

VOLUME XX, 2020 1

date of pre-print version May, 2020.

Digital Object Identifier…

Learning Bayesian networks that enable full
propagation of evidence

Anthony C. Constantinou1,2

1Bayesian Artificial Intelligence research lab, Risk and Information Management (RIM) Research Group, School of EECS, Queen Mary University of

London (QMUL), London, UK, E1 4NS.
2 The Alan Turing Institute, UK.

E-mail: a.constantinou@qmul.ac.uk.

This research was supported by the ERSRC Fellowship project EP/S001646/1 on Bayesian Artificial Intelligence for Decision Making under Uncertainty, and

by The Alan Turing Institute in the UK under the EPSRC grant EP/N510129/1.

ABSTRACT This paper builds on recent developments in Bayesian network (BN) structure learning under

the controversial assumption that the input variables are dependent. This assumption can be viewed as a

learning constraint geared towards cases where the input variables are known or assumed to be dependent. It

addresses the problem of learning multiple disjoint subgraphs that do not enable full propagation of evidence.

This problem is highly prevalent in cases where the sample size of the input data is low with respect to the

dimensionality of the model, which is often the case when working with real data. The paper presents a novel

hybrid structure learning algorithm, called SaiyanH, that addresses this issue. The results show that this

constraint helps the algorithm to estimate the number of true edges with higher accuracy compared to the

state-of-the-art. Out of the 13 algorithms investigated, the results rank SaiyanH 4th in reconstructing the true

DAG, with accuracy scores lower by 8.1% (F1), 10.2% (BSF), and 19.5% (SHD) compared to the top ranked

algorithm, and higher by 75.5% (F1), 118% (BSF), and 4.3% (SHD) compared to the bottom ranked

algorithm. Overall, the results suggest that the proposed algorithm discovers satisfactorily accurate connected

DAGs in cases where other algorithms produce multiple disjoint subgraphs that often underfit the true graph.

INDEX TERMS causal discovery, conditional independence, directed acyclic graphs, probabilistic graphical

models, structure learning.

I. INTRODUCTION

A Bayesian Network (BN) is a type of a probabilistic

graphical model introduced by Pearl [1] [2]. If we assume

that the arcs between nodes represent causation, then the BN

is viewed as a Causal Bayesian Network (CBN). However,

if we assume that the edges between nodes represent some

dependency that is not necessarily causal, then such a BN is

viewed as a dependence graph. A CBN can only be

represented by a unique Directed Acyclic Graph (DAG),

whereas a BN that is not viewed as a causal model can be

also be represented by a Completed Partial Directed Acyclic

Graph (CPDAG). A CPDAG incorporates both directed and

undirected edges and represents a set of Markov equivalent

DAGs that entail the same independence relations over the

observed variables.

BNs have emerged as one of the most successful

approaches for reasoning under uncertainty. This is partly

because they enable decision makers to reason with

transparent causal assumptions that offer solutions that go

beyond prediction. For example, a CBN enables decision

makers to reason about intervention and counterfactuals. On

this basis, the focus of this paper is on the reconstruction of

the true causal DAG, as opposed to the reconstruction of a

graph that forms part of the equivalence class of the true

DAG (i.e., a CPDAG).

Constructing a BN involves determining the

graphical structure of the network and parameterising its

conditional distributions. The problem of structure learning

is considerably more challenging than that of parameter

learning. This is because searching for the optimal graph

represents an NP-Hard problem where some instances are

much harder than others [3]. Structure learning algorithms

generally fall under two learning classes. Firstly, the score-

based methods represent a traditional machine learning

http://bayesian-ai.eecs.qmul.ac.uk/
mailto:a.constantinou@qmul.ac.uk

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

approach where graphs are explored and scored in terms of

how well the fitting distributions agree with the empirical

distributions. The graph that maximises the scoring function

is returned as the preferred graph. On the other hand,

constraint-based learning is based on a series of conditional

independence tests that determine the removal and the

orientation of some edges. Hybrid algorithms are often

viewed as a third learning classe that adopts features from

both score-based and constraint-based learning.

The automated construction of causal structures has

the potential to offer significant benefits to every research

field concerned with causal inference and actions for

intervention. However, automated causal discovery is

hindered by difficulties that have significantly limited its

impact. These difficulties go beyond the problem of NP-

hardness that is generally addressed by algorithms that prune

the search space of possible graphs and effectively minimise

the loss in accuracy and maximise the gain in speed.

Importantly, there are conflicting claims in the

literature about what can be recovered from observational

data. Some argue for a causal graph and others for a

dependence graph [4] [5] [6] [7] [8]. The underlying

assumption of the learned graph influences the evaluation

process that determines the effectiveness of these algorithms.

While cross-validation serves as an excellent evaluator for a

predictive model in other machine learning fields, it

underdetermines the accuracy of causal inference. As a

result, there is no consensus on an evaluation approach that

best determines the effectiveness of a BN structure learning

algorithm. Each publication makes an empirical or a

theoretical case for the algorithm presented in that

publication [9]. Likewise, each structure learning algorithm

is based on a set of assumptions, such as complete data and

causal sufficiency, and tends to be evaluated with synthetic

data that conforms to those assumptions, however unrealistic

these assumptions may be in the real world [10]. Because of

this, it is widely accepted that synthetic performance

overestimates real performance. These unresolved issues

continue to invite different forms of domain knowledge to be

incorporated into the structure learning process [11] [12]

[13] [14] [15]. The learning constraint proposed in this paper

can be viewed as one more such knowledge-based constraint.

The rest of the paper is structured as follows:

Section 2 describes the algorithm, Section 3 describes and

discusses the evaluation process, Section 4 presents and

discusses the results, and Section 5 provides the concluding

remarks along with possible directions for future research.

II. THE ALGORITHM

The algorithm addresses the problem of learning multiple

disjoint subgraphs that do not enable full propagation of

evidence. This is achieved by performing structure learning

under the assumption that the input variables are dependent.

1This does not imply that the MMD score is superior to the MI score or

other non-linear associational measure.

The learning process of the algorithm consists of

three phases. The first phase starts by producing an initial best

guess undirected graph that is entirely based on pairwise

associational scores. Constraint-based learning is then used in

conjunction with other rules to orientate edges in phase 2. The

third and final phase involves score-based learning that

modifies the graph produced at phase 2 towards the path that

maximises a scoring function. The subsections that follow

describe these three phases in turn, as well as the

computational complexity of the algorithm.

A. Phase 1: Associational learning

The first phase is based on two novel approaches inherited

from an early experimental version of this algorithm [16].

They involve a) the associational score Mean/Max/MeanMax

Marginal Discrepancy (MMD), and b) an undirected graph

called the Extended Maximum Spanning Graph (EMSG). The

output of phase 1 is the EMSG and serves as the starting graph

of phase 2.

The MMD score represents the discrepancy in

marginal probabilities between prior and posterior

distributions. Contrary to other traditional measures such as

mutual information (MI), the MMD score offers linear

examination of the marginal and conditional independencies1.

The MMD score ranges from 0 to 1, where a higher score

indicates a stronger dependency. For edge A↔B, the score

MMD(𝐴 ↔ 𝐵) is the average of scores 𝑀𝑀𝐷𝑀𝑁(𝐴 ↔ 𝐵) and

𝑀𝑀𝐷𝑀𝑋(𝐴 ↔ 𝐵), where 𝑀𝑁 and 𝑀𝑋 are mean and max

marginal discrepancies. Specifically,

𝑀𝑀𝐷(𝐴 ↔ 𝐵) = ∑ ∑ 𝑀𝑀𝐷𝑚(𝐴 ↔ 𝐵)𝑤

𝑚↔

where ↔ represents the iterations over ← and →, 𝑚

represents the iterations over 𝑀𝑁 and 𝑀𝑋, and 𝑤 is the

normalising constant 0.25 for the scores accumulated over

the following four iterations:

𝑀𝑀𝐷𝑀𝑁(𝐴 → 𝐵) = (∑ [(∑|𝑃(𝐵𝑖) − 𝑃(𝐵𝑖|𝐴𝑗)|

𝑠𝐵

𝑖

) 𝑠𝐵⁄]

𝑠𝐴

𝑗

) 𝑆𝐴⁄

𝑀𝑀𝐷𝑀𝑁(𝐴 ← 𝐵) = (∑ [(∑|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖)|

𝑠𝐴

𝑗

) 𝑆𝐴⁄]

𝑠𝐵

𝑖

) 𝑠𝐵⁄

𝑀𝑀𝐷𝑀𝑋(𝐴 → 𝐵) = (∑ max
𝑖

|𝑃(𝐵𝑖) − 𝑃(𝐵𝑖|𝐴𝑗)|

𝑠𝐴

𝑗

) 𝑆𝐴⁄

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

FIGURE 1. The EMSG based on the Asia BN example, with the MMD
scores produced at the end of phase 1.

𝑀𝑀𝐷𝑀𝑋(𝐴 ← 𝐵) = (∑ max
𝑗

|𝑃(𝐴𝑗) − 𝑃(𝐴𝑗|𝐵𝑖)|

𝑠𝐵

𝑖

) 𝑠𝐵⁄

for each state 𝑗 in 𝐴 and state 𝑖 in 𝐵, and over the 𝑆𝐴 states in

𝐴 and 𝑆𝐵 states in 𝐵.

The EMSG is determined by the MMD scores and

can be viewed as an extended version of the maximum

spanning tree [17]. This is because EMSG preserves multiple

connecting paths from one node to another, unlike the

maximum spanning tree which preserves the single and most

likely connecting path between nodes. The intention here is

to start with a graph that is more dense, in terms of the

number of edges, compared to the corresponding maximum

spanning tree.

Starting from a complete graph, the EMSG is

produced by removing edges between two nodes 𝐴 and 𝐵 if

and only if 𝐴 and 𝐵 share neighbour 𝐶 where

𝑀𝑀𝐷(𝐴 ↔ 𝐶) > 𝑀𝑀𝐷(𝐴 ↔ 𝐵) < 𝑀𝑀𝐷(𝐵 ↔ 𝐶)

The order in which the edges are assessed for removal is from

lowest to highest MMD score. Figure 1 presents the EMSG

produced for the classic Asia BN, along with the MMD scores

assigned to each of the edges. In this example, the EMSG

matches the skeleton of the true Asia graph.

B. Phase 2: Constraint-based learning

In the second phase, SaiyanH performs conditional

independence tests across all pairs of nodes conditional on

the remaining nodes in sets of triples, and classifies each

triple into either conditional dependence, independence or

insignificance. Assuming independence tests between 𝐴 and

𝐵 conditional on 𝐶, the following rules apply for

classification:

1. Conditional dependence: if 𝑀𝑀𝐷(𝐴 ↔ 𝐵)|𝐶 is both
greater than 0.05 and 50% higher than 𝑀𝑀𝐷(𝐴 ↔ 𝐵).

2. Conditional independence: if 𝑀𝑀𝐷(𝐴 ↔ 𝐵)|𝐶 is
both lower than 0.05 and 50% lower than 𝑀𝑀𝐷(𝐴 ↔
𝐵).

These thresholds represent the hyperparameter defaults

adopted by other algorithms that employ similar processes to

investigate independence. Specifically, the dependency

threshold of 0.05 corresponds to the same cut-off threshold

of the unoptimised parameter 𝑎𝑙𝑝ℎ𝑎 used in other constraint-

based algorithms [18] [19]. The additional threshold of 50%

represents a new rule used for conditional independence tests

that lead to more conservative classifications of conditional

independence. This rule produces a higher number of

conditional independence tests classified as ‘conditional

insignificance’ and produces fewer, although more certain,

conditional dependence and independence classifications of

triples. The unoptimised rate of 50% represents a

hypermarameter default that is analogous to the default

threshold of 0.5 in RFCI-BSC used to determine whether the

constraints are dependent [20], and to the default threshold

of 0.5 in CCHM used to analyse causal effects [21]. The

classifications from constraint-based learning partly

determine the orientation of the edges in EMSG during phase

2, and are also used to prune the search space of graphs

explored in phase 3 (refer to subsection II.C).

The order in which the edges in EMSG are assessed

for orientation is determined by node ordering, where nodes

are ordered by the total MMD score they share with their

neighbours. For example, the starting node in the EMSG

graph of Fig 1 would be the node ‘either’ because it shares a

total score of 1.235 with its neighbouring nodes, and which

is the highest total score over all the nodes in the network.

Once a node is selected, the edges of that node are evaluated

in the order they appear in the data. If an orientation leads to

a cyclic graph, the orientation of that edge is immediately

reversed under the assumption that preceding orientations

override proceeding results.

The orientation of the edges in EMSG is based on a

set of criteria. The conditional independence classifications

serve as the first criterion. Specifically, if the conditional

dependence and independence classifications support an

orientation, then the edge under assessment is orientated.

Otherwise, the edge under assessment remains undirected

and the algorithm proceeds to the next edge. Edges that

remain undirected are re-assessed, in the same order, with the

second criterion which is the BIC score (refer to subsection

II.C). However, the BIC score is score-equivalent and there

is no formal guarantee that all edges will be recovered by this

second criterion. Edges that continue to be undirected are

then re-assessed with a third criterion, the 𝑑𝑜-calculus [22],

which is used to maximise the number of nodes influenced

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

by intervention. For example, in assessing the undirected

edge 𝐴 − 𝐵, if 𝑑𝑜(𝑎) given 𝐴 → 𝐵 influences a higher

number of nodes (i.e., children and descendants) than 𝑑𝑜(𝑏)

given 𝐴 ← 𝐵, then the algorithm will orientate the edge 𝐴 −
𝐵 as 𝐴 → 𝐵. If some edges continue to remain undirected at

the end of this process, the undirected edges are re-assessed

with the second and third criteria.

C. Phase 3: Score-based learning

The output of phase 2 serves as the starting graph for score-

based learning in phase 3. SaiyanH uses the BIC to score the

DAGs being explored. The BIC is a model selection function

that balances model fitting with model dimensionality given

the data. Formally,

𝐵𝐼𝐶 = 𝐿𝐿(𝐺|𝐷) − (
𝑙𝑜𝑔2𝑁

2
) 𝑝

for graph 𝐺 given data 𝐷, 𝐿𝐿 is the log-likelihood, 𝑁 is the

sample size of 𝐷, and 𝑝 is the number of free parameters

(also known as independent parameters) in 𝐺. Specifically,

the number of free parameters 𝑝, which is as a measure of

model dimensionality, is:

𝑝 = ∑(𝑟𝑖 − 1)

|𝑉|

𝑖

∏ 𝑞𝑗

|𝜋𝑣𝑖
|

𝑗

where paper 𝑉 is a set of the variables 𝑣𝑖 in graph 𝐺, |𝑉| is

the size of set 𝑉, 𝑟𝑖 is the number of states of 𝑣𝑖, 𝜋𝑣𝑖
 is the

parent set of 𝑣𝑖, |𝜋𝑣𝑖
| is the size of set 𝜋𝑣𝑖

, and 𝑞𝑗 is the

number of states of 𝑣𝑗 in parent set 𝜋𝑣𝑖
.

The search starts with Hill-Climbing (HC) that

explores neighbouring graphs 𝐺′ in which an edge is

reversed, removed, or added. Whenever 𝐺′ has BIC greater

than 𝐺, 𝐺 is replaced with 𝐺′. This process continues until

no neighbour 𝐺′ increases the BIC score. When HC

completes search, attempts are made to escape possible local

maxima using Tabu search. This is achieved by examining if

a neighbour 𝐺′ that minimally decreases BIC has a

neighbour 𝐺′′ that improves the BIC score of 𝐺, in which

case 𝐺 is replaced with 𝐺′′ and Tabu search restarts at the

new 𝐺. When all 𝐺′′ for a particular 𝐺′ are explored without

further improvement in the BIC score of 𝐺, the search

proceeds to the next best 𝐺′ that minimally decreases BIC.

Tabu search completes when all 𝐺′ are explored, or when the

number of escape attempts 𝐺′ reaches |𝑉|(|𝑉| − 1).

 The search space of possible graphs is restricted to

graphs that are acyclic and to graphs that do not consist of

multiple disjoint subgraphs. Moreover, as briefly discussed

in subsection II.B, the search space of arc additions is pruned

by means of marginal and conditional independence.

Specifically, arcs with MMD < 0.05 and arcs that violate any

conditional independence classification, as defined in

subsection II.B, are pruned and hence not explored.

Algorithm 1 presents the pseudocode of SaiyanH.

Algorithm 1: SaiyanH pseudocode

Input: dataset 𝐷, a fully connected graph 𝐺, score function BIC(𝐺, 𝐷)

Output: graph 𝐺

 // Phase 1

1: for each pair of variables 𝑣𝑖, 𝑣𝑗 ∈ 𝐷 do

2: add 𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗) to list 𝑀 in ascending order

3: end for

4: for each 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝑀 do

5: if MMD(𝑣𝑖 ↔ 𝑣𝑘)𝑖 > MMD(𝑣𝑖 ↔ 𝑣𝑗)
𝑖

< MMD(𝑣𝑗 ↔ 𝑣𝑘)
𝑖
 then

6: remove edge 𝑣𝑖 ↔ 𝑣𝑗 in 𝐺

7: end if

8: end for

 // Phase 2

9: for each pair of variables 𝑣𝑖, 𝑣𝑗 conditional on 𝑣𝑘 ∈ 𝐷 do

10: if 0.05 < MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) > MMD(𝑣𝑖 ↔ 𝑣𝑗) × 1.5 then

11: add 𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) to list 𝐶𝐷

12: else if 0.05 > MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) < MMD(𝑣𝑖 ↔ 𝑣𝑗) × 0.5 then

13: add 𝑣𝑖 ↔ 𝑣𝑗 with score MMD(𝑣𝑖 ↔ 𝑣𝑗|𝑣𝑘) to list 𝐶𝐼

14: end if

15: end for

16: for each edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD)

17: if 𝐶𝐷 and 𝐶𝐼 support an orientation for edge 𝑣𝑖 ↔ 𝑣𝑗 in 𝐺 then

18: orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated)

19: if orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 violates acyclicity in 𝐺 then

20: reverse the orientation of edge 𝑣𝑖 ↔ 𝑣𝑗

21: end if

22: end if

23: end for

24: while an undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do

25: for each undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD)

26: if an orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 maximises BIC(𝐺, 𝐷) then

27: orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated)

28: end if

29: end for

30: for each undirected edge 𝑣𝑖 ↔ 𝑣𝑗 ∈ 𝐺 do (in ascending order MMD)

31: if an orientation of edge 𝑣𝑖 ↔ 𝑣𝑗 maximises 𝑑𝑜(𝑣𝑖 ↔ 𝑣𝑗, 𝐺) then

32: orientate edge 𝑣𝑖 ↔ 𝑣𝑗 (reverse edge if acyclicity is violated)

33: end if

34: end for

35: end while

 // Phase 3

36: while Hill-Climbing finds BIC(𝐺 ′, 𝐷) > BIC(𝐺, 𝐷) and

 marginal and conditional independencies are not violated and

 𝐺 ′ is a valid DAG do

37: 𝐺 = 𝐺 ′

38: end while

39: while Tabu finds BIC(𝐺′′, 𝐷) > BIC(𝐺, 𝐷) and

 marginal and conditional independencies are not violated and

 single-depth Tabu escapes 𝑒 have not been explored and

 𝑒 < |𝑉|(|𝑉| − 1) do

40: 𝐺 = 𝐺 ′′

41: end while

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

D. Computational complexity

The complexity of local learning and constraint-based

learning is generally determined by the number of local and

conditional associational tests executed by an algorithm [4].

Given a variable set 𝑉, the complexity of local learning 𝑂𝐿

in phase 1 of SaiyanH is:

𝑂𝐿 = (
|𝑉|(|𝑉| − 1)

2
)

whereas the complexity of constraint-based learning 𝑂𝐶

during phase 2 is [16]:

𝑂𝐶 = (
|𝑉|(|𝑉| − 1)(|𝑉| − 2)

2
)

On the other hand, the score-based learning (i.e., phase 3) is

based on Tabu search which is a metaheuristic. In BN

structure learning, a metaheuristic such as Tabu search

depends on the number of local maxima that surround the

initial best guess graph (e.g., the output of phase 2), and these

can vary greatly given the data. As a result, the theoretical

complexity of metaheuristics cannot be expressed accurately

with traditional complexity notions. According to the timing

results shown later in Table 4, score-based learning has

complexity 𝑂𝑆 which can be lower or higher than 𝑂𝐿 and 𝑂𝐶

depending on the sample size of the input data. Empirical

results show that 𝑂𝐿 < ~𝑂𝑆 > 𝑂𝐶 when sample size of the

input data is low relative to those considered in this paper,

𝑂𝐿 < ~𝑂𝑆 < 𝑂𝐶 when the sample size is moderate, and 𝑂𝐿 >
~𝑂𝑆 < 𝑂𝐶 when the sample size is high.

III. EVALUATION

A. Scoring metrics

The evaluation of BN structure learning algorithms is

generally based on metrics that assess the relevance of the

learned graph with respect to the ground truth graph. Less

often, the evaluation may be based on measures which

determine how well the learned distributions fit the data.

However, fitting scores are generally score-equivalent and

produce the same score for Markov equivalent DAGs.

Because the scope of this paper focuses on the reconstruction

of the true DAG, the scoring criteria considered are fully

oriented towards graphical discovery.

Three different scoring metrics are considered that

make varied use of the confusion matrix parameters. The

differences between these three metrics can often highlight

advantages and disadvantages of an algorithm that would

otherwise remain unknown. Since no metric is perfect, using

multiple metrics provides a fairer comparison between

algorithms.

The three metrics use varying combinations of the

following parameters [23]:

• True Positives (TP): The number of edges discovered in

the learned graph that exist in the true graph.

• True Negatives (TN): The number of direct

independencies discovered in the learned graph that

exist in the true graph.

• False Positives (FP): The number of edges discovered

in the learned graph that do not exist in the true graph.

• False Negatives (FN): The number of direct

independencies discovered in the learned graph that do

not exist in the true graph.

Moreover, edges in the learned graph that fail to produce the

correct orientation, including undirected and bi-directed

edges produced by some of the other algorithms, receive

50% reward relative to the reward allocated to the edge with

the correct orientation. The first metric, the F1 score, is based

on both the Recall (𝑅𝑒) and Precision (𝑃𝑟) which are the two

standard metrics used in this research field. Specifically,

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 𝑅𝑒 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

The Recall and Precision scores are, however, misleading

when reported independently. The F1 score, on the other

hand, offers the harmonic mean between the two:

F1 = 2
𝑃𝑟. 𝑅𝑒

𝑃𝑟 + 𝑅𝑒

where F1 ranges from 0 to 1 and a higher score indicates a

more accurate graph.

The second metric, called the Structural Hamming

Distance (SHD) [24], is another well-established metric in

this field of research and represents the number of steps

required to transform the learned graph into the ground truth

graph. Specifically,

SHD = 𝐹𝑃 + 𝐹𝑁

where a score of 0 indicates a perfect match between the

learned graph and the true graph.

The third metric, called the Balanced Scoring

Function (BSF), is a recent metric [23] that considers all the

four confusion matrix parameters and returns a fully

balanced score. The score ranges from -1 to 1, where -1

corresponds to the worst possible graph, 1 to the graph that

matches the true graph, and 0 to an empty or a fully

connected baseline graph. Specifically,

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

BSF = 0.5 (
TP

𝑎
+

TN

𝑖
−

FP

𝑖
−

FN

𝑎
)

where 𝑎 is the number of edges and i is the number of direct

independences in the true graph:

𝑖 =
|𝑉|(|𝑉| − 1)

2
− 𝑎

where |𝑉| is the size of the variable set 𝑉.

There are some important differences between

these three metrics. Specifically, the SHD represents classic

accuracy that measures the proportion of correct

classifications amongst all classifications. For example,

given a ground truth graph with 1% edges and 99% direct

independencies, the SHD would judge an empty graph as

being 99% accurate in relation to the true graph. The F1 score

relaxes this imbalance since it conveys the balance between

Precision and Recall, whereas the BSF score would consider

the empty graph as being 50% accurate (i.e., a score of 0) on

the basis that all direct independencies have been discovered,

but none of the direct dependencies (i.e., edges) have been

discovered.

B. Case studies

SaiyanH is not intended for problems that include thousands

of variables, such as those in bioinformatics. As a result, the

evaluation is restricted to case studies that include up to

hundreds of variables.

Six real-world BNs are used to generate synthetic

data. Three of them represent traditional and widely used

case studies, whereas the other three come from recent real-

world BN applications. The case studies represent a mixture

of simple and complex models. Specifically,

1. Asia: A small network designed for patient diagnosis
[25]. It consists of eight nodes, eight arcs, 18 free
parameters, and has a maximum in-degree of two.

2. Alarm: A medium network designed for an alarm
message monitoring system [26]. It consists of 37
nodes, 46 arcs, 509 free parameters and has a
maximum in-degree of four.

3. Pathfinder: A very large network designed for
decision support in surgical pathology [27]. It
consists of 109 nodes, 195 arcs, 71890 free
parameters, and has a maximum in-degree of five.

4. Sports: A small real-world BN that combines a rating
system with various team performance statistics to
predict match scores in football [28]. It consists of
nine nodes, 15 arcs, 1049 free parameters, and has a
maximum in-degree of two.

5. ForMed: A large real-world BN designed for risk
management of violent reoffending in mentally ill
prisoners [29]. It consists of 88 nodes, 138 arcs, 912
free parameters, and has a maximum in-degree of six.

6. Property: A medium real-world BN designed for the
assessment of investment decisions in the UK
property market [30]. It consists of 27 nodes, 31 arcs,
3056 free parameters, and has a maximum in-degree
of three.

B. Structure learning algorithms considered

The learning performance of SaiyanH is assessed with

reference to other 12 algorithms that have been applied to the

same data. The algorithms selected represent state-of-the-art

or well-established implementations that have also been

tested in a larger relevant study [10]. Specifically,

1. PC-Stable: the modern stable version of the most
popular constraint-based algorithm called PC that
resolves the issue on the order dependency of the
variables in the data [31] [32].

2. FCI: which is PC extended to account the possibility
of latent variables in the data [33].

3. FGES: an efficient version of the popular score-
based GES algorithm that was developed by Meek
[34] and further improved by Chickering [35].

4. GFCI: a hybrid learning algorithm that combines the
FCI and FGES algorithms [36].

5. RFCI-BSC: a hybrid version of the constraint-based
RFCI that improves accuracy via model averaging
[20]. This is a non-deterministic algorithm that
produces a slightly different result each time it is
executed. The results of RFCI-BSC represent the
average score across 10 executions, for each
experiment.

6. Inter-IAMB: an improved version of IAMB that

avoids false positives in the Markov Blanket
detection phase [18].

7. MMHC: perhaps the most popular hybrid learning
algorithm [24]. It combines the constraint-based
MMPC with hill-climbing search.

8. GS: a constraint-based algorithm that recovers the
Markov blanket of each node based on pairwise
independence test [37].

9. HC: a score-based hill-climbing search algorithm that

tends to terminate in a local maximum [38].

10. TABU: a score-based algorithm that extends HC
with Tabu search. While TABU also tends to

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

terminate in local maxima, it often improves over the
local maxima of HC [38].

11. H2PC: a hybrid learning algorithm that combines the
constraint-based HPC and score-based HC
algorithms [19].

12. ILP: an integer linear programming score-based
approach that returns the graph that maximises the
global score of a scoring function [39].

The R package r-causal v1.1.1 which makes use of the

TETRAD freeware implementation [40] was used to test

algorithms 1 to 5. The bnlearn R statistical package version

4.5 [41] was used to test algorithms 6 to 11. Finally, ILP was

tested using the GOBNILP software [42]. All algorithms

have been used with their hyperparameter defaults as

implemented in each software. A six-hour runtime limit is

applied to each algorithm for each experiment.

IV. RESULTS AND DISCUSSION

A. Accuracy of the learned graphs

Fig 2 presents the accuracy scores of SaiyanH with reference

to the scores produced by the other 12 algorithms. Each of

the 18 graphs corresponds to a case study and a scoring

metric (i.e., six case studies over three scoring metrics). The

𝑦-axis of each graph represents the metric score, whereas the

𝑥-axis represents the fives sample sizes of the input data.

Note that, in contrast to F1 and BSF scores, a lower SHD

score represents a better performance. Cases in which an

algorithm failed to produce a result within the six-hour

runtime limit are illustrated with incomplete lines in each

graph.

The results suggest that all algorithms tend to

improve learning accuracy with sample size and are rather

consistent across all case studies. For example, it is usually

the case that the best performance is found with either 100k

or 1000k samples. However, the case studies differ in

complexity which means that the same sample size can be

large for simple networks and small for complex networks.

For example, the sample size of 10k is large for Asia, which

is the simplest case study with just 18 free parameters, and

small for Pathfinder which is the most complex case study

with 71890 free parameters. This explains why in the case of

Asia the performance of the algorithms maximises once the

sample size of the input data reaches 10k observations.

Conversely, the performance of the algorithms continues to

improve with the sample size in the case of Pathfinder.

Moreover, all algorithms show considerably worse

performance on the Pathfinder case study compared to all the

other case studies.

TABLE 1

THE AVERAGE RANK ACHIEVED BY EACH OF THE ALGORITHMS OVER ALL

CASE STUDIES AND ACROSS ALL SAMPLE SIZES OF THE INPUT DATA.

Rank Algorithm F1 Rank SHD Rank BSF Rank Overall rank

1 TABU 3.07 4.20 2.90 3.39

2 HC 3.43 4.53 3.03 3.67

3 ILP 4.40 6.03 3.73 4.72

4 SaiyanH 4.87 7.33 4.37 5.52

5 H2PC 5.60 4.80 6.37 5.59

6 GFCI 6.17 6.50 6.37 6.34

7 FCI 7.07 6.17 7.03 6.76

8 FGES 6.80 7.33 6.50 6.88

9 MMHC 7.07 6.07 7.83 6.99

10 PC-Stable 7.43 6.37 7.33 7.04

11 Int-IAMB 9.20 8.10 9.53 8.94

12 RFCI-BSC 10.87 8.33 10.77 9.99

13 GS 10.83 9.67 10.80 10.43

In contrast, some of the scoring metrics provide

conflicting conclusions about the relative accuracy between

algorithms. For example, the SHD metric occasionally ranks

SaiyanH well below average when the sample size of the

input data is lowest, and these results contradict the F1 and

BSF metrics which rank SaiyanH well above average for the

same experiments. The contradiction between these metrics

extends to many other algorithms. This phenomenon arises

because the SHD metric represents classification accuracy

which tends to be biased in favour of graphs which

incorporate a limited number of edges [10, 23].

Table 1 summarises the performance of the

algorithms over each case study and across all metrics.

Consistent with the above discussion, the results show that

SaiyanH performed very good in terms of F1 and BSF scores,

and below average in terms of SHD score. Overall, SaiyanH

ranked 4th and outperformed algorithms such as FGES,

MMHC and PC which tend to be used for benchmarking new

algorithms in this field of research. Interestingly, the

performance of the top three algorithms is fully driven by

score-based learning.

B. Analysis of the edges and independent subgraphs

Table 2 presents the number of independent subgraphs

generated by each of the algorithms for each case study and

sample size. As intended, SaiyanH generates a single

connected DAG in all the experiments. On the other hand,

the other algorithms routinely generate multiple subgraphs

despite all the input variables being dependent in all case

studies. This observation extends to very simple networks.

For example, while the Asia network consists of just 18 free

parameters, none of the other algorithms managed to produce

a connected graph when the sample size was lowest, and only

five of the other algorithms returned a connected graph when

the sample size was highest.

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

FIGURE 2. Performance of SaiyanH given F1 (harmonic mean of Recall and Precision), SHD, and BSF scores, over six case studies, five sample sizes
(0.1k to 1000k samples) per case study, and with reference to the performance of the other 12 algorithms.

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

TABLE 2

THE NUMBER OF INDEPENDENT SUBGRAPHS GENERATED BY EACH

ALGORITHM FOR EACH CASE STUDY AND SAMPLE SIZE. N/A INDICATES

THAT THE ALGORITHM DID NOT COMPLETE LEARNING WITHIN THE SIX-

HOUR LIMIT.

Algorithm Case study 0.1k 1k 10k 100k 1000k

SaiyanH Alarm 1 1 1 1 1

ILP Alarm 1 2 2 2 1

FGES Alarm 10 3 2 2 2

Inter-IAMB Alarm 24 11 7 3 1

H2PC Alarm 24 10 3 2 1

PC-Stable Alarm 18 5 3 2 2

FCI Alarm 16 5 3 2 1

GFCI Alarm 12 3 2 2 2

RFCI-BSC Alarm 13.3 5.2 n/a n/a n/a

MMHC Alarm 24 10 8 7 7

GS Alarm 27 19 13 12 9

HC Alarm 7 3 3 2 1

TABU Alarm 7 3 3 2 1

SaiyanH Asia 1 1 1 1 1

ILP Asia 2 1 1 1 1

FGES Asia 4 2 1 1 1

Inter-IAMB Asia 5 4 3 3 2

H2PC Asia 5 4 4 3 2

PC-Stable Asia 5 2 2 2 2

FCI Asia 5 2 2 2 2

GFCI Asia 4 2 1 1 1

RFCI-BSC Asia 4 2 1.2 n/a n/a

MMHC Asia 5 3 2 2 2

GS Asia 5 4 4 3 2

HC Asia 2 2 1 1 1

TABU Asia 2 2 1 1 1

SaiyanH Pathfinder 1 1 1 1 n/a

ILP Pathfinder 19 6 n/a n/a n/a

FGES Pathfinder 42 16 5 5 n/a

Inter-IAMB Pathfinder 85 90 87 81 72

H2PC Pathfinder 87 85 62 17 8

PC-Stable Pathfinder n/a n/a n/a n/a n/a

FCI Pathfinder 80 n/a n/a n/a n/a

GFCI Pathfinder 42 16 5 5 n/a

RFCI-BSC Pathfinder 70.3 n/a n/a n/a n/a

MMHC Pathfinder 89 89 91 87 81

GS Pathfinder 100 100 92 85 78

HC Pathfinder 33 13 3 2 2

TABU Pathfinder 33 13 3 2 2

SaiyanH Property 1 1 1 1 1

ILP Property 8 5 1 1 1

FGES Property 12 5 5 1 1

Inter-IAMB Property 20 15 9 7 6

H2PC Property 21 14 7 6 4

PC-Stable Property 14 8 4 4 4

FCI Property 15 9 3 4 4

GFCI Property 12 5 5 1 1

RFCI-BSC Property 16.4 11.6 6.8 n/a n/a

MMHC Property 21 13 9 8 6

GS Property 22 20 17 12 7

HC Property 11 5 2 1 1

TABU Property 11 5 2 1 1

SaiyanH Sports 1 1 1 1 1

ILP Sports 7 1 1 1 1

FGES Sports 7 1 1 1 1

Inter-IAMB Sports 4 3 1 1 1

H2PC Sports 7 3 1 1 1

PC-Stable Sports 4 1 1 1 1

FCI Sports 4 1 1 1 1

GFCI Sports 7 1 1 1 1

RFCI-BSC Sports n/a n/a n/a n/a n/a

MMHC Sports 7 1 1 1 1

GS Sports 7 5 1 1 1

HC Sports 7 1 1 1 1

TABU Sports 7 1 1 1 1

SaiyanH ForMed 1 1 1 1 n/a

ILP ForMed 6 4 1 1 1

FGES ForMed 43 13 2 2 n/a

Inter-IAMB ForMed 53 25 13 9 5

H2PC ForMed n/a n/a 9 5 4

PC-Stable ForMed 47 19 10 6 n/a

FCI ForMed 45 19 10 6 n/a

GFCI ForMed 43 13 2 2 n/a

RFCI-BSC ForMed 46.3 26.4 n/a n/a n/a

MMHC ForMed 50 25 12 16 16

GS ForMed 57 43 31 36 31

HC ForMed 8 4 1 1 1

TABU ForMed 7 4 1 1 1

Moreover, the number of independent subgraphs

produced by some of the other algorithms increases

substantially with the complexity of the true graph. The most

extreme example involves the GS algorithm when applied to

the Pathfinder case, where it produced 100 subgraphs for the

lowest sample size and 68 subgraphs for the highest sample

size. Remarkably, and further to what has been discussed in

subsection IV.A, the outcome of 100 subgraphs was ranked

highly by the SHD metric. In contrast, the F1 and BSF

metrics ranked this outcome lowest.

While most of the other algorithms generate several

subgraphs in most of the experiments, TABU and HC did well

since in many cases they had correctly identified that the input

variables are dependent. This also partly explains why the

TABU and HC algorithms outperformed all the other

algorithms in results of Table 1, and this is an interesting

outcome considering that most of the other score-based and

hybrid learning algorithms (including SaiyanH) already use

some form of HC search to explore the search space of graphs.

Fig 3 analyses the number of edges produced by each

of the algorithms and their relation to the number of edges in

the true graphs. Each graph in Fig 3 corresponds to a case

study. Each case study and algorithm associate with a range Δ,

where Δ is the difference between the number of edges learned

and the number of edges in the true graph, and the interval Δ

represents the minimum and the maximum discrepancy across

all the five experiments in each case study (i.e., over all the

five sample sizes). Note that failed attempts by an algorithm

to produce a graph are excluded. When this happens, the

number of actual experiments on which the interval is based is

superimposed above the interval. For example, in the Asia

case study, the RFCI-BSC algorithm failed to produce a result

in two out of the five experiments and thus, its interval Δ

indicates that it was based on just three experiments. It is

important to clarify that the failed attempts of an algorithm

always occur for the highest sample sizes. As a result, when

an interval Δ is based on less than five experiments, it tends to

underestimates the number of learned edges since higher

sample sizes tend to produce more edges.

 A. Constantinou: Learning BNs that enable full propagation of evidence.

pp VOLUME XX, 2020

FIGURE 3. The number of learned edges with respect to the number of true edges. The results are presented for each algorithm and over all five sample sizes

per case study, where Δ is the discrepancy between learned and true edges. Failed attempts by the algorithms to produce a graph are excluded. Intervals Δ

based on less than five experiments indicate the number of actual experiments above the interval.

The edge analysis in Fig 3 provides insights into

potential underfitting and overfitting issues. In fact, the results

suggest that most algorithms do underfit the graphs, at least in

terms of the number of edges produced. These results are

consistent with the number of independent subgraphs depicted

in Table 2. While the risk of underfitting increases with fewer

samples in the input data, the results suggest that underfitting

persists across all sample sizes tested. For example, while the

Asia network consists of just 18 free parameters, most of the

algorithms reveal an underfitting trend across all sample sizes.

Likewise, underfitting appears to increase in severity with the

complexity of the network. For example, the Inter-IAMB and

GS algorithms discovered a maximum of 42 and 34 edges

respectively (at 1000k samples), out of the 195 true edges in

the Pathfinder case study. Conversely, no algorithm overfitted

the graphs. One algorithm that did show some tendency

towards overfitting, however, is ILP. This happened on the

Alarm and ForMed case studies. However, ILP did very well

in minimising the discrepancy Δ across all the six case studies.

Starting from the case study with the least number of

edges, the algorithms that performed best in terms of

minimising discrepancy Δ, as well as the interval Δ across the

different sample sizes in each case study, are:

1. Asia: the ILP and SaiyanH algorithms (with TABU and

HC closely behind) with a minimum discrepancy Δ of

0, a maximum discrepancy Δ of ±1, and a range Δ of 1

for both algorithms (from +1 to 0 and from 0 to -1

respectively).

2. Sports: the SaiyanH algorithm with a minimum

discrepancy Δ of 0, a maximum discrepancy Δ of -7 and

a range Δ of 7.

3. Property: the SaiyanH algorithm with a minimum

discrepancy Δ of 0, a maximum discrepancy Δ of +1,

and a range Δ of 1.

4. Alarm: the SaiyanH algorithm (with TABU and HC

closely behind) with a minimum discrepancy Δ of -10,

a maximum discrepancy Δ of 10, and a range Δ of 20.

5. ForMed: the TABU (with HC closely behind) with a

minimum discrepancy Δ of -40, a maximum

discrepancy Δ of 32, and a range Δ of 72.

6. Pathfinder: ILP with a minimum Δ of 0, a maximum Δ

of 3, and a range Δ of 3. However, note that ILP’s result

in Pathfinder is based on just two experiments.

Overall, the edge statistics are in agreement with the results in

Table 1, in that the top four algorithms are also the ones that

best approximate the number of true edges. The restriction in

SaiyanH to produce a connected DAG has helped the

algorithm to avoid underfitting, as well as to perform best in

terms of minimising discrepancy Δ.

 A. Constantinou: Learning BNs that enable full propagation of evidence.

VOLUME XX, 2020 13

C. Time complexity

The time complexity of SaiyanH is provided in Table 3. The

results show that its runtime increases rapidly with the

number of nodes and the sample size of the input data.

SaiyanH failed to produce a graph within the six-hour time

limit in two out of the 30 experiments. This was also the case

for some of the other algorithms (refer to Fig 2). It is worth

noting that the Pathfinder case study (indicated with 109

nodes in Table 3) includes a variable with 63 states, which is

rather unusual for discrete BNs and can influence time

complexity in different ways depending on the learning

process of the algorithm.

Table 4 extends the information on time complexity

by presenting the proportion of time SaiyanH spent to

complete each of the three learning phases, for each case

study and sample size combination. This information is

useful for two reasons. Firstly, it highlights which parts of

this new implementation may be inefficient. Secondly, it

reveals how the relative proportion of runtime varies

between the different learning phases given the number of

variables in conjunction the sample size of the input data.

The results from the Pathfinder and ForMed case

studies, which required the most runtime, suggest that the

constraint-based learning of phase 2 is responsible for 77%

to 94% of the total runtime. This outcome suggests that the

constraint-based phase in SaiyanH does not scale well with

the number of variables and the sample size of the input data.

One reason why constraint-based learning is inefficient in

SaiyanH is because conditional independence tests are

performed over all possible triples, including testing for both

𝑉𝐴 → 𝑉𝐵|𝑉𝐶 and 𝑉𝐵 → 𝑉𝐴|𝑉𝐶 as defined by the MMD score.

Therefore, the efficiency of SaiyanH could be improved via

pruning of conditional independence tests. However, the

effectiveness of this type of pruning is hard to predict, both

in terms of possible gains in speed and the impact on the

accuracy of the learned graph. This is because the conditional

independence classifications from phase 2 are also used to

prune the search space of DAGs in phase 3. For example,

Table 4 shows that when the sample size of the input data is

low, constraint-based learning only accounts for up to a third

of the total runtime whereas score-based learning becomes

the most time-consuming phase of the algorithm.

TABLE 3

TIME COMPLEXITY OF SAIYANH BASED ON A SINGLE-CORE (TURBO BOOST)

SPEED OF 4.7GHZ.

Nodes
True

edges

Max in-

degree

free

param

Sample

size

Runtime

(sec)

37 46 4 509 0.1k 1

8 8 2 18 0.1k 1

8 8 2 18 1k 1

8 8 2 18 10k 1

8 8 2 18 100k 1

27 31 3 3,056 1k 1

9 15 2 1,049 0.1k 1

9 15 2 1,049 1k 1

9 15 2 1,049 10k 1

37 46 4 509 1k 5

27 31 3 3,056 10k 9

27 31 3 3,056 0.1k 10

9 15 2 1,049 100k 10

8 8 2 18 1m 13

37 46 4 509 10k 16

109 195 5 71,890 0.1k 30

88 138 6 912 0.1k 48

88 138 6 912 1k 49

27 31 3 3,056 100k 101

9 15 2 1,049 1000k 120

109 195 5 71,890 1k 135

37 46 4 509 100k 213

88 138 6 912 10k 220

109 195 5 71,890 10k 521

27 31 3 3,056 1000k 1,400

37 46 4 509 1000k 2,900

88 138 6 912 100k 3,494

109 195 5 71,890 100k 12,043

109 195 5 71,890 1000k >6h

88 138 6 912 1000k >6h

TABLE 4

TIME COMPLEXITY OF SAIYANH IN TERMS OF THE PERCENTAGE OF TIME

SPENT TO COMPLETE EACH OF THE THREE LEARNING PHASES. CASES WITH

RUNTIME UP TO 1SEC ARE EXCLUDED. N/A INDICATES THAT THE

ALGORITHM DID NOT COMPLETE LEARNING WITHIN THE SIX-HOUR LIMIT.

Case (phase) 0.1k 1k 10k 100k 1000k

Alarm (1) - 0% 6% 13% 9%

Asia (1) - - - - 31%

Pathfinder (1) 0% 1% 3% 3% n/a

Property (1) 0% - 0% 19% 15%

Sports (1) - - - 10% 13%

ForMed (1) 0% 0% 3% 5% n/a

Alarm (2) - 20% 69% 78% 81%

Asia (2) - - - - 69%

Pathfinder (2) 17% 28% 82% 77% n/a

Property (2) 0% - 89% 76% 77%

Sports (2) - - - 30% 23%

ForMed (2) 6% 37% 89% 94% n/a

Alarm (3) - 80% 25% 9% 10%

Asia (3) - - - - 0%

Pathfinder (3) 83% 71% 15% 21% n/a

Property (3) 100% - 11% 5% 8%

Sports (3) - - - 60% 65%

ForMed (3) 94% 63% 8% 1% n/a

 A. Constantinou: Learning BNs that enable full propagation of evidence.

VOLUME XX, 2020 13

V. CONCLUDING REMARKS AND FUTURE WORK

This paper described a novel hybrid BN structure learning

algorithm that relies on restrictions in the search space of

DAGs to produce a graph that enables full propagation of

evidence. The learning restriction is imposed under the

controversial assumption that the data variables are

dependent. The implementation of the algorithm [43] as well

as the datasets used in this study are available online at

www.bayesys.com.

Clearly, this algorithm is unsuitable in problems

where we seek to discover whether the input variables are

dependent. However, it becomes useful in real-world

problems where decision makers desire a model that enables

full propagation of evidence. The empirical results show that

almost all the other algorithms would never connect all the

variables of the input data when the sample size of the data

is low relative the dimensionality of the model, despite these

variables being dependent in the true graph. This is a

problem because real data are often limited in terms of

sample size and rich in terms of the number of the variables

(i.e., in dimensionality). Therefore, the benefit of assuming

that the input variables are dependent comes in the form of

practical usefulness that can be viewed as a knowledge-

based constraint.

Because SaiyanH is a novel implementation, it

comes with both limitations and potential for improvement.

Firstly, its application is limited to discrete and complete

datasets. Moreover, while SaiyanH performed best in

estimating the number of true edges, and well in terms of F1

and BSF scores, it did not do so well in terms of SHD score

and particularly when the sample size of the input data was

lowest. This observation suggests that some of the forced

edges generated to ensure the DAG output is connected, are

not correct at the same rate as those generated unrestrictedly.

Lastly, the results presented in this paper are based

on unoptimised cut-off dependency thresholds adopted by

other constraint-based algorithms (refer to Section II.B).

This ensured that the comparison between algorithms is as

fair as possible, since all algorithms have been examined

with their hyperparameter defaults. However, because

SaiyanH is based on an unconventional dependency

function, it may benefit from cut-off thresholds that differ to

those used as hyperparameter defaults in other algorithms. In

investigating the value of constraint-based relative to its time

complexity, future work will also explore the impact of

parameter optimisation on conditional independence

classifications.

ACKNOWLEDGEMENTS

This research was supported by the ERSRC Fellowship

project EP/S001646/1 on Bayesian Artificial Intelligence for

Decision Making under Uncertainty, and by The Alan Turing

Institute in the UK under the EPSRC grant EP/N510129/1.

REFERENCES

[1] J. Pearl. “Reverend Bayes on Inference Engines: A Distributed

Hierarchical Approach”. In Proceedings of the 2nd AAAI

Conference on Artificial Intelligence, pages 133–136,

Pittsburgh, Pennsylvania, August 1982. AAAI Press.

[2] J. Pearl. “Bayesian Networks: A model of self-activated memory

for evidential reasoning”. In Proceedings of the 7th Conference

of the Cognitive Science Society, pp. 329–334, 1985.

[3] D. M. Chickering, D. Heckerman and C. Meek. “Large-sample

learning of Bayesian networks is NP-hard”. Journal of Machine

Learning Research, vol. 5, pp. 1287–1330, 2004.

[4] P. Spirtes, C. Glymour and R. Scheines. “Causation, Prediction,

and Search”. New York: Springer-Verlag, 1993.

[5] P. Spirtes, C. Glymour and R. Scheines. “Reply to Humphreys

and Freedman’s Review of Causation, Prediction, and Search.”

British Journal of the Philosophy of Science, vol. 48, pp. 555–

568, 1997.

[6] P. Humphreys and D. Freedman. “The Grand Leap”. British

Journal of the Philosophy of Science, vol. 47, pp. 113–123, 1996.

[7] K. B. Korb and C. S. Wallace. “In Search of the Philosopher’s

Stone: Remarks on Humphreys and Freedman’s Critique of

Causal Discovery”. British Journal of the Philosophy of Science,

vol. 48, pp. 543–553, 1997.

[8] D. Freedman and P. Humphreys. “Are there algorithms that

discover causal structure”. Synthese, vol. 121, pp. 29–54, 1999.

[9] K. Korb, and A. Nicholson. “Bayesian Artificial Intelligence

(Second Edition)”. CRC Press, London, UK, 2011.

[10] A. C. Constantinou, Y. Liu, K. Chobtham, Z. Guo and N. K.

Kitson. “Large-scale empirical validation of Bayesian Network

structure learning algorithms with noisy data”.

arXiv:2005.09020 [cs.LG], 2020.

[11] D. Heckerman, D. Geiger, and D. M. Chickering. “Learning

Bayesian networks: The combination of knowledge and

statistical data”. Machine Learning, vol. 20, pp. 197–243, 1995.

[12] N. Fenton, M. Neil, D. Lagnado, W. Marsh, B. Yet, and A.

Constantinou. How to model mutually exclusive events based on

independent causal pathways in Bayesian network models.

Knowledge-Based Systems, vol. 133, pp. 39–50, 2016.

[13] A. C. Li, and P. van Beek. “Bayesian Network Structure

Learning with Side Constraints”. In Proceedings of Machine

Learning Research, vol. 72, pp. 225–236, 2018

[14] L. M. de Campos and J. G. Castellano. “Bayesian network

learning algorithms using structural restrictions”. International

Journal of Approximate Reasoning, vol. 45, pp. 233–254, 2007.

[15] M. J. Flores, A. E. Nicholson, A. Brunskill, K. B. Korb, and S.

Mascaro. “Incorporating expert knowledge when learning

Bayesian network structure: a medical case study”. Artificial

intelligence in medicine, vol. 53, Iss. 3, pp. 181–204, 2011.

[16] A. Constantinou. “Learning Bayesian Networks with the Saiyan

algorithm”. ACM Transactions on Knowledge Discovery from

Data, 2020.

[17] A. Darwiche. “Modeling and reasoning with Bayesian

Networks”. Cambridge University Press, 2009.

 A. Constantinou: Learning BNs that enable full propagation of evidence.

VOLUME XX, 2020 13

[18] S. Yaramakala and D. Margaritis. “Speculative Markov Blanket

Discovery for Optimal Feature Selection”. In Proceedings of the

Fifth IEEE International Conference on Data Mining, pp. 809–

812, 2005.

[19] M. Gasse, A. Aussem and H. Elghazel. “A Hybrid Algorithm for

Bayesian Network Structure Learning with Application to Multi-

Label Learning”. Expert Systems with Applications, vol. 41, Iss.

15, pp. 6755–6772, 2014.

[20] F. Jabbari, J. Ramsey, P. Spirtes and G. Cooper. “Discovery of

causal models that contain latent variables through Bayesian

scoring of independence constraints”. Machine Learning and

Knowledge Discovery in Databases, pp. 142–157, 2017.

[21] K. Chobtham and A. Constantinou. “Bayesian network structure

learning with causal effects in the presence of latent variables”.

arXiv:2005.14381 [cs.LG], 2020.

[22] J. Pearl. “Causality”. Cambridge University Press, 2009.

[23] A. C. Constantinou. “Evaluating structure learning algorithms

with a balanced scoring function”. arXiv 1905.12666 [cs.LG],

2019.

[24] I. Tsamardinos, L. E. Brown and C. F. Aliferis. “The Max-Min

Hill-Climbing Bayesian Network Structure Learning

Algorithm”. Machine Learning, vol. 65, pp. 31–78, 2006.

[25] S. Lauritzen and D. Spiegelhalter. “Local Computation with

Probabilities on Graphical Structures and their Application to

Expert Systems (with discussion)”. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), vol. 50,

pp. 157–224, 1998.

[26] I. A. Beinlich, H. J. Suermondt, R. M. Chavez and G. F. Cooper.

“The ALARM Monitoring System: A Case Study with Two

Probabilistic Inference Techniques for Belief Networks”. In

Proceedings of the 2nd European Conference on Artificial

Intelligence in Medicine, pp. 247–256, 1989.

[27] D. Heckerman, E. Horwitz and B. Nathwani. “Towards

Normative Expert Systems: Part I. The Pathfinder Project”.

Methods of Information in Medicine, vol. 31, pp. 90–105, 1992.

[28] A. Constantinou. “Asian handicap football betting with rating-

based hybrid Bayesian networks”. arXiv:2003.09384 [stat.AP],

2019.

[29] A. C. Constantinou, M. Freestone, W. Marsh, N. Fenton, and J.

Coid. “Risk assessment and risk management of violent

reoffending among prisoners”. Expert Systems with

Applications, vol. 42, Iss. 21, pp. 7511–7529, 2015.

[30] A. C. Constantinou and N. Fenton. “The future of the London

Buy-To-Let property market: Simulation with Temporal

Bayesian Networks”. PloS ONE, 12(6): e0179297, 2017.

[31] P. Spirtes and C. Glymour. “An algorithm for fast recovery of

sparse causal graphs”. Social Science Computer Review, vol. 9,

Iss. 1, 1991.

[32] D. Colombo and M. H. Maathuis. “Order-Independent

Constraint-Based Causal Structure Learning”. Journal of

Machine Learning Research, vol. 15, pp. 3921–3962, 2014.

[33] P. Spirtes, C. Meek, and T. Richardson. “An algorithm for causal

inference in the presence of latent variables and selection bias”.

In Clark Glymour and Gregory Cooper (Eds.), Computation,

Causation, and Discovery. The MIT Press, Cambridge, MA, pp.

211–252, 1999.

[34] C. Meek. “Graphical Models: Selecting causal and statistical

models”. PhD dissertation, Carnegie Mellon University, 1997.

[35] D. M. Chickering. “Optimal structure identification with greedy

search”. Journal of Machine Learning Research, vol. 3, pp. 507–

554, 2002.

[36] J. M. Ogarrio, P. Spirtes and J. Ramsey. “A Hybrid Causal

Search Algorithm for Latent Variable Models”. In Proceedings

of the Eighth International Conference on Probabilistic

Graphical Models, vol. 52, pp. 368–379, 2016.

[37] D. Margaritis. “Learning Bayesian Network Model Structure

from Data”. PhD dissertation, School of Computer Science,

Carnegie-Mellon University, Pittsburgh, PA, 2003.

[38] M. Scutari, C. Vitolo, A. Tucker, A. “Learning Bayesian

networks from big data with greedy search: computational

complexity and efficient implementation”. Statistics and

Computing, vol. 29, pp 1095–1108, 2019.

[39] J. Cussens. “Bayesian network learning with cutting planes”. In

Proceedings of the Twenty-Seventh Conference on Uncertainty

in Artificial Intelligence, pp. 153–160, July 2011.

[40] C. Wongchokprasitti. “R-causal R Wrapper for Tetrad Library”,

v1.1.1, 2016. [Online] Available https://github.com/bd2kccd/r-

causal

[41] M. Scutari and R. Ness. “Package ‘bnlearn’”. CRAN, 2019.

[42] J. Cussens. “GOBNILP 1.6.2 User/Developer Manual”,

University of York, UK, 2015. [Online] Available:

https://www.cs.york.ac.uk/aig/sw/gobnilp/manual.pdf

[43] A. Constantinou. “The Bayesys user manual”. Queen Mary

University of London, London, 2020. [Online] Available:

http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

ANTHONY C. CONSTANTINOU is a Senior

Lecturer at Queen Mary University of London,

where he leads the Bayesian Artificial

Intelligence research lab. He holds a Fellowship

from the EPSRC and a Fellowship from The Alan

Turing Institute in the UK.

His research interests are in Bayesian

Artificial Intelligence for causal discovery and

intelligent decision making under uncertainty. He

collaborates with industry partners and applies

his research to a wide range of areas including sports, medicine, finance and

gaming.

