
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=ierk20

Expert Review of Cardiovascular Therapy

ISSN: 1477-9072 (Print) 1744-8344 (Online) Journal homepage: https://www.tandfonline.com/loi/ierk20

Invasive or non-invasive imaging for detecting
high-risk coronary lesions?

Kush Patel, Jason Tarkin, Patrick W. Serruys, Erhan Tenekecioglu, Nicolas
Foin, Yao-Jun Zhang, Tom Crake, James Moon, Anthony Mathur & Christos V.
Bourantas

To cite this article: Kush Patel, Jason Tarkin, Patrick W. Serruys, Erhan Tenekecioglu, Nicolas
Foin, Yao-Jun Zhang, Tom Crake, James Moon, Anthony Mathur & Christos V. Bourantas (2017)
Invasive or non-invasive imaging for detecting high-risk coronary lesions?, Expert Review of
Cardiovascular Therapy, 15:3, 165-179, DOI: 10.1080/14779072.2017.1297231

To link to this article:  https://doi.org/10.1080/14779072.2017.1297231

© 2017 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group

Accepted author version posted online: 17
Feb 2017.
Published online: 01 Mar 2017.

Submit your article to this journal Article views: 1336

View related articles View Crossmark data

Citing articles: 4 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=ierk20
https://www.tandfonline.com/loi/ierk20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/14779072.2017.1297231
https://doi.org/10.1080/14779072.2017.1297231
https://www.tandfonline.com/action/authorSubmission?journalCode=ierk20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=ierk20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/14779072.2017.1297231
https://www.tandfonline.com/doi/mlt/10.1080/14779072.2017.1297231
http://crossmark.crossref.org/dialog/?doi=10.1080/14779072.2017.1297231&domain=pdf&date_stamp=2017-02-17
http://crossmark.crossref.org/dialog/?doi=10.1080/14779072.2017.1297231&domain=pdf&date_stamp=2017-02-17
https://www.tandfonline.com/doi/citedby/10.1080/14779072.2017.1297231#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/14779072.2017.1297231#tabModule


REVIEW

Invasive or non-invasive imaging for detecting high-risk coronary lesions?
Kush Patela, Jason Tarkina,b, Patrick W. Serruysc,d, Erhan Tenekeciogluc, Nicolas Foine, Yao-Jun Zhangf, Tom Crakea,
James Moona, Anthony Mathura and Christos V. Bourantasa,g

aBarts Heart Centre, Barts Health NHS Trust, London, UK; bDivision of Cardiovascular Medicine, University of Cambridge, Cambridge, UK;
cThoraxcenter, Erasmus Medical Centre, Rotterdam, The Netherlands; dFaculty of Medicine, National Heart & Lung Institute, Imperial College,
London, UK; eNational Heart Centre Singapore, Duke-NUS Medical School, Singapore; fNanjing First Hospital, Nanjing Medical University, Nanjing,
China; gInstitute of Cardiovascular Sciences, University College London, London, UK

ABSTRACT
Introduction: Advances in our understanding about atherosclerotic evolution have enabled us to
identify specific plaque characteristics that are associated with coronary plaque vulnerability and
cardiovascular events. With constant improvements in signal and image processing an arsenal of
invasive and non-invasive imaging modalities have been developed that are capable of identifying
these features allowing in vivo assessment of plaque vulnerability.
Areas covered: This review article presents the available and emerging imaging modalities introduced
to assess plaque morphology and biology, describes the evidence from the first large scale studies that
evaluated the efficacy of invasive and non-invasive imaging in detecting lesions that are likely to
progress and cause cardiovascular events and discusses the potential implications of the in vivo
assessment of coronary artery pathology in the clinical setting.
Expert commentary: Invasive imaging, with its high resolution, and in particular hybrid intravascular
imaging appears as the ideal approach to study the mechanisms regulating atherosclerotic disease
progression; whereas non-invasive imaging is expected to enable complete assessment of coronary tree
pathology, detection of high-risk lesions, more accurate risk stratification and thus to allow a persona-
lized treatment of vulnerable patients.
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1. Introduction

Coronary artery disease (CAD) is the main cause of death in
the developing world [1]. Given the heavy burden that it
imposes on society and an individual’s health, it is imperative
to optimize and tailor the treatment of patients with CAD
based on their risk profile, prognosis, and comorbidities.
Over the last few years, a considerable effort has been made
to identify new treatments that have led to improvements in
outcomes in this population [2–4]. Despite these advances, the
incidence of recurrent events remains high [5]. To address the
unmet need for an optimal management of these high-risk
patients, new therapies have recently been developed and are
currently undergoing preclinical or clinical evaluation that aim
to reduce atherosclerotic disease progression and the risk of
future events [6]. Accurate risk stratification is therefore essen-
tial these days for quantifying an individual’s risk and tailoring
management. However, existing clinical scores have a low
accuracy at detecting high-risk patients [7,8]. To overcome
this, efforts are made to understand the pathophysiology of
CAD and the mechanisms associated with the formation of
high-risk lesions that predispose to future cardiovascular
events.

Pathological studies have demonstrated that acute coron-
ary syndromes (ACSs) are caused either by plaque rupture,

plaque erosion, or thrombosis in calcific nodules [9,10]. Our
understanding may be limited today about the morphological
characteristics of the plaques that will erode, or the calcific
nodules that will cause thrombosis, but we have extensively
studied the phenotypic characteristics of the lesions that will
rupture – which are responsible for 73% of all ACSs [11].
Majority of these lesions have specific morphological findings
collectively termed thin-capped fibroatheromas (TCFA). These
plaques exhibit an increased plaque burden, positive remodel-
ing and have a large necrotic core that is covered by a thin
fibrous cap (<65 µm) [12,13]. TCFA are also rich in macro-
phages, which can lead to plaque destabilization by secreting
matrix metalloproteinases that readily degrade collagen and
thin the fibrous cap leading to plaque rupture [11,12]. TCFA
also contain cholesterol crystals that can penetrate and disrupt
the fibrous cap and can promote the secretion of pro-inflam-
matory cytokines resulting in the activation of the immune
system [14,15]. Other plaque features associated with
increased vulnerability are intra-plaque hemorrhages and
microcalcifications [12,16].

The fact that high-risk TCFA have specific morphological
characteristics created hopes that their early identification
would enable detection of vulnerable lesions and potentially
identification of high-risk patients that would benefit from
therapeutic strategies that would lead to the passivation of
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these plaques [7]. Over the last few years, several invasive and
noninvasive imaging modalities have been developed to
study, with more accuracy, coronary anatomy, morphology,
biology, and physiology. The aim of this review article is to
describe the advantages and limitations of the invasive and
noninvasive techniques, the evidence from their first applica-
tions in the study of atherosclerosis, and discuss their poten-
tial value in risk stratification and secondary prevention.

2. Invasive coronary imaging

2.1. Intravascular ultrasound

Intravascular ultrasound (IVUS) is the first imaging modality
that enabled in vivo assessment of the luminal and outer
vessel wall dimensions, evaluation of plaque burden, and
characterization of its composition. This modality has been
extensively used over the last 25 years to further our under-
standing about the atherosclerotic process. Preliminary IVUS
studies showed that vulnerable plaques have focal manifesta-
tions and are mainly located proximally within the coronary
arteries and at coronary bifurcations [17–19]. IVUS also
enabled assessment of the effect of systemic and local factors
on the progression of atherosclerosis [20–24], allowed mor-
phologic comparison of symptomatic versus asymptomatic
plaque rupture, serial assessment of plaque evolution [25],
and the effect of different treatments on this process [26–28].

A preliminary IVUS-based study of coronary atherosclerosis
provided promise that this modality may allow accurate
assessment of the phenotypic characteristics of the plaque
and detection of lesions that are likely to progress and cause
major adverse cardiovascular events (MACE) [29]. However,
three prospective studies of atherosclerotic evolution casted
doubts about the accuracy of IVUS in detecting vulnerable
lesions. The Prospective Natural-History Study of Coronary
Atherosclerosis (PROSPECT) study was the largest study of its
kind that utilized radiofrequency analysis of the backscatter
IVUS signal and in particular IVUS-virtual histology (VH) to
assess plaque morphology and vulnerability in 697 patients
admitted with an ACS. All the studied patients had 3-vessel
IVUS-VH imaging immediately after treatment of the culprit
lesions and were followed up for a median of 3.4 years. On
multivariate analysis, a plaque burden >70%, a minimal lumen
area <4 mm2, and the presence of a TCFA phenotype were
predictors of vulnerable plaques that caused MACE at follow-
up. The positive predictive value of these three variables in
detecting vulnerable lesions was 18.2% [30].

Similar results were reported in VH-IVUS in Vulnerable
Atherosclerosis study, which included 170 patients admitted
with stable angina or an ACS that were referred for PCI and
underwent 3-vessel IVUS-VH imaging. The presence of TCFA as
identified by IVUS-VH was the only predictor of non-culprit
lesion-related MACE [31].

The Prediction of the Progression of Coronary Artery
Disease and Clinical Outcomes Using Vascular Profiling of
Shear Stress and Wall Morphology (PREDICTION) study was
the only prospective study that examined the implications of
the local hemodynamic forces on atherosclerotic disease pro-
gression. Five hundred and six patients with an ACS who had

PCI and 3-vessel grayscale IVUS imaging at baseline and
6–10 months follow-up were included in the analysis. The
IVUS data at baseline were fused with the angiographic
images to reconstruct coronary artery anatomy and blood
flow simulation was performed in the baseline models. Low
endothelial shear stress (ESS) at baseline was a predictor of
plaque progression and of lesions that required revasculariza-
tion at follow-up. An increased plaque burden and low ESS
enabled prediction of lesions that will require revascularization
with a positive predictive value of 41% [32].

Although these studies provided robust evidence that IVUS
can detect vulnerable lesions, they also revealed significant
limitations of intravascular imaging. First, in PROSPECT, IVUS
was not able to study the entire coronary tree and thus, it
assessed 53% of the lesions that caused events during the
follow-up period. Second, 10.6% of the recruited patients were
excluded from the PROSPECT and 33% from the PREDICTION
because of incomplete data. Third, majority of the events in
PROSPECT were unstable angina, rather than strong clinical
end points such as cardiac death and myocardial infarction;
whilst in PREDICTION, only 29% of the revascularizations were
related to clinical events, as in most patients the decision to
performed PCI was made based on the follow-up coronary
angiography. Fourth, intravascular imaging was associated
with a risk of complications – 1.6% of the patients in
PROSPECT and 0.6% of patients in PREDICTION had a compli-
cation attributed to IVUS imaging [30–32]. Lastly, although
IVUS was shown to be able to predict future events, its posi-
tive predictive value was quite low, 18.2% in PROSPECT and
41% in PREDICTION. As expected, these findings raised con-
cerns about the role of imaging in detecting vulnerable lesions
and created pessimism in the scientific community about the
clinical potential of intravascular imaging to stratify cardiovas-
cular risk [33,34].

2.2. Optical coherence tomography

Optical coherence tomography (OCT) with its high image
resolution (10–20 vs. 150 μm for IVUS) enables more detailed
assessment of vulnerable plaque morphology and visualiza-
tion of plaque micro-characteristics that cannot be detected
by IVUS imaging and are associated with increased vulnerabil-
ity such as the presence of macrophages [35], neovasculariza-
tion [36,37], and microcalcifications [38]. In addition,
compared to IVUS, OCT allows more reliable characterization
of plaque composition and estimation of fibrous cap thickness
in fibroatheromas [39,40].

OCT not only allows assessment of plaque phenotype but it
also enables evaluation of the effect of the local hemodynamic
forces on vessel morphology. A computational fluid dynamic
study that evaluated ESS in OCT-derived models showed that
segments exposed to low ESS have a larger lipid burden,
thinner fibrous caps, and higher prevalence of TCFA; findings
that support evidence from experimental studies show that
local hemodynamic forces contribute to the formation of vul-
nerable lesions [41].

Several studies used OCT to assess the prevalence and
distribution of vulnerable plaques in different populations
and in patients with different clinical presentations. Reports
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have shown that patients with renal failure are more likely to
have an increased lipid component, cholesterol crystals, calci-
fic tissue, and vessel wall disruptions [42], while these with a
history of diabetes and metabolic syndrome are more likely to
have plaques with an increased necrotic core component
compared to normal subjects [43]. Moreover, patients’ social
history and gender seem to also affect plaque morphology. A
3-vessel OCT imaging study showed that smokers were more
likely to have lipid-rich lesions and plaque disruptions [44],
while Kataoka et al. showed that female patients more often
have lesions with lower cholesterol and calcium content but a
higher incidence of plaque erosions [45]. Females also tend to
have different TCFA distribution compared to males: in males
TCFA were located in the proximal segments of the coronary
arteries, whereas in females they were more evenly distribu-
ted, a finding that provides mechanistic insights about the
higher incidence of revascularization and adverse events
noted in female patients undergoing bypass operation com-
pared to males [46].

In addition, patients admitted with a ST-elevation myocar-
dial infarction (STEMI) are more likely to have more vulnerable
plaques than those admitted with a non-ST-elevation myocar-
dial infarction (NSTEMI) or stable angina symptoms [47,48].

Although OCT has been extensively used to assess plaque
pathobiology, there is only one small study that investigated
its efficacy in identifying lesions that are likely to progress
and cause events. In this report, 53 patients were included;
all the studied patients had OCT imaging at baseline and at
7 months follow-up. During this period, 13 non-flow limiting
lesions exhibited disease progression. Lesions that pro-
gressed more often had vessel wall discontinuities (61.5%
vs. 8.9%, P < 0.01), neo-vessels (76.9% vs. 14.3%, P < 0.01),
lipid-rich plaques (100% vs. 60.7%, P = 0.02), TCFA pheno-
type (76.9% vs. 14.3%, P < 0.01), macrophages accumula-
tions (61.5% vs. 14.3%, P < 0.01), and intraluminal thrombi
(30.8% vs. 1.8%, P < 0.01) compared to those that remained
unchanged. This analysis demonstrated for the first time the
clinical implications of plaque micro-features, but it included
a small number of patients that did not allow assessment of
their additive value in predicting high-risk vulnerable pla-
ques [49].

OCT may has allowed evaluation of plaque characteristics
that are unseen by IVUS, but it also has significant limitations
in assessing plaque morphology. These include its low pene-
tration depth of 2–3 mm that restricts its reach to the internal
elastic lamina in heavily diseased vessels, its limited accuracy
to detect macrophages, its limited efficacy in differentiating
deeply embedded lipid cores from calcific tissue, and the fact
that it doesn’t allow reliable assessment of the distribution of
the plaque on vessel geometry [50,51].

2.3. Near-infrared spectroscopy

By analyzing the reflected infrared light from the coronary
wall, near-infrared spectroscopy (NIRS) can identify the chemi-
cal signature of lipid cores. Preliminary validation studies in
animal models have provided encouraging results, while the
first validation study of NIRS in human histological data has
showed that NIRS is able to detect lipid-rich lesions with high

accuracy (area under the curve, AUC: 0.86) [52,53]. These find-
ings were confirmed by more recent analyses showing that
NIRS is the best invasive imaging modality for the detection of
fibroatheromas [54–56].

Several reports validated the feasibility and reproducibility
of NIRS in vivo [57,58], and prospective studies used this
modality to examine the effects of interventional and pharma-
cological interventions on lipid burden [59,60]. However,
stand-alone NIRS failed to dominate in the clinical arena and
in the study of atherosclerosis as it has significant inherited
limitations. First, it can only detect the lipid component and it
cannot give information about the other plaque components.
In addition, NIRS does not enable visualization and assessment
of the lumen, outer vessel wall dimensions, and plaque bur-
den and lacks image depth resolution that enables localization
of the necrotic core within the plaque and differentiation of
TCFA from thick cap fibroatheromas. To overcome these lim-
itations, efforts were made to spectroscopically assess fibrous
cap thickness and develop dual-probe imaging catheters that
will provide simultaneous assessment of plaque characteristics
from two imaging modalities with complementary strengths,
thus enabling a more accurate characterization of plaque
pathobiology [61,62].

2.4. Multimodality imaging

Several histology-based studies have demonstrated that com-
bined intravascular imaging provides more reliable character-
ization of plaque composition [54,55,63,64]. Sawada et al. were
the first who used combined in vivo IVUS-VH–OCT imaging to
study plaque morphology. They demonstrated significant dis-
crepancies between the estimations of the two modalities
about plaque phenotype that were attributed to the inherited
limitations of each technique and concluded that combined
intravascular imaging may enable more reliable evaluation of
plaque characteristics (Figure 1) [65]. Since then, several other
researchers have used combined intravascular imaging to
study coronary atheroma and changed our understanding
about plaque evolution. Diletti et al. used serial combined
IVUS-VH–OCT imaging to study plaque characteristics in bifur-
cation lesions and found no difference in the fibrous cap
thickness and necrotic core component at 6 months follow-
up concluding that plaque evolution is a slow process and
contradicted the findings of a previous report that used serial
stand-alone IVUS to assess changes in plaque morphology at
1-year follow-up [25,66]. In another report, combined IVUS–
OCT imaging was used to assess plaques that ruptured and
caused events, plaques that had a silent rupture and non-
ruptured TCFAs. The authors showed that ruptured plaques
had thinner fibrous caps – assessed by OCT – while the lesions
that ruptured and caused events had a smaller lumen area and
an increased plaque burden – identified by IVUS – compared
to lesions that had a silent rupture. These findings indicate
that combined IVUS–OCT not only detects morphological dif-
ferences between these three groups but is also able to pre-
dict the natural course and the clinical implications of plaque
evolution [67]. In another study from the same research group,
multimodality IVUS–OCT imaging was used to assess plaque
morphology in angiographically significant (diameter stenosis
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>70%) lesions, in intermediate (diameter stenosis: 50–69%),
and in non-flow limiting lesions (diameter stenosis: 30–49%)
and showed that significant stenoses had a more vulnerable
phenotype with a higher prevalence of TCFA, thinner fibrous
caps, and a greater plaque burden compared to mild or
moderate stenoses [68]. These findings augmented the notion
that lesions with severe stenoses are more likely to rupture
and cause clinically significant events than mild or moderate
stenoses [69,70] and questioned the results of angiographic
studies conducted in 1980s suggesting that myocardial infarc-
tion is more likely to be caused by non-flow limiting
lesions [71].

IVUS–OCT, but also IVUS-NIRS and IVUS–angioscopic ima-
ging have been used to assess the effect of pharmacological
treatments on plaque morphology [60,72–76]. In the
Integrated Biomarkers Imaging Study (IBIS) 3 study, serial
IVUS–NIRS was used to assess the implications of aggressive
statin therapy (rosuvastatin 40 mg) on plaque characteristics
in 164 patients undergoing coronary angiography for clinical
purposes. Rosuvastatin therapy did not change the lipid com-
ponent (P = 0.074) but resulted in a decrease of the plaque
volume at follow-up (P = 0.006) [60]. These findings contradict
the results of previous smaller IVUS-angioscopic-based studies
which demonstrated that treatment with statins has an effect
not only on the plaque burden but also on its phenotype and
vulnerability [76,77]. In addition, the YELLOW study implemen-
ted serial NIRS–IVUS imaging to assess plaque characteristics
in obstructive lesions at baseline and after 7 weeks of treat-
ment with either rosuvastatin 40 mg or standard lipid therapy.
A significant reduction in the lipid component was noted in
patients receiving high-dose statin compared to standard
dose statin therapy (P = 0.01); this reduction however was
not associated with changes in the atheroma burden
(P = 0.86) [74].

Although it is acknowledged that multimodality imaging
enables more detailed assessment of plaque morphology, it is
also a tedious and time-consuming process and there are
concerns about its safety in the clinical arena. Taniwaki et al.
were the first to explore the safety and feasibility of combined
multivessel IVUS–OCT imaging. The authors presented data
from the IBIS 4 which included 103 patients admitted and
revascularized for a STEMI that underwent 3-vessel IVUS-VH–
OCT imaging at baseline and at 13 months follow-up [78].

Multimodality imaging was feasible in the majority of the
patients (at baseline IVUS-VH: 85.7%, OCT: 89.9%; and at fol-
low-up IVUS-VH: 84.8%, OCT: 86.6%). The intravascular ima-
ging-related complications rates were low: 1.9% at baseline
and 1.1% at follow-up. When the authors compared 2-year
follow-up outcomes between patients who had PCI with and
without multimodality intravascular imaging, they found no
difference in the incidence of MACE (16.7% vs. 13.3%,
P = 0.39). These findings suggest that multimodality intravas-
cular imaging is feasible and safe, even in high-risk patients
treated for STEMI.

Recently, industry has created hybrid catheters that com-
bine two imaging probes which enable a more detailed and
complete evaluation of coronary plaques. The TVC Imaging
System (InfraReDx, Burlington, Massachusetts) is the first clini-
cally available hybrid catheter and incorporates an IVUS and
NIRS imaging probe enabling simultaneous data acquisition
that is accurately co-registered in comprehensive images pro-
viding information about plaque composition and burden.
Madder et al. used NIRS–IVUS to study 20 culprit lesions in
patients presented with a STEMI and showed that an
increased lipid component (lipid core burden index in a 4-
mm segment, LCBI4 mm > 400) was able to differentiate the
culprit from the non-ruptured plaques with a high accuracy
(AUC: 0.90) [79]. These findings were echoed in a larger study
that demonstrated a sensitivity of 64% and a specificity of 85%
for LCBI4 mm > 400 in identifying culprit lesions that caused
STEMI [80]. The same research group replicated the above
study in patients who presented with a NSTEMI or unstable
angina and showed that larger lipid cores were present in the
culprit lesions of these patients as well, but in this setting,
LCBI4 mm > 400 had a lower sensitivity and specificity (63.6%
and 94.0% for NSTEMI and 38.5% and 89.8% for culprit lesion
causing unstable angina, respectively) [81]. These results cre-
ated hopes that hybrid imaging may enable accurate predic-
tion of plaques that are likely to progress and cause events
and currently, two prospective imaging studies, the PROSPECT
II (NCT02171065) and Lipid Rich Plaque studies
(NCT02033694), are recruiting patients and aim to examine
the efficacy of NIRS–IVUS in detecting vulnerable, high-risk
plaques.

Apart from the NIRS–IVUS catheter, several other hybrid
catheters have been designed and are currently undergoing

Figure 1. Efficacy of combined OCT – IVUS-VH imaging in assessing plaque morphology. (a) OCT frame showing a lipid-rich plaque with a thin fibrous cap. The
corresponding IVUS-VH frame is shown in panel (b). Fusion of these images enables complete assessment of plaque characteristics: OCT allows evaluation of plaque
composition and fibrous cap thickness while IVUS-VH provides quantitative information about plaque composition, quantification of plaque burden and estimation
of the remodeling pattern (c).
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preclinical evaluation. These include (1) the combined IVUS-
OCT, (2) the OCT-NIRS, (3) the OCT-near-infrared fluorescence
catheter (NIRF), (4) the IVUS-NIRF, (5) IVUS-intravascular photo-
acoustic (IVPA), and (6) the IVUS-time resolved fluorescence
spectroscopy catheter. Moreover, efforts are made to develop
other invasive imaging techniques such as intravascular mag-
netic resonance imaging (MRI) or Raman spectroscopy [82,83].
These modalities are expected to enable not only more accu-
rate evaluation of plaque morphology but also its biology and
predict atherosclerotic evolution (Figure 2) [61,62].

3. Noninvasive imaging

3.1. Computed tomographic coronary angiography

Computed tomographic coronary angiography (CTCA) has
been recently introduced as an attractive alternative for the
study of coronary atherosclerosis as it enables noninvasive
assessment of atheroma characteristics. Several histology and
intravascular-based imaging studies have shown that CTCA
allows accurate evaluation of the luminal and outer vessel
wall dimensions, assessment of plaque burden and remodel-
ing pattern, and characterization of its composition [85–92].
Reports have demonstrated that CTCA enables detection of
calcific tissue but it has a limited accuracy in differentiating
lipid from fibrotic tissue component [86,87,89,91,92]; while
recent histology-based studies have shown that CTCA –
despite its limited imaging resolution – allows characterization
of the phenotype of the plaque and detection of high-risk
vulnerable lesions – which on CTCA exhibit a napkin-ring
sign morphology – with high specificity but low sensitivity
[93,94].

Despite the limited accuracy of CTCA in evaluating plaque
morphology and composition, there is consistent evidence
that this modality is able to identify lesions that are likely to
progress and cause cardiovascular events [95–98]. Two retro-
spective studies conducted by Motoyama et al. that included
1059 and 3158 patients showed that the presence of attenu-
ated plaques and positive remodeling indicated plaque vul-
nerability [95,98]. These findings were confirmed by Otsuka
et al. in a retrospective analysis that included 895 patients
who underwent CTCA for suspected CAD and were followed
up for 2.3 years [96]. During this period, 24 ACSs occurred.
Positive remodeling, low attenuated plaques, and a napkin-
ring sign were predictors of vulnerable lesions. The sensitivity
and specificity of the napkin-ring sign in detecting lesions that
caused events was 41% and 97%, respectively, while the posi-
tive predictive value was 22%, which is slightly higher than the
positive predictive value of IVUS-derived plaque characteristics
reported in the PROSPECT study [30]. This is likely to be due to
the different study design (e.g. retrospective vs. prospective
design), the smaller follow-up period in the study of Otsuka
et al. (2.3 vs. 3.4 years), and to the different clinical presenta-
tions and baseline characteristics of the patients recruited into
these studies. The value of CTCA in detecting vulnerable
lesions is also supported by a recent retrospective analysis
which included 1650 patients with suspected CAD which
showed that lesions that caused cardiovascular events had
specific morphological characteristics on CTCA and in

particular increased plaque burden, lower attenuation, and a
smaller lumen area compared to those that remained silent
[97]. Nevertheless, all these studies were performed in patients
with suspected CAD and not in those with established CAD
who are likely to have extensive and advanced atherosclerotic
lesions; therefore, the efficacy of CTCA to detect vulnerable
lesions in this vulnerable population, who may be studied by
invasive imaging techniques, remains unclear.

In contrast to intravascular imaging, CTCA enables com-
plete assessment of coronary artery tree pathology, recon-
struction of the coronary arteries, and generation of three
dimensional (3D) geometries that can be processed with com-
putational fluid dynamic techniques to estimate vessel wall
biomechanics (Figure 3). Several reports used CTCA to exam-
ine the association between plaque morphology and local
hemodynamic forces and studies examined the value of
CTCA modeling in predicting atherosclerotic disease progres-
sion [99–101]. In the study of Bourantas et al. that included 32
patients admitted with an ACS who had CTCA imaging follow-
ing complete revascularization and at 3 years follow-up, low
baseline ESS was an independent predictor of lumen reduc-
tion (β = −0.47 95% confidence interval: −0.78 to −0.16;
P < 0.001) and plaque burden increase (β = 0.11, 95% con-
fidence interval: 0.02–0.21; P = 0.018) at follow-up [102]. These
findings were confirmed by the analysis of Sakellarios et al.
who simulated the LDL transport process into the vessel wall
and showed that increased LDL accumulation was indepen-
dently associated with a reduction in lumen area (β = −0.53,
95% confidence interval: −0.86 to −0.20; P = 0.002) and an
increase in plaque burden (β = 0.19, 95% confidence interval:
0.08–0.29; P < 0.001) [103]. The results of these two small scale
studies are promising and support the use of CTCA-based
modeling to assess vessel physiology; however, it is still
unclear whether the ESS estimated by CTCA can improve
prediction of high-risk plaques that will progress and cause
cardiovascular events.

3.2. Magnetic resonance imaging

Comparing to CTCA MRI has significant advantages in the
study of atherosclerosis as it enables better evaluation of
soft tissue characteristics, lacks of the blooming artifacts seen
in the calcified plaques, and does not require radiation expo-
sure. Although there is today convincing evidence about the
efficacy of MRI in assessing plaque morphology in the carotids,
its role in the study of coronary atherosclerosis is limited
[104,105]. This should be attributed to the fact that coronary
imaging requires increased imaging time to enhance spatial
resolution and the need to reduce motion arterfacts created
during the cardiac circle. The first studies investigating the
efficacy of MRI in detecting obstructive CAD demonstrated a
moderate accuracy [106] which however improved in recent
reports [107,108] that implemented advanced imaging but
remained inferior to CTCA [109]. Two studies compared the
plaque burden estimations of black-blood MRI and IVUS and
the first showed a good correlation between MRI and IVUS
estimations while in the other report, there was a weak asso-
ciation between MRI and IVUS [110,111].
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Several reports have examined the efficacy of MRI in
detecting plaque characteristics associated with increased vul-
nerability. The Multi-Ethnic Study of Atherosclerosis and the

Atherosclerotic Disease, Vascular Function, and Genetic
Epidemiology study have shown that black-blood MRI imaging
can detect positive remodeling [112,113]; while T1-weitghted

Figure 2. Output of the available hybrid imaging catheters: (a) combined NIRS-IVUS imaging, IVUS enables assessment of the lumen, outer vessel wall
dimensions and plaque burden while NIRS allows detection of the lipid component indicated with a yellow-orange color; (b) a typical example of a combined
OCT-NIRS image where spectroscopy enables reliable characterization of the composition of the plaque – the tissue extending from 4–7 o’clock could have been
classified as calcific tissue according to standalone OCT, nevertheless NIRS demonstrates an increased lipid component – and classifies the plaque as
fibroatheroma; (c, d) output of the combined IVUS-OCT catheter: (c) IVUS allows assessment of stent expansion and quantification of the lumen, stent, outer
vessel wall dimensions and plaque burden behind the stent, while (d) OCT enables detailed assessment of stent apposition, strut endothelisation, and detection
and classification of the endoluminal thrombus; (e) hybrid OCT-NIRF imaging performed after injection of the Prosense VM110 activatable marker, OCT allows
visualization of plaque characteristics while NIRF identifies the presence of cathepsins B which indicate increased protease activity and inflammation; (f)
combined IVUS-NIRF imaging after injection of the indocyanin green tracer which indicates macrophages accumulation; (g) hybrid IVUS-IVPA imaging, IVPA
allows reliable detection of lipid component – indicated with orange color – while IVUS allows assessment of the lumen and plaque morphology; and (h) hybrid
IVUS-TRFS imaging. TRFS provides assessment of the superficial plaque components and detection of collagen (orange color), macrophages and lipid component
(green color) while IVUS allows visualization of the lumen and quantification of the plaque burden. Images modified and obtained with permission from
Bourantas et al [62] and Abran et al [84]. Full color available online.
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MRI imaging studies have shown that this technique can
identify the presence of thrombus and high-risk plaques
[114,115]. T1-weighted imaging can also provide useful prog-
nostic information: in a study that included 568 patients with
suspected CAD, an increased coronary plaque intensity in T1-
weigthed imaging was independent predictor of future
adverse cardiovascular events at 55 months follow-up (hazard
ratio: 3.96; 95% confidence interval: 1.92–8.17; P < 0.001);
nevertheless, there is no data today about the efficacy of
MRI in detecting lesions that are likely to progress and cause
cardiovascular events [116].

3.3. Positron emission tomography

Molecular imaging using positron emission tomography (PET)
can be applied to detect inflammation and metabolic pro-
cesses occurring within atherosclerotic plaques, including
microcalcification, hypoxia, and neo-angiogenesis. PET is a
highly sensitive noninvasive nuclear imaging technique that
involves intravenous injection of radio-labeled tracers with a
range of molecular targets. PET scanners detect annihilation
events that occur as a result of beta-decay of the positron-
emitting radio-isotope and use this data to generate 2D or 3D
tomographic maps displaying the distribution of the radio-
ligand within the body at specific time points. As the spatial
resolution of PET is limited (roughly 5 mm), PET images are
typically fused with CT or MRI for accurate anatomical signal
localization.

Several PET ligands with established roles in clinical cancer
imaging have been repurposed for use in atherosclerosis
research. Of these PET tracers, 18F-fluorodeoxyglucose (FDG)
is the most well studied in atherosclerosis. 18F-FDG signals
within atherosclerotic plaques reflect the metabolic activity
of macrophages and therefore plaque inflammation. Indeed,
in vivo 18F-FDG uptake is strongly correlated with macro-
phages density within excised carotid plaques, as well as
gene expression associated with vascular inflammation

[117,118]. Vascular 18F-FDG signals have also been shown to
be significantly correlated with presence of traditional cardio-
vascular risk factors (e.g. older age, smoking, hypertension,
diabetes mellitus, and hyperlipidemia) and are elevated in
patients with systemic inflammatory conditions conferring
increased cardiovascular risk, such as rheumatoid arthritis
and psoriasis [119–121]. Data from the prospective Dublin
Carotid Atherosclerosis Stroke Study showed that increased
carotid artery 18F-FDG uptake can identify patients with
increased risk of early stroke recurrence, independent of age
and stenosis severity (Figure 4a,b) [122]. Moreover, a retro-
spective study of imaging from 513 cancer-free patients exam-
ined over a 4-year period found that aortic 18F-FDG uptake
strongly predicted risk of cardiovascular events independent
of traditional risk factors (hazard ratio: 4.71, P < 0.001), with
nearly 30% net reclassification improvement over Framingham
risk score in the highest risk group [123].

Although 18F-FDG PET has well-established, evidence-based
roles for imaging vascular inflammation, there are several
limitations to this technique in atherosclerosis. First, as most
metabolically active cells take up glucose, it is unclear how
much of the observed signal is influenced by cells other than
macrophages within plaques, including neutrophils, lympho-
cytes, endothelial cells, and vascular smooth muscle cells.
Vascular 18F-FDG signal intensity is also significantly influ-
enced by plaque hypoxia and therefore might not be purely
representative of inflammation per se [125]. Perhaps most
importantly, using 18F-FDG to image the coronary vasculature
is particularly difficult because of high background myocardial
uptake of 18F-FDG, even with strict dietary manipulation or
prolonged fasting [126]. Nonetheless, in a feasibility study of
coronary 18F-FDG imaging, increased tracer uptake was
observed in proximal culprit coronary lesions in patients with
ACS compared to non-culprit lesions in patients with stable
angina [127]. Several other PET tracers have been tested for
use in atherosclerosis imaging, which might offer more speci-
fic markers of inflammation than 18F-FDG or provide better

Figure 3. A case example that highlights the role of CTCA in assessing plaque morphology and physiology.The raw CTCA data demonstrates two tight lipid-rich
lesions in the ostium (a) and the proximal segment (b) of the left anterior descending artery. Panels (a‘) and (b’) portray the cross sections with the minimal lumen
area, their locations in panels (a) and (b) are indicated with asterisks. The annotated borders in the CTCA were used to reconstruct coronary artery anatomy, (c)
assess the distribution of the plaque in the model (red indicates lipid tissue, green fibrotic, light-green fibrofatty and white calcific tissue) and perform blood flow
simulation, estimate the local hemodynamic forces and their association with plaque morphology (d). Full color available online.
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methods for coronary artery imaging owing to inherently low
myocardial tracer activity. These include 18F-fluorodeoxyman-
nose, the somatostatin receptor subtype-2 PET ligand 68Ga-
DOTATATE, 11F-fluorocholine, and transient receptor protein
receptor tracers, including 11C-PK11195 [128–131].

Aside from inflammation, several other pathogenic
mechanisms of atherosclerosis can be imaged using PET,
including microcalcification, hypoxia, neo-angiogenesis, hema-
topoiesis, and HDL accumulation [126,132–135]. For example,
early vascular calcification occurring in response to intense
plaque inflammation, and below the resolution of CT, can be
detected using 18F-sodium fluoride (NaF) PET. In carotid pla-
ques, 18F-NaF binding takes place in areas of pathological
mineralization and is related to the surface area of exposed
hydroxyapatite (Figure 4c,d) [136]. Increased vascular 18F-NaF
accumulation has also been shown to occur during early
stages of neointima thickening, while a prospective clinical
study showed that plaque microcalcification detected by 18F-
NaF PET enabled accurate identification of culprit coronary
lesions in patients with a myocardial infarction [126,137]. The
ongoing multicenter Prediction of Recurrent Events With 18F-
Fluoride (PREFFIR, NCT02278211) study aims to evaluate the
prognostic value of coronary 18F-NaF PET-CT imaging in 700
patients with myocardial infarction and proven multivessel
CAD followed up over 2 years.

4. Expert commentary

Imaging of coronary atherosclerosis has provided unique
insights about atherosclerotic evolution and has enabled in
vivo identification of vulnerable, high-risk plaques (Table 1).

Prospective invasive imaging-based studies have shown that
IVUS has a low accuracy in detecting these lesions, but this
increases considerably when the local hemodynamic patterns
are included in the prediction model (Figure 5) [138]. These
findings highlight the need for a complete and detailed eva-
luation of plaque morphology, physiology, and biology to
predict its evolution. Invasive imaging – with its high resolu-
tion – and in particular hybrid intravascular imaging appears
as the ideal approach to study atherosclerotic disease progres-
sion and detect vulnerable plaques. Emerging hybrid dual-
probe catheters are anticipated to allow precise assessment
of plaque characteristics and evaluation of the interplay
between plaque micro-features that are unseen by stand-
alone IVUS – such as neovessels (given by IVPA), inflammation
(provided by NIRF), macrophages (detected by IVPA), or cho-
lesterol crystals detected by OCT – and established markers of
plaque vulnerability, such as plaque burden, lipid component,
and ESS and their synergistic effect on the formation of high-
risk lesions. Hybrid intravascular imaging is also anticipated to
shed light into the pathophysiological mechanisms that are
involved in plaque erosion and allow us to appreciate the role
of microcalcification and cholesterol crystals on plaque desta-
bilization. Finally, hybrid intravascular imaging may also
enable prediction of the clinical implications of plaque rupture
and differentiation of the lesions that will rupture and cause
cardiovascular events from those that will sustain a clinically
silent rupture. Considering the limitations of intravascular
imaging that restricts its broad use – i.e., the increased time
required for the processing of the acquired data, the fact that
it can be used only in symptomatic patients undergoing cor-
onary angiography for clinical purposes and that it does not

Figure 4. Representative images of vascular PET-CT imaging of disease activity in patients with atherosclerosis. Top: CT (a) and 18F-fluordeoxyglucose (FDG) PET-CT
(b) images from a patient with recent transient ischemic attack resulting from a symptomatic right internal carotid artery stenosis (circle) demonstrating an intense
focal inflammatory signal (arrow) on PET imaging. Bottom: CT (c) and 18F-sodium fluoride (NaF) PET-CT (d) images from a patient with stable angina showing high
tracer uptake representing micro-calcification in relation to left anterior descending artery atherosclerosis (arrows), as well as the ascending aorta (arrowhead).
Figure adapted from Tarkin et al [124].
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enable complete assessment of coronary artery tree – future
intravascular imaging studies assessing vulnerable lesions are
anticipated to include small number of patients and focus on
the mechanisms regulating atherosclerotic disease
progression.

On the other hand, CTCA overcomes these limitations and
carries a unique potential for the conduction of large scale out-
come studies. Several software have been developed for the fast
processing of CTCA imaging data, coronary reconstruction, and
blood flow simulation [85,87,139] and evidence supports the use
of CTCA in detecting vulnerable plaques in low risk patients [95–
98]; nevertheless, there is lack of prospective data, and the
efficacy of CTCA in identifying vulnerable lesions in patients
with established CAD and extensive atherosclerotic burden
remains unclear. Future studies are anticipated to explore the
efficacy of CTCA in detecting vulnerable lesions in high-risk
patients and the additive value of PET imaging in this challen-
ging setting. Positive results are likely to change clinical practice
and justify the focal treatment of vulnerable lesions not only with
novel endovascular devices with a better safety profile, but also
with nanotechnology-based therapies that target high-risk pla-
ques and modify vulnerable plaque physiology [7,140,141].

Irrespective of the potential value of invasive and noninvasive
imaging in detecting lesions that will progress and cause events,
cumulative evidence has demonstrated that imaging of athero-
sclerosis may also be useful in stratifying cardiovascular risk and
detecting high-risk patients that are likely to suffer a cardiovascu-
lar event. Angioscopic, IVUS, and NIRS-based studies have shown
that plaque imaging can provide useful prognostic information

[142–145]. However, the above studies included a small number of
patients and therefore, the number of events reported was too
small to allow us to examine the additive predictive value of
intravascular imaging over clinical or angiographic variables.

In parallel, several retrospective analyses have demon-
strated that CTCA-based imaging provides useful prognos-
tic information and enables detection of patients that are
likely to suffer a cardiovascular event amongst individuals
with suspected CAD [95–98,146,147]. In patients with
established CAD, a small scale study showed that CTCA-
derived variables were predictors of MACE at 5-year follow-
up and improved considerably the prognostic accuracy of
the model developed from the clinical variables (from 0.68
to 0.76) [148]. However, the small number of the reported
events and the fact that this analysis did not take into
account the angiographic variables associated with clinical
outcomes (i.e. the Syntax score, or the residual Syntax
score) did not allow us to draw safe conclusions about
the additive prognostic value of CTCA in this population
[149–152].

The accurate risk stratification and identification of
high-risk individuals has recently attracted attention as
several new therapies have been introduced that appear
capable of modifying atherosclerotic disease progression
[6,153]. Nevertheless, all these new therapies have signifi-
cant limitations either from administration route (intrave-
nous or subcutaneous), from side effects (bleeding,
infection, or bone marrow suppression), or cost. Invasive
or noninvasive imaging may have a role in this setting and

Figure 5. Efficacy of plaque characteristics and vessel physiology in detecting lesions prone to progress. (a) In the PROSPECT study an increased plaque burden, a
TCFA phenotype and a minimum lumen area <4 mm2 were able to detect lesions that will progress and cause events with a positive predictive value of 18.2%. (b) In
the PREDICTION study the positive predictive value of the model built from the plaque burden and ESS was 41% and increased considerably to 53% after including
information about the composition of the plaque. Panels a and b were obtained with permission from Stone et al [30] and Papafaklis et al [138].
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facilitate accurate risk stratification and detection of high-
risk patients that would benefit from an individualized,
aggressive treatment for coronary atherosclerosis.

5. Five-year view

Future hybrid intravascular imaging-based studies are
expected to shed light into the mechanisms regulating ather-
osclerotic evolution and predict more accurately lesions that
will progress and cause cardiovascular events. Noninvasive
imaging and in particular CTCA or combined PET-CTCA ima-
ging are anticipated to have increased applications in the
study of atherosclerosis and used to identify noninvasively
vulnerable plaques and stratify more accurately cardiovascular
risk. Future studies sought also investigate the clinical feasi-
bility and cost-effectiveness of noninvasive imaging in identi-
fying vulnerable patients and guiding treatment in patients
with established CAD.

6. Key issues

● Intravascular imaging modalities enable assessment of pla-
que characteristics and can identify with low accuracy lesions
that are likely to progress and cause cardiovascular events

● Combined intravascular imaging appears able to overcome
limitations of standalone imaging modalities and provide
detailed and complete assessment of plaque pathobiology

● CTCA can assess atherosclerotic disease burden in the
entire coronary tree, identify plaque features related with
increased vulnerability and provide useful prognostic infor-
mation in low risk-individuals

● PET imaging provides complementary information to CTCA
as it enables non-invasive assessment of plaque inflamma-
tion and biology

● Future studies sought to evaluate the value of CTCA, MRI or
PET-CTCA imaging in stratifying cardiovascular risk in
patients with established CAD
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