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Targeted codelivery of anti-miR155 and anti-inflammatory drug, baicalein, by using baicalein 

nanorods effectively promotes polarization of macrophages from M1 toward M2 in vitro and in vivo. 

The codelivery system has prolonged blood-circulation time and can accumulate in the plaque after 

intravenous injection. The platform is potent to combat vascular inflammation. 
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Running title: Intracellular codelivery to treat inflammatory disease 

Abstract Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease occurring at the 

arterial subendothelial space. Macrophages play a critical role in the initiation and development of 

AS. Herein, targeted codelivery of anti-miR155 and anti-inflammatory baicalein is exploited to 

polarize macrophages toward M2 phenotype, inhibit inflammation and treat AS. The codelivery 

system consists of a carrier-free strategy (drug-delivering-drug, DDD), fabricated by loading 

anti-miR155 on baicalein nanocrystals, named as baicalein nanorods (BNRs), followed by sialic acid 

coating to target macrophages. The codelivery system, with a diameter of 150 nm, enables efficient 

intracellular delivery of anti-miR155 and polarizes M1 to M2, while markedly lowers the level of 

inflammatory factors in vitro and in vivo. In particular, intracellular fate assay reveals that the 

codelivery system allows for sustained drug release over time after internalization. Moreover, due to 

prolonged blood circulation and improved accumulation at the AS plaque, the codelivery system 

significantly alleviates AS in animal model by increasing the artery lumen diameter, reducing blood 

pressure, promoting M2 polarization, inhibiting secretion of inflammatory factors and decreasing 
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blood lipids. Taken together, the codelivery could potentially be used to treat vascular inflammation. 

KEY WORDS Codelivery; Intracellular fate; Nucleic acid; Baicalein; Macrophages; Inflammatory 

disease 

1. Introduction 

Atherosclerosis (AS), a leading cause of death worldwide, is a lipid-driven inflammatory disease1,2. 

AS is characterized by plaque buildup at the arterial subendothelial space (intima) due to the 

accumulation of diseased cells including monocytes, macrophages, endothelial cells, smooth muscle 

cells, neutrophils, lipids, and extracellular matrix components3-5. The macrophages at the plaque and 

macrophage-derived pro-inflammatory cytokines are predominant driven-factors for the development 

of AS6. As such, targeting to macrophages may offer therapeutic opportunities to regress AS. Several 

approaches on macrophage targeting have been reported, such as improving cholesterol efflux, 

inhibition of foam cell formation, improving resolution of inflammation, and polarizing macrophages 

toward anti-inflammatory phenotypes (M2)7. Herein, we hypothesized that a strategy for promoting 

polarization, plus suppression of inflammation, has potential to treat AS with improved efficacy. 

Macrophages, such as M1 and M2 macrophages, have a highly versatile phenotype and adapt 

their phenotypic alteration in response to their microenvironment of diseased site8. M1 macrophages 

are pro-inflammatory, inducing inflammation activities by secreting pro-inflammatory cytokines, 

reactive oxygen species (ROS), whereas M2 is an anti-inflammatory phenotype characterized by 

high expression of scavenging molecules, mannose and galactose receptors, ornithine, and 

polyamines7. Furthermore, M2 macrophages promote tissue remodeling and healing, increase the 

response to fungal infection via reduction of autophagy, and facilitate modulation of other immune 

cells in a adaptable pattern9. Thus, promoting switch from M1 to M2 offers the possibility to 

alleviate the inflammation response and treat AS. Increasing evidence suggests that overexpression 

of microRNA-155 (miR155) could re-program M2 to M1 macrophages through multiple pathways, 

such as CCAAT-enhancer binding protein (C/EBP-β) signaling cascade10, c-Jun N-terminal kinase 

(JNK) pathway11, tumor necrosis factor α (TNF-α) and nuclear factor-kappa B (NF-κB) signaling11, 

and B-cell lymphoma 6 (BCL-6) protein12. Inhibition of miR-155 in M1 using antisense 

oligonucleotides, e.g., anti-miR155, was shown to facilitate M2 switch from M110. Nonetheless, 

phenotypic polarization is a dynamic process, indicating that macrophages frequently exist in a 

continuum among multiple reversible phenotypes that reflects the activity of different transcriptional 

networks and crosstalk between these networks. Thus, a strategy of M2 polarization plus inhibition 

of inflammation may further benefit AS treatment 13. Baicalein, a major flavonoid of Scutellaria 

baicalensis, is an effective anti-inflammatory drug mainly acting via inhibition of NF-ĸB14,15. 

Consequently, codelivery of anti-miR155 and baicalein is a potential method for combined therapy 

and treatment of AS, assuming that intracellular delivery of anti-miR155 enables M2 polarization via 

downregulation of BCL-6 and baicalein predominantly inhibits inflammation rapidly by suppressing 
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secretion of NF-ĸB after dosing (Scheme 1). 

However, baicalein is a poorly water-soluble drug, with a molecular weight of 270 g/mol and 

water-solubility of less than 0.076 mg/mL16. On the other hand, anti-miR155 is a macromolecular 

drug characterized by high molecular weight, instability and poor membrane penetration17, making 

their codelivery challenging. Furthermore, degradation by the endo-lysosomes is a critical obstacle 

for intracellular delivery of nucleic acid. Conventional drug delivery systems (DDS), such as 

liposomes and polymeric nanoparticles allow for improved intracellular delivery of biological 

drugs18,19; however, their efficacy of cytosolic delivery is low at less than 2%20. In our previous 

reports21-24, a carrier-free platform of codelivery, drug-delivering-drug (DDD), was developed by 

using rod-like nanocrystals of insoluble drug with a diameter of less than 200 nm as carriers to 

deliver biological drugs, such as miRNAs and active proteins, to cells via bypassing the 

endo-lysosomes. In this study, anti-inflammatory baicalein nanocrystals, here referred as baicalein 

nanorods (BNRs), were utilized as carriers for intracellular delivery of anti-miR155 for combined 

treatment of AS. Anti-miR155 were complexed with BNRs, followed by sialic acid (SA) coating for 

targeting SA receptors on macrophages25,26 (Scheme 1). The proposed mechanism of action is 

displayed in Scheme 1. 

 

2. Materials and methods 

2.1. Cell cultures and animals 

RAW264.7 cells (Nanjing KeyGEN Biotech Co., Ltd., Nanjing, China) were maintained in 

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin at 37 °C, 5% CO2 and 100% humidity and were split when confluent. 

Prior to use, the cells were polarized into M1 phenotype by incubation with lipopolysaccharides (100 

ng/mL) and interferon-γ (20 ng/mL) for 24 h.  

The animals used in all experiments received care in compliance with the Principles of 

Laboratory Animal Care and the Guide for the Care and Use of Laboratory Animals. Animal 

experiments followed a protocol approved by the China Pharmaceutical University Institutional 

Animal Care and Use Committee. 

2.2. Preparation and characterization of codelivery system 

The baicalein nanorods (BNRs) were prepared using CLG as a stabilizer. Cationic beta-lactoglobulin 
(CLG) was synthesized via conjugation of ethylenediamine to beta-lactoglobulin (β-LG, Sigma‒
Aldrich, St. Louis, MO, USA), as described in our previous reports21-23. Briefly, 1 mL of 
dimethylsulfoxide (DMSO) containing baicalein (30 mg, Chengdu Pufei De Biotech Co., Ltd., 
Chengdu, China) was mixed with CLG solution (10 mL, 1 mg/mL), followed by treatment in an 
ultrasonic probe (20–25 kHz, Scientz Biotechnology Co., Ltd., Ningbo, China) at 300 W for 15 min 
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and evaporation under reduced pressure. BNRplex and SA-BNRplex were prepared as follows: 
BNRs were mixed with an equal volume solution of anti-miR155, incubated at room temperature for 
30 min, blended with SA (Sigma−Aldrich) solution at various concentrations from 0.5 to 4 mg/mL. 
The temperature in the entire procedure was controlled below 4 °C in an ice−water bath. Dye-labeled 
nanoparticles were prepared by dissolving the dye with baicalein in DMSO together as the organic 
phase prior to mixing with CLG protein.  

Agarose gel electrophoresis was used to assess the loading of nucleic acid on the nanoparticles. 

In brief, the gels were prepared with 2% agarose in Tris buffer containing ethylenediaminetetraacetic 

acid at pH 8.0. The sampe was blended with gelRed (Generay Biotechnology, Shanghai, China) 

following the manufacturer’s protocol, separated by gel electrophoresis at 110 V for 30 min, and 

ultimately imaged in a Bio-Rad high-sensitivity chemiluminescence imaging system (Chemidoc 

XRS+, Hercules, USA). 

To assess the stability, the nanoparticles were incubated with RNase (Solarbio Science & 

Technology Co., Ltd., Beijing, China) or serum-containing medium at 37 °C. At predetermined time 

points, the samples were incubated with 1% SDS for 5 min at 60 °C, followed by addition of 2% 

SDS and determination by agarose gel electrophoresis.  

For baicalein release in vitro, the nanoparticles were placed into the 3.5 kDa dialysis bag, 

incubated with release media with different pH values, and put in an incubator (SHA-C, Jintan, 

China) with a shaking speed of 100 rpm at 37 °C. Samples were withdrawn at specific time intervals, 

filtrated through a 0.2-µm filter and analysed by high performance liquid chromatography (HPLC, 

SHIMAZU LC-10AT, Kyoto, Japan) under isocratic conditions. The mobile phase was 

methanol/0.05% phosphoric acid (70/30, v/v) at flow rate of 1 mL/min. Stationay phase was ODS 

C18 column (250 mm × 4.6 mm, 5 μm，Diamonsil, Beijing, China) at 30 °C and detection was made 

at wavelenght of 276 nm.  

2.3. Flow cytometry and confocal microscopy imaging 

The cellular study was investigated by LSM700 confocal laser scanning microscopy (CLSM, Carl 
Zeiss, Jena, Germany) and flow cytometry. The cell density used was 2×105 cells/well. For uptake 
study, cells were first incubated with the nanoparticles at a Cy5 concentration of 100 nmol/L at 37 °C 
for 4 h (Solarbio Science & Technology Co., Ltd., Beijing, China). For investigation of endocytic 
mechanism, cells were cultured with uptake inhibitors, NaN3 (10 mmol/L) and M-CD (2.5 mmol/L) 
(Aladdin Co., Ltd., Shanghai, China), for 30 min in advance. To evaluate co-localization, cells were 
incubated with dye-labeled nanoparticles in DMEM for 4 h at 37 °C, stained with caveolae markers, 
Alexa Fluor® 488-Cave-1/F-actin/CTB for 3 h, or lyso-tracker red or green for 1 h (Abcam Trading 
Co., Ltd., Shanghai, China), rinsed with PBS and observed by CLSM.  

To determine the phenotypic shift in vitro, RAW 264.7 cells (1×105 cells/well) were incubated 

with different nanoparticles for 12 h, rinsed with PBS, fixed in the 4% paraformaldehyde for 10 min, 

permeabilized in 0.1% Triton X-100 for 10 min, blocked in a blocking buffer for 30 min, incubated 
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with primary antibodies at 4 °C for 2 h and a secondary antibody at 4 °C overnight, stained with 

DAPI for 15 min, and finally observed by CLSM. 

To investigate the intracellular fate, cells (1×105 cells/well) were cultured with 

Cy5/tetraphenylethylene (TPE, Sigma‒Aldrich) dual-labeled nanoparticles at 37 °C at a TPE 

concentration of 50 μmol/L and Cy5 of 100 nmol/L. At specific time points, the cells were observed 

by CLSM and assayed by flow cytometry (BD FACSCalibur, San Jose, CA, USA). 

2.4. Determination of inflammatory factors 

RAW 264.7 cells cultured in 6-well plate at a density of 2×105 cells/well were incubated with 

different nanoparticles for 12 h, followed by washing with PBS. The anti-inflammation effect was 

examined by measuring the concentration of TNF-α and IL-12 in the cell supernatant using ELISA 

kits (Enzyme-linked Biotechnology Co., Ltd., Shanghai, China) according to the manufacturer’s 

instructions. 

2.5. Western blot (WB) 

RAW 264.7 cells cultured in 6-well plates at a density of 2×105 cells/well were incubated with different 

nanoparticles for 24 h, followed by incubation with RIPA buffers for 15 min in ice, centrifuging at 

9000×g for 10 min at 4 oC. Protein determination was performed using a BCA protein assay kit 

(Beyotime, Shanghai, China) and finally isolation on 10% SDS-PAGE. The separated proteins were 

loaded into a nitrocellulose membrane followed by incubation in blocking solution containing 5% 

skim milk powder at 37 °C for 2 h, rinsed with phosphate buffer solution containing Tween 20 two to 

three times, incubated with primary antibodies for 2 h and then secondary antibodies at 4 °C 

overnight, stained with a chemiluminescence kit (KeyGEN Biotech, Nanjing, China), and finally 

visualized with an Odyssey Infrared Imaging System (LICOR Biotechnology, Lincoln, USA). 

β-Actin was used as an internal control to normalize protein expression. Integrated optical density 

was calculated using software Image J (NIH, Bethesda, USA). 

2.6. In vitro cytotoxicity 

RAW 264.7 cells seeded in 96-well plates at a density of 5×103 cells/well were first cultured for 48 h 

and then incubated with drug formulations or CLG for 48 h at 37 °C. Cell viability was assessed by 

the standard assay of 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide (MTT, Sigma‒

Aldrich).  

2.7. Blood circulation and plaque targeting in vivo 

AS animal model was prepared as described in previous reports27,28. In brief, rats were administrated 

with vitamin D3 (Shanghai General Pharmaceutical Co., Ltd., Shanghai, China) via intraperitoneal 

injection for three times/three days at 700,000 IU/kg based on the body weight, followed by feeding 

with high-fat diets for 4 months (2% cholesterol, 0.5% sodium cholate, 3% lard, 0.2% 

propylthiouracil, and 94.3% base feed). 
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The rats were randomly divided into four groups (5 rats per group) and were intravenously 

administrated with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide (DiR, Biotium, 

Inc. Hayward, CA, USA), DiR-labeled nanoparticles (BNRs, BNRplex and SA-BNRplex) at a DiR 

dose of 0.5 mg/kg, according to the body weight. At specific time intervals, 0.5 mL of blood was 

sampled from the orbital vein and immediately centrifuged for 10 min at 5000×g to obtain the 

plasma for determination of fluorescence intensity with a multi-function microplate reader 

(POLARstar Omega, BMG LABTECH, Ortenberg, Germany). The pharmacokinetic parameters 

were calculated by using the Microsoft Excel 2007 program by a statistical moment principle. 

To study the accumulation of nanoparticles in the plaques, the arteries were exceised from the 

AS rat model at 2 h post administration of fluorescein isothiocyanate isomer I (FITC)-labeled 

nanoparticles, frozen, sectioned with a microtome (Leica CM1860, Wetzlar, Germany), stained with 

DAPI and finally observed with CLSM. 

2.8. Therapeutic efficacy 

The animals (AS rat model) were randomly divided into six groups (n=5) and intravenously injected 
with various formulations (0.5 mL) every 3 days for 5 times at a baicalein dose of 5 mg/kg, 
atorvastatin dose of 1 mg/kg and anti-miR155 dose of 0.2 mg/kg, according to the animal’s body 
weight. After the treatment, blood pressure was measured with an IITC blood pressure system (IITC 
Life Science Inc., Woodland Hills, CA, USA), carotid arteries were collected and analyzed by 
Hematoxylin & Eosin Staining (H&E) staining and blood lipids were quantified by ELISA kit. The 
anti-inflammation effect was examined by measuring the levels of TNF-α and IL-12 in the serum 
using ELISA kits (Enzyme-linked Biotechnology Co., Ltd., Shanghai, China) according to the 
manufacturer’s instructions. The level of BCL-6 was assessed via WB analysis.  

To determine the phenotypic shift, collected samples were cut into 6–8 μm sections and then 

incubated with primary antibodies at 4 °C for 2 h and a secondary antibody at 4 °C overnight, stained 

with DAPI for 15 min, and finally observed by CLSM.  

2.9. Statistical analysis 

One-way analysis of variance was performed to assess the statistical significance of the differences 
between samples. The results are expressed as the mean±standard deviation (SD). P<0.05 indicated 
significant differences. 

3. Results 

3.1. Preparation and characterization of codelivery system 

The preparation of SA-BNRplex involved three steps, including the preparation of anti-inflammatory 
baicalein nanocrystals (named as baicalein nanorods, BNRs) and complexation of the nanorods with 
-anti-miR155 complex (BNRplex) and furter coating with sialic acid (SA) to obtain (SA-BNRplex, 
Scheme 1). First, BNRs were prepared by using CLG as a stabilizer by surface coating to inhibit 
their aggregation. Also, the coating with CLG enables BNRs to have a positive charge for 
complexation with negatively charged nucleic acid. To confirm the stabilization effect of CLG on 
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BNRs, fluorescence spectroscopy was utilized based on the selective excitation of tryptophan (Trp) 
residues in CLG’ structure at 340 nm. As displayed in Supporting Information Fig. S1, the BNRs 
allow for fluorescence quenching at 340 nm, independently of the drug loading, and implying the 
interaction between drug particles and the stabilizer. Although an increase in the amount of drug 
loaded, from 10 to 30 mg in 10 mL of 1 mg/mL CLG solution, contributes the increase in the particle 
diameter of BNRs, all sizes are smaller than 150 nm, along with PDI less than 0.2, thereby 
demonstrating good size uniformity (Fig. 1A). Due to high drug loading, the formulation with 75% 
loading of baicalein (30 mg drug in formulation, w/w) was selected for subsquent studies. Secondly, 
BNRplex was obtained by loading anti-miR155 on BNRs via electrostatic interaction. Native SDS 
page shows that, as the mass ratio of CLG/anti-miR155 is geater than 16, the bands disappear (Fig. 
1E), indicating the nucleic acid was well condensed. Further increase in the mass ratio had little 
influence on the particle size of BNRplex (Fig. 1B). The BNRplex with mass ratio of 32 was chosen 
for SA coating to target SA receptors on macrophages and cover the positive charge due to higher 
loading of the nucleic acid. The coating was screened by incubation of BNRplex in various 
concentrations of SA. SA coatings in SA solutions with concentration of 0.5–4 mg/mL increased the 
diameter of the complex from 190 to 220 nm and also altered the surface charge from positive (+23 
mv) to negative (–5 mv) with potential to reduce toxicity in vivo (Fig. 1C and D). Typically, 
positively charged nanoparticles are known to induce toxicity in vivo, whereas nanoparticles with 
negative charge of approximately –7 mv, similar to the charge of cell sruface, have little toxicity21,23. 
Herein, SA-BNRplex with a CLG/RNA/SA mass ratio of 32:1:4 and zeta potential of –5 mv was 
selected for further use. The optimized SA-BNRplex formulation appears as a light yellow and 
transparent liquid (Fig. 1K) and the particles in the formulation have a rod-shape with a mean 
diameter of approximately 150 nm (Fig. 1F). Stability test displayed that the band of anti-miR155 in 
the nanoparticles was still observed at 12 h after incubation with medium-containing RNase or 10% 
FBS at 37 °C, while the one corresponding to naked anti-miR155 completely disappeared (Fig. 1G 
and H). Furthermore, the size of the nanoparticles was not altered after a 12-h incubation in 10% 
FBS at 37 °C (Fig. 1I). The results indicated that SA-BNRplex is stable in body fluids. In vitro 
release test shows that the small molecular drug, baicalein, was released over time in a 24-h period at 
pH values of 7.4 and 6.8, whereas it was released faster at pH 5 since the drug is weakly basic and 
possesses higher solubility in acid condition (Fig. 1J). 

3.2. Efficient macrophage targeting with sustained release over time 

To investigate the targeting ability of SA-BNRplex to SA receptors on macrophages, the uptake of 
the various nanoparticles was examined by CLSM and flow cytometry. Cy5-RNA exhibits little red 
fluorescence in the cells, whereas Cy5-labeled BNRplex or SA-BNRplex displays intense 
fluorescence around the nucleus (Fig. 2A). Moreover, the fluorescence from the cells treated with 
SA-BNRplex is stronger than that treated with BNRplex. Quantification assay by flow cytometry 
confirms the CLSM study (Fig. 2B). Therefore, SA coating on BNRplex is able to improve their 
ability for macrophage-targeting.  

We previously reported that rod-shaped drug particles, also named as drug nanorods, had the 

ability to enter cells via caveolar pathway, wihtout being detained by the endo-lysosomes, and 

facilitate intracellular delivery of biological drugs such as miRNA and active proteins21-24. The 

present SA-BNRplex has rod-like in morphology. Accordingly, it was hypothesized that the 
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nanoparticles could be internalized through a similar pathway. The uptake study was performed in 

cells pretreated with M-CD, a well known inhibitor of caveolar endocytosis24. Pretreatment with 

M-CD induced 50% reduction in the uptake of the nanoparticles while the energy inhibitors, 

NaN3+DG, did not affect the uptake, thereby implying the caveolae-mediated internalization with 

energy-indepedence (Supporting Information Fig. S2A). To confirm the caveolar endocytosis, 

cellular trafficking of the nanoparticles was studied after Cave-1, a specific protein involved in the 

formation of the caveolae, was stained with Alexa Fluor 488 (green). Yellow spots present in the 

merged image demonstrated the colocalization of caveolae with Cy5-labeled SA-BNRplex (Fig. 

S2B). Besides Cave-1, caveolar trafficking is also closely linked to the other two proteins, the actin 

cytoskeleton and cholera toxin subunit B (CTB)21. As expected, the Cy5-labeled nanoparticles 

colocalized well with the two proteins (Fig. S2B). In general, caveolae-mediated uptake enables the 

materials to enter cells via bypassing the endo-lysosomes21. As depicted in Supporting Information 

Fig. S3, little colocalization of these rod-shaped nanoparticles with the lysosomes was seen at 4 h 

after incubation. Overall, SA-BNRplex enables cellular entry without lysosomal sequestration and is 

promising to improve intracellular delivery of anti-miR155. 

Not being detained by the lysosomes, SA-BNRplex would be present in the cytoplasma as intact 

particles after uptake. However, to bind their targets, the drugs must dissociate from the 

nanoparticles inside the cells. The intracellular fate of internalized SA-BNRplex was then explored 

by incorporating an AIE dye, TPE, that emits fluorescence in the aggregate state with the 

fluorescence quenching when baicalein crystals in the SA-BNRplex disintegrate29. The fluorescence 

quenching is directly correlated to the disintegration of the TPE-labeled nanoparticles. As displayed 

in Supporting Information Fig. S4A, the nanoparticles have been uptaken by cells at 2 h after 

incubation, whereas the fluorescence declines after 2-h incubation, implying their disintegration. At 4 

h post incubation, the fluorescence intensity decreases remarkablely, indicating considerable 

decomposition of the nanoparticles, and almost disappears at 7 h. CLSM examination confirms the 

quantification (Fig. S4B) and these results reveal that the internalized nanoparticles take 

approximately 7 h to release their loaded cargos. 

3.3. Efficient transfection and anti-AS effect in vitro  

The cytotoxicity of the drug-loaded formulations was first assessed against RAW 264.7 cells after 
48-h incubation. CLG is a material used to stabilize BNRs in SA-BNRplex. Even at high 
concentration (500 μg/mL) CLG displayed little cytotoxicity (Supporting Information Fig. S5A). 
Incubation with various formulations loaded with baicalein and anti-miR155 at baicalein 
concentrations ranging from 0.25 to 500 μg/mL did not affect the cell viability as well (Fig. S5B), 
demonstrating their biocompatibility in vitro. 

Having demonstrated SA-BNRplex was not entrapped within the endo-lysosomes, it was 

postulated their ability to efficiently deliver the loaded anti-miR155 into the cytoplasma. First, the 

transfection efficacy by anti-miR155 was studied by determining the expression of targeted protein, 

BCL-630,31. SA-BNRplex increases the intracellular level of BCL-6 by approximately 10-fold in 
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comparison with free naked RNA (Fig. 3A and B), demonstrating effective intracellular delivery of 

the nucleic acid and efficient transfection. Next, the anti-inflammatory activity in RAW264.7 cells 

was investigated after administration of the various formulations. The phenotypic switch from M1 to 

M2 was assessed by detecting two markers, CD206 and INOS, that are always highly expressed on 

M2 and M1, respectively32. Administration of drug-loaded formulations in M1 upregulates CD206 

(Fig. 4A and B) and downregulates INOS, determined by CLSM observation and flow cytometry, 

whereas pronounced efficacy is observed in the cells treated with SA-BNRplex (Fig. 4C and D). 

Compared to the classical anti-AS drug in clinical use, atorvastatin, the anti-inflammatory drug 

nanocrystals, BNRs, allow significant enhancement in the regulation of the two markers. Notably, 

BNRplex and SA-BNRplex, both loading anti-miR155, are able to increase the expression of CD206 

or reduce the expression of INOS over BNRs, revealing that intracellular delivery of anti-miR155 

allows improved regulation of the two markers. These results indicate that codelivery of 

anti-inflammatory drug and anti-miRNA with SA-BNRplex enables efficient switch from M1 to M2. 

Due to the switch to anti-inflammatory phenotype, the secretion of inflammatory cytokines, ROS, 

NF-ĸB and TNF-�, were reduced by 1-, 3- and 10-fold, respectively, compared to the positive control 

after administration of SA-BNRplex (Fig. 3C–E). Overall, SA-BNRplex possesses potent anti-AS 

activities in vitro. 

3.4. Prolonged blood circulation and plaque targeting  

Due to the plaque localization at the vessel wall, blood circulation of DDS in the blood is essential 
for their accumulation in the plaque. Accordingly, pharmacokinetic studies of the nanoparticles were 
performed by intravenous injection of DiR-labeled nanoparticles (BNRs, BNRplex and SA-BNRplex) 
in the animal model. The plasma concentration of the nanoparticles was measured by detecting the 
fluorescence of DiR. The nanoparticles exhibit extremely high fluorescence for 24 h over free DiR 
(Fig. 5A). Even at 24 h after administration, significant fluorescence signal was still observed. 
Pharmacokinetic parameters were further calculated based on the plasma concentration (Fig. 5B). 
The t1/2 of blood circulation from these nanoparticles is extended by approximately 45-fold, while the 
clearance, a pharmacokinetic measurement of the volume of plasma from which a substance is 
completely removed per unit time, was reduced by 4-fold. These data demonstrate that these 
nanoparticles are able to circulate in the blood over extended times. 

Next, the accumulation of these nanoparticles in the plaque was investigated by observing the 

colocalization of FITC-labeled nanoparticles within the aortas. Intense pink fluorescence was 

observed in the merged picture in the group treated with SA-BNRplex, indicating efficient 

accumulation of the nanoparticles in the plaque (Fig. 5C). 

3.5. Efficient anti-AS in vivo 

The anti-AS efficacy of the different formulations was investigated in AS rat model, by analyzing 
artery lumen diameter, blood pressure, phenotypic switch, inflammatory factors and level of blood 
lipids post their injection. The drug-loaded formulations promote increase in the artery lumen 
diameter, but this effect was more evident in the animals treated with SA-BNRplex (Fig. 6A and B). 
Compared to the conventional anti-AS drug, atorvastatin, the anti-inflammatory nanoparticles, BNRs, 
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are able to promote increased diameter of the artery lumen. Notably, codelivery of baicalein and 
anti-miR155 with SA-BNRplex causes further increase in the diameter over BNRs. As a 
consequence of the increased artery lumen diameter, the blood pressure was significantly reduced 
compared with the saline group (Fig. 6C). In particular, administration of SA-BNRplex induced over 
40% of decrease in the blood pressure. These outcomes derive from the efficient in vivo transfection 
of anti-miR155 (Supporting Information Fig. S6) and the resultant phenotypic switch from 
pro-inflammatory M1 to anti-inflammatory M2 in vivo. As shown in Fig. S6, SA-BNRplex elevates 
the expression of the targeted protein, BCL-6, by 9-folds over BNRs.  

To determine the phenotypic conversion, the tissues in the lesional area were collected at the 

end of treatment and were sectioned for staining the markers CD206 and INOS, that are usually 

overexpressed on M2 and M1, respectively. Codelivery formulations, BNRplex and SA-BNRplex, 

enable significant increase in the expression of CD206 (Fig. 7A and B) and reduction in the 

expression of INOS (Fig. 7C and D). Again, BNRs could regulate the two markers with higher 

efficacy compared to atorvastatin, being in accordance with the in vitro results. These findings 

indicate that codelivery of baicalein and anti-miR155 with SA-BNRplex effectively promots the 

M1−M2 switch in vivo.  

Inflammation is known to influence the onset and development of AS7,33. As expected, the 

inflammatory factors in the aortas, including NF-ĸβ, TNF-� and ROS, were downregulated 

remarkably after dosing BNRs, BNRplex or SA-BNRplex (Fig. 6D–F). Especially, dosing 

SA-BNRplex reduced these factors by approximately 4-folds for NF-ĸβ, 9-folds for TNF-�, and 

3.5-folds for ROS, demonstrating considerable inhibition of the inflammatory response. 

Lipid accumulation is a well-known cause and a strong driver of AS and always results in 

formation of foam cells in the plaque33. Increased plasma triglyceride (TG), total cholesterol (TC) 

and low density lipoprotein (LDL) levels are closely correlated to the development of AS34. Herein, 

serum lipid profile was examined by measuring the three index at the end of the treatment (Fig. 6G 

and I). Atorvastatin is a anti-AS drug that lowers the blood lipids. SA-BNRplex enables lower levels 

of LDL and TC and similar level of TG compared to atorvastatin. Overall, codelivery of baicalein 

and anti-miR155 with SA-BNRplex lowers the blood lipids significantly. 

 

4. Discussion 

Baicalein nanorods (BNRs) allow for potent inflammation inhibition in vitro and in vivo, as shown 

by suppression of ROS, NF-ĸB and TNF-�. Baicalein is known to inhibit inflammation responses by 

blocking mutilple pathways such as estrogen receptor and NF-κβ-dependent pathways35 and 

impairment of production of reactive oxygen intermediate through antagonizing ligand-initiated Ca2+ 

influx36. However, no reports have shown its ability to faciliate the phenotypic switch of 

macrophages. Herein, dosing BNRs upregulates CD206 and downregulates INOS on RAW264.7 
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cells compared with administration of saline, implying polarization of M1 toward M2 (Figs. 4 and 6). 

Atorvastatin is a drug frequently used in the clinic to treat AS. Recently, it was demonstrated that the 

drug confers anti-inflammation activity37,38. By contrast, BNRs exhibit improved ability of 

polarization compared to atorvastatin. Macrophages continuously adapt their polarization in response 

to the surrounding conditions, but this ability is compromised when conventional dosage forms with 

fast drug release profiles are used7. Intracellular fate assay reveals that the drug nanorods are capable 

of continuously release the drug in a 7-h period. Accordingly, the sustained release from BNRs over 

time contributes to the enhanced polarization. Overall, nanocrystal approach is a promising 

formulation method to improve the potency of an anti-inflammatory drug due to the sustained release 

over time after internalization. 

Intracellular delivery of anti-miR155 with baicalein nanorods (BNRs) effectively promotes 

polarization of M1 toward M2 in vitro and in vivo. miR-155 is a common target to mediate 

inflammation and it plays a critical role in atherogenic programming of macrophages to sustain and 

enhance vascular inflammation by derepressing BCL-6-mediated inhibition of recombinant mouse 

monocyte chemotactic protein-1 (CCL2) transcription11,12. Therefore, intracellular delivery of 

miR155 antagonist, anti-miR155, holds the potential to inhibit inflammation in macrophages and 

treat AS. Nonetheless, cytosolic delivery of biologics with conventional drug carriers is challenging 

due to degradation in the endo-lysosomes39. Less than 0.25-fold increase in transfection efficacy was 

reported when employing acid-labile polyethylenimine (acid-labile PEI) as a carrier to deliver 

anti-miR155 to Raw 264.7 cells via endo-lysosomal route40. By contrast, BNRplex allows increase of 

the trasfection efficacy in vitro and in vivo by >10- and >5-fold, respectively, compared with naked 

RNA. By targeting the SA receptors on Raw 264.7 cells, SA-BNRolex increased the transfection 

efficacy by approximately 17- and 8-fold over naked RNA, respectively. The efficient transfection 

was possible thanks to the internalization of SA-BNRplex via bypassing the endo-lysosomes, as 

demonstrated in Fig. S2. Surprisingly, intracellular delivery of anti-miR155 with SA-BNRplex 

markedly upregulated the marker of anti-inflammatory macrophages (M2) and downregulated the 

marker of pro-inflammatory phenotype (M1), unvealing promotion of M2 polarization of 

macrophages. It is well known that M1 polarization of macrophages is involved in the intiation and 

development of various inflammatory diseases, such as cardiovascualr diseases (AS, pulmonary 

arterial hypertension, myocarditis, and myocardial infarction), rheumatoid arthritis, and 

inflammatory bowel disease7. It is then likely that SA-BNRplex technology could be generally 

applied for the treatment of inflammatory diseases. 

Targeting the dissamilated plaque at the vascular wall is always challenging for conventional 

DDS such as solid lipid nanoparticles and polymer micelles due to their short life in circulation7,41,42. 

SA-BNRplex with a rod-like morphology is capable of accumulating in the plaque after intraveneous 

injection. The higher surface of rod-shaped nanoparticles compared to spherical particles enables 

enhanced capability to marginate and adhere to the vascular wall43. Furthermore, prolonged blood 

circulation and active targeting to macrophages improve accumulation of the nanoparticles in the 
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plaques (Figs. 2A and 5A). In fact, rod-shaped nanoparticles have shown enhanced tissue-penetration 

property contributing for the plaque accumulation24.  

Codelivery of baicalein and anti-miR155 by DDD strategy is efficient to treat AS in animal 

model. Macrophage-targeting to promote M2 polarization is a promising strategy to delay the 

development of AS, owing to inhibition of inflammation response and prevention of plaque rupture44. 

Inhibiting the secretion of pro-inflammatory factors, such as ROS, TNF-α, and IL-1β, from 

macrophages has been demonstrated to regress AS45,46. SA-BNRplex polarized macrophages toward 

M2 phenotype and effectively inhibited secretion of pro-inflammatory factors, NF-ĸB, TNF-� and 

ROS, in vitro and in vivo. The robust anti-AS activities is also ascribed to the extremely high 

drug-loading capacity of SA-BNRplex. Commonly used nanoparticles have in general a payload 

capacity of less than 10%47. Here, the present nanoparticles possess drug-loading over 80% in total, 

which corresponds to a 8-fold increase. The polarization of macrophages in particular requires the 

design of durable therapeutic interventions as they can easly repolarized by the surrounding 

microenvironment7,48. For frequently used nanoparticles, like liposomes and micelles49,50, the 

entrapment in the lysosomes during the internalization process decomposes the nanoparticles rapidly 

and enables short-time drug exposure39. The nanoparticles developed and investigated in this study 

allow sustained release over up to 7 h after cytosolic delivery via bypassing the endo-lysomses and 

provide a more robust effect to regulate the polarization of macrophages. So far, few reports have 

described nanoparticles with the ability for controlled drug release post-internalization51. 

Additionally, administration of SA-BNRplex promotes improved reduction in the blood lipids over 

atorvastatin, a classical anti-AS drug. Lipid accumulation in the plaque directs macrophages toward 

M1 pro-inflammatory phenotype and facilitates formation of foam cells52. Accordingly, the reduced 

blood lipids may be ascribed to the promotion of the M2 polarization induced by the nanoparticles. 

Taken together, the potency of SA-BNRplex to treat AS results from the ability of plaque targeting, 

promoted M2 polarization, high drug-loading capacity, efficient intracellular delivery of anti-miR155 

and sustained release after internalization. This delivery platform is promising and can be easily 

translated to the clinic due to its simple preparation process and scalability. 

 

5. Conclusions 

By using a DDD strategy, anti-inflammatory baicalein nanocrystals were utilized as carriers for 

intracellular delivery of nucleic acids, a combined platform to codeliver an anti-inflammatory drug 

and anti-miR155 to treat inflammatory disease via targeting to macrophages. The platform promotes 

M2 polarization and inhibit inflammatory activities in vitro and in vivo, owing to the extremely high 

drug-loading capacity, sustained drug release and the resulting durable response after internalization. 

In particular, due to prolonged blood circulation and improved accumulation at the inflammation site 

on the vascular wall, the codelivery platform allows for efficent treatment of AS by increasing the 



 13

diameter of artery lumen, lowering blood pressure, facilitating phenotypic switch, suppressing 

release of inflammatory factors and reducing blood lipids. Overall, the macrophage-targeted platform 

is potent to polarize macrophages and alleviate inflammation and is able to be employed as a 

common approach to combat vascular inflammation. 
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Scheme 1 Design and proposed mechanism for AS treatment through codelivery of 

anti-inflammatory drug baicalein and anti-miR155 using the drug-delivering-drug (DDD) platform. 

(1) Preparation of BNRplex and SA-BNRplex. After i.v. administration, SA-BNRplex can (2) 

accumulate in the plaque, (3) target macrophages via binding with the SA receptors, and (4) enter the 

cells via the nonlysosomal route (caveolar endocytosis), (5) release the baicalein and anti-miR155. 

Finally, (6) the released baicalein inhibits the secretion of inflammatory factors by suppressing the 

expression of NF-κB while the dissociated anti-miR155 promotes the phenotypic switch from 

pro-inflammatory M1 to anti-inflammatory M2 by upregulating the BCL-6, ultimately achieving 

combined treatment of AS. 
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Figure 1 Characterization of SA-BNRplex. (A) Effect of baicalein-loading on the particle size of 

BNRs. (B) Effect of mass ratio of CLG/anti-miR155 on the particle size of BNRplex; effect of SA 

coating on the (C) particle size and (D) surface zeta potential of SA-BNRplex. (E) Gel 

electrophoresis assay of BNRplex. (F) TEM image (scale bar=100 nm) of optimized formulation. 

Stability against (G) RNase or (H) serum evaluated by agarose gel electrophoresis. Anti-miR155 or 

SA-BNRplex was incubated with 10% serum solution or 10 µg/mL RNase at 37 °C for different 

durations. (I) Particle-size change of SA-BNRplex in 10% serum solution. (J) In vitro release of 

baicalein from SA-BNRplex in buffer solution at pH of 5.0, 6.8, and 7.4 at 37 °C for 24 h (mean±SD, 

n=3). (K) Digital photo of optimized formulation. 
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Figure 2 Macrophage targeting. Cellular uptake of Cy5-labeled nanoparticles in 

RAW264.7 cells examined by (A) CLSM and (B) flow cytometry. The cells were 

incubated with the nanoparticles at a Cy5 concentration of 100 nmol/L at 37 °C for 4 

h (mean±SD, n=3, ** P<0.01 and *** P<0.001). Scale bar=50 μm. 
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Figure 3 Transfection (A and B) and anti-inflammatory activity (C–E) in vitro. BCL-6 

expression in RAW 264.7 cells determined by (A) WB assay and (B) quantitative 

analysis (n=3, ** P <0.01). (C) ROS, (D) NF-κB, and (E) TNF-α expression in RAW 

264.7 cells (mean±SD, n=3, *P<0.05, ** P<0.01 and *** P<0.001). The internal control 

for normalizing protein expression was β-actin. Formulations: 1, saline; 2, Naked 

RNA; 3, BNRs; 4, BNRplex; 5, SA-BNRplex. The cells were incubated with 

formulations at concentrations of 60 µg/mL for baicalein, 10 µg/mL for atorvastatin, 

or 100 nmol/L for anti-miR155 for 24 h at 37 °C. 

 

 

 

 



 5 

 

Figure 4 Phenotypic shift study in vitro. Immunofluorescence and quantitative 

analysis of CD206 (A) and (B) and INOS (C) and (D) expression on RAW264.7 cells 

after treatment (mean±SD, n=3, *P<0.05 and *** P<0.001). The nuclei were stained 

with DAPI (blue) and CD206 and INOS were stained with Alexa Fluor 

488-conjugated antibody (green). The scale bar is 10 µm. The cells were incubated 

with the formulations at drug concentrations of 60 μg/mL (baicalein), 10 μg/mL 

(atorvastatin), or 100 nmol/L of anti-miR155 for 12 h at 37 °C.  
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Figure 5 Blood circulation and plaque targeting. (A) Plasma concentration-time 

curves and (B) pharmacokinetic parameters. DiR-labeled nanorods were injected via 

the tail vein at the DiR dose of 0.5 mg/kg, according to the body weight (mean±SD, 

n=5). (C) Colocalization of FITC-labeled nanorods and aortas. The artery vessels 

were collected at 2 h post injection of FITC-labeled nanorods at a FITC dose of 0.25 

mg/kg. The nuclei were stained by DAPI (blue). The scale bar is 100 µm. Cmax, 

maximum plasma concentration; AUC, area under the concentration curve; Tmax, time 

to reach Cmax; t1/2, biological half‐life; CL, clearance. 
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Figure 6 Anti-AS activities in vivo. Artery lumen diameter determination: (A) H&E 

staining and (B) quantitative assay (mean ± SD, n=5, *P<0.05, ** P<0.01 and 
*** P<0.001). The scale bar is 100 μm. Determinations of (C) systemic blood pressure, 

(D)–(F) inflammatory factors in aortas, and (G)–(I) serum lipid profile at the end of 

the treatment (mean±SD, n=5, *P<0.05, ** P<0.01 and *** P<0.001). The formulations 

(0.2 mL), saline, Naked RNA, atorvastatin, BNRs, BNRplex, SA-BNRplex, were 

injected into the animals via the tail vein every 3 days at a baicalein dose of 5 mg/kg, 

anti-miR155 dose of 0.2 mg/kg, or atorvastatin dose of 1 mg/kg, according to the 

body weight. 
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Figure 7 Study of phenotypic shift in vivo. Immunofluorescence and quantitative analysis of 

CD206 (A) and (B) and INOS (C) and (D) expression on sectioned plaque collected after 

treatment (mean±SD, n=3, *P<0.05 and *** P<0.001). The nuclei were stained with DAPI (blue) 

and CD206 and INOS were stained with Alexa Fluor 488-conjugated antibody (green). The scale 

bar is 100 µm. The formulations were injected into the animals via the tail vein every 3 days at a 

baicalein dose of 5 mg/kg, anti-miR155 dose of 0.2 mg/kg, or atorvastatin dose of 1 mg/kg, 

according to the body weight. 


