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Abstract

Preventing failures in Cloud Data Centers (CDCs) due to high temperatures is a key
challenge. Such centers have so many servers that it is very difficult to efficiently
keep their temperature under control. To help address this issue, we propose an arti-
ficial intelligence (AI) based automatic scheduling method that creates a thermal
profile of CDC nodes using an integrated Internet of Things (IoT) and Fog computing
environment called iThermoFog. We use a Gaussian Mixture Model to approximate
the thermal characteristics of the servers which are used to predict and schedule
tasks to minimize the average CDC temperature. Through empirical evaluation on
an iFogSim and ThermoSim based testbed and IoT based smart home application,
we show that iThermoFog outperforms the current state-of-the-art thermal-aware
scheduling method. Specifically, iThermoFog reduces mean square temperatures
by 13.5%, while simultaneously improving energy consumption, execution time,
scheduling time and bandwidth usage.
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1 INTRODUCTION

Prominent Cloud providers such as Facebook, Google,Microsoft andAmazon are utilizing CloudData Centers (CDC) to provide
high quality services to Cloud users1. CDCs with large numbers of servers provide reliable Cloud services and fulfil the demands
of users2. However, the heavy computational utilization of CDCs increases energy consumption and produces significant heat,
which needs efficient cooling to keep temperatures under control3. Currently, temperature management techniques use reactive
mechanisms to generate temperature profiles and control the cooling facilities available within the CDC4. But, as shown in prior
work5, such mechanisms can have large delays in profiling the thermal characteristics of the CDC, which rapidly increase the
energy consumption and operational costs6. To solve this problem, a novel approach is required that is quickly able to adapt to
dynamic task characteristics and host resource utilization in a heterogeneous environment that can not only keep temperature
under control but also reduce energy, latency and bandwidth usage. To this end, we propose an Artificial Intelligence (AI) based
automatic scheduling technique that uses the thermal-profile characteristics5,7, to control the cooling facilities and maintain the
CDC temperatures8 using an integrated Internet of Things (IoT)1 and Fog computing9 environment. Specifically, our method
creates the thermal-aware profile of the CDC using a Gaussian Mixture Model applied to past thermal measurements to predict
and schedule tasks in order to minimize CDC temperature. Fog computing techniques are then used to control the temperature
of the data center using edge devices and IoT sensors. To validate our technique, we implement a Cloud-Fog based environment

0Abbreviations: AI, Artificial Intelligence; IoT; Internet of Things; GTARA, Game based Thermal-Aware Resource Allocation
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TABLE 1 Comparison of iThermoFog with Related Works

Work Cloud Fog AI IoT Thermal Implementation QoS Parameters
Profile Creation CloudSim iFogSim ThermoSim Energy Latency Bandwidth Execution Time Temperature Scheduling Time

Liu et al.12 ✓ ✓ ✓ ✓

Akbar et al.13 ✓ ✓ ✓ ✓

Khaleel14 ✓ ✓ ✓ ✓

Ilager et al.4 ✓ ✓ ✓ ✓ ✓

iThermoFog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

before moving to the real testbed to test its feasibility and efficacy in heterogeneous Fog environments. We compare service
characteristics like energy, latency, bandwidth consumption, scheduling time, execution time and average temperature with
GTARA, a state-of-the-art thermal aware scheduler proposed by Akbar et al. Experiments show that iThermoFog is able to use
Cloud+Fog to reduce energy, bandwidth usage, execution time, latency and mean square temperature by 12%, 4%, 9.3%, 5.6%
and 6.1% respectively.

1.1 Motivation and Our Contributions
Our AI-based automatic thermal profile creation and scheduling model, iThermoFog, is the first method that is able to predict
temperatures for different scheduling decisions for optimal schedules which minimize the temperature of the CDC. Further, we
evaluate various performance metrics of our model on an integrated IoT-Fog-Cloud environment. An IoT-based smart home
application is used to generate the data by running various time-critical computational applications including heart patient analy-
sis3 and smart-home management application10. To validate iThermoFog, we create a simulation environment using iFogSim11

and ThermoSim5. The former is an open-source Fog simulator for running Fog applications on simulated Fog nodes and
measuring task characteristics like latency, network bandwidth, energy, scheduling time, and execution time. The latter is a
thermal-aware simulator that allows developers to obtain and utilize thermal characteristics of host machines in an iFogSim
setup.
Section 2 discusses related work and describes how iThermoFog addresses the issue of temperature prediction and thermal-

aware scheduling in time-critical applications. Section 3 describes the model and architecture of our thermal-profiling and
scheduling framework. Section 4 compares the performance of various Fog-Cloud scenarios in terms ofmetrics such as execution
time, network bandwidth consumption, energy consumption, latency and temperature. Finally, Section 5 concludes this work.

2 RELATEDWORK

Liu et al.12 propose a thermal and power-aware model which jointly considers energy consumption arising from computing
tasks, cooling, and task migrations. However, due to modeling limitations this work does not consider energy consumption
arising from I/O processing and network transmission. Our model is more suitable for static workload cases and can be extended
to dynamically update the scheduling policy for stochastic workloads. Akbar et al.13 propose a game-theoretic thermal-aware
allocation strategy (GTARA). Their work presents a methodology to efficiently manage the computational diversity within
a Cloud data center by using the concept of cooperative game theory with Nash-bargaining to assign resources based on a
thermal profile. A limitation of the approach is that the system is assumed to consist of homogeneous servers and does not
consider automatic model update. Khaleel14 describes a thermal-aware load balancing strategy that involves calculating the
shortest distance to Cloud resources deployed at different geographical locations and conserving bandwidth, cost and energy
using thermal characteristics. Further, the paper suggests that uniformly distributing workloads to different servers prevents
computational hot-spots and maintains server health. This work however does not consider other types of utilization and energy
consumption profiles arising from disks, network, and memory, which are critical to consider in Fog computing. Ilager et al.4
propose an energy and thermal-aware scheduling algorithm (ETAS) that dynamically consolidates VMs to minimize the overall
energy consumption while proactively preventing thermal hot spots. Another limitation is that the algorithm assumes a static
cooling environment, which may not be versatile to different cooling settings. Table 1 compares iThermoFog with existing
work based on the key parameters relevant in this work.
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FIGURE 1 iThermoFog system model

3 iThermoFog MODEL

Figure 1 shows the system architecture of iThermoFog, which consists of three different layers: Cloud, Fog, and IoT. The IoT
layer consists of various pre-configured devices to gather data from other devices, such as sensors and smartphones. The thermal
sensor measures the temperature of CDC servers periodically, which is helpful to generate the thermal profile automatically.
The Fog layer consists of various Fog devices, such as the broker, and Fog nodes for fast computation. The broker acquires data
from temperature sensors and creates the thermal profile. Subsequently, it schedules the Cloud resources using the thermal-
aware scheduling technique introduced in ThermoSim5. Lightweight jobs are processed at Fog devices using available Fog
storage and compute nodes to reduce latency, while heavy jobs are transferred to the Cloud layer for execution. The Cloud
layer consists of two components: the cooling controller and the power controller. The former is an actuator that provides the
required cooling to the CDC as per the created thermal profile. The latter reduces the overall temperature of the Cloud system.
The overall temperature is modelled as the root mean square of the individual host node temperatures as done by Gill et al5.
Based on empirical evaluations, RMS provides least net energy consumption in CloudSim. Other alternate modeling strategies
include minimization of peak average temperature and cooling cost15.

3.1 Thermal Profile Creator and Scheduler
To create the thermal profile of the CDC, we use the popular AI strategy of formulating temperature as a GaussianMixtureModel
(GMM) of different task and Cloud host parameters16. As shown previously by Khosravi et al.17, temperature characteristics of
CDCs can be modeled accurately by GMMs. The task parameters include CPU, RAM, disk and bandwidth requirements and
host parameters include CPU, RAM, disk and bandwidth availability. We model the temperature as a Gaussian variable of the
task and host parameters. Thus,  ∼  (x;�,Σ) where i is the temperature of host i (i ∈ {0, 1, 2,… , n}) with n hosts in the
CDC. Also, � and Σ are parameters of the model with x as the task and host parameters like CPU, RAM, disk and bandwidth
requirement/consumption including the task to host mapping.
Using genetic-based expectation maximization algorithms18, we find the optimal parameter values �∗ and Σ∗ for each host.

For feasible solutions, we consider a truncated GMM, ignoring the negative samples. To generate the training data, we run
various pre-existing scheduling policies like random allocation, ETAS4, and others14,12 to form a dataset of temperature values
for different scheduling task and host parameters, and schedules. Using this dataset, we find �∗ and Σ∗, which we then deploy
to predict the temperature of the all possible scheduling decisions (provided by CloudSim) at the current state, given by the
iFogSim simulator, and take the one with least ‖ ‖. This decision is taken whenever there is a new task in the system. For
dynamic or stochastic workloads, this scheduling decision would have to be taken periodically, say every few minutes. When
allocation of a running task changes, it would have to be migrated to the newly allocated host, investigation of implementation
details is planned as part of future work.
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FIGURE 2 Integration of CloudSim, ThermoSim and iFogSim
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FIGURE 3 Comparison of iThermoFog with GTARA for different Cloud-Fog configurations

4 PERFORMANCE EVALUATION

Experimental Setup: We have used iFogSim11 and ThermoSim5 to simulate the Fog environment, both of which work on top
of CloudSim19. Integration of CloudSim, ThermoSim and iFogsim is described in Figure 2 . We use 12 cloud VMs and 18 fog
devices in our setup, same as done in ROUTER application by Gill et al.10. As ThermoSim and CloudSim have been widely
validated in previous work4,3,10,11, we expect that these results could be reproduced in realistic settings.

DataSet: We use an IoT-based Smart Home Application called ROUTER10, which describes the sequence of operations of
an application and their type of tuples. The application modules are modeled in iFogSim using the AppModule class. There are
data dependencies between modules, and these dependences are modeled using the AppEdge class in iFogSim. The control loop
of interest for Smart Home application is also modeled in iFogSim using the AppLoop class. The application receives signals
from different sensors and an actuator displays the current status of Smart Home to the user through Edge/Fog devices. The
application model of the IoT-based Smart Home automation is built into iFogSim in order to validate the proposed technique
through a real-time application. This means that the data from the experiment is directly fed into the simulator to provide edge-
device operational behavior for the resource manager. We use the Particle Swarm Optimization (PSO) algorithm to schedule
different operations on fog or cloud nodes as described by Gill et al10. We randomly create tasks of different ROUTER operation
types and schedule on fog only nodes, cloud only nodes or both fog and cloud nodes based on the PSO approach.
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Experimental Results: Figure 3 compares the performance of various QoS parameters such as energy, execution time,
temperature, latency and network bandwidth for three different kind of services, i.e. Cloud, Cloud+Fog and Fog using iTher-
moFog. Figure 3 also shows that iThermoFog is able to reduce energy and bandwidth consumption, execution time, latency,
and mean-squared temperature compared to GTARA13. As GTARA only works in the cloud layer, we also adapt it to work in
Fog environments by considering all fog nodes same as cloud nodes, but with latency and computational characteristics as those
of fog devices. Figure 3 (a) shows the variation of execution time with different numbers of operations. Upon increasing the
number of operations, the execution time increases. The average value of the execution time in Fog is 14.44% and 18.92% less
than less than Cloud+Fog and Cloud respectively. On an average, the execution time of iThermoFog is 52.68% and 9.35% faster
than GTARA for Fog and Cloud respectively. The reason for the decrease in execution time is the automatic request handling
mechanism of iThermoFog. Furthermore, iThermoFog tracks the state of all resources at each point of time, enabling it to take
timely decisions. Figure 3 (b) further shows the average network bandwidth consumption for all the three different type of ser-
vice. We see that Fog computing-based service consumes 12.42% less average network bandwidth than other two services and
nearly 65% compared to the adapted GTARA. This is because iThermoFog processes lightweight data at edge devices effec-
tively while fulfilling the deadlines dynamically. By increasing the number of operations, the energy consumption increases as
shown in Figure 3 (c). The average value of energy consumption in the Fog computing environment is 11.32% and 15.72% less
than Cloud+Fog and Cloud respectively. Compared to GTARA, iThermoFog reduces energy consumption by 32% for Fog and
12% for Cloud configurations. We see that the AI-based proactive scheduling of resources significantly reduces amount of net-
work traffic, which leads to a reduction in the number of idle resources (processor, switching equipment, storage device, network
device) that reduces the waste of energy. Further, we have analysed the latency of all the three services (i.e., the delay before
transfer of user requests for job processing). With an increase in the number of operations, the value of latency increases as
shown in Figure 3 (d). Here, latency is defined as the sum of scheduling time, execution time, communication and data transfer
time from sensor to host. GTARA adapted to Fog setup is able to reduce latency significantly, however, iThermoFog in Fog con-
figuration still outperforms adapted GTARA. It is observable that iThermoFog has a lower latency in contrast to the other two
services. The average value of latency in iThermoFog is 12.76% and 16.91% less than Cloud+Fog and Cloud respectively. The
reason is because iThermoFog executes job requests at Fog Data Server (FDS) instead of sending job requests to Cloud Data
Server (CDS) which would result in a larger communication delay. Figure 3 (e) shows Fog offers 10.55% and 13.46% lower tem-
peratures compared to Cloud+Fog and Cloud respectively. This is because it shuts down idle resources automatically. Finally,
Figure 3 (f) shows how the scheduling time varies with number of operations. iThermoFog has low scheduling time compared
to GTARA, as iThermoFog uses pre-computed GMM for temperature prediction compared to game-theoretic allocation. Low
scheduling time (in milliseconds) leaves considerable margin to scale the technique in larger setups with low overheads.

5 CONCLUSIONS AND FUTUREWORK

We have proposed an IoT and Fog computing environment based on an automatic thermal profile creationmodel whichmaintains
the temperature of CDC proactively using GMM for thermal modeling. Further, the proposed model utilizes the past data and
creates the thermal-aware profile using AI-based data analytics. An IoT based smart home application is used to generate data
by performing different type of operations. Further, our iFogSim and ThermoSim based simulated Fog environment is used to
validate the proposed model and optimize the QoS parameters such as latency, temperature, network bandwidth, energy and
execution time.
The prominent future directions are described as follows: (1) The current model of iThermoFog can be extended to real

deployments using frameworks like FogBus3 and performance should be validated in unreliable and hybrid real systems with
dynamic or stochastic workloads. (2) Analyze and enhance the scalability of the proposed model to allow large number of
devices to be integrated without failures. (3) Implement dynamic/real-time offloading techniques for energy conservation in
hybrid Fog-Cloud setups using iThermoFog. (4) Offloading using Mobile Cloud Computing for mobility and thermal-aware
based offloading and task scheduling decision. (5) Investigate other datacenter temperature approximation methods.
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