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Abstract
In the stochastic sequential optimisation problems it is of interest to study features of strategies
more delicate than just their performance measure. In this talk we focus on variations of the
online monotone subsequence and bin packing problems, where it is possible to give a fairly explicit
asymptotic description of the selection processes under strategies that are sufficiently close to
optimality. We show that the transversal fluctuations of the shape and the length of selected
subsequence approach Gaussian functional limits that are very different from their counterparts in
the offline problem, where the full set of data can be used in selection algorithms.
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1 Introduction

In many stochastic optimisation problems units of the data become available in real time,
whereas admissible decision strategies involve a series of irrevocable choices. The analysis of
such problems is largely focused on finding optimal or near-optimal strategies to maximise a
given performance criterion subject to constraints. Much less attention has been devoted to
the structure of decison processes as a whole, in all intermediate states.

In this paper we mainly focus on the online monotone subsequence problem of Samuels and
Steele [18]. Suppose i.i.d. marks drawn from the uniform distribution on [0, 1] are observed,
one by one, at times of an independent homogeneous Poisson process of intensity ν on [0, 1].
Each mark can be selected or rejected. The sequence of selected marks must increase. The
task is to maximise the expected length of selected increasing subsequence using an online
strategy. The online constraint requires that each decision becomes immediately irrevocable
as the mark is observed, and must be based exclusively on the information accumulated
previously without foresight of the future.

The optimal online strategy is defined recursively in terms of a variable acceptance
window, which limits the difference between the next and previous selections. The strategy
and its value can be found, in principle, by solving a dynamic programming equation, see
[4, 6, 11] for properties of the solution and approximations. We are interested in the time
evolution of increasing subsequences under online strategies that are within O(1) gap from
the optimum for large ν.
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14:2 Online Subsequence Selection

Let Lν(t) and Xν(t), respectively, denote the length and the last element of the increasing
subsequence selected by time t ∈ [0, 1] under the optimal strategy. The interest to date
focused on the total length Lν(1). Samuels and Steele derived the principal asymptotics
ELν(1) ∼

√
2ν, which was later found to be an upper bound with the optimality gap of

order log ν [6]. See [1, 2, 4, 6, 10] for refinements and generalisations. In a recent paper
[11] we combined asymptotic analysis of the dynamic programming equation with a renewal
approximation to the range of the process Zν(t) :=

√
ν(1− t)(1−Xν(t)) to derive expansions

for the mean

ELν(1) ∼
√

2ν − 1
12 log ν + c∗0, ν →∞, (1)

and the variance

VarLν(1) ∼ 1
3
√

2ν − 1
72 log ν + c∗1, ν →∞, (2)

where c∗0 and c∗1 are unknown constants. A central limit theorem for Lν(1) was proved
in [7] by analysis of a related martingale, and further extended in [11] to a larger class of
asymptotically optimal strategies by the mentioned renewal theory approach.

The offline counterpart of the selection problem is the Ulam-Hammersley problem on
the longest increasing subsequence of the Poisson scatter in the square [0, 1]2. Here, the
well known principal asymptotics of the expected maximum length, 2

√
ν, is similar, but the

second term of its asymptotic expansion and the principal term of the standard deviation are
both of the order ν1/6. The limit law for the offline maximum length is the Tracy-Widom
distribution from the random matrix theory. For survey and history see [17].

In the offline problem, some work has been done on the size of transversal fluctuations
about the diagonal x = t in [0, 1]2. Johansson [12] proved a measure concentration result
asserting that, with probability approaching 1, every longest increasing subsequence (which
is not unique) lies in a diagonal strip of width of the order ν−1/6+ε. Duvergne, Nica and
Virág [8] recently proved the existence and gave some description of the functional limit,
which is not Gaussian. But for smaller exponent −1/2 < α < −1/6, Joseph and Peled [15]
showed that if the increasing sequence is restricted to lie within the strip of width ν−α, the
expected maximum length remains to be asymptotic to 2

√
ν, while the limit distribution of

the length switches to normal.
To extend the parallels and gain further insight into the optimal selection it is of

considerable interest to examine fluctuations of the processes Lν and Xν as a whole. On this
path, one is lead to study the following scaled and centred versions of the running maximum
and length processes:

X̃ν(t) := ν1/4(Xν(t)− t), L̃ν(t) = ν1/4
(
Lν(t)√

2ν
− t
)
, t ∈ [0, 1]. (3)

To compare, in the offline problem by similar centring the critical transversal and longitudinal
scaling factors appear to be ν1/6 and ν1/3, respectively. Our central result (Theorem 4) is
a functional limit theorem which entails that the process (X̃ν , L̃ν) converges weakly to a
simple two-dimensional Gaussian diffusion. In particular, X̃ν approaches a Brownian bridge.
The limit of L̃ν is a non-Markovian process with the covariance function

(s, t) 7→ 2s(2− t)− (2− s− t) log(1− s)
6
√

2
, 0 ≤ s ≤ t ≤ 1,

which corresponds to a correlated sum of a Brownian motion and a Brownian bridge.
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The question about functional limits for Lν and Xν has been initiated by Bruss and
Delbaen [7]. They employed the Doob-Meyer decomposition to compensate the processes,
and in an analytic tour de force showed that the scaled martingales jointly converge to a
correlated Brownian motion in two dimensions. However, the compensation keeps out of
sight a drift component absorbing much of the fluctuations immanent to the selection process,
let alone that the compensators themselves are nonlinear integral transforms of Xν . Looking
at the generator of (3) we shall recognise the limit process without difficulty, showing that
this is a Gaussian diffusion driven by the same Brownian motion as in [7]. But in order to
justify the weak convergence in the Skorokhod space on the closed interval [0, 1] we will need
to circumvent a difficulty caused by pole singularities of the control function and the drift
coefficient at the right endpoint.

A mathematically equivalent problem appears if the monotonicity condition is replaced by
the constraint that the sum of of selected marks cannot exceed 1. A more general form of the
latter “online bin-packing” problem has also been studied in the literature [9, 16], under the
assumption that (positive) marks are sampled from some distribution with regular behaviour
near 0. In the last section we sketch functional limit results for this bin-packing problem.

2 Selection strategies

It will be convenient to extend slightly the underlying framework by considering a homogen-
eous Poisson random measure Π with intensity ν in the halfplane R+ × R, along with the
filtration induced by restricting Π to [0, t]×R for t ≥ 0. We interpret the generic atom (t, x)
of Π as random mark x observed at time t. A sequence (t1, x1), . . . , (t`, x`) of atoms is said
to be increasing if it is a chain in two dimensions, i.e. t1 < · · · < t`, x1 < · · · < x`.

For a given bounded measurable control function ψ : [0, 1]× R→ R+, an online strategy
selecting such increasing sequence is defined by the following intuitive rule. Let x be the last
mark selected before time t, or some given x0 if no selection has been made. Given the next
mark x′ is observed at time t, this mark is selected if and only if x < x′ ≤ x+ψ(t, x). One can
think of more general online strategies, with the acceptance window shaped differently from
an interval or possibly depending on the history in a more complex way. Yet the considered
class is sufficient for the sake of optimisation and can be further reduced to controls of a
special type.

For a given control ψ, define X(t) and L(t) to be, respectively, the last mark selected and
the number of marks selected within the time interval [0, t]. The processX = (X(t), t ∈ [0, 1]),
which we call the running maximum, is a time-inhomogeneous Markov process, jumping from
the generic state x at rate ψ(t, x) to another state uniformly distributed on [x, x+ψ(t, x)]. The
length process L = (L(t), t ∈ [0, 1]) just counts the jumps of X, hence the bivariate process
(X,L) is also Markovian. Moreover, the conditional distribution of ((X(t), L(t)), t ≥ s)
depends on the pre-s history only through X(s).

Intuitively, the bigger ψ the faster X and L increase. To enable comparisons of selection
processes with different controls it is very convenient to couple them by means of an additive
representation through another Poisson random measure Π∗, thought of as a reserve of
positive increments. The underlying properties of the planar Poisson process are translation
invariance and spatial independence: Π restricted to the shifted quadrant (t, x) + R2

+ is
independent of Π|[0,t]×R and has the same distribution as the translation of Π|R2

+
by vector

(t, x). So, letting Π∗ to be a distributional copy of Π, a solution to the system of stochastic
differential equations

AofA 2020



14:4 Online Subsequence Selection

dX(t) =
∫ ψ(t,X(t))

0
xΠ∗(dtdx), dL(t) =

∫ ψ(t,X(t))

0
Π∗(dtdx) (4)

with initial values X(0) = x0 and L(0) = 0 will have the same distribution as (X,L).

I Lemma 1. For i = 1, 2 let Xi be selection processes driven by controls ψi. By coupling
via (4), each time a process with smaller acceptance window jumps, the other process also
has a jump of the same size.

Conditionally on (X(s), L(s)) = (x, `), the process (X(s+ ·)− x, L(s+ ·)− `)) has the
same distribution as (X(s,x), L(s,x)), which similarly to (4) is given by

dX(s,x)(u) =
∫ ψ(s+u,x+X(s,x)(u))

0
yΠ∗(dudy), dL(s,x)(u) =

∫ ψ(s+u,x+X(s,x)(u))

0
Π∗(dudy).

Averaging, we obtain formulas for the predictable compensators of X and L

CX(t) := ν

2

∫ t

0
ψ2(s,X(s))ds, CL(t) := ν

∫ t

0
ψ(s,X(s))ds, (5)

so X − CX , L− CL are zero-mean martingales.
With every control we may further relate a zero-mean martingale

M(t) := L(t) + E{L(1)− L(t)|X(t)} − EL(1) (6)

with terminal value L(1)− EL(1). If ψ does not depend on x, L has independent increments
and M(t) = L(t)− EL(t).

The selected increasing chain fits in the unit square if X(1) ≤ 1, which translates in terms
of the control function as the condition of feasibility:

0 < ψ(t, x) ≤ 1− x for (t, x) ∈ [0, 1]2.

In the sequel, if not stated otherwise we set x0 = 0 and only consider feasible controls.

2.1 Principal convergence of the moments
Let

p(t) := EX(t) = ECX(t), q(t) := EL(t)√
2ν

= ECL(t)√
2ν

.

Some general relations between the moments follow straight from formulas for the
compensators (5). For shorthand, write ψ = ψ(X(s), s). We have

0 ≤ E
∫ t

0

(
1±

√
ν/2ψ

)2
ds = t± 2q(t) + p(t),

where the right-hand side in increasing in t. It follows,

p(t)− t ≥ 2 (q(t)− t). (7)

Using the Cauchy-Schwarz inequality

(p(t)− t)2 =
(
E
∫ t

0

(
1− ν

2ψ
2
)

ds
)2

≤ (t+ 2q(t) + p(t))(t− 2q(t) + p(t)). (8)



A. Gnedin and A. Seksenbayev 14:5

Similarly

(q(t)− t)2 =
(
E
∫ t

0
1 ·
(

1−
√
ν/2ψ

)
ds
)2

≤ t (t− 2q(t) + p(t)) (9)

The above relations did not use the feasibility constraint. For feasible control we have
p(1) < 1, hence from (7) also q(1) < 1. Since all factors in the right-hand sides of (8), (9) are
increasing, replacing them by their maximal values at t = 1 we obtain

(p(t)− t)2 < 8(1− q(1)), (q(t)− t)2 < 2(1− q(1)). (10)

We say that a strategy ψ = ψν is asymptotically optimal in the principal term if q(1)→ 1,
as ν → ∞, i.e. ELν(1) ∼

√
2ν; in that case (10) imply the uniform convergence of the

moments

sup
t∈[0,1]

|p(t)− t| → 0, sup
t∈[0,1]

|q(t)− t| → 0.

It follows from (1) that under the optimal strategy

1− q(1) ∼ log ν
12
√

2ν
, ν →∞. (11)

This relation can be called a two-term asymptotic optimality. Whenever this holds, the general
bounds (10) imply that both supt∈[0,1] |p(t)− t| and supt∈[0,1] |q(t)− t| can be estimated as
O(
√

log ν/ν1/4).

2.2 The stationary strategy
We call the strategy with control ψ(t, x) =

√
2/ν stationary. Although not feasible, the

stationary strategy is an important benchmark. Clearly, L is a Poisson counting process with
intensity EL(1) =

√
2ν. Taking general constant control ψ(t, x) =

√
c/ν with some c > 0

will yield a strategy outputting the mean length
√
{c ∧ (2/c)}ν, which is maximal for c = 2.

In fact, a much stronger optimality property holds: the stationary strategy achieves the
maximum expected length over the class of strategies that satisfy the mean-value constraint
EX(1) ≤ 1, see [1, 4, 10, 11] for proof and generalisations. This gives the well-known upper
bound mentioned in the Introduction, because each feasible strategy meets the mean-value
constraint.

It is seen from (4) that X is a compound Poisson process

X(t) =
√

2
ν

L(t)∑
i=0

Ui ,

where U1, U2, . . . are independent of L, uniformly distributed on [0, 1]. Straightforward
calculation of moments using Wald’s identities yields

EX(t) = t, VarX(t) = 23/2t

3
√
ν
, Cov(X(t), L(t)) = t.

Since (X,L) has independent increments, a functional limit in the Skorohod topology on
D[0, 1] follows easily from the multidimensional invariance principle:

(X̃, L̃)⇒ (W1,W2), as ν →∞,

AofA 2020
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where⇒ denotes weak convergence, and the limit process W := (W1,W2) is a two-dimensional
Brownian motion with zero drift and covariance matrix

E{W (t)TW (t)} = tΣ, where Σ :=
(

2
√

2
3

1√
2

1√
2

1√
2

)
. (12)

So, marginally, W1 and W2 are centred Brownian motions with diffusion coefficients and
correlation, respectively,

σ1 := 23/4
√

3
, σ2 := 1

21/4 , ρ :=
√

3
2 . (13)

Notably, ρ = σ2/σ1, which implies that the process W satisfies the identity 2W2 −W1
d=

W1, which has a pre-limit analogue 2L̃− X̃ d= X̃. The identity can be explained by symmetry
of the uniform distribution about 1/2, which allows us to write

X(t) d=
√

2
ν

L(t)∑
i=0

(1− Ui) =
√

2
ν
L(t)−X(t) .

The martingale (6) just coincides with the naturally centred L.

2.3 Self-similar asymptotically optimal strategies
We call strategy self-similar if the control ψ = ψν has the form

ψ(t, x) := (1− x)δ(ν(1− t)(1− x)), (t, x) ∈ [0, 1]2. (14)

for some function δ : R+ → [0, 1]. Note that such a strategy is feasible and ψν(0, 0) = δ(ν).
The rationale behind this definition is the following. Assuming x to be the running maximum
at time t, the remaining part of the chain should be selected from the north-east rectangle
spanned on (t, x) and (1, 1), and by the optimality principle the subsequence selected from
the rectangle should have maximal expected length. Mapping the rectangle onto [0, 1]2 it is
readily seen that the subproblem is an independent replica of the original problem of optimal
selection from the unit square with intensity parameter ν(1− t)(1− x). The martingale (6)
assumes the form

M(t) = L(t) + F (ν(1− t)(1−X(t))− F (ν), (15)

where the value function F , for given control, depends on one variable

F (ν) := ELν(1), F (0) = 0.

Assumption. From this point on we assume that the selection strategy is self-similar as
defined by (14), with function δ having asymptotics

δ(ν) =
√

2/ν +O
(
ν−1) , ν →∞. (16)

The assumption is central and deserves comments. Whenever ν(1 − x)(1 − t) is large,
(16) implies asymptotics of the control

ψ(t, x) ∼

√
2(1− x)
ν(1− t) , (17)
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which shows that near the diagonal x = t the acceptance window is about the same as for
the stationary strategy. Away from the diagonal the acceptance window is close to that for
the stationary strategy adjusted to the rectangle north-east of (t, x).

It is known [11] that the optimal strategy satisfies the asymptotic expansion

δ∗(ν) ∼
√

2/ν − (3ν)−1 +O(ν−3/2). (18)

A minor adjustment of Theorem 6 in [11] shows that if we assume, more generally, the
relation δ(ν) ∼

√
2/ν + β/ν with some parameter β ∈ R, then asymptotic expansions of

the moments (1), (2) are still valid, with only constant terms depending on β. Using a
sandwich argument based on Lemma 1, it can be further shown that under the assumption
(16) expansions of the moments hold but with constant terms being replaced by some O(1)
remainders. In particular, condition (16) ensures the two-term asymptotic optimality (11),
equivalent to the asymptotic expansion of the value function,

F (ν) =
√

2ν − 1
12 log(ν + 1) +O(1). (19)

We stress that the logarithmic term here (as well as in the counterpart of the variance formula
(2)) is not affected by the remainder in (16), rather appears due to the self-similar adjustment
of the (feasible version of) stationary strategy, as incorporated in (17).

Approximation (17) is not useful when t or x are too close to 1, so that ν(1− t)(1− x)
varies within O(1). To embrace the full range of the variables, for the sequel we choose β > 1
large enough to meet the bounds∣∣∣∣∣ψ(t, x)−

√
2(1− x)
ν(1− t)

∣∣∣∣∣ <
β

ν(1− t) , for (t, x) ∈ [0, 1)× [0, 1). (20)

This will be employed along with the bound

ψ(t, x) <
1

ν(1− t) , for 1− x < 1
ν(1− t) (21)

which follows by feasibility.

3 Generators

A major technical difficulty in showing the convergence in D[0, 1] is the singularity of (17)
at t = 1. This will be handled in two steps. First, we bound the time variable away from
t = 1 and show the convergence of the generators on a sufficiently big space of test functions.
Then we will apply domination arguments to bound fluctuations near the right endpoint,
thus justifying convergence on the full [0, 1].

The processes we consider are not time-homogeneous, therefore by computing generators
we include the time variable in the state vector. From (4), the generator of the jump process
(X,L) is

Lνf(t, x, `) = ft(t, x, `) + ν

∫ ψ(t,x)

0
{f(t, x+ u, `+ 1)− f(t, x, `)}du.

For the processes centered by t we should include −fx − f` in the generator. Then, with the
change of variables

x→ xν−1/4 + t, `→ (`ν−1/4 + t)
√

2ν, ψ̃(t, x) := ν1/4ψ(t, xν−1/4 + t)

AofA 2020
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we arrive at the generator of (X̃, L̃)

L̃νf = ft − ν1/4(fx + f`) + ν3/4
∫ ψ̃(t,x)

0
{f(t, x+ u, `+ v)− f(t, x, `)}du, (22)

where we abbreviate f = f(t, x, `) etc., and

v := (4ν)−1/4 (23)

We extend L̃νf by 0 outside the reachable range of (X̃, L̃). Note that the range of X̃(t)
lies within the bounds

−tν1/4 ≤ x ≤ (1− t)ν1/4.

We fix h ∈ (0, 1) and focus on t ∈ [0, 1− h], so achieving uniformly in this range

ψ̃(t, x) = O(ν−1/4), (24)

and for k ≥ 1

ψ̃k(t, x) =
(

2− 2x
ν1/4(1− t)

)k/2
ν−k/4+O(ν−(k+2)/4), for x ≤ (1−t)ν1/4− 1

ν3/4(1− t)
(25)

as dictated by the bounds (20), (21).
Now let D be the space of vanishing at infinity functions f ∈ C3

0 ([0, 1]×R2) which satisfy
a rapid decrease property

sup |xkf•(t, x, `)| <∞,

where f• is any derivative of f of the first or second order and k > 0. Set

D>
h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| > ν1/16}, D<

h,ν := {(t, x, `) : t ∈ [0, 1−h], |x| ≤ ν1/16}.

We shall be using that for f ∈ D

lim
ν→∞

sup
D>
h,ν

|νkf•(x)| = 0. (26)

The integrand in (22) expands as

f(t, x+ u, `+ v)− f(t, x, `) = fxu+ f`v + 1
2fxx u

2 + fx` uv + 1
2f`` v

2 +R,

where the remainder can be estimated as

|R| ≤ c
3∑
i=0

uiv3−i,

with constant c chosen bigger than the maximum absolute value of any third derivative of f .
Hence for the integrated remainder we have a uniform estimate

ν3/4

∣∣∣∣∣
∫ ψ̃

0
Rdu

∣∣∣∣∣ ≤ ν3/4c

4∑
i=1

ψ̃iv4−i = O(ν−1/4),

using (24), (23).
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Integrating the Taylor polynomial yields

L̃νf = ft−ν1/4(fx+f`)+ν3/4

{
fx ψ̃

2

2 + f` vψ̃ + fxxψ̃
3

6 + fx` ψ̃
2

2 v + f``v
2ψ̃

2

}
+O(ν−1/4).

Applying (26)

lim
ν→∞

sup
D>
h,ν

|L̃νf(t, x, `)| = 0. (27)

Thus we focus on the range D<
h,ν , where (20) and (25) can be employed. From (20)

−ν1/4fx + ν3/4 1
2fxψ̃

2 = − x

1− tfx +O(ν−1/4).

Observing that in this range |xν−1/4| ≤ ν−3/16 for k > 0 we expand as

ψ̃k(t, x, `) = 2k/2ν−k/4 − 2k/2−1x

1− t ν−(k+1)/4 +O(ν−(k+1)/4−1/8),

with the remainder estimate being uniform over D<
h,ν . The remaining calculations is a careful

book-keeping using this formula and that the derivatives are uniformly bounded.
Define operator

L̃f := ft −
x

1− tfx −
x

2(1− t)f` + σ1
2

2 fxx + σ2
2

2 f`` + σ1σ2ρfx`,

with σ1, σ2, and ρ given by (13).

I Lemma 2. For f ∈ D and h ∈ (0, 1)

lim
ν→∞

sup
(t,x,`)∈[0,1−h]×R2

|L̃νf(t, x, `)− L̃f(t, x, `)| = 0.

Operator L̃ is the generator of a Gaussian diffusion process which satisfies the stochastic
differential equation

dY1(t) = −Y1(t)
1− t dt + dW1(t), (28)

dY2(t) = − Y1(t)
2(1− t) dt + dW2(t), (29)

with zero initial value, where W = (W1,W2) is the two-dimensional Brownian motion with
covariance Σ introduced in (12).

From the equation for the first component (28), it is seen that Y1 is a Brownian bridge

Y1(t) = (1− t)
∫ t

0

dW1(s)
1− s , (30)

with the covariance function Cov(Y1(s), Y1(t)) = σ1s(1 − t), 0 ≤ s ≤ t ≤ 1. In particular,
Y1(1) = 0. We shall discuss the second component later on.

The space D is dense in a larger space C3
0 ([0, 1 − h] × R2). Since the differentiability

properties of functions are preserved under averaging over normally distributed translations,
D is invariant under the semigroup of Y . Thus by Watanabe’s theorem (see [13], Proposition

AofA 2020
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17.9) D is a core of operator L̃. The above Lemma 2 and Theorem 17.25 from [13] now imply
weak convergence

(X̃ν , L̃ν)⇒ (Y1, Y2) in D[0, 1− h] (31)

for every h ∈ (0, 1). A closer inspection of the above approximation errors suggests that the
quality of convergence deteriorates as h→ 0.

We encountered the Brownian motion W in connection with the free-endpoint stationary
strategy in Section 2.2. Now we see that the variable control (17) causes a drift that forces
the running maximum to timely arrive at the north-east corner of the square.

4 The functional limit in D[0, 1]

The martingale problem for L̃ is well-posed on the complete interval, and the SDE (28) has
a unique strong solution. This suggests to extend convergence (31) to the full [0, 1]. To that
end, we need to monitor the behaviour of L̃νf for t close to 1.

Since (31) entails convergence of finite-dimensional distributions for times t < 1 and
ensures that the modulus of continuity behaves properly over [0, 1− h], to justify tightness
of X̃ν ’s, and hence their convergence on [0, 1], it will be enough to show that

lim
h→0

lim sup
ν

P( sup
t∈[1−h,1]

|X̃ν(t)| > h1/4) = 0. (32)

Define ξν,h by setting

X̃ν(1− h) = σ1
√
h(1− h) ξν,h.

Since X̃ν(1− h) d→ Y1(1− h) the distribution of ξν,h is close to N (0, 1) for large ν.
By self-similarity of the selection strategy, ((Xν(t)−t), t ∈ [1−h, 1]) has the same distribu-

tion as (h−1(Xνh2(t)−t), t ∈ [0, 1]) with the initial value Xνh2(0) = ν−1/4σ1
√

(1− h)/h ξν,h,
as is seen by zooming in the corner square north-east of the point (1− h, 1− h) with factor
h−1. Changing variable νh2 → ν, (32) translates as a compact containment condition

lim
h→0

lim sup
ν

P( sup
t∈[0,1]

|X̃ν(t)| > h−1/4) = 0 (33)

under the initial value X̃ν(0) =
√

1− h ξν,h.
To verify (33) we shall squeeze the running maximum X between X↓ and X↑ whose

normalised versions satisfy the compact containment condition. We force the majorant and
the minorant to live on the opposite sides of the diagonal. Both have independent, almost
stationary increments, so that functional limits can be readily identified. For simplicity we
will assume Xν(0) = 0. The general case with Xν(0) of the order ν−1/4 can be handled by
the same method.

4.1 Majorant
Define process X↑ = X↑ν as solution to

dX↑(t) =
∫ ψ↑(t)

0
xΠ∗(dtdx) + 1(X↑(t) = t)dt,
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X↑(0) = Kν−1/2 for some big enough K > 0, with control

ψ↑(t) :=
√

2
ν

+ β

ν(1− t) 1(t ≤ 1−Kν−1/2)

not depending on x. Notation 1(· · · ) is used for indicators. The process never drops below
the line x = Kν−1/2 + t, and whenever the line is hit the path drifts along it for some time.
By the construction, above the diagonal the process X↑ increases faster than X, and is, in
fact, a majorant.

I Lemma 3. By coupling via (4), X↑ ≥ X a.s.

Let

S(t) :=
∫ t

0

∫ ψ↑(t)

0
xΠ∗(dsdx)− t.

This is a process with independent increments, which we can split in two independent
components

S(t) =
(∫ t

0

∫ √2/ν

0
xΠ∗(dsdx)− t

)
+
∫ t

0

∫ ψ↑(t)

√
2/ν

xΠ∗(dsdx).

The mean value of the second part is estimated as

2ν√
ν

∫ 1−K/
√
ν

0

β

ν(1− t)dt = O

(
log ν√
ν

)
,

and the first is a compensated compound Poisson process. Thus ν1/4S ⇒W1 as ν →∞.
Processes akin to (X↑(t) − t, t ∈ [0, 1]) are common in applied probability [3, 5]. In

particular, by the interpretation as the content of a single-server M/G/1 queue, the positive
increments present jobs that arrive by Poisson process and are measured in terms of the
demand on the service time. The downward drift occurs due to the unit processing rate
when the server is busy. Borrowing a useful identity,

X↑(t)− t = S(t)− inf
u∈[0,t]

S(u),

we conclude on the weak convergence (ν1/4(X↑(t) − t), t ∈ [0, 1]) ⇒ |W1| to a reflected
Brownian motion.

4.2 Minorant

ψ↓(t, x) =


(√

2
ν −

β
ν(1−t)

)
∧ (t− x), for 0 ≤ t ≤ 1−K/

√
ν,

0, for 1−K/
√
ν < t ≤ 1.

where K is sufficiently large. We can regard this as a suboptimal strategy that never selects
marks x > t. Starting at state 0, the running maximum process stays below the diagonal
throughout, and gets frozen at t = 1−K/

√
ν. A counterpart of Lemma 3, X↓ < X a.s., is

readily checked.
Switching general β > 0 to β = 0 impacts EX↓(t) by O(ν−1/2 log ν) uniformly in t ∈ [0, 1].

Indeed, the jumps are bounded by 2/
√
ν, and the expected number of jumps increases by

O(log ν).
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Assuming β = 0, the process (X↓(t)− t, t ∈ [0, 1−Kν−1/2]) is a compensated compound
Poisson process on the negative halfline, with reflection at 0. We have therefore

(ν1/4(X↓(t)− t), t ∈ [0, 1])⇒ −|W1|.

A rigorous proof can be obtained by inspecting convergence of the generator acting on the
functions f ∈ D with fx(t, 0) = 0.

4.3 The length process near termination
Having established weak convergence of X̃, the fluctuations of L̃ near t = 1 are estimated by
verifying that

lim
h→0

lim sup
ν

P( sup
t∈[1−h,1]

|L̃(t)− L̃(1− h)| > ε) = 0. (34)

This is done with the help of analysis of the martingale M .

5 Main result

By the domination argument, tightness of (X̃ν , L̃ν) follows on the whole [0, 1], and we arrive
at our main result.

I Theorem 4. The normalised running maximum and the length process (3) driven by a
control satisfying (14) and (16) (in particular, under the optimal online selection strategy)
converge weakly in the Skorokhod space D[0, 1],

(X̃ν , L̃ν)⇒ (Y1, Y2), as ν →∞,

where the limit bivariate process is a Gaussian diffusion defined by the equations (28), (29)
with zero initial conditions.

We observed already that Y1 is the Brownian bridge (30) and from (29)

Y2(t) = Y1(t)
2 − W1(t)

2 +W2(t),

so splitting the martingale part in independent components, we get, explicitly,

Y2(t) =
∫ t

0

(1− t)
2(1− s)dW1(s) + 1

4 W1(t) +
(
W2(t)− 3

4 W1(t)
)
, (35)

which is a sum of a Brownian motion, derived Brownian bridge and another independent
Brownian motion.

To find the covariance structure, it is convenient to resort to matrix calculations. We
may write the solution to (28), (29) as

Y (t)T = ea(t)
∫ t

0
e−a(u)dW (u)T ,

where

a(t) := A

∫ t

0

1
1− udu = A log (1− t), A :=

(
1 0
1
2 0

)
,
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which yields by the Itó isometry

E{Y (s)TY (t)} =
∫ t

0
ea(s)−a(u)Σe(a(t)−a(u))T du, 0 ≤ s ≤ t ≤ 1.

Since A is idempotent matrix, the exponents are readily calculated as

ea(t) =
(

1− t 0
− t

2 1

)
, e−a(t) =

(
1

1−t 0
t

2(1−t) 1

)
,

and we arrive at the cross-covariance matrix

E{Y (s)TY (t)} =

 2
√

2 s(1−t)
3

2s(1−t)−(1−s) log (1−s)
3
√

2

(1−t)(2s−log (1−s))
3
√

2
2s(2−t)−(2−s−t) log (1−s))

6
√

2

 ,

where 0 ≤ s ≤ t ≤ 1.
The limit length process Y2 is not Markovian, since its covariance function does not

satisfy the factorisation criterion (see [14], p. 148). The sum of two first terms in (35) is
non-Markovian too.

6 Diffusion approximation in the bin-packing problem

We turn to a version of the bin-packing problem. Suppose that i.i.d., positive marks arrive
by a Poisson process of intensity ν on [0, 1], and that the marks are sampled from a density
satisfying f(y) ∼ Aαyα−1 as y → 0, with α,A > 0. The stochastic optimisation task is to
maximise the expected number of online selections under the constraint that their total does
not exceed given c > 0.

Let Zν(t), Nν(t), t ∈ [0, 1] denote the sum and the number of selected marks at time t under
the optimal selection policy, which has a control function ψ(t, z) = (c− z) δ(ν(1− t)(c− z)α),
where

δ(ν) = γ1

ν1/(α+1) +O(ν−2/(α+1)), ν →∞, γ1 =
(

(α+ 1)
Aα

)1/(α+1)
,

see [9]. It was shown in [9] that the mean number of selections has asymptotics u(ν) ∼
γ2 ν

1/(α+1), ν →∞, with

γ2 =
(
c(α+ 1)
Aα

)1/(α+1)
.

This suggests the normalisations

Z̃ν(t) := ν1/(2(α+1)) (Zν(t)− ct) , Ñν(t) := ν1/(2(α+1))
(

Nν(t)
γ2ν1/(α+1) − t

)
.

The infinitesimal generator of (t, Z̃ν(t), Ñν(t)) is

Lνf(t, z, n) = ft − ν1/(α+1)(cfz + fn)

+ ν1−1/(2(α+1))
∫ ψ̃(t,z)

0

(
f

(
t, z + y, n+ 1

γ2ν1/(2(α+1))

)
− f(t, z, n)

)
f(y)dy,

where

ψ̃(t, z) = ν1/(2(α+1)) ψ(t, zν−1/(2(α+1)) + tc).

AofA 2020
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A fairly long computation yields the asymptotics, as ν →∞,

Lνf(t, z, n) ∼ ft −
z

1− tfz −
αz

c(α+ 1)(1− t)fn + σ3
2

2 fzz + σ4
2

2 fnn + ρ0σ3σ4fzn,

where

σ3 = (α+ 1)(α+2)/(2(α+1))√c√
α+ 2

, σ4 = 1
A1/(2(α+1))(α+ 1)α/(2(α+1)) ,

and

ρ0 = αα/(α+1)√α+ 2
c(α−1)/(2(α+1))Aα/(2(α+1))(α+ 1)2α/(α+1) .

Using this we were able to show the functional convergence

(Z̃ν , Ñν)⇒ (Y3, Y4), as ν →∞,

in D[0, 1−h] for every h ∈ (0, 1), where the limit process (Y3(t), Y3(t)) is a Gaussian diffusion
satisfying the SDE

dY3(t) = −Y3(t)
1− t dt + dW3(t), dY4(t) = − αY3(t)

c(α+ 1)(1− t) dt + dW4(t)

with zero initial conditions. Here, (W3,W4) is a two-dimensional centred Brownian motion

with the covariance matrix Σ0 =
(

σ3
2 ρ0σ3σ4

ρ0σ3σ4 σ4
2

)
.
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