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ABSTRACT This paper builds on recent developments in Bayesian network (BN) structure learning under 

the controversial assumption that the input variables are dependent. This assumption can be viewed as a 

learning constraint geared towards cases where the input variables are known or assumed to be dependent. It 

addresses the problem of learning multiple disjoint subgraphs that do not enable full propagation of evidence. 

This problem is highly prevalent in cases where the sample size of the input data is low with respect to the 

dimensionality of the model, which is often the case when working with real data. The paper presents a novel 

hybrid structure learning algorithm, called SaiyanH, that addresses this issue. The results show that this 

constraint helps the algorithm to estimate the number of true edges with higher accuracy compared to the 

state-of-the-art. Out of the 13 algorithms investigated, the results rank SaiyanH 4th in reconstructing the true 

DAG, with accuracy scores lower by 8.1% (F1), 10.2% (BSF), and 19.5% (SHD) compared to the top ranked 

algorithm, and higher by 75.5% (F1), 118% (BSF), and 4.3% (SHD) compared to the bottom ranked 

algorithm. Overall, the results suggest that the proposed algorithm discovers satisfactorily accurate connected 

DAGs in cases where other algorithms produce multiple disjoint subgraphs that often underfit the true graph. 

INDEX TERMS causal discovery, conditional independence, directed acyclic graphs, probabilistic graphical 

models, structure learning. 

 
I. INTRODUCTION 

 

A Bayesian Network (BN) is a type of a probabilistic 

graphical model introduced by Pearl [1] [2]. If we assume 

that the arcs between nodes represent causation, then the BN 

is viewed as a Causal Bayesian Network (CBN). However, 

if we assume that the edges between nodes represent some 

dependency that is not necessarily causal, then such a BN is 

viewed as a dependence graph. A CBN can only be 

represented by a unique Directed Acyclic Graph (DAG), 

whereas a BN that is not viewed as a causal model can be 

also be represented by a Completed Partial Directed Acyclic 

Graph (CPDAG). A CPDAG incorporates both directed and 

undirected edges and represents a set of Markov equivalent 

DAGs that entail the same independence relations over the 

observed variables.  

BNs have emerged as one of the most successful 

approaches for reasoning under uncertainty. This is partly 

because they enable decision makers to reason with 

transparent causal assumptions that offer solutions that go 

beyond prediction. For example, a CBN enables decision 

makers to reason about intervention and counterfactuals. On 

this basis, the focus of this paper is on the reconstruction of 

the true causal DAG, as opposed to the reconstruction of a 

graph that forms part of the equivalence class of the true 

DAG (i.e., a CPDAG). 

Constructing a BN involves determining the 

graphical structure of the network and parameterising its 

conditional distributions. The problem of structure learning 

is considerably more challenging than that of parameter 

learning. This is because searching for the optimal graph 

represents an NP-Hard problem where some instances are 

much harder than others [3]. Structure learning algorithms 

generally fall under two learning classes. Firstly, the score-

based methods represent a traditional machine learning 
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approach where graphs are explored and scored in terms of 

how well the fitting distributions agree with the empirical 

distributions. The graph that maximises the scoring function 

is returned as the preferred graph. On the other hand, 

constraint-based learning is based on a series of conditional 

independence tests that determine the removal and the 

orientation of some edges. Hybrid algorithms are often 

viewed as a third learning classe that adopts features from 

both score-based and constraint-based learning. 

The automated construction of causal structures has 

the potential to offer significant benefits to every research 

field concerned with causal inference and actions for 

intervention. However, automated causal discovery is 

hindered by difficulties that have significantly limited its 

impact. These difficulties go beyond the problem of NP-

hardness that is generally addressed by algorithms that prune 

the search space of possible graphs and effectively minimise 

the loss in accuracy and maximise the gain in speed. 

Importantly, there are conflicting claims in the 

literature about what can be recovered from observational 

data. Some argue for a causal graph and others for a 

dependence graph [4] [5] [6] [7] [8]. The underlying 

assumption of the learned graph influences the evaluation 

process that determines the effectiveness of these algorithms. 

While cross-validation serves as an excellent evaluator for a 

predictive model in other machine learning fields, it 

underdetermines the accuracy of causal inference. As a 

result, there is no consensus on an evaluation approach that 

best determines the effectiveness of a BN structure learning 

algorithm. Each publication makes an empirical or a 

theoretical case for the algorithm presented in that 

publication [9]. Likewise, each structure learning algorithm 

is based on a set of assumptions, such as complete data and 

causal sufficiency, and tends to be evaluated with synthetic 

data that conforms to those assumptions, however unrealistic 

these assumptions may be in the real world [10]. Because of 

this, it is widely accepted that synthetic performance 

overestimates real performance. These unresolved issues 

continue to invite different forms of domain knowledge to be 

incorporated into the structure learning process [11] [12] 

[13] [14] [15]. The learning constraint proposed in this paper 

can be viewed as one more such knowledge-based constraint. 

The rest of the paper is structured as follows: 

Section 2 describes the algorithm, Section 3 describes and 

discusses the evaluation process, Section 4 presents and 

discusses the results, and Section 5 provides the concluding 

remarks along with possible directions for future research. 

 

 
II. THE ALGORITHM 

 

The algorithm addresses the problem of learning multiple 

disjoint subgraphs that do not enable full propagation of 

evidence. This is achieved by performing structure learning 

under the assumption that the input variables are dependent.  

 
1This does not imply that the MMD score is superior to the MI score or 

other non-linear associational measure. 

The learning process of the algorithm consists of 

three phases. The first phase starts by producing an initial best 

guess undirected graph that is entirely based on pairwise 

associational scores. Constraint-based learning is then used in 

conjunction with other rules to orientate edges in phase 2. The 

third and final phase involves score-based learning that 

modifies the graph produced at phase 2 towards the path that 

maximises a scoring function. The subsections that follow 

describe these three phases in turn, as well as the 

computational complexity of the algorithm. 

A. Phase 1: Associational learning 

 

The first phase is based on two novel approaches inherited 

from an early experimental version of this algorithm [16]. 

They involve a) the associational score Mean/Max/MeanMax 

Marginal Discrepancy (MMD), and b) an undirected graph 

called the Extended Maximum Spanning Graph (EMSG). The 

output of phase 1 is the EMSG and serves as the starting graph 

of phase 2. 

The MMD score represents the discrepancy in 

marginal probabilities between prior and posterior 

distributions. Contrary to other traditional measures such as 

mutual information (MI), the MMD score offers linear 

examination of the marginal and conditional independencies1. 

The MMD score ranges from 0 to 1, where a higher score 

indicates a stronger dependency. For edge A↔B, the score 

MMD(𝐴 ↔ 𝐵) is the average of scores 𝑀𝑀𝐷𝑀𝑁(𝐴 ↔ 𝐵) and 

𝑀𝑀𝐷𝑀𝑋(𝐴 ↔ 𝐵), where 𝑀𝑁 and 𝑀𝑋 are mean and max 

marginal discrepancies. Specifically, 

 

𝑀𝑀𝐷(𝐴 ↔ 𝐵) = ∑ ∑ 𝑀𝑀𝐷𝑚(𝐴 ↔ 𝐵)𝑤

𝑚↔

 

 

where ↔ represents the iterations over ← and →, 𝑚 

represents the iterations over 𝑀𝑁 and 𝑀𝑋, and 𝑤 is the 

normalising constant 0.25 for the scores accumulated over 

the following four iterations: 

 

𝑀𝑀𝐷𝑀𝑁(𝐴 → 𝐵) = (∑ [(∑|𝑃(𝐵𝑖) − 𝑃(𝐵𝑖|𝐴𝑗)|

𝑠𝐵

𝑖

) 𝑠𝐵⁄ ]

𝑠𝐴

𝑗

) 𝑆𝐴⁄  

 

𝑀𝑀𝐷𝑀𝑁(𝐴 ← 𝐵) = (∑ [(∑|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖)|

𝑠𝐴

𝑗

) 𝑆𝐴⁄ ]

𝑠𝐵

𝑖

) 𝑠𝐵⁄  

 

𝑀𝑀𝐷𝑀𝑋(𝐴 → 𝐵) = (∑ max
𝑖

|𝑃(𝐵𝑖) − 𝑃(𝐵𝑖|𝐴𝑗)|

𝑠𝐴

𝑗

) 𝑆𝐴⁄  
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FIGURE 1.  The EMSG based on the Asia BN example, with the MMD 
scores produced at the end of phase 1. 

 

𝑀𝑀𝐷𝑀𝑋(𝐴 ← 𝐵) = (∑ max
𝑗

|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖)|

𝑠𝐵

𝑖

) 𝑠𝐵⁄  

 

for each state 𝑗 in 𝐴 and state 𝑖 in 𝐵, and over the 𝑆𝐴 states in  

𝐴 and 𝑆𝐵 states in 𝐵. 

The EMSG is determined by the MMD scores and 

can be viewed as an extended version of the maximum 

spanning tree [17]. This is because EMSG preserves multiple 

connecting paths from one node to another, unlike the 

maximum spanning tree which preserves the single and most 

likely connecting path between nodes. The intention here is 

to start with a graph that is more dense, in terms of the 

number of edges, compared to the corresponding maximum 

spanning tree. 

Starting from a complete graph, the EMSG is 

produced by removing edges between two nodes 𝐴 and 𝐵 if 

and only if 𝐴 and 𝐵 share neighbour 𝐶 where 

 

𝑀𝑀𝐷(𝐴 ↔ 𝐶) > 𝑀𝑀𝐷(𝐴 ↔ 𝐵) < 𝑀𝑀𝐷(𝐵 ↔ 𝐶) 

 

The order in which the edges are assessed for removal is from 

lowest to highest MMD score. Figure 1 presents the EMSG 

produced for the classic Asia BN, along with the MMD scores 

assigned to each of the edges. In this example, the EMSG 

matches the skeleton of the true Asia graph. 

B. Phase 2: Constraint-based learning 

 

In the second phase, SaiyanH performs conditional 

independence tests across all pairs of nodes conditional on 

the remaining nodes in sets of triples, and classifies each 

triple into either conditional dependence, independence or 

insignificance. Assuming independence tests between 𝐴 and 

𝐵 conditional on 𝐶, the following rules apply for 

classification: 

 

1. Conditional dependence: if 𝑀𝑀𝐷(𝐴 ↔ 𝐵)|𝐶 is both 
greater than 0.05 and 50% higher than 𝑀𝑀𝐷(𝐴 ↔ 𝐵). 

 

2. Conditional independence: if 𝑀𝑀𝐷(𝐴 ↔ 𝐵)|𝐶 is 
both lower than 0.05 and 50% lower than 𝑀𝑀𝐷(𝐴 ↔
𝐵). 

 

These thresholds represent the hyperparameter defaults 

adopted by other algorithms that employ similar processes to 

investigate independence. Specifically, the dependency 

threshold of 0.05 corresponds to the same cut-off threshold 

of the unoptimised parameter 𝑎𝑙𝑝ℎ𝑎 used in other constraint-

based algorithms [18] [19]. The additional threshold of 50% 

represents a new rule used for conditional independence tests 

that lead to more conservative classifications of conditional 

independence. This rule produces a higher number of 

conditional independence tests classified as ‘conditional 

insignificance’ and produces fewer, although more certain, 

conditional dependence and independence classifications of 

triples. The unoptimised rate of 50% represents a 

hypermarameter default that is analogous to the default 

threshold of 0.5 in RFCI-BSC used to determine whether the 

constraints are dependent [20], and to the default threshold 

of 0.5 in CCHM used to analyse causal effects [21]. The 

classifications from constraint-based learning partly 

determine the orientation of the edges in EMSG during phase 

2, and are also used to prune the search space of graphs 

explored in phase 3 (refer to subsection II.C).  

The order in which the edges in EMSG are assessed 

for orientation is determined by node ordering, where nodes 

are ordered by the total MMD score they share with their 

neighbours. For example, the starting node in the EMSG 

graph of Fig 1 would be the node ‘either’ because it shares a 

total score of 1.235 with its neighbouring nodes, and which 

is the highest total score over all the nodes in the network. 

Once a node is selected, the edges of that node are evaluated 

in the order they appear in the data. If an orientation leads to 

a cyclic graph, the orientation of that edge is immediately 

reversed under the assumption that preceding orientations 

override proceeding results. 

The orientation of the edges in EMSG is based on a 

set of criteria. The conditional independence classifications 

serve as the first criterion. Specifically, if the conditional 

dependence and independence classifications support an 

orientation, then the edge under assessment is orientated. 

Otherwise, the edge under assessment remains undirected 

and the algorithm proceeds to the next edge. Edges that 

remain undirected are re-assessed, in the same order, with the 

second criterion which is the BIC score (refer to subsection 

II.C). However, the BIC score is score-equivalent and there 

is no formal guarantee that all edges will be recovered by this 

second criterion. Edges that continue to be undirected are 

then re-assessed with a third criterion, the 𝑑𝑜-calculus [22], 

which is used to maximise the number of nodes influenced 
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by intervention. For example, in assessing the undirected 

edge 𝐴 − 𝐵, if 𝑑𝑜(𝑎) given 𝐴 → 𝐵 influences a higher 

number of nodes (i.e., children and descendants) than 𝑑𝑜(𝑏) 

given 𝐴 ← 𝐵, then the algorithm will orientate the edge 𝐴 −
𝐵 as 𝐴 → 𝐵. If some edges continue to remain undirected at 

the end of this process, the undirected edges are re-assessed 

with the second and third criteria. 

C. Phase 3: Score-based learning 

 

The output of phase 2 serves as the starting graph for score-

based learning in phase 3. SaiyanH uses the BIC to score the 

DAGs being explored. The BIC is a model selection function 

that balances model fitting with model dimensionality given 

the data. Formally, 

 

𝐵𝐼𝐶 = 𝐿𝐿(𝐺|𝐷) − (
𝑙𝑜𝑔2𝑁

2
) 𝑝 

 

for graph 𝐺 given data 𝐷, 𝐿𝐿 is the log-likelihood, 𝑁 is the 

sample size of 𝐷, and 𝑝 is the number of free parameters 

(also known as independent parameters) in 𝐺. Specifically, 

the number of free parameters 𝑝, which is as a measure of 

model dimensionality, is:  

 

𝑝 =  ∑(𝑟𝑖 − 1)

|𝑉|

𝑖

∏ 𝑞𝑗

|𝜋𝑣𝑖
|

𝑗

 

 

where paper 𝑉 is a set of the variables 𝑣𝑖 in graph 𝐺, |𝑉| is 

the size of set 𝑉, 𝑟𝑖 is the number of states of 𝑣𝑖, 𝜋𝑣𝑖
 is the 

parent set of 𝑣𝑖, |𝜋𝑣𝑖
| is the size of set 𝜋𝑣𝑖

, and 𝑞𝑗 is the 

number of states of 𝑣𝑗 in parent set 𝜋𝑣𝑖
. 

The search starts with Hill-Climbing (HC) that 

explores neighbouring graphs 𝐺′ in which an edge is 

reversed, removed, or added. Whenever 𝐺′ has BIC greater 

than 𝐺, 𝐺 is replaced with 𝐺′. This process continues until 

no neighbour 𝐺′ increases the BIC score. When HC 

completes search, attempts are made to escape possible local 

maxima using Tabu search. This is achieved by examining if 

a neighbour 𝐺′ that minimally decreases BIC has a 

neighbour 𝐺′′ that improves the BIC score of 𝐺, in which 

case 𝐺 is replaced with 𝐺′′ and Tabu search restarts at the 

new 𝐺. When all 𝐺′′ for a particular 𝐺′ are explored without 

further improvement in the BIC score of 𝐺, the search 

proceeds to the next best 𝐺′ that minimally decreases BIC. 

Tabu search completes when all 𝐺′ are explored, or when the 

number of escape attempts 𝐺′ reaches |𝑉|(|𝑉| − 1). 

 The search space of possible graphs is restricted to 

graphs that are acyclic and to graphs that do not consist of 

multiple disjoint subgraphs. Moreover, as briefly discussed 

in subsection II.B, the search space of arc additions is pruned 

by means of marginal and conditional independence. 

Specifically, arcs with MMD < 0.05 and arcs that violate any  

conditional independence classification, as defined in 

subsection II.B, are pruned and hence not explored. 

Algorithm 1 presents the pseudocode of SaiyanH. 

Algorithm 1: SaiyanH pseudocode 

Input: dataset 𝐷, a fully connected graph 𝐺, score function BIC(𝐺, 𝐷) 

Output: graph 𝐺 

 

      // Phase 1 

1:  for each pair of variables 𝑣𝑖, 𝑣𝑗 ∈ 𝐷 do 

2:      add 𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗) to list 𝑀 in ascending order 

3:  end for 

4:  for each 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝑀 do 

5:      if MMD(𝑣𝑖 ↔ 𝑣𝑘)𝑖 > MMD(𝑣𝑖 ↔ 𝑣𝑗)
𝑖

< MMD(𝑣𝑗 ↔ 𝑣𝑘)
𝑖
 then 

6:          remove edge 𝑣𝑖 ↔ 𝑣𝑗 in 𝐺 

7:      end if 

8:  end for 

 

        // Phase 2 

9:  for each pair of variables 𝑣𝑖, 𝑣𝑗 conditional on 𝑣𝑘 ∈ 𝐷 do 

10:      if 0.05 < MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) > MMD(𝑣𝑖 ↔ 𝑣𝑗) × 1.5 then 

11:          add  𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) to list 𝐶𝐷 

12:      else if 0.05 > MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) < MMD(𝑣𝑖 ↔ 𝑣𝑗) × 0.5 then 

13:          add 𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) to list 𝐶𝐼 

14:      end if 

15:  end for 

16:  for each edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD) 

17:      if 𝐶𝐷 and 𝐶𝐼 support an orientation for edge 𝑣𝑖 ↔ 𝑣𝑗 in 𝐺 then 

18:          orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated) 

19:          if orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 violates acyclicity in 𝐺 then 

20:              reverse the orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 

21:          end if 

22:      end if 

23:  end for 

24:  while an undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do  

25:      for each undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD) 

26:          if an orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 maximises BIC(𝐺, 𝐷) then 

27:              orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated) 

28:          end if 

29:      end for 

30:      for each undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD) 

31:          if an orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 maximises 𝑑𝑜(𝑣𝑖 ↔ 𝑣𝑗, 𝐺) then 

32:              orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated) 

33:          end if 

34:      end for 

35:  end while 

 

 // Phase 3 

36:   while Hill-Climbing finds BIC(𝐺 ′, 𝐷) > BIC(𝐺, 𝐷) and 

                  marginal and conditional independencies are not violated and 

                  𝐺 ′ is a valid DAG do 

37:      𝐺 = 𝐺 ′  

38:  end while 

39:  while Tabu finds BIC(𝐺′′, 𝐷) > BIC(𝐺, 𝐷) and 

                  marginal and conditional independencies are not violated and 

                  single-depth Tabu escapes 𝑒 have not been explored and 

                  𝑒 < |𝑉|(|𝑉| − 1) do 

40:      𝐺 = 𝐺 ′′  

41:  end while 

 

 



 A. Constantinou: Learning BNs that enable full propagation of evidence. 

pp VOLUME XX, 2020 

D. Computational complexity 

 

The complexity of local learning and constraint-based 

learning is generally determined by the number of local and 

conditional associational tests executed by an algorithm [4]. 

Given a variable set 𝑉, the complexity of local learning 𝑂𝐿 

in phase 1 of SaiyanH is: 

 

𝑂𝐿 = (
|𝑉|(|𝑉| − 1)

2
) 

 

whereas the complexity of constraint-based learning 𝑂𝐶 

during phase 2 is [16]: 

 

𝑂𝐶 = (
|𝑉|(|𝑉| − 1)(|𝑉| − 2)

2
) 

 

On the other hand, the score-based learning (i.e., phase 3) is 

based on Tabu search which is a metaheuristic. In BN 

structure learning, a metaheuristic such as Tabu search 

depends on the number of local maxima that surround the 

initial best guess graph (e.g., the output of phase 2), and these 

can vary greatly given the data. As a result, the theoretical 

complexity of metaheuristics cannot be expressed accurately 

with traditional complexity notions. According to the timing 

results shown later in Table 4, score-based learning has 

complexity 𝑂𝑆 which can be lower or higher than 𝑂𝐿 and 𝑂𝐶 

depending on the sample size of the input data. Empirical 

results show that 𝑂𝐿 < ~𝑂𝑆 > 𝑂𝐶  when sample size of the 

input data is low relative to those considered in this paper, 

𝑂𝐿 < ~𝑂𝑆 < 𝑂𝐶  when the sample size is moderate, and 𝑂𝐿 >
~𝑂𝑆 < 𝑂𝐶  when the sample size is high. 

 

III. EVALUATION 

A. Scoring metrics 

The evaluation of BN structure learning algorithms is 

generally based on metrics that assess the relevance of the 

learned graph with respect to the ground truth graph. Less 

often, the evaluation may be based on measures which 

determine how well the learned distributions fit the data. 

However, fitting scores are generally score-equivalent and 

produce the same score for Markov equivalent DAGs. 

Because the scope of this paper focuses on the reconstruction 

of the true DAG, the scoring criteria considered are fully 

oriented towards graphical discovery.  

Three different scoring metrics are considered that 

make varied use of the confusion matrix parameters. The 

differences between these three metrics can often highlight 

advantages and disadvantages of an algorithm that would 

otherwise remain unknown. Since no metric is perfect, using 

multiple metrics provides a fairer comparison between 

algorithms.  

The three metrics use varying combinations of the 

following parameters [23]: 

 

• True Positives (TP): The number of edges discovered in 

the learned graph that exist in the true graph. 

 

• True Negatives (TN): The number of direct 

independencies discovered in the learned graph that 

exist in the true graph. 

 

• False Positives (FP): The number of edges discovered 

in the learned graph that do not exist in the true graph. 

 

• False Negatives (FN): The number of direct 

independencies discovered in the learned graph that do 

not exist in the true graph. 

 

Moreover, edges in the learned graph that fail to produce the 

correct orientation, including undirected and bi-directed 

edges produced by some of the other algorithms, receive 

50% reward relative to the reward allocated to the edge with 

the correct orientation. The first metric, the F1 score, is based 

on both the Recall (𝑅𝑒) and Precision (𝑃𝑟) which are the two 

standard metrics used in this research field. Specifically, 

 

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
            𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

The Recall and Precision scores are, however, misleading 

when reported independently. The F1 score, on the other 

hand, offers the harmonic mean between the two: 

 

F1 = 2
𝑃𝑟. 𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 

 

where F1 ranges from 0 to 1 and a higher score indicates a 

more accurate graph.  

The second metric, called the Structural Hamming 

Distance (SHD) [24], is another well-established metric in 

this field of research and represents the number of steps 

required to transform the learned graph into the ground truth 

graph. Specifically, 

 

SHD = 𝐹𝑃 + 𝐹𝑁 

 

where a score of 0 indicates a perfect match between the 

learned graph and the true graph. 

The third metric, called the Balanced Scoring 

Function (BSF), is a recent metric [23] that considers all the 

four confusion matrix parameters and returns a fully 

balanced score. The score ranges from -1 to 1, where -1 

corresponds to the worst possible graph, 1 to the graph that 

matches the true graph, and 0 to an empty or a fully 

connected baseline graph. Specifically, 
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BSF = 0.5 (
TP

𝑎
+

TN

𝑖
−

FP

𝑖
−

FN

𝑎
) 

 

where 𝑎 is the number of edges and i is the number of direct 

independences in the true graph: 

  

𝑖 =
|𝑉|(|𝑉| − 1)

2
− 𝑎 

 

where |𝑉| is the size of the variable set 𝑉.  

There are some important differences between 

these three metrics. Specifically, the SHD represents classic 

accuracy that measures the proportion of correct 

classifications amongst all classifications. For example, 

given a ground truth graph with 1% edges and 99% direct 

independencies, the SHD would judge an empty graph as 

being 99% accurate in relation to the true graph. The F1 score 

relaxes this imbalance since it conveys the balance between 

Precision and Recall, whereas the BSF score would consider 

the empty graph as being 50% accurate (i.e., a score of 0) on 

the basis that all direct independencies have been discovered, 

but none of the direct dependencies (i.e., edges) have been 

discovered. 

B. Case studies 

 

SaiyanH is not intended for problems that include thousands 

of variables, such as those in bioinformatics. As a result, the 

evaluation is restricted to case studies that include up to 

hundreds of variables. 

Six real-world BNs are used to generate synthetic 

data. Three of them represent traditional and widely used 

case studies, whereas the other three come from recent real-

world BN applications. The case studies represent a mixture 

of simple and complex models. Specifically, 

 

1. Asia: A small network designed for patient diagnosis 
[25]. It consists of eight nodes, eight arcs, 18 free 
parameters, and has a maximum in-degree of two. 
 

2. Alarm: A medium network designed for an alarm 
message monitoring system [26]. It consists of 37 
nodes, 46 arcs, 509 free parameters and has a 
maximum in-degree of four. 
 

3. Pathfinder: A very large network designed for 
decision support in surgical pathology [27]. It 
consists of 109 nodes, 195 arcs, 71890 free 
parameters, and has a maximum in-degree of five. 
 

4. Sports: A small real-world BN that combines a rating 
system with various team performance statistics to 
predict match scores in football [28]. It consists of 
nine nodes, 15 arcs, 1049 free parameters, and has a 
maximum in-degree of two. 
 

5. ForMed: A large real-world BN designed for risk 
management of violent reoffending in mentally ill 
prisoners [29]. It consists of 88 nodes, 138 arcs, 912 
free parameters, and has a maximum in-degree of six. 
 

6. Property: A medium real-world BN designed for the 
assessment of investment decisions in the UK 
property market [30]. It consists of 27 nodes, 31 arcs, 
3056 free parameters, and has a maximum in-degree 
of three. 

B. Structure learning algorithms considered 

 

The learning performance of SaiyanH is assessed with 

reference to other 12 algorithms that have been applied to the 

same data. The algorithms selected represent state-of-the-art 

or well-established implementations that have also been 

tested in a larger relevant study [10]. Specifically, 

 

1. PC-Stable: the modern stable version of the most 
popular constraint-based algorithm called PC that 
resolves the issue on the order dependency of the 
variables in the data [31] [32]. 
 

2. FCI: which is PC extended to account the possibility 
of latent variables in the data [33]. 
 

3. FGES: an efficient version of the popular score-
based GES algorithm that was developed by Meek 
[34] and further improved by Chickering [35]. 
 

4. GFCI: a hybrid learning algorithm that combines the 
FCI and FGES algorithms [36]. 
 

5. RFCI-BSC: a hybrid version of the constraint-based 
RFCI that improves accuracy via model averaging 
[20]. This is a non-deterministic algorithm that 
produces a slightly different result each time it is 
executed. The results of RFCI-BSC represent the 
average score across 10 executions, for each 
experiment. 

 
6. Inter-IAMB: an improved version of IAMB that 

avoids false positives in the Markov Blanket 
detection phase [18]. 
 

7. MMHC: perhaps the most popular hybrid learning 
algorithm [24]. It combines the constraint-based 
MMPC with hill-climbing search. 
 

8. GS: a constraint-based algorithm that recovers the 
Markov blanket of each node based on pairwise 
independence test [37]. 

 

9. HC: a score-based hill-climbing search algorithm that 

tends to terminate in a local maximum [38]. 
 

10. TABU: a score-based algorithm that extends HC 
with Tabu search. While TABU also tends to 
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terminate in local maxima, it often improves over the 
local maxima of HC [38]. 
 

11. H2PC: a hybrid learning algorithm that combines the 
constraint-based HPC and score-based HC 
algorithms [19]. 
 

12. ILP: an integer linear programming score-based 
approach that returns the graph that maximises the 
global score of a scoring function [39]. 

 

The R package r-causal v1.1.1 which makes use of the 

TETRAD freeware implementation [40] was used to test 

algorithms 1 to 5. The bnlearn R statistical package version 

4.5 [41] was used to test algorithms 6 to 11. Finally, ILP was 

tested using the GOBNILP software [42]. All algorithms 

have been used with their hyperparameter defaults as 

implemented in each software. A six-hour runtime limit is 

applied to each algorithm for each experiment. 

 

IV. RESULTS AND DISCUSSION 

A. Accuracy of the learned graphs 

 

Fig 2 presents the accuracy scores of SaiyanH with reference 

to the scores produced by the other 12 algorithms. Each of 

the 18 graphs corresponds to a case study and a scoring 

metric (i.e., six case studies over three scoring metrics). The 

𝑦-axis of each graph represents the metric score, whereas the 

𝑥-axis represents the fives sample sizes of the input data. 

Note that, in contrast to F1 and BSF scores, a lower SHD 

score represents a better performance. Cases in which an 

algorithm failed to produce a result within the six-hour 

runtime limit are illustrated with incomplete lines in each 

graph. 

The results suggest that all algorithms tend to 

improve learning accuracy with sample size and are rather 

consistent across all case studies. For example, it is usually 

the case that the best performance is found with either 100k 

or 1000k samples. However, the case studies differ in 

complexity which means that the same sample size can be 

large for simple networks and small for complex networks. 

For example, the sample size of 10k is large for Asia, which 

is the simplest case study with just 18 free parameters, and 

small for Pathfinder which is the most complex case study 

with 71890 free parameters. This explains why in the case of 

Asia the performance of the algorithms maximises once the 

sample size of the input data reaches 10k observations. 

Conversely, the performance of the algorithms continues to 

improve with the sample size in the case of Pathfinder. 

Moreover, all algorithms show considerably worse 

performance on the Pathfinder case study compared to all the 

other case studies. 

 

 

TABLE 1 

THE AVERAGE RANK ACHIEVED BY EACH OF THE ALGORITHMS OVER ALL 

CASE STUDIES AND ACROSS ALL SAMPLE SIZES OF THE INPUT DATA. 

Rank Algorithm F1 Rank SHD Rank BSF Rank Overall rank 

1 TABU 3.07 4.20 2.90 3.39 

2 HC 3.43 4.53 3.03 3.67 

3 ILP 4.40 6.03 3.73 4.72 

4 SaiyanH 4.87 7.33 4.37 5.52 

5 H2PC 5.60 4.80 6.37 5.59 

6 GFCI 6.17 6.50 6.37 6.34 

7 FCI 7.07 6.17 7.03 6.76 

8 FGES 6.80 7.33 6.50 6.88 

9 MMHC 7.07 6.07 7.83 6.99 

10 PC-Stable 7.43 6.37 7.33 7.04 

11 Int-IAMB 9.20 8.10 9.53 8.94 

12 RFCI-BSC 10.87 8.33 10.77 9.99 

13 GS 10.83 9.67 10.80 10.43 

 

In contrast, some of the scoring metrics provide 

conflicting conclusions about the relative accuracy between 

algorithms. For example, the SHD metric occasionally ranks 

SaiyanH well below average when the sample size of the 

input data is lowest, and these results contradict the F1 and 

BSF metrics which rank SaiyanH well above average for the 

same experiments. The contradiction between these metrics 

extends to many other algorithms. This phenomenon arises 

because the SHD metric represents classification accuracy 

which tends to be biased in favour of graphs which 

incorporate a limited number of edges [10, 23]. 

Table 1 summarises the performance of the 

algorithms over each case study and across all metrics. 

Consistent with the above discussion, the results show that 

SaiyanH performed very good in terms of F1 and BSF scores, 

and below average in terms of SHD score. Overall, SaiyanH 

ranked 4th and outperformed algorithms such as FGES, 

MMHC and PC which tend to be used for benchmarking new 

algorithms in this field of research. Interestingly, the 

performance of the top three algorithms is fully driven by 

score-based learning. 

B. Analysis of the edges and independent subgraphs 

 

Table 2 presents the number of independent subgraphs 

generated by each of the algorithms for each case study and 

sample size. As intended, SaiyanH generates a single 

connected DAG in all the experiments. On the other hand, 

the other algorithms routinely generate multiple subgraphs 

despite all the input variables being dependent in all case 

studies. This observation extends to very simple networks. 

For example, while the Asia network consists of just 18 free 

parameters, none of the other algorithms managed to produce 

a connected graph when the sample size was lowest, and only 

five of the other algorithms returned a connected graph when 

the sample size was highest. 
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FIGURE 2.  Performance of SaiyanH given F1 (harmonic mean of Recall and Precision), SHD, and BSF scores, over six case studies, five sample sizes 
(0.1k to 1000k samples) per case study, and with reference to the performance of the other 12 algorithms.
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TABLE 2 

THE NUMBER OF INDEPENDENT SUBGRAPHS GENERATED BY EACH 

ALGORITHM FOR EACH CASE STUDY AND SAMPLE SIZE. N/A INDICATES 

THAT THE ALGORITHM DID NOT COMPLETE LEARNING WITHIN THE SIX-

HOUR LIMIT. 

Algorithm Case study 0.1k 1k 10k 100k 1000k 

SaiyanH Alarm 1 1 1 1 1 

ILP Alarm 1 2 2 2 1 

FGES Alarm 10 3 2 2 2 

Inter-IAMB Alarm 24 11 7 3 1 

H2PC Alarm 24 10 3 2 1 

PC-Stable Alarm 18 5 3 2 2 

FCI Alarm 16 5 3 2 1 

GFCI Alarm 12 3 2 2 2 

RFCI-BSC Alarm 13.3 5.2 n/a n/a n/a 

MMHC Alarm 24 10 8 7 7 

GS Alarm 27 19 13 12 9 

HC Alarm 7 3 3 2 1 

TABU Alarm 7 3 3 2 1 

SaiyanH Asia 1 1 1 1 1 

ILP Asia 2 1 1 1 1 

FGES Asia 4 2 1 1 1 

Inter-IAMB Asia 5 4 3 3 2 

H2PC Asia 5 4 4 3 2 

PC-Stable Asia 5 2 2 2 2 

FCI Asia 5 2 2 2 2 

GFCI Asia 4 2 1 1 1 

RFCI-BSC Asia 4 2 1.2 n/a n/a 

MMHC Asia 5 3 2 2 2 

GS Asia 5 4 4 3 2 

HC Asia 2 2 1 1 1 

TABU Asia 2 2 1 1 1 

SaiyanH Pathfinder 1 1 1 1 n/a 

ILP Pathfinder 19 6 n/a n/a n/a 

FGES Pathfinder 42 16 5 5 n/a 

Inter-IAMB Pathfinder 85 90 87 81 72 

H2PC Pathfinder 87 85 62 17 8 

PC-Stable Pathfinder n/a n/a n/a n/a n/a 

FCI Pathfinder 80 n/a n/a n/a n/a 

GFCI Pathfinder 42 16 5 5 n/a 

RFCI-BSC Pathfinder 70.3 n/a n/a n/a n/a 

MMHC Pathfinder 89 89 91 87 81 

GS Pathfinder 100 100 92 85 78 

HC Pathfinder 33 13 3 2 2 

TABU Pathfinder 33 13 3 2 2 

SaiyanH Property 1 1 1 1 1 

ILP Property 8 5 1 1 1 

FGES Property 12 5 5 1 1 

Inter-IAMB Property 20 15 9 7 6 

H2PC Property 21 14 7 6 4 

PC-Stable Property 14 8 4 4 4 

FCI Property 15 9 3 4 4 

GFCI Property 12 5 5 1 1 

RFCI-BSC Property 16.4 11.6 6.8 n/a n/a 

MMHC Property 21 13 9 8 6 

GS Property 22 20 17 12 7 

HC Property 11 5 2 1 1 

TABU Property 11 5 2 1 1 

SaiyanH Sports 1 1 1 1 1 

ILP Sports 7 1 1 1 1 

FGES Sports 7 1 1 1 1 

Inter-IAMB Sports 4 3 1 1 1 

H2PC Sports 7 3 1 1 1 

PC-Stable Sports 4 1 1 1 1 

FCI Sports 4 1 1 1 1 

GFCI Sports 7 1 1 1 1 

RFCI-BSC Sports n/a n/a n/a n/a n/a 

MMHC Sports 7 1 1 1 1 

GS Sports 7 5 1 1 1 

HC Sports 7 1 1 1 1 

TABU Sports 7 1 1 1 1 

SaiyanH ForMed 1 1 1 1 n/a 

ILP ForMed 6 4 1 1 1 

FGES ForMed 43 13 2 2 n/a 

Inter-IAMB ForMed 53 25 13 9 5 

H2PC ForMed n/a n/a 9 5 4 

PC-Stable ForMed 47 19 10 6 n/a 

FCI ForMed 45 19 10 6 n/a 

GFCI ForMed 43 13 2 2 n/a 

RFCI-BSC ForMed 46.3 26.4 n/a n/a n/a 

MMHC ForMed 50 25 12 16 16 

GS ForMed 57 43 31 36 31 

HC ForMed 8 4 1 1 1 

TABU ForMed 7 4 1 1 1 

 

Moreover, the number of independent subgraphs 

produced by some of the other algorithms increases 

substantially with the complexity of the true graph. The most 

extreme example involves the GS algorithm when applied to 

the Pathfinder case, where it produced 100 subgraphs for the 

lowest sample size and 68 subgraphs for the highest sample 

size. Remarkably, and further to what has been discussed in 

subsection IV.A, the outcome of 100 subgraphs was ranked 

highly by the SHD metric. In contrast, the F1 and BSF 

metrics ranked this outcome lowest. 

While most of the other algorithms generate several 

subgraphs in most of the experiments, TABU and HC did well 

since in many cases they had correctly identified that the input 

variables are dependent. This also partly explains why the 

TABU and HC algorithms outperformed all the other 

algorithms in results of Table 1, and this is an interesting 

outcome considering that most of the other score-based and 

hybrid learning algorithms (including SaiyanH) already use 

some form of HC search to explore the search space of graphs. 

Fig 3 analyses the number of edges produced by each 

of the algorithms and their relation to the number of edges in 

the true graphs. Each graph in Fig 3 corresponds to a case 

study. Each case study and algorithm associate with a range Δ, 

where Δ is the difference between the number of edges learned 

and the number of edges in the true graph, and the interval Δ 

represents the minimum and the maximum discrepancy across 

all the five experiments in each case study (i.e., over all the 

five sample sizes). Note that failed attempts by an algorithm 

to produce a graph are excluded. When this happens, the 

number of actual experiments on which the interval is based is 

superimposed above the interval. For example, in the Asia 

case study, the RFCI-BSC algorithm failed to produce a result 

in two out of the five experiments and thus, its interval Δ 

indicates that it was based on just three experiments. It is 

important to clarify that the failed attempts of an algorithm 

always occur for the highest sample sizes. As a result, when 

an interval Δ is based on less than five experiments, it tends to 

underestimates the number of learned edges since higher 

sample sizes tend to produce more edges. 
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FIGURE 3. The number of learned edges with respect to the number of true edges. The results are presented for each algorithm and over all five sample sizes 

per case study, where Δ is the discrepancy between learned and true edges. Failed attempts by the algorithms to produce a graph are excluded. Intervals Δ 

based on less than five experiments indicate the number of actual experiments above the interval. 

 

 

The edge analysis in Fig 3 provides insights into 

potential underfitting and overfitting issues. In fact, the results 

suggest that most algorithms do underfit the graphs, at least in 

terms of the number of edges produced. These results are 

consistent with the number of independent subgraphs depicted 

in Table 2. While the risk of underfitting increases with fewer 

samples in the input data, the results suggest that underfitting 

persists across all sample sizes tested. For example, while the 

Asia network consists of just 18 free parameters, most of the 

algorithms reveal an underfitting trend across all sample sizes. 

Likewise, underfitting appears to increase in severity with the 

complexity of the network. For example, the Inter-IAMB and 

GS algorithms discovered a maximum of 42 and 34 edges 

respectively (at 1000k samples), out of the 195 true edges in 

the Pathfinder case study.  Conversely, no algorithm overfitted 

the graphs. One algorithm that did show some tendency 

towards overfitting, however, is ILP. This happened on the 

Alarm and ForMed case studies. However, ILP did very well 

in minimising the discrepancy Δ across all the six case studies.  

Starting from the case study with the least number of 

edges, the algorithms that performed best in terms of 

minimising discrepancy Δ, as well as the interval Δ across the 

different sample sizes in each case study, are: 

 

1. Asia: the ILP and SaiyanH algorithms (with TABU and 

HC closely behind) with a minimum discrepancy Δ of 

0, a maximum discrepancy Δ of ±1, and a range Δ of 1 

for both algorithms (from +1 to 0 and from 0 to -1 

respectively). 

2. Sports: the SaiyanH algorithm with a minimum 

discrepancy Δ of 0, a maximum discrepancy Δ of -7 and 

a range Δ of 7. 

 

3. Property: the SaiyanH algorithm with a minimum 

discrepancy Δ of 0, a maximum discrepancy Δ of +1, 

and a range Δ of 1. 

 

4. Alarm: the SaiyanH algorithm (with TABU and HC 

closely behind) with a minimum discrepancy Δ of -10, 

a maximum discrepancy Δ of 10, and a range Δ of 20. 

 
5. ForMed: the TABU (with HC closely behind) with a 

minimum discrepancy Δ of -40, a maximum 

discrepancy Δ of 32, and a range Δ of 72. 

 

6. Pathfinder: ILP with a minimum Δ of 0, a maximum Δ 

of 3, and a range Δ of 3. However, note that ILP’s result 

in Pathfinder is based on just two experiments. 

 

Overall, the edge statistics are in agreement with the results in 

Table 1, in that the top four algorithms are also the ones that 

best approximate the number of true edges. The restriction in 

SaiyanH to produce a connected DAG has helped the 

algorithm to avoid underfitting, as well as to perform best in 

terms of minimising discrepancy Δ.  
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C. Time complexity 
 

The time complexity of SaiyanH is provided in Table 3. The 

results show that its runtime increases rapidly with the 

number of nodes and the sample size of the input data. 

SaiyanH failed to produce a graph within the six-hour time 

limit in two out of the 30 experiments. This was also the case 

for some of the other algorithms (refer to Fig 2). It is worth 

noting that the Pathfinder case study (indicated with 109 

nodes in Table 3) includes a variable with 63 states, which is 

rather unusual for discrete BNs and can influence time 

complexity in different ways depending on the learning 

process of the algorithm. 

Table 4 extends the information on time complexity 

by presenting the proportion of time SaiyanH spent to 

complete each of the three learning phases, for each case 

study and sample size combination. This information is 

useful for two reasons. Firstly, it highlights which parts of 

this new implementation may be inefficient. Secondly, it 

reveals how the relative proportion of runtime varies 

between the different learning phases given the number of 

variables in conjunction the sample size of the input data. 

The results from the Pathfinder and ForMed case 

studies, which required the most runtime, suggest that the 

constraint-based learning of phase 2 is responsible for 77% 

to 94% of the total runtime. This outcome suggests that the 

constraint-based phase in SaiyanH does not scale well with 

the number of variables and the sample size of the input data. 

One reason why constraint-based learning is inefficient in 

SaiyanH is because conditional independence tests are 

performed over all possible triples, including testing for both 

𝑉𝐴 → 𝑉𝐵|𝑉𝐶  and 𝑉𝐵 → 𝑉𝐴|𝑉𝐶  as defined by the MMD score. 

Therefore, the efficiency of SaiyanH could be improved via 

pruning of conditional independence tests. However, the 

effectiveness of this type of pruning is hard to predict, both 

in terms of possible gains in speed and the impact on the 

accuracy of the learned graph. This is because the conditional 

independence classifications from phase 2 are also used to 

prune the search space of DAGs in phase 3. For example, 

Table 4 shows that when the sample size of the input data is 

low, constraint-based learning only accounts for up to a third 

of the total runtime whereas score-based learning becomes 

the most time-consuming phase of the algorithm. 

 

 

 

 

 

 

 

 

 

 

 
 

 

TABLE 3 

TIME COMPLEXITY OF SAIYANH BASED ON A SINGLE-CORE (TURBO BOOST) 

SPEED OF 4.7GHZ. 

Nodes 
True 

edges 

Max in-

degree 

# free 

param 

Sample 

size 

Runtime 

(sec) 

37 46 4 509 0.1k 1 

8 8 2 18 0.1k 1 

8 8 2 18 1k 1 

8 8 2 18 10k 1 

8 8 2 18 100k 1 

27 31 3 3,056 1k 1 

9 15 2 1,049 0.1k 1 

9 15 2 1,049 1k 1 

9 15 2 1,049 10k 1 

37 46 4 509 1k 5 

27 31 3 3,056 10k 9 

27 31 3 3,056 0.1k 10 

9 15 2 1,049 100k 10 

8 8 2 18 1m 13 

37 46 4 509 10k 16 

109 195 5 71,890 0.1k 30 

88 138 6 912 0.1k 48 

88 138 6 912 1k 49 

27 31 3 3,056 100k 101 

9 15 2 1,049 1000k 120 

109 195 5 71,890 1k 135 

37 46 4 509 100k 213 

88 138 6 912 10k 220 

109 195 5 71,890 10k 521 

27 31 3 3,056 1000k 1,400 

37 46 4 509 1000k 2,900 

88 138 6 912 100k 3,494 

109 195 5 71,890 100k 12,043 

109 195 5 71,890 1000k >6h 

88 138 6 912 1000k >6h 

 
TABLE 4 

TIME COMPLEXITY OF SAIYANH IN TERMS OF THE PERCENTAGE OF TIME 

SPENT TO COMPLETE EACH OF THE THREE LEARNING PHASES. CASES WITH 

RUNTIME UP TO 1SEC ARE EXCLUDED. N/A INDICATES THAT THE 

ALGORITHM DID NOT COMPLETE LEARNING WITHIN THE SIX-HOUR LIMIT. 

Case (phase) 0.1k 1k 10k 100k 1000k 

Alarm (1) - 0% 6% 13% 9% 

Asia (1) - - - - 31% 

Pathfinder (1) 0% 1% 3% 3% n/a 

Property (1) 0% - 0% 19% 15% 

Sports (1) - - - 10% 13% 

ForMed (1) 0% 0% 3% 5% n/a 

Alarm (2) - 20% 69% 78% 81% 

Asia (2) - - - - 69% 

Pathfinder (2) 17% 28% 82% 77% n/a 

Property (2) 0% - 89% 76% 77% 

Sports (2) - - - 30% 23% 

ForMed (2) 6% 37% 89% 94% n/a 

Alarm (3) - 80% 25% 9% 10% 

Asia (3) - - - - 0% 

Pathfinder (3) 83% 71% 15% 21% n/a 

Property (3) 100% - 11% 5% 8% 

Sports (3) - - - 60% 65% 

ForMed (3) 94% 63% 8% 1% n/a 
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V. CONCLUDING REMARKS AND FUTURE WORK 

 

This paper described a novel hybrid BN structure learning 

algorithm that relies on restrictions in the search space of 

DAGs to produce a graph that enables full propagation of 

evidence. The learning restriction is imposed under the 

controversial assumption that the data variables are 

dependent. The implementation of the algorithm [43] as well 

as the datasets used in this study are available online at 

www.bayesys.com. 

Clearly, this algorithm is unsuitable in problems 

where we seek to discover whether the input variables are 

dependent. However, it becomes useful in real-world 

problems where decision makers desire a model that enables 

full propagation of evidence. The empirical results show that 

almost all the other algorithms would never connect all the 

variables of the input data when the sample size of the data 

is low relative the dimensionality of the model, despite these 

variables being dependent in the true graph. This is a 

problem because real data are often limited in terms of 

sample size and rich in terms of the number of the variables 

(i.e., in dimensionality). Therefore, the benefit of assuming 

that the input variables are dependent comes in the form of 

practical usefulness that can be viewed as a knowledge-

based constraint. 

Because SaiyanH is a novel implementation, it 

comes with both limitations and potential for improvement. 

Firstly, its application is limited to discrete and complete 

datasets. Moreover, while SaiyanH performed best in 

estimating the number of true edges, and well in terms of F1 

and BSF scores, it did not do so well in terms of SHD score 

and particularly when the sample size of the input data was 

lowest. This observation suggests that some of the forced 

edges generated to ensure the DAG output is connected, are 

not correct at the same rate as those generated unrestrictedly.  

Lastly, the results presented in this paper are based 

on unoptimised cut-off dependency thresholds adopted by 

other constraint-based algorithms (refer to Section II.B). 

This ensured that the comparison between algorithms is as 

fair as possible, since all algorithms have been examined 

with their hyperparameter defaults. However, because 

SaiyanH is based on an unconventional dependency 

function, it may benefit from cut-off thresholds that differ to 

those used as hyperparameter defaults in other algorithms. In 

investigating the value of constraint-based relative to its time 

complexity, future work will also explore the impact of 

parameter optimisation on conditional independence 

classifications. 
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