keeping with the regularisation bias: a general prefer-

ence for regularity – motivated by simplicity principles and thought to be relevant to466

cognition in general – that has been proposed in various linguistic (Reali & Griffiths,
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Figure 4: Lines show probability density functions for priors p(pext) (top) and p(pint) (bottom) inferred
from production data, superimposed on the (normalised) histograms of estimates of individual participants’
p̂ext (top) and p̂int inferred from Schouwstra and de Swart’s (2014) production data.

2009a; Smith & Wonnacott, 2010; Culbertson & Smolensky, 2012) and non-linguistic468

(Ferdinand, Thompson, Smith, & Kirby, 2013) domains.13 Third, the prior expresses

preferences that are skewed but weak; it encodes asymmetric ordering preferences, but470

these defeasible preferences could be easily overturned by observing contradictory data

about ~p. A common measure for the strength of preferences imposed by prior beliefs472

modelled using the Beta distribution is the effective sample size (ESS): s = α + β. If,

as is common, the prior is viewed as expressing a set of imaginary data-points, then474

the ESS reflects their number, and thus their power to over-rule observed data-points.

In the inferred prior, s = 2.08, suggesting just a handful of contradictory data-points476

could lead the learner to entertain disfavoured systems ~p.

13Note that the kind of regularity observed here is conditioned regularity. Had there not been an asymmetry
in ordering preference (the first aspect of the prior discussed above), then regularisation would have pushed
the system towards one word order.
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A simple way to test the credibility of the model is to ask how well its predictions478

generalise to production, having been inferred from interpretation only. Our reason-

ing about the differences between production and interpretation in this context predicts480

that the shape of the inferred prior should be broadly compatible with the distribu-

tion of productions across participants, favouring most strongly the kinds of systems482

evidenced in production, but should also reserve some probability mass over a wider

range of possible systems ~p than those which were most prominent in production. This484

is what we find. Together with the results presented in figure 3, these results show

that our model is consistent with the differences we are attempting to explain between486

production and interpretation experimental results.

We analysed production data from Schouwstra and de Swart (2014)’s experiment488

and inferred maximum-likelihood estimates p̂ext and p̂int for each individual partici-

pant (see Appendix C for details). Figure 4 shows the (normalised) histograms of these490

estimates, superimposed on the priors p(pext) and p(pint) we inferred from interpreta-

tion. A correspondence between the distributions is clear: the biases we inferred from492

interpretation are consistent with the pattern of results observed independently in pro-

duction. The prior favours the same strongly biased ordering systems that were most494

prominent in production, but also reserves some non-zero probability for alternative

ordering systems that were not prominent in production. This is consistent with our496

hypothesis that the same biases play a role in production and interpretation, but that

low probability ordering systems are accounted for during interpretation, which dilutes498

the stronger asymmetry observed in production that was driven by favoured, higher

probability ordering systems.500

It is also possible to directly compute the likelihood of the production data under

the prior inferred from participants’ interpretations (see appendix C or details): this502

analysis shows that the model correctly predicts the use of SVO and SOV in production

with average probability 0.77 for extensional gestures and 0.74 for intensional gestures.504
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3.4 Discussion

Our model provides one possible computational account for the main experimental506

finding that when interpreting gestures, participants used constituent ordering patterns

as a cue to meaning. The model we described is a first-approximation to the inferences508

that underpin production and interpretation of improvised communication. However,

the basic proposal – that interpretation involves inference and estimation, and that the510

Bayesian framework provides a natural and useful model for understanding how learn-

ers bring their biases to bear on this uncertainty – is not tied to these experimental512

conditions or this particular model. For example, the inferential model makes spe-

cific predictions about the posterior beliefs participants should entertain after observ-514

ing labeled training examples, and it would be straightforward to construct experimen-

tal procedures that test these predictions. Likewise, plausible alternative explanations516

for asymmetry between production and interpretation could be formulated within this

framework and directly compared.518

Our model assumes that during interpretation, uncertain observers have principled

motivation to fall back on a more abstract layer of knowledge – a prior over possible520

ordering systems – which can in theory dilute the lower-level ordering biases evident

in participants’ responses in a matched production experiment. We have suggested that522

this principle offers an explanation for the difference in effect we observe between pro-

duction and interpretation experiments. This explanation rests on the hypothesis that524

production in this particular scenario does not invoke the same abstract considerations

(at least not to the same degree), but follows a lower level sampling process driven by526

favoured ordering systems. These favoured ordering schemes will have high probabil-

ity under the prior thanks to the same semantic biases, but we shouldn’t expect that528

these biases are so strong as to rule out consideration of alternative ordering schemes.

While the asymmetry may not hold for more interactive production scenarios in gen-530

eral, we believe this assumption is a conservative starting point which could easily be

tested in future experiments that manipulate the degree of interactivity in production.532

An emerging body of research on the pragmatics of speech production and interpreta-

tion (Goodman & Frank, 2016) provides a road map for these kinds of questions.534
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In general, we hope our analysis can motivate further experimental and computa-

tional efforts to illuminate how individuals use and process improvised communication536

systems under uncertainty. Computational modelling will be a crucial component in

understanding how production and interpretation interact during communication and538

learning to shape the dynamics of an emerging language, particularly as those forces

play out in populations. Having experimentally-informed computational accounts of540

these processes is an important step in that direction.

4 General Discussion542

In the silent gesture paradigm, people are forced to communicate while they cannot

rely on an existing language system: they have to improvise. Previous work has shown544

that when people improvise, there are some general principles for the organisation of

their utterances: they prefer SOV word order for simple transitive events that involve546

motion through space, but they switch to other orders for other kinds of events. This

kind of meaning based word order alternation is not generally observed in fully con-548

ventionalised languages.

In this paper we have looked at the interpretation of silent gesture, and compared550

it to silent gesture production. We used a laboratory experiment as well as a computa-

tional model to investigate the mechanisms that underpin the emergence of linguistic552

rules, particularly how language production and language comprehension relate to each

other. We started from the observation (Schouwstra & de Swart, 2014) that when peo-554

ple improvise, the organisation of their utterances depends on their semantic properties:

extensional and intensional events give rise to SOV and SVO word orders respectively.556

Using a silent gesture interpretation experiment, we showed that a similar connection

between meaning and form is present in the interpretation of improvised gesture. How-558

ever, the effect in interpretation appeared modest in comparison to production. In the

second part of the paper we proposed an explanation for this: when people interpret560

improvised gesture, they face an inherent uncertainty about the gesturer’s linguistic

system. An ideal learner would account for this uncertainty, and shape her interpreta-562
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tion decisions accordingly.

In the introduction section we saw that previous interpretation experiments have led564

to differing conclusions. Either, interpretation of improvised gesture, like production,

by-passes the grammatical system, and prefers SOV order for simple transitive (exten-566

sional) events (Langus & Nespor, 2010), or production and interpretation each call for

rather different explanations: a simple semantics based heuristic (‘agent first’) for in-568

terpretation, and specific production-related constraints (i.e., role conflict for reversible

events) for production (Hall et al., 2015). In this paper we used the combination of an570

experiment and Bayesian modelling to obtain a more detailed picture of the improvi-

sation situation. With our experiment we showed that in silent gesture interpretation572

(like in its production), meaning type and structure are connected in a way that is not

generally observed in existing languages. The heuristic that we have focused on in574

this paper (the one that connects SOV to extensional and SVO to intensional events) is

different from the one that is described by (Hall et al., 2015), but they are both clearly576

semantics based, and certainly compatible with one another.14

At the same time, there are important differences between silent gesture production578

and interpretation. While in both production and interpretation experiments, partici-

pants must improvise and cannot use their own language or any conventional language580

they know, the production experiment is more clearly than the interpretation experi-

ment a situation that lacks linguistic conventions. Participants produce their gestures582

to the camera, and although there is an experimenter present, this experimenter is not

engaged in the improvisation task. In the interpretation experiment, participants are not584

alone in the improvisation act: they observe another person’s linguistic behaviours, and

they may entertain the possibility that this person behaves according to a set of existing586

or emerging rules or tendencies in production. We constructed a computational model

of interpretation through inductive inference, based around the principle that learners588

account for this uncertainty surrounding another individual’s language use. The model

suggests that participants’ decisions – which varied by word-order but nevertheless590

14In fact, there is no reason to assume that the ‘agent first’ heuristic does not play a role in the production
data discussed in (Hall et al., 2015), because the data does not provide counter evidence against this principle.
The principle alone is simply not enough to explain the word order patterns.
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portrayed uncertainty – may reflect motivated uncertainty in response to this unknown.

Casting interpretation in this framework (Perfors, Tenenbaum, Griffiths, & Xu, 2011)592

connects improvised gesture with inference and estimation in other domains (e.g. Hsu,

Chater, & Vitányi, 2011; Clayards, Tanenhaus, Aslin, & Jacobs, 2008; Culbertson,594

Smolensky, & Legendre, 2012; Goldwater, Griffiths, & Johnson, 2009; Perfors, Tenen-

baum, & Regier, 2011) through domain-general principles of inductive inference. For-596

mulating questions about the emergence of linguistic rules/conventions in probabilistic

models of cognition is fruitful because it explicitly addresses how learners represent598

and reason about the uncertainty that surrounds other minds in the absence of helpful

evidence. Going forward, we aim to explore principles for inductive inference fur-600

ther, in semi-supervised learning scenarios that systematically confirm or contradict

the biases we inferred: e.g. how much evidence must learners observe before they602

are confident in their estimate of another individual’s linguistic system? Can seem-

ingly disfavoured ordering patterns be easily learned? The computational principles604

governing when and how people bring their biases to bear on language use under un-

certainty are at present only superficially understood. Improvised gesture offers a rich606

testing ground for these questions, which we believe will be best understood through

synthesis of experimental and computational analysis.608

In the context of this paper, production and comprehension are studied separately,

but in real life, production and interpretation are not separated as strictly. In natural610

interactive situations, they are always combined, and often even done at the same time

(Pickering & Garrod, 2013). A logical next step is to extend the silent gesture paradigm612

to include communication (Christensen, Fusaroli, & Tylén, 2016) and cultural trans-

mission through artificial generations of lab participants (Motamedi, Schouwstra, Smith,614

Culbertson, & Kirby, 2018; Schouwstra, Smith, & Kirby, 2016).

Together, the experiment and the model presented here clarified our thinking about616

the mechanisms at play when a new language system emerges. The experiment showed

that the interpretation of silent gesture favours ordering preferences that are condi-618

tioned on meaning - similar to what was observed for silent gesture production. Fitting

a computational model to the experimental data allowed us to estimate these ordering620
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preferences: they appear to be skewed and asymmetric across event types, but weak.

This implies that they lead to stronger conditioning of order on meaning when there are622

no linguistic observations, a pattern that is confirmed by the silent gesture production

results from Schouwstra and de Swart (2014). On the other hand, the conditioned word624

order alternation may be easily overturned by contradictory linguistic observations.

This observation appears consistent with the fact that there are no languages in which626

word order is conditioned on verb type as it appears to be in silent gesture production.

However, it is well known that, under the right circumstances, weak inductive biases628

can shape regularities – sometimes even disproportionately strong regularities – over

the course of cultural transmission (Kirby, Dowman, & Griffiths, 2007; Smith & Won-630

nacott, 2010; Griffiths & Kalish, 2007; Boyd & Richerson, 1985; Reali & Griffiths,

2009b). Understanding the cultural evolutionary forces that suppress this alternation in632

natural language is therefore a key priority for future research.

5 Appendix A: Experimental stimuli and results by item634

The following strings were used in the experiment (one ambiguous action per pair of

verbs). The experimental results plotted by item can be found in figure 5. Item numbers636

in the table correspond with those in the figure, and the baseline values correspond to

the proportion of extensional interpretations chosen in the verb-only experiment (see638

section 2.3). All experiment items, as well as the raw data and code for analysis are

available on https://osf.io/tfqcp/.640
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item description baseline value

1 Princess smashes / carves vase 0.73

2 Gnome cuts / draws pizza 0.65

3 Witch eats / wants banana 0.45

4 Witch decorates / paints table 0.63

5 Girl sleeps on / dreams of book 0.30

6 Princess talks to / talks about teddybear 0.90

7 Pirate throws / hears guitar 0.85

8 Cook stirs / smells 0.90

9 Gnome pats / feels book 0.45

10 Witch climbs / builds house 0.95

642

6 Appendix B: ML Estimation of Interpretation Model

Parameters644

The model formulates each chosen interpretation as an independent Bernoulli trial over

Intensional and Extensional interpretations. The likelihood of a given participant’s set

of decisions is the product of two Binomial likelihoods, one for interpretations of SVO

gestures and another for SOV gestures. The combined log-likelihood of the entire

experimental data set D, taken over all n participants, as a function of model parameters

Θ = (α, β, λ) is:

LL(D|Θ) =

n∑
i=1

ln
[
Binomial(ksvo

i ; θsvo,N svo)
]

+ ln
[
Binomial(ksov

i ; θsov,N sov)
]

(B.1)

where θsvo = p(m = Ext. | g = S VO) and θsov = p(m = Ext. | g = S OV) are com-

puted with equation (2), which is given in explicit form below. ksvo
i and ksov

i give the

number of SVO and SOV gestures interpreted as Extensional events by the ith partici-

pant respectively, while N svo and N svo give the total number of SVO and SOV gestures

observed, which did not vary across participants. For the main two-parameter comple-

mentary priors version of the model, equation (2) can be written more explicitly than
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the version in the main text. Separating the two gesture orderings:

θsvo =

∫ 1

0

∫ 1

0

λpext

λpext + (1 − λ)pint

b
B(α, β)2 dpext dpint (B.2)

θsov =

∫ 1

0

∫ 1

0

λ(1 − pext)
λ(1 − pext) + (1 − λ)(1 − pint)

b
B(α, β)2 dpext dpint (B.3)

b =
[
(1 − pint) · pext

]α−1 ·
[
pint(1 − pext)

] β−1
(B.4)

The first term in equations (B.2) and (B.3) gives p(m = Extensional | g, ~p, λ). The

second term in both gives the prior over ordering systems p(~p), which is a combination646

of two Beta densities (the combination can be written this way thanks to the symmetry

in the parameters and the identity B(α, β) = B(β, α) in the Beta function). Maximum648

likelihood estimates were obtained through numerical minimisation of (the inverse of)

eq. (B.1). Predictive probabilities reported throughout refer to the geometric mean650

of the combined log likelihood of all decisions. All optimisation procedures reported

were carried out using the Python library Scipy. Figure 6 shows the two-parameter652

version of the model in graphical form.

7 Appendix C: ML Estimation of ~p from Production654

Maximum likelihood estimates for pext and pint inferred from production data for the

ith participant are:

p̂ext = kext
i /Next

i (C.1)

p̂int = kint
i /N int

i , (C.2)

where kext
i and kint

i give the number of Extensional and Intensional events expressed

using SVO, and Next
i and N int

i are the total number of S-First gestures the ith participant656

produced for Extensional and Intensional events, respectively. When we report the

probability of the production data under the prior inferred from interpretation, we are658
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computing the marginal likelihood of the binomial data under the beta prior determined

by the inferred parameters – the beta-binomial compound distribution.660

8 Appendix D: Independent Beta Priors Analysis

Figure 7 shows 500000 MCMC samples from the marginal posterior distributions for662

log(αext), log(βext), log(αint), and log(βint) in the ”independent Beta priors” version of

the model which allows four free parameters (with λ = .68 fixed). Samples were col-664

lected under a uniform prior using an ensemble sampler with 250 walkers (Foreman-

Mackey, Hogg, Lang, & Goodman, 2013) initialised uniformly at random in [−10, 10].666

We collected so many samples because the data likelihood surface in this model is er-

ratic: the model parameters are only weakly identifiable given the experimental data.668

We omit pairwise correlation plots because they are largely uninformative. Note how-

ever the correspondence between the distributions for αext and βint, which is broadly670

consistent with the idea that p(pext) and p(pint) encode somewhat complimentary pref-

erences, though we caution against overinterpreting parameter estimates in this version672

of model.
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Figure 5: This shows the experimental results per item. The y axis shows the proportion of extensional
interpretations.
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Figure 6: The model in graphical form, assuming complementary priors pext ∼ Beta(α, β) and pint ∼
Beta(β, α).
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Figure 7: Posterior marginal samples in the independent priors version of the model, which allows four
free paramters to determine prior distributions with independent shapes.
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