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ABSTRACT  

Background: HPV testing provides a much more sensitive method of detection for high-

grade lesions than cytology, but specificity is low. Here we explore the extent to which full 

HPV genotyping, viral load and multiplicity of types can be used to improve specificity. 

Methods: A population-based sample of 47,120 women undergoing cervical screening were 

tested for 13 high-risk HPV genotypes. Positive predictive values (PPV) for CIN grade 2 or 

worse (CIN2+; N=3449) and CIN3 or worse (CIN3+; N=1475) over three years of follow-up 

were estimated for HPV genotype and viral load. Weighted multivariate logistic regression 

models were used to estimate the odds of CIN2+ or CIN3+ according to genotype, 

multiplicity of types and viral load. 

Results: High-risk HPV was detected in 15.4% of women. A hierarchy of HPV genotypes 

based on sequentially maximizing PPVs for CIN3+ found HPV16>33>31 to be the most 

predictive, followed sequentially by HPV18>35>58>45>52>59>51>39>56>68. After 

adjusting for higher ranked genotypes, multiple HPV infections added little to risk prediction. 

High viral loads for HPV18, 35, 52 and 58 carried more risk than low viral loads for HPV16, 

31 and 33. High viral load for HPV16 was significantly more associated with CIN3+ than low 

viral load.  

Conclusion: HPV genotype and viral load, but not multiplicity of HPV infections, are 

important predictors of CIN2+ and CIN3+. 

Impact: The ability to identify women at higher risk of CIN2+ and CIN3+ based on both HPV 

genotype and viral load could be important for individualising triage plans, particularly as 

HPV becomes the primary screening test. 
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INTRODUCTION  

Cervical cancer is caused by infection from one or more of at least thirteen high-risk human 

papillomavirus (HPV) genotypes.(1,2) HPV testing provides a more sensitive method of 

detection for high-grade lesions than cytology.(3,4) Different HPV genotypes have different 

natural histories and it has become increasingly important to identify which genotypes are 

most indicative of an increased risk of developing a high-grade cervical lesion. Advances in 

HPV-based testing have enabled infections with individual HPV genotypes to be routinely 

determined, but currently only types 16 and 18 are widely reported and used to guide clinical 

management.(5,6) Previous reports have indicated differing risks associated with different 

genotypes.(7-9) Other HPV related factors associated with high-grade disease include viral 

load,(10-13) multiplicity of types(14-16) and methylation status,(17-20) as well as cytology 

and p16Ink4a which both require intact cellular preparations.  

High viral load has been shown to be important for HPV16,(11,12,21-24) but more recently, 

Xi et al.(25) reported an association between cervical intraepithelial neoplasia grades 2 and 

3 (CIN2/3) and high viral loads for other alpha-9 HPV species. Women with high viral loads 

have also been found to have more persistent infections, with longer clearance times.(26,27) 

However, Sherman et al.(28) showed that although viral loads were higher in women with 

CIN diagnoses than women with negative histology, there was no trend correlating viral load 

and severity of CIN grade. Current evidence about the effect of multiple HPV infections is 

conflicting; some studies have shown that co-infections increase a woman’s risk of cervical 

pre-cancer and cancer,(29) whilst others show no impact.(14,30) Further, it has been shown 

that HPV positive women with elevated methylation levels of both human and viral genes 

have an increased risk of pre-cancerous lesions and cancer,(17,19,31,32) but this, and 

cytology and p16 which require cellular preparations, will not be explored in the study we 

report on here.  
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We examined the risk of CIN2+ and CIN3+ associated with different HPV genotypes and 

assess whether there is additional risk associated with genotype-specific high viral load and 

multiple HPV infections.   
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MATERIALS AND METHODS 

Study Population 

A population-based stratified sample of all women who underwent cervical screening in the 

state of New Mexico between December 2007 and April 2009 was used for this study. Data 

was obtained from the New Mexico HPV Pap Registry (NMHPVPR). The NMHPVPR is a 

state-wide public health surveillance program established in 2006 to assess all aspects of 

cervical cancer preventive care. It includes records of all cervical cytology and HPV tests, 

and all cervical, vaginal and vulvar pathology. Laboratories performing cervical cytology, 

pathology, and HPV tests on individuals residing in New Mexico are required to report all 

results to the NMHPVPR under NMAC 7.4.3.(33) Specimens were collected from selected 

laboratories under research protocols approved by the University of New Mexico Human 

Research Review Committee. 

Residual material from liquid-based cytology (LBC) samples in 7 in-state laboratories were 

collected, stratified by age (≤30 years versus >30 years) and cytology outcome (negative or 

abnormal). The sampling plan targeted all specimens with abnormal cytology, along with 

45% of specimens from women aged ≤30 years with negative cytology, and 8% of 

specimens with negative cytology from women aged >30 years. A total of 59,644 specimens 

were included for genotyping. The sample was further restricted to ‘screening cytology’ 

defined as LBC samples from women with no previous cytology in the past 300 days, and 

women <15 years or >75 years were excluded. This resulted in a sample of 47,120 women 

(Supplementary Figure 1). Although samples were chosen based on proportions of available 

samples, sampling weights that were applied in this report were based on the first screening 

sample per woman (Supplementary Table 1). Full details of this cohort have been described 

previously.(34-36) Follow-up was for 3 years after the collection of their screening specimen, 

and the worst histopathologic diagnosis identified in this period was used as the endpoint.  
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Laboratory Methods 

Broad spectrum HPV genotyping was performed using the Roche LINEAR ARRAY (LA) 

HPV GENOTYPING test (Roche Diagnostics, Indianapolis, Indiana USA) on residual LBC 

specimens. The Roche LA genotyping test, which has been described in detail 

previously,(35) identifies 37 genotypes, of which 13 are high-risk (hr) HPV types (HPV16, 18, 

31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68) and the remaining 24 are low-risk (lr) types.  

Viral load was visually determined as low, intermediate or high by two independent 

reviewers for each genotype detected based on intensity of staining on the test strips. Before 

undertaking this task readers calibrated their semi-quantitative interpretation of viral load on 

a sample of readings to densitometry values and reference standards. Any discrepant 

results between the two readers for either HPV genotype or viral load were reviewed by a 

third independent reader and the determination of the third reader was final. 

Statistical Analysis 

Prevalence and positive predictive values (PPV) were calculated for hrHPV types, both 

overall and for each genotype in single and multiple infections. All analyses were weighted to 

reflect the number of first screening samples in the state-wide population (Supplementary 

Table 1). Hierarchical rankings of HPV genotypes for CIN2+ and CIN3+ were formed based 

on sequentially maximizing the PPV for the new genotype when infections which also 

contained HPV types higher in the hierarchy were omitted. Hierarchies were created both 

overall and within two age strata (≤30y and >30y). Cumulative sensitivity and specificity for 

increasing numbers of genotypes ordered by the hierarchy was plotted as a receiver 

operator characteristic curve (ROC). PPVs were also calculated for each of the thirteen 

hrHPV types stratified by viral load (low, intermediate, high). Viral load was determined 

separately for each genotype when more than one type was present, and hierarchies were 

created using genotype only and also using both genotype and viral load. Weighted multiple 
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logistic regression models were also fit to estimate the odd ratios (OR) of CIN2+ and CIN3+ 

for the joint effects of HPV genotype and viral load. 

All analyses were conducted in STATA 13.1.  
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RESULTS 

Cervical screening data and residual LBC samples were used for 47,120 women and 

estimated to represent 328,427 women in New Mexico who had a screening test between 

December 2007 and April 2009. The mean age of the weighted population was 40.3 years. 

1,893 (0.6%) women had high-grade cytology (high-grade squamous intraepithelial lesion 

(HSIL), atypical squamous cells – cannot exclude HSIL (ASC-H), adenocarcinoma in situ 

(AIS) or cancer), and a further 19,946 (6.1%) had low-grade cytological abnormalities (low 

grade squamous intraepithelial lesion (LSIL) or atypical squamous cells of undetermined 

significance (ASC-US)). We estimated 27.4% women had at least one hr- or lrHPV infection 

and 15.4% had at least one hrHPV infection. Of those with at least one hrHPV infection, 

25.1% had multiple hrHPV infections. In women aged ≤30 years, the prevalence of hrHPV 

infections was 28.1% compared to 9.2% in women aged >30 years (p<0.001). The 

prevalence of HPV16 was 3.5% overall and 1.4% (39.6% of all HPV16 infections) were 

single infections (Table 1). HPV16 was present in 22.7% of all hrHPV infections. On a 

population basis 1.1% of women were diagnosed with CIN2+ and 0.5% with CIN3+. The 

sensitivity for CIN2+ and CIN3+ in the 3 years after being positive for any hrHPV type was 

79.6% and 88.1% respectively. The specificity for <CIN2 was 85.3%. 

HPV Type Hierarchy 

HPV genotypes were selected sequentially to maximize the PPV for CIN3+ endpoints and 

separately for CIN2+ endpoints among women who did not have HPV infections from higher 

risk types. This resulted in similar hierarchies for both endpoints. The resulting overall rank 

orders were HPV16>33>31>18>35>58>45>52>59>51>39>56>68 for CIN3+ and 

HPV16>33>31>35>18>58>51>45>39>52>59>56>68 for CIN2+ (Table 2 & Supplementary 

Table 2). Genotypes 16, 33 and 31 had the highest PPVs for CIN3+ and provided a 

cumulative sensitivity of 66.5% and specificity of 94.8%. Cumulative sensitivities and 

specificities for CIN2+ and CIN3+ as the number of HPV types included from the hierarchy 



10 
 

were sequentially increased are plotted in Figure 1. Types 56 and 68 had the lowest PPVs 

(<0.2% for CIN3+) and should probably not be considered ‘high-risk’ types, but either 

omitted or called ‘intermediate-risk’ types. HPV positivity was higher for women aged ≤30 

years versus those aged >30 years and the PPV for CIN3+ was also higher in younger 

women (2.9% vs 2.1%, p<0.001). The CIN3+ hierarchy for women aged ≤30 years was 

similar to the overall rank order, except HPV18 ranked lower (8th vs 4th place). 

(Supplementary Table 3a&3b). For woman aged >30 years, HPV18 was ranked third, and 

HPV35 moved down in the hierarchy, although there were no significant differences in the 

PPV values. The PPV for CIN2+ for all hrHPV types combined was also greater for women 

aged ≤30 years compared to women aged >30 years (6.6% vs 3.7%, p<0.001). 

The PPV for CIN3+ was greatest for HPV16, being 7.0% (95% Confidence Interval (CI) (6.5, 

7.5)). The PPV for HPV33 was slightly lower at 4.9% (95% CI (3.9, 6.0)) univariately, and 

when multiple infections with HPV16 were excluded it was 3.3% (95% CI (2.4, 4.4)) (Table 

2). Similar results were seen for CIN2+ (Supplementary Table 2). 

Using the highest ranking HPV type within the hierarchy for each woman when multiple 

infections were present, weighted logistic regression models were fit. After excluding 

individuals with multiple infections with types higher in the hierarchy, the odds of having 

CIN3+ were statistically significant for all hrHPV types except HPV56 and 68 (OR=2.5, 95% 

CI (0.6, 10.8) and OR=1.7, 95% CI (0.2, 12.9), respectively) (Table 3).  

Viral Load 

Viral load was scored as high, intermediate or low as detailed in the methods. Overall 36.7% 

of hrHPV infections were scored as high, 26.5% as intermediate and 36.8% as low. When 

considering the highest ranked HPV type per women the odds of CIN3+ were 4.9 (95% CI 

(3.4, 7.3)) times higher for high compared to low levels. The PPV for CIN3+ was above 5% 

for high level infections of HPV16 and intermediate level infections for HPV33, and the PPV 

was <2% for low level infections of all genotypes except HPV16 (Table 4). When considering 
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only the highest rank ordered genotype in the hierarchy if there were multiple HPV types 

detected, there was significant heterogeneity in viral load level for all HPV types (P<0.001, 

Table 5). For HPV16, 53.9% of HPV infections were scored as high viral load whereas only 

41.5%, 15.2% and 14.9% were high for HPV33, 31 and 35 respectively. For HPV16 the odds 

of a woman having CIN3+ was 5.5 (95% CI (2.6, 11.7)) times greater for high versus low 

viral load (Table 5). After omitting the lower level infections in the hierarchy when there were 

multiple types, the odds of a woman having CIN3+ was greater for high versus low viral 

loads for HPV16 and 33. For CIN2+ the odds were significant for the first six HPV types 

(HPV16, 33, 31, 35, 18 and 58; HPV58 OR=5.5, 95% CI (1.8, 17.4)) (Supplementary Table 

4). However, for most genotypes, the odds of having CIN3+ or CIN2+ was still significantly 

higher for low level infections compared to women who were negative (Table 5 & 

Supplementary Table 4). When allowing for an intensity interaction with age, overall there 

was no statistical evidence for a difference in risk by viral load level between women aged 

≤30 years versus >30 years. However, there was evidence that high viral load of HPV16 

increased the risk significantly more for women >30 years (CIN3+ OR 30.7 vs 86.7, p<10-5). 

Further, there was some suggestion that high viral load of HPV18 and 58 also increased the 

risk significantly more in older women (hierarchical CIN3+ increase of 5.5 for HPV18 

[p=0.001], and 5.1 for HPV58 [p=0.004]), but no other types showed a clear age interaction 

with intensity. Hierarchically, HPV16, 18 and 45 all had over 50% of HPV infections 

classified as high viral load. There was no difference between low and intermediate viral load 

by age overall or for any individual HPV type.  

PPVs based on a bivariate model for individual HPV genotypes and viral load are shown in 

Table 4. As anticipated by the logistic regression analyses, there was a trend for increasing 

PPV with viral load for most HPV types, but especially for HPV16 (CIN2+ PPVs increased 

from 3.9% to 6.6% to 17.6% for low, intermediate and high viral loads respectively; trend 

χ2=401.7, p<10-72). The trend in PPVs for CIN2+ with increasing viral load level was 

significant for all hrHPV types except HPV39 and 68. High viral load infections with HPV16, 
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33, 31 and 35 posed the greatest risk for CIN2+. However, high viral loads of HPV18 and 58 

posed the same risk as intermediate viral loads of HPV16, 33, 31 and 35.  

Similarly, for detection of CIN3+, PPVs increased from 2.1% to 3.6% to 10.6% for low, 

intermediate and high viral loads of HPV16, respectively (trend χ2=247.5, p<10-56). For 

CIN3+ the increase was significant for the first six HPV types in the hierarchy (HPV16, 33, 

31, 18, 35 and 58), but the number of cases was too limited further down the hierarchy to 

make reliable inferences.  

Multiple HPV Types 

The inclusion of multiple infections with HPV types lower in the hierarchy added little to the 

risk prediction for CIN2+ or CIN3+ overall or when restricted to hrHPV types. There was a 

borderline significant increased risk of CIN3+ for women when adding any other lower risk 

HPV types to HPV35 (OR=2.7, 95% CI (0.9, 8.0) p=0.07), but no other specific type had a 

significant increase (Table 3). 
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DISCUSSION 

The ability to identify women at higher risk of CIN2+ and CIN3+ based on both HPV 

genotype and viral load will be important for individualising triage plans, particularly when 

HPV is the primary screening test. The NMHPVPR provides a unique opportunity to 

investigate the effect of HPV genotyping, multiple HPV infections and viral load on the risk of 

high-grade CIN and cancer in a large population-based screening cohort. Use of the Roche 

LA HPV genotyping test enabled analyses of different genotypes, both in individual and 

multiple HPV infections, an area where current research has produced conflicting findings. 

Consistent with previous research, we found HPV16 to be the most prevalent HPV type. 

Overall 11.4% of women had multiple HPV infections, consistent with findings from 

Monsonego et al.(37) who showed prevalence of multiple HPV infections in a US screening 

population after using a hierarchical ranking to be 13.4%. 

Ranking of HPV types by PPV provided similar hierarchies for CIN2+ and CIN3+, with 

HPV16, 33 and 31 posing the greatest risk of pre-cancerous disease. Notably, HPV33 and 

31 were both ranked above HPV18. Recent research has emphasized the importance of 

HPV genotypes that are phylogenetically similar to HPV16.(38) The thirteen hrHPV 

genotypes can be clustered into species with more similar DNA sequences. Notably species 

alpha-9, which includes HPV16, 31, 33, 35, 52 and 58, is most associated with high disease 

risk, and the top three ranking HPV types we observed were all within the alpha-9 species. 

Although HPV35 was not common in this population, as there are few African Americans in 

New Mexico (2.5%), there are populations with high levels of African lineage, thus its 

prominent position in the hierarchy indicates its importance more broadly. When only 

considering the top 3 HPV types (HPV16, 33 and 31), their cumulative sensitivity was 66.5% 

for CIN3+, indicating they are not sensitive enough to be the sole screening test. However, 

their combined PPV was 5.5% versus 0.2% for the remaining high-risk types, so they can be 

useful for deciding upon the need for immediate colposcopy versus repeat testing at a 6 or 

12 month interval.  
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Our previous studies that have used hierarchical ranking methods have also found similar 

rank orders; Cuzick et al.(7) reported a ranking based on PPVs for CIN3+ in a referral 

population with HPV16 and 33 having the highest ranks. In a further sample of HPV positive 

women aged 30 years, Schiffman et al.(39) found the HPV types with the greatest 3-year 

risk of CIN2+ were HPV16, 52 and 31. However, their study was based on disease 

prevalence and did not adjust for genotype prevalence and therefore used a different 

measure than PPV as used here. PPV is particularly important for HPV33. This type has a 

low prevalence but high PPV, and when present should be managed similarly to HPV16. 

Several HPV tests offer individual genotyping(7,39-41) and an HPV hierarchy helps to 

identify specific genotypes that pose the greatest risk of high-grade CIN, and thus can assist 

in improving the triage process for clinical management of HPV positive women. Currently 

HPV tests approved by the US Food and Drug Administration (FDA) only offer individual 

genotyping for HPV16, 18 or 45, but findings from our data show the importance of HPV31 

and 33 as high-risk genotypes, and the value of downgrading HPV types 39, 51 and 59 to 

‘intermediate risk’ types, although HPV51 was considerably higher in the CIN2+ hierarchy. 

This emphases the need for more complete hrHPV genotyping assays if the principle of 

equal management for equal risk is to be applied. Of note, HPV52 did not exhibit substantial 

risk here, but has been seen to do so in other populations.(42) When using the LA HPV 

Genotyping test, HPV52 is only inferred if co-infections with HPV33, 35 or 58 are not 

detected, so it will be underestimated in our study. This effect will be small, and under the 

assumption that the prevalence of these types is independent, HPV52 prevalence would 

only increase from 1.92% to an estimated 1.96% (Table 1). We did not supplement the HPV 

genotyping in this large population-based evaluation using HPV52 type-specific PCR 

although this could be an area of future research as suggested by others.(43),(44) 

In our study, co-infections with HPV types lower in the hierarchy did not significantly increase 

the risk of CIN2+ or CIN3+ beyond that for the highest risk type found. Similar findings have 

previously been reported. Schmitt et al.(15) found that the occurrence of multiple HPV 



15 
 

infections did not affect the risk of a lesion being high or low-grade and Wentzensen et al.(16) 

found no association between disease status and the number of genotypes detected in a 

woman. Previous studies showing increased risk of CIN with multiple HPV infections had few 

CIN2+ cases, and were restricted to younger women,(45) a subgroup known to harbour a 

larger number of HPV infections.(14)  

HPV16 is the genotype with the highest PPV for high-grade precursor lesions, especially 

when the viral load is high. It’s PPV of 17.6% overall is well above the 10% threshold for 

CIN2+ (PPV 10.6% for CIN3+) suggested for determining immediate referral for 

colposcopy.(5,46,47) However, much of this previous research has not found an association 

between viral load and CIN2+ for other genotypes, possibly due to small sample sizes. In 

our study, after adjusting for multiple infections with types higher in the hierarchy, we found 

the risk for CIN2+ was above 10% only for high viral load infections for HPV types 16, 33, 31 

or 35 and above 5% only for high or intermediate level infections with these types or high 

level infections with HPV18 or 58 (Table 4). Our finding that viral load was relevant for 

HPV18 is not in agreement with previous studies which found quantification of HPV18 had 

little predictive power and thus the clinical utility of this finding requires confirmation.(42,48) 

Notably, even a high viral load of HPV18 only carried a CIN2+ PPV of 7.9% (PPV 2.5% for 

CIN3+), which is still below the conventional 10% threshold for immediate colposcopy.  

Noticeably, the top ranked HPV types for CIN risk are the seven high-risk types in the 

nonavalent vaccine (HPV16, 18, 31, 33, 45, 52 and 58) and HPV35. However, a key finding 

from this paper is that the risk can be substantially modified by viral load and thus a full risk 

stratification policy needs to include both HPV genotype and viral load. High levels of HPV 

types lower in the hierarchy (e.g. HPV18 and 58) pose a similar risk of disease to 

intermediate levels of higher risk types (HPV16, 33, 31, 35). The importance of viral load 

compared to HPV genotype has not been widely appreciated, but when considered together 

can improve assessments of the risk of a high-grade CIN lesion.  
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A full triage strategy will require consideration of other measures beyond the scope of this 

investigation, including cytology and potentially p16 status and HPV methylation in addition 

to HPV genotype and viral load information to guide management. Of note as well are 

HPV18 and 45 which are not strong predictors of CIN2+ or CIN3+, but are more common in 

cancer. They are associated with endocervical cancers, and their precursor lesions are not 

so easily seen at colposcopy. If HPV18 and 45 infections remain persistent more careful 

exploration of the endocervical canal by new methods may be needed, especially in older 

women (>30yrs) where HPV18 poses a greater risk. Whilst these results were not used for 

clinical management, if age categories were modified to put 30 year olds in the older age 

group to align with current screening recommendations, the conclusions from this study 

remain unchanged.  

Further work on viral load is warranted before it can be used routinely, especially to 

standardise viral load measurements. While semi-quantitative estimates of viral load were 

important in our analysis, the biology behind viral load is complex. Low-grade lesions with 

koilocytes can have thousands of copies of HPV per cell and one cell can contribute more 

DNA than a hundred CIN3 cells with 10 copies per cell. Thus, viral load is a complex 

correlate of the interplay of grade, lesion size, sampling of lesions etc. In addition, none of 

the platforms currently approved by the FDA allow for routine reporting of viral load. 

Little variation was seen in the hierarchy for different genotypes when the PPVs were based 

on both genotype and viral load, (Supplementary Table 5) compared with using only 

genotype (Table 2). In particular, the top ranking HPV types (HPV16, 33 and 31) did not 

change. However viral load was important e.g. low viral loads of HPV16, 31 and 33 were 

lower in ranking than high levels of HPV18, 35, 52 and 58. This emphasises the 

management benefits which could be gained if HPV genotyping and viral load were both 

used.  

One of the strengths of this study was the access to a large population-based stratified 

screening sample. However, the study had some limitations; histology outcomes were only 
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available for women who were referred to colposcopy because of cytological abnormalities. 

Thus CIN2+ lesions arising from infections not producing a detectable cytological 

abnormality would have been missed. CIN determination was based on routine clinical 

practice and while all cases diagnosed within 3 years were included, a closeout visit at 3 

years, as would be common for a clinical trial, would result in higher disease detection rates. 

Analyses of viral load were based on a visual 3-level cut off criteria - high, intermediate and 

low, and further work is needed to determine if its assessment would benefit from more 

precise quantitation. Additionally, different HPV tests assess viral load in different ways e.g. 

many PCR based methods use cycle threshold (CT) values, Hybrid Capture 2 uses signal-

amplified luminescence levels (relative light units) to establish cut-off values, and our method 

based on LA genotyping uses visual assessment based on colorimetric precipitate observed 

as lines or “bands” on a solid-phase matrix. However, semi-quantitation via the LA 

genotyping test has been supported by its correlation with a gold standard of quantitative 

PCR.(49) As noted above, the importance of viral load appears to be genotype-specific, so 

an overall combined result for any hrHPV type may be less informative than the type-specific 

viral load, as provided here. 

To conclude, in a large population-based stratified screening sample of women we found the 

risk of high-grade CIN was dependent on both the HPV genotype and viral load, with no 

added risk associated with co-infections from other HPV types lower in the hierarchy. 

Algorithms based on both HPV genotype and viral load in combination show promise for 

refining clinical management of hrHPV positive women, and reducing the number of women 

who are currently recommended to have immediate colposcopy.  
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Table 1: Prevalence of 13 high-risk (hr) HPV genotypes, weighted to the state-wide population of 
women. For all, single, and multiple hrHPV genotypes. 

hrHPV type 

Prevalence (%) 

All Single 
Multiple – with other  

hrHPV types 

Any hrHPV 15.37 6.59 8.78 
16 3.48 1.38 2.11 
18 1.21 0.32 0.89 
31 1.82 0.60 1.21 
33 0.48 0.14 0.34 
35 0.89 0.31 0.58 
39 2.11 0.69 1.42 
45 1.06 0.31 0.75 
51 2.30 0.65 1.65 
52 1.92 0.63 1.29 
56 1.26 0.27 0.99 
58 1.20 0.33 0.87 
59 2.11 0.70 1.40 
68 0.82 0.26 0.56 
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Table 2: High-risk (hr) HPV genotype-specific Positive Predictive Values (PPV) and hierarchical ranking by PPV for CIN3+ detected within 3 years of the 
enrolment cytology, weighted to the state-wide population. 
 

 Individual hrHPV type  For the new hrHPV type  Cumulative 

hrHPV 
type 

PPV (%) (95% CI) 
 

N at risk 
Positive 

PPV (%) 
 Positive 

PPV (%) Sensitivity Specificity 
 CIN3+ HPV  CIN3+ HPV 

16 6.98 (6.51, 7.45)  328 427 799 11 445 6.98  799 11 445 6.98 54.17 96.74 

33 4.94 (3.87, 6.01)  316 981 45 1360 3.31  844 12 805 6.59 57.22 96.34 

31 3.47 (3.01, 3.94)  315 622 136 5139 2.65  980 17 944 5.46 66.47 94.81 

18 2.10 (1.65, 2.54)  310 483 56 3084 1.82  1 036 21 027 4.93 70.28 93.89 

35 2.10 (1.58, 2.62)  307 399 34 2211 1.53  1 070 23 238 4.61 72.57 93.22 

58 2.25 (1.78, 2.71)  305 189 36 2860 1.26  1 106 26 098 4.24 75.01 92.36 

45 2.49 (1.97, 3.00)  302 329 31 2595 1.18  1 137 28 693 3.96 77.09 91.57 

52 2.22 (1.85, 2.58)  299 734 53 4737 1.11  1 190 33 431 3.56 80.66 90.14 

59 1.64 (1.34, 1.94)  294 996 46 4668 0.98  1 236 38 099 3.24 83.78 88.73 

51 1.73 (1.44, 2.02)  290 328 42 4634 0.90  1 277 42 732 2.99 86.61 87.32 

39 1.71 (1.40, 2.01)  285 694 17 4108 0.41  1 294 46 840 2.76 87.76 86.07 

56 1.00 (0.69, 1.30)  281 587 3 2171 0.16  1 298 49 011 2.65 87.99 85.41 

68 0.98 (0.61, 1.35)  279 416 2 1462 0.11  1 299 50 473 2.57 88.09 84.96 
  

CI: Confidence Interval  

For example, the highest ranked HPV type was the genotype with the highest univariate PPV. All co-infections with this HPV type were then excluded from 

the subsequent analysis, and the HPV type with the next highest PPV was identified. This was repeated for all 13 hrHPV types.   
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Table 3: Hierarchical odds ratios for CIN3+ among 13 high-risk (hr) HPV genotypes, both alone and with adjustment term for multiple hrHPV types ranked 

lower in the hierarchy, weighted to the state-wide population of women. 

hrHPV type 
Univariate Model 

P-value 
Multivariate Model P-value 

(other types) OR (95% CI) OR (95% CI) 

16 35.12 (28.21, 43.71) 2.5E-220 40.62 (30.76, 53.66)  
other types   0.78 (0.60, 1.01) 0.06 

33 17.10 (10.27, 28.47) 1.1E-27 27.50 (13.50, 56.00)  
other types   0.43 (0.17, 1.11) 0.08 

31 17.09 (11.96, 24.44) 1.8E-54 20.60 (12.84, 33.03)  
other types   0.72 (0.42, 1.26) 0.25 

18 12.99 (8.29, 20.33) 4.0E-29 18.87 (10.60, 33.59)  
other types   0.53 (0.25, 1.11) 0.09 

35 11.69 (6.67, 20.50) 9.6E-18 6.07 (2.36, 15.61)  
other types   2.72 (0.93, 7.96) 0.07 

58 10.47 (6.19, 17.71) 2.0E-18 15.05 (7.73, 29.31)  
other types   0.51 (0.21, 1.22) 0.13 

45 10.59 (5.40, 20.74) 6.2E-12 12.11 (4.94, 29.68)  
other types   0.79 (0.24, 2.57) 0.70 

52 11.62 (6.73, 20.05) 1.3E-18 11.20 (5.42, 23.17)  
other types   1.07 (0.48, 2.38) 0.88 

59 12.06 (4.29, 33.89) 2.3E-06 6.88 (2.38, 19.87)  
other types   2.50 (0.50, 12.39) 0.26 

51 13.14 (4.30, 40.19) 6.3E-06 6.08 (1.86, 19.87)  
other types   3.17 (0.59, 16.96) 0.18 

39 6.45 (2.72, 15.29) 2.3E-05 6.65 (2.58, 17.13)  
other types   0.93 (0.21, 4.20) 0.93 

56 2.47 (0.56, 10.83) 0.23 3.04 (0.40, 23.22)  
other types   0.68 (0.04, 11.10) 0.79 

68 1.70 (0.22, 12.94) 0.61 2.96 (0.39, 22.75)  
other types   - - 

OR: Odds Ratio, CI: Confidence Interval  
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Table 4: Hierarchical Positive Predictive Values (PPV) for 13 high-risk (hr) HPV genotypes stratified by viral load groups (high, intermediate [Inter], low) for 
CIN2+ and CIN3+, weighted to the state-wide population of women.  

HPV type 

PPV (%) by viral load 
P-value 

for trenda 

 

HPV type 
PPV (%) by viral load 

P-value 
for trenda CIN2+ CIN3+ 

Low Inter High Low Inter High 

Any hrHPV b 2.38 4.46 9.28 5.3E-169 Any hrHPV b 0.98 1.90 4.66 5.3E-105 

16 3.90 6.61 17.62 1.2E-72 16 2.11 3.58 10.56 9.2E-56 
33 4.43 9.41 10.29 1.1E-03 33 1.00 6.20 3.93 0.01 
31 4.08 8.93 10.76 1.2E-12 31 1.75 4.32 1.77 0.05 
35 3.62 6.03 10.10 1.2E-05 18 1.25 0.95 2.52 0.01 
18 2.07 2.83 7.70 2.5E-09 35 0.85 1.97 2.50 0.01 
58 1.18 2.22 6.20 4.0E-09 58 0.22 0.29 2.20 1.5E-05 
51 2.31 4.40 4.50 1.2E-04 45 1.25 1.23 1.07 0.71 
45 1.32 2.35 3.38 0.01 52 0.26 0.84 2.55 1.4E-09 
39 1.99 2.78 2.11 0.63 59 0.42 0.65 1.51 8.7E-04 
52 0.40 1.16 4.57 6.4E-15 51 1.11 0.78 0.55 0.11 
59 0.93 1.09 2.80 9.4E-05 39 0.15 0.56 0.83 4.1E-03 
56 0.17 2.45 1.32 0.01 56 - - 0.45  

68 1.02 0 0.82 0.74 68 - - 0.27  

 

 

 

Colour codes give categories of 3-year risk (<2% (green), 2-5% (yellow), 5-10% (orange) and >10% (red) for CIN2+; <1% (green), 1-2% (yellow), 2-5% (orange) 
and >5% (red) for CIN3+).  

a P-values for trend in PPV by increasing viral load category.  
b Highest ranked hrHPV type per woman  

>10% 5-10% 2-5% <2% CIN2+ 

>5% 2-5% 1-2% <1% CIN3+ 
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Table 5: Hierarchical odds ratios for CIN3+ for high-risk (hr) HPV genotypes and for different viral load groups (high, intermediate [Inter], low), ordered by 

the genotype hierarchy and weighted to the state-wide population of women.  

HPV type Viral load (N, %) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

Any hrHPVa High (18 541, 0.6) 77.31 (46.48, 128.61) 9.4E-63 4.94 (3.35, 7.28) 8.1E-16 2.53 (2.00, 3.19) 6E-15 
 Inter (13 374, 0.4) 30.57 (17.87, 52.30) 1.0E-35 1.95 (1.28, 2.98) 2.0E-03 ref  
 Low (18 558, 0.6) 15.66 (8.42, 29.11) 3.6E-18 ref    
 Negative (277 954, 84.6) ref           

 P-value (trend) 2.6E-123   3.0E-20       

16 High (6171, 1.9) 55.28 (44.27, 69.03) 5.3E-271 5.48 (2.57, 11.67) 1.1E-05 3.18 (2.16, 4.69) 5.1E-09 
 Inter (2431, 0.7) 17.36 (11.56, 26.08) 6.1E-43 1.72 (0.75, 3.94) 0.20 ref  
  Low (2844, 0.9) 10.09 (4.70, 21.67) 3.1E-09 ref    
 Negative (316 981, 96.5) ref           

 P-value (trend) 2.8E-286   4.7E-08       

33 High (564, 0.2) 20.42 (10.45, 39.92) 1.2E-18 4.04 (1.07, 15.32) 0.04 0.62 (0.21, 1.83) 0.39 
 Inter (287, 0.1) 32.97 (13.56, 80.19) 1.3E-14 6.53 (1.53, 27.84) 0.01 ref  
  Low (509, 0.2) 5.05 (1.55, 16.46) 7.2E-03 ref    
 Negative (315 622, 96.1) ref           

 P-value (trend) 1.6E-31   0.04       

31 High (781, 0.2) 11.27 (4.76, 26.65) 3.5E-08 1.01 (0.39, 2.61) 0.98 0.40 (0.16, 0.99) 0.05 
 Inter (1807, 0.6) 28.28 (18.23, 43.88) 3.6E-50 2.53 (1.40, 4.59) 2.2E-03 ref  
  Low (2551 0.8) 11.16 (6.65, 18.72) 6.7E-20 ref    
 Negative (310 483, 94.5) ref           

 P-value (trend) 1.2E-65    0.14       

18 High (1553, 0.5) 18.07 (11.03, 29.61) 1.5E-30 2.05 (0.70, 6.02) 0.19 2.69 (0.90, 8.09) 0.08 
 Inter (675, 0.2) 6.71 (2.36, 19.08) 3.6E-04 0.76 (0.18, 3.14) 0.70 ref  
  Low (855, 0.3) 8.83 (3.17, 24.57) 3.0E-05 ref    
 Negative (307 399, 93.6) ref        

 P-value (trend) 2.8E-34    0.14       
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Table 5: Continued.       

HPV type Viral load (N, %) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

35 High (330, 0.1) 19.30 (7.36, 50.60) 1.8E-09 2.97 (0.70, 12.70) 0.14 1.27 (0.41, 3.97) 0.68 
 Inter (848, 0.3) 15.16 (7.43, 30.91) 7.7E-14 2.34 (0.64, 8.52) 0.20 ref  
 Low (1032, 0.3) 6.49 (2.06, 20.43) 1.4E-03 ref    
  Negative (305 189, 92.9) ref           

  P-value (trend) 2.8E-23   0.09       

58 High (1483, 0.5) 18.46 (10.69, 31.89) 1.5E-25 10.33 (1.36, 78.49) 0.02 7.87 (1.03, 60.04) 0.05 
 Inter (595, 0.2) 2.35 (0.32, 17.34) 0.40 1.31 (0.08, 21.63) 0.85 ref  
 Low (781, 0.2) 1.79 (0.24, 13.15) 0.57 ref    
  Negative (302 329, 92.1) ref           

  P-value (trend) 1.8E-23   0.01       

45 High (919, 0.3) 9.56 (3.94, 23.17) 5.8E-07 0.85 (0.22, 3.32) 0.82 0.87 (0.22, 3.44) 0.84 
 Inter (749, 0.2) 11.03 (3.51, 34.68) 4.0E-05 0.98 (0.21, 4.62) 0.98 ref  
 Low (928, 0.3) 11.24 (3.62, 34.90) 2.8E-05 ref    
  Negative (299 734, 91.3) ref           

  P-value (trend) 1.4E-13   0.82       

52 High (1391, 0.4) 27.06 (14.70, 49.82) 3.6E-26 9.93 (2.86, 34.39) 3.0E-04 3.10 (1.12, 8.57) 0.03 
 Inter (1458, 0.4) 8.73 (3.31, 23.01) 1.2E-05 3.20 (0.75, 13.70) 0.12 ref  
 Low (1888, 0.6) 2.73 (0.82, 9.08) 0.10 ref    
  Negative (294 996 89.8) ref           

  P-value (trend) 3.7E-26    9.9E-05       

59 High (2164, 0.7) 18.65 (4.91, 70.94) 1.8E-05 3.62 (0.50, 26.11) 0.20 2.34 (0.39, 14.08) 0.35 
 Inter (1129, 0.3) 7.98 (2.10, 30.27) 2.3E-03 1.55 (0.21, 11.20) 0.66 ref  
 Low (1375, 0.4) 5.15 (1.08, 24.64) 0.04 ref    
  Negative (290 328, 88.4) ref           

  P-value (trend) 1.7E-06   0.20       

51 High (876, 0.3) 8.03 (2.36, 27.36) 8.7E-04 0.50 (0.07, 3.56) 0.48 0.70 (0.15, 3.38) 0.66 
 Inter (1466, 0.4) 11.42 (3.56, 36.65) 4.3E-05 0.70 (0.10, 4.86) 0.72 ref  
 Low (2292, 0.7) 16.21 (3.08, 85.18) 1.0E-03 ref    
  Negative (285 694, 87.0) ref           

  P-value (trend) 3.5E-10    0.55       

       



29 
 

Table 5: Continued.       

HPV type Viral load (N, %) OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

39 High (978, 0.3) 13.03 (4.72, 36.00) 7.4E-07 5.65 (1.07, 29.71) 0.04 1.48 (0.25, 8.68) 0.67 
 Inter (1008, 0.3) 8.83 (1.78, 43.85) 7.7E-03 3.83 (0.48, 30.33) 0.20 ref  
 Low (2122, 0.6) 2.31 (0.53, 10.09) 0.27 ref    
  Negative (281 587, 85.7) ref           

  P-value (trend) 9.6E-08    0.03       

56 High (750, 0.2) 7.18 (1.62, 31.72) 9.3E-03     
 Inter (446, 0.1)       
 Low (975, 0.3)       
  Negative (279 416, 85.1) ref           

  P-value (trend) 0.10           

68 High (591, 0.2) 4.21 (0.55, 32.39) 1.7E-01     
 Inter (469, 0.1)       
 Low (402, 0.1)       
  Negative (277 953, 84.6) ref           

  P-value (trend) 0.39           

 

Multiple HPV infections with types ranked higher in the hierarchy are excluded. 

Separate analyses are shown with low and intermediate viral loads as the reference category. 

a Highest ranked hrHPV type per woman 

OR: Odds Ratio, CI: Confidence Interval  
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Figure 1: ROC curve of cumulative sensitivity and specificity for CIN2+ and CIN3 according to 
hierarchical ordering of hrHPV genotypes. 

A receiver operator characteristic curve (ROC) showing the cumulative diagnostic ability of 13 high 

risk HPV (hrHPV) types is shown for outcomes CIN2+ and CIN3+ separately. Sensitivity and specificity 

for HPV types, in the order determined by sequentially maximizing the positive predictive values for 

both outcomes, and plotted against each other. Each hrHPV type is labeled on graph. (Exact values in 

Table 2 & Supplementary Table 2) 


