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Abstract: Our previous research has indicated that the bonded strength can be 

expressed in terms of the intensity of the singular stress field (ISSF). Since the 

ISSF is quite useful for evaluating the bonded strength, in this study, the variation 

of the ISSF is investigated over the entire bondline thickness range of plate and 

cylinder butt joints. Here, an effective mesh-independent technique combined 

with a standard FEM approach is used to obtain the ISSFs under arbitrary material 

combinations. A reference solution of simply bonded plate is used to eliminate 

FEM error since the exact ISSF is available. This paper clarifies the differences 

between the fracture behaviors of the bonded plate and cylindrical butt joints. 

Key Words: Adhesive joint, Debonding, Intensity of Singular Stress Field, Finite 

Element Method, Fracture Mechanics 

Nomenclature 

𝐸𝐸 Young’s modulus 

𝑒𝑒min Minimum element size 

𝐹𝐹𝜎𝜎𝐶𝐶 ISSF of bonded cylinder normalized by W,  = 𝐾𝐾𝜎𝜎𝐶𝐶/𝜎𝜎𝑊𝑊1−𝜆𝜆 

𝐹𝐹𝜎𝜎𝐶𝐶∗ ISSF of bonded cylinder normalized by h,  = 𝐾𝐾𝜎𝜎𝐶𝐶/𝜎𝜎ℎ1−𝜆𝜆 
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𝐹𝐹𝜎𝜎𝑃𝑃 ISSF of bonded plate normalized by W,  = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎𝑊𝑊1−𝜆𝜆 

𝐹𝐹𝜎𝜎𝑃𝑃∗ ISSF of bonded plate normalized by h,  = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆 

𝐺𝐺 Shear modulus 

𝐾𝐾𝜎𝜎𝐶𝐶  ISSF for bonded cylinder 

𝐾𝐾𝜎𝜎𝑃𝑃  ISSF for bonded plate 

𝐾𝐾𝜎𝜎𝜎𝜎 Critical ISSF at debonding fracture 

h Bondline thickness  

r Distance from the interface end 

𝑢𝑢𝑟𝑟0𝐶𝐶𝐶𝐶𝐶𝐶 Real radial displacement of bonded cylinder 

𝑊𝑊 Plate width and radius of bonded cylinder 

𝛼𝛼,𝛽𝛽 Dundurs’ parameters 

𝜀𝜀𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 ,𝛾𝛾𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  FEM strain of bonded cylinder at interface end 

𝜀𝜀𝑖𝑖0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 ,𝛾𝛾𝑥𝑥𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  FEM strain of bonded plate at interface end 

𝜃𝜃 Angle from the corner on the interface  

𝜆𝜆 Singular index 

𝜈𝜈 Poisson’s ratio 

𝜎𝜎𝜎𝜎 Adhesive tensile strength 

𝜎𝜎𝑗𝑗𝐶𝐶 , 𝜏𝜏𝑟𝑟𝑟𝑟𝐶𝐶  Real stress of bonded cylinder 

𝜎𝜎𝑖𝑖𝑃𝑃, 𝜏𝜏𝑥𝑥𝑥𝑥𝑃𝑃  Real stress of bonded plate 

𝜎𝜎𝑖𝑖0,𝐹𝐹𝐹𝐹𝐹𝐹,𝜏𝜏𝑥𝑥𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹 FEM stress at interface end

𝜎𝜎𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 ,𝜏𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  FEM stress of bonded cylinder at interface end 

𝜎𝜎𝑖𝑖0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 ,𝜏𝜏𝑥𝑥𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  FEM stress of bonded plate at interface end 

𝜎𝜎�𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 ,�̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  Non-singular FEM stress of bonded cylinder at interface end 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 Real stress at interface end 

𝜎𝜎𝑥𝑥∞, 𝜎𝜎𝑟𝑟∞ Uniform applied stress 

1. Introduction

Adhesive joints are widely used in numerous industrial sectors, such as

automobile, shipbuilding and aeronautics [1-3]. Compared with the other 

traditional joints, adhesive joints have advantages of light weight, low cost and 
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easy to process. However, different material properties cause singular stress at the 

interface end, which may lead to debonding failure in structures[4-12]. The 

bonded strength can be expressed in terms of the intensity of the singular stress 

field (ISSF). The ISSF Kσ and the normalized ISSF Fσ can be determined from the 

interface stress as shown in Eq. (1) [13, 14] by using the local polar coordinate 

( , )r θ  indicated in Fig.1 (a), (b).  

1

0 2
 lim ( )

r
ISSF K r rl

πσ θ θ
σ−

=→

 = ×  
, Normalized ISSF Fσ =  1

K
W

σ
lσ −     (1) 

Since the singular index 𝜆𝜆 ≠  0.5 different from the singular index for cracks 

𝜆𝜆 = 0.5, the term ISSF (=Intensity of Singular Stress Field) is used instead of SIF 

(=Stress Intensity Factor) usually used for cracks generally.  

 

 

(c) Cylinder butt joint 

Fig.1. Adhesive butt joints (Fig.1(b) is equivalent to Fig.1(a) when 
h/W≤0.01 in Fig.1(a)) 

(b) Semi-infinite butt joint (a) Plate butt joint 
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Fig.2 (a) shows the adhesive joint strength for plate butt joint expressed as 

the critical remote tensile stress 𝜎𝜎𝜎𝜎 [15]. It is known that the debonding stress 

increases with decreasing the adhesive thickness [15-19]. In Ref. [19], the effect 

of joint component mechanical properties and adhesive layer thickness on stress 

concentration was discussed for a bonded cylindrical specimen. In Ref. [7-9] the 

ISSF is considered under arbitrary material combinations for h/W=0.1 and 0.001. 

Our previous studies have indicated that the normalized ISSF decreases with 

decreasing the bondline thickness as shown in Fig. 2(b) under tension [7] and 

under bending [8, 9]. From the critical remote tensile stress shown in Fig. 2(a), 

(b), the critical ISSF can be calculated when the debonding occurs. As shown in 

Fig. 3, the debonding strength can be expressed as a constant value of ISSF [12, 

20].  

 

 

(a) Critical remote tensile stress 𝜎𝜎𝜎𝜎 [15] (b) Normalized ISSF 𝐹𝐹𝜎𝜎 under constant 𝜎𝜎 [12] 
Fig. 2 Relationship between critical remote tensile stress 𝜎𝜎𝜎𝜎, 

normalized ISSF 𝐹𝐹𝜎𝜎 and bondline thickness ℎ 



5 

 

From the above discussion, it is seen that the solution for ISSF shown in Fig. 

2(b) is quite useful for evaluating the adhesive strength. For large adhesive 

thickness h, the normalized ISSF 𝐹𝐹𝜎𝜎 becomes constant as shown in Fig. 2(b), and 

therefore can be estimated easily for any material combibation (see Appendix A 

[14]). However, for small bondline thickness h, which is necessary for evaluating 

normal adhesive layers, the normalized ISSF 𝐹𝐹𝜎𝜎 decreases with decreasing h and 

does not become constant. In this paper, therefore, the ISSF vs. h relation will be 

clarified mainly focusing on the small adhesive thickness. As a three-dimensional 

fundamental solution, the cylindrical butt joint in Fig. 1(c) is also considered to be 

compared with plate butt joint. The aim of this paper is to provide the solutions of 

ISSFs useful for evaluating the adhesive joint strength. In this study, arbitrary 

material combinations will be considered for the future use of adhesive joint in 

wide engineering fields.   

 

2. Mesh-independent technique to evaluate the ISSF of plate butt joint  

 
In this section, a mesh-independent technique will be explained for the 

readers to understand how to obtain accurate ISSFs although similar methods 

have been used in [9, 12, 20]. In the first place, a plate butt joint as shown in Fig. 

1(a) is considered. When the bondline thickness ℎ is significantly less than the 

Fig.3 Relationship between Kσc and h[12] 
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adhesive width 𝑊𝑊( / 0h W → ), the solution may be regarded as the bonded semi-

infinite plate as shown in Fig. 1(b). It is known that the interface stress 𝜎𝜎𝑖𝑖𝑗𝑗(𝑖𝑖𝑖𝑖 =

𝑟𝑟𝑟𝑟, 𝑟𝑟𝜃𝜃,𝜃𝜃𝜃𝜃)   at the edge can be expressed in the form 𝜎𝜎𝑖𝑖𝑗𝑗 ∝ 1/𝑟𝑟1−𝜆𝜆  when

( )2 0α α β− > . Notations 𝛼𝛼 and 𝛽𝛽 denote Dundurs’ parameters [21] expressed by 

Poisson’s ratio ν and shear modulus 𝐺𝐺, and notation 𝜆𝜆 denotes the singular index 

at the interface expressed as the root of the following equations [22, 23].  

 

( )22
2 2 2 22 2 2 2 2sin 2 sin 1 0

2 2
sin

4
π π

l l β l l l αβ l l α
lπ

− + − + − + =
                      

    (2) 

1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1

( 1) ( 1) ( 1) ( 1)
( 1) ( 1) ( 1) ( 1)

G G G G
G G G G

κ κ κ κα β
κ κ κ κ

         
+ − + − − −=  =
+ + + + + +

        (3)                  

( )

( )
( )

3

1 1,2

3 4

j

jj

j

plane stress
j

plane strain

n

nκ

n

−
  

+=  =

−   







                 (4) 

 

The ISSF Kσ  at the adhesive dissimilar joint end is defined from the real 

interface stress real
yσ as shown in equation (5). 

( )1

0
lim
r

real
yISSF K r rl

σ σ−

→
 =   , but ( )1

0
lim
r

FEM
yISSF K r rl

σ σ−

→
 ≠      (5) 

However, the ISSF cannot be easily determined by FEM since real interface 

singular stress real
yσ  is different from the FEM stress FEM

yσ , which is largely 

depending on the mesh size. In the previous papers [8, 9, 12], therefore, the FEM 

stress ratio (Re )/FEM FEM
y y fσ σ was considered by using a reference problem which has 

been solved very accurately in the previous study. It should be noted that the FEM 

stress ratio of the unknown reference problems is independent of the mesh size if 

the same FEM mesh is applied. This is because the FEM errors of two problems 

are nearly the same. As the reference solution, a simply bonded plate can be used 

since the ISSF has been analysed very accurately by using the body force method 

[14] (see Appendix A). Since the FEM stress ratio and the reference solution are 

very accurate, the new results also can be obtained very accurately. 

In this study, the ISSF of a simply bonded plate will be used as the reference 

problem, as is shown in Equation (6). 
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1

10 0
(Ref.) (Ref.)(Ref.)

real FEM
y y

FEMrealr r
yy

lim lim
rK

K r

l

σ
l

σ

σ σ
σσ

−

−→ →

 
 = =

 
 

     (6) 

 

Here, the subscript (Ref.) denotes the ISSF or the stress for reference problem. 

The finite element analysis is carried out for the butt joints by using the 

commercial software ANSYS 16.2. Fig. 4 (a), (b) shows the FEM mesh for the 

butt joint for h/W=0.001 and the bonded plate for h/W=1. Because of symmetry, 

quarter models are considered for analysis. The finite-element mesh consists of 

two-dimensional four-node element named PLANE42 and finer subdivisions are 

used around the interface end. As shown in Figure 4 (b), the same mesh division 

pattern is used to eliminate FEM error. The total number of elements have to be 

larger if the adhesive layer is thin since the interaction between the two interface 

ends becomes larger. Therefore, the total number of elements 196794 is necessary 

for h/W=0.001, but the total number of elements 2560 is enough for h/W=1. Table 

1 shows an example of stress ratio for the butt joint over the bonded plate by using 

the mesh in Fig.4 with different minimum mesh sizes emin. In Table 1 it should be 

noted that  𝜎𝜎𝑥𝑥mat1=𝜎𝜎𝑥𝑥mat2, 𝜏𝜏𝑥𝑥𝑥𝑥mat1=𝜏𝜏𝑥𝑥𝑥𝑥mat2 but 𝜎𝜎𝑥𝑥mat1 ≠ 𝜎𝜎𝑥𝑥mat2, 𝜎𝜎𝑟𝑟mat1 ≠ 𝜎𝜎𝑟𝑟mat2 at 

the interface. Here 𝜎𝜎𝑖𝑖𝑗𝑗mat1 denotes the stress for matrial 1 and 𝜎𝜎𝑖𝑖𝑗𝑗mat2 denotes the 

stress for matrial 2.  

As shown in Table 1, however, all the stress components ratios σij
P/σij

REF are 

continuous across the interface and coincide with each other. The results are 

independent of the element size when the mesh independent technique is 

employed by using the same FEM mesh pattern. 
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2. Effect of bond line thickness on the ISSF for plate butt joint 

In the previous papers [7-9, 20] for the plate butt joint as shown in Fig.1 (a), 

the normalized ISSF for bonded plate 𝐹𝐹𝜎𝜎𝑃𝑃 was defined in Equation (7).  

Table 1 Mesh-independent FEM stress ratio 𝜎𝜎𝑖𝑖𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 /𝜎𝜎𝑖𝑖𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑅𝑅𝐹𝐹𝐹𝐹  when 
E1=1000,𝜈𝜈1=0.23, E2=105.06,𝜈𝜈2=0.32,h/W=0.001 

 
 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝐹𝐹𝐹𝐹  𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝐹𝐹𝐹𝐹  𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃 /𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝐹𝐹𝐹𝐹  𝜏𝜏𝑥𝑥𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃 /𝜏𝜏𝑥𝑥𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹
𝑅𝑅𝐹𝐹𝐹𝐹  

Material Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 
𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 =2.5-15 0.3604 0.3603 0.3604 0.3604 0.3604 0.3603 
𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 =2.5-18 0.3604 0.3604 0.3604 0.3604 0.3604 0.3603 

Fig.4 FEM mesh for the plate butt joint h/W=0.001  

and simply bonded plate h/W=1 

(a) FEM model 

(b) Detail around the interface end 



9 

Normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃 = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎𝑊𝑊1−𝜆𝜆.            (7) 

In Equation (7), the ISSF for bonded plate 𝐾𝐾𝜎𝜎𝑃𝑃 is normalized in terms of the 

remote tensile stress 𝜎𝜎 and the plate width 𝑊𝑊. This is because the ISSF is 

controlled by the width 𝑊𝑊. Namely, if 𝑊𝑊 becomes larger, the ISSF becomes 

larger. 

However, if the bondline thickness ℎ is small, the width 𝑊𝑊 does not affect 

the ISSF 𝐾𝐾𝜎𝜎𝑃𝑃 anymore. Consider a small adhesive thickness joint as shown in 

Fig.1 (b), which has two singular poits at the two interface ends. If ℎ becomes 

smaller, the interaction between two interface ends becomes larger. Therefore, the 

ISSF is controlled by ℎ  instead of 𝑊𝑊, and therefore the ISSF 𝐾𝐾𝜎𝜎𝑃𝑃 should be 

normalized  by ℎ  instead of 𝑊𝑊.  In other words, for small ℎ, the butt joint in 

Fig.1 (a) can be regarded as the bonded semi-infinite plate as shown in Fig.1 (b). 

In this case, the ISSF 𝐾𝐾𝜎𝜎𝑃𝑃 in Fig. 1 (b) should be normalized in terms of the 

remote tensile stress 𝜎𝜎 and the adhesive thickness ℎ as shown in Equation (8). 

Normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃∗ = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆.             (8) 

Table 2 shows 𝐹𝐹𝜎𝜎𝑃𝑃  values and normalized value of 𝐹𝐹𝜎𝜎𝑃𝑃/𝐹𝐹𝜎𝜎𝑃𝑃|h/W→∞. Fig.5 

shows 𝐹𝐹𝜎𝜎𝑃𝑃 vs. h/W relation for several material combinations. As shown in Table 

2 and Fig.5, when h/W≥ 1, the normalized ISSFs 𝐹𝐹𝜎𝜎𝑃𝑃 are always the same. This 

is due to Saint’-Venant’s Principle stating that the effects of two different but 

statically equivalent loads are the same at sufficiently large distances from load, 

that is, h/W≥ 1. As shown in Table 2, the normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃 has the same 

value in the range h/W≥ 1 since the thickness effect can be negligible.  

Table 3 shows 𝐹𝐹𝜎𝜎𝑃𝑃∗ values and Fig.6 shows 𝐹𝐹𝜎𝜎𝑃𝑃∗ vs. h/W relation. It is seen 

that when the bondline thickness is small, the 𝐹𝐹𝜎𝜎𝑃𝑃∗  value always becomes 

constant. The plate butt joint in Fig.1 (a) can be regarded as a bonded semi-

infinite plate in Fig.1 (b) when the relative bondline thickness h/W≤0.01. From 

Fig.5 and Fig.6, it is found that 𝐹𝐹𝜎𝜎𝑃𝑃∗ = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆  is more suitable for small h 

since 𝐹𝐹𝜎𝜎𝑃𝑃∗ is insensitive to /h W  compared to 𝐹𝐹𝜎𝜎𝑃𝑃 = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎𝑊𝑊1−𝜆𝜆.  As shown in 

Table 3, the normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃∗  has almost the same value in the range 

h/W≤0.01 within 0.6% deviation and in the range h/W≤0.1 within 10% deviation 

since the width effect is smaller.  

Table 4 and Fig. 7 show the normalized ISSFs 𝐹𝐹𝜎𝜎𝑃𝑃∗ under arbitrary material 

combinations useful for h/W≤0.01 and within 10% error for h/W≤0.1. Since the 

solution for bonded plate h/W≥1.0 is indicated in Appendix A, the accurate 
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results can be obtained by the interpolation in the range for 0.01≤h/W≤1.0 under 

arbitrary material combination. 

 

Table 2 𝐹𝐹𝜎𝜎𝑃𝑃 and 𝐹𝐹𝜎𝜎𝑃𝑃/𝐹𝐹𝜎𝜎𝑃𝑃|h/W→∞ of butt joint with varying the 
bondline thickness 

𝐹𝐹𝜎𝜎𝑃𝑃 
     (α,β) 

h/W (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0) 

0.001 0.416 0.152 0.275 0.490 0.095 0.173 
0.002 0.435 0.167 0.295 0.511 0.107 0.191 
0.005 0.462 0.188 0.324 0.540 0.126 0.219 
0.01 0.484 0.208 0.349 0.563 0.144 0.244 
0.05 0.545 0.267 0.421 0.627 0.199 0.316 
0.1 0.582 0.306 0.464 0.662 0.236 0.361 
0.5 0.745 0.538 0.659 0.787 0.473 0.573 
1 0.794 0.612 0.716 0.821 0.548 0.633 

10 0.796 0.615 0.718 0.822 0.551 0.635 
→∞ 0.796 0.615 0.718 0.822 0.551 0.635 

𝐹𝐹𝜎𝜎𝑃𝑃/𝐹𝐹𝜎𝜎𝑃𝑃|h/W→∞ 
     (α,β) 

h/W (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0) 

0.001 0.523  0.247  0.383  0.596  0.172  0.272  
0.002 0.546  0.272  0.411  0.622  0.194  0.301  
0.005 0.580  0.306  0.451  0.657  0.229  0.345  
0.01 0.608  0.338  0.486  0.685  0.261  0.384  
0.05 0.685  0.434  0.586  0.763  0.361  0.498  
0.1 0.731  0.498  0.646  0.805  0.428  0.569  
0.5 0.936  0.875  0.918  0.957  0.858  0.902  
1 0.997  0.995  0.997  0.999  0.995  0.997  

10 1.000  1.000  1.000  1.000  1.000  1.000  
→∞ 1.000 1.000 1.000 1.000 1.000 1.000 

 

Table 3 𝐹𝐹𝜎𝜎𝑃𝑃∗ and 𝐹𝐹𝜎𝜎𝑃𝑃∗/𝐹𝐹𝜎𝜎𝑃𝑃∗|h/W→0 of butt joint with varying 
adhesive thickness 

 𝐹𝐹𝜎𝜎𝑃𝑃∗ 
   (α,β) 

h/W (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0) 

→0 0.643 0.384 0.558 0.740 0.326 0.476 
0.001 0.643 0.384 0.558 0.740 0.326 0.476 
0.002 0.643 0.384 0.558 0.740 0.326 0.476 
0.005 0.644 0.384 0.558 0.740 0.327 0.477 
0.01 0.646 0.386 0.560 0.742 0.328 0.479 
0.05 0.658 0.399 0.572 0.750 0.340 0.491 
0.1 0.672 0.417 0.588 0.759 0.357 0.507 
0.5 0.778 0.590 0.707 0.821 0.536 0.634 
1 0.794 0.612 0.716 0.821 0.548 0.633 

10 0.689 0.451 0.567 0.716 0.365 0.453 
𝐹𝐹𝜎𝜎𝑃𝑃∗/𝐹𝐹𝜎𝜎𝑃𝑃∗|h/W→0 

    (α,β) 
h/W (0.3,0) (0.4,-0.1) (0.4,0) (0.4,0.1) (0.5,-0.1) (0.5,0) 

→0 1.000 1.000 1.000 1.000 1.000 1.000 
0.001 1.000  1.000  1.000  1.000  1.000  1.000  
0.002 1.000  1.000  1.000  1.000  1.000  1.000  
0.005 1.002  1.000  1.000  1.000  1.003  1.002  
0.01 1.005  1.005  1.004  1.003  1.006  1.006  
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0.05 1.023  1.039  1.025  1.014  1.043  1.032  
0.1 1.045  1.086  1.054  1.026  1.095  1.065  
0.5 1.210  1.536  1.267  1.109  1.644  1.332  
1 1.235  1.594  1.283  1.109  1.681  1.330  

10 1.072  1.174  1.016  0.968  1.120  0.952  
 

 

Table 4 Normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃∗ of a semi-infinite butt joint in Fig.1 (b) 
𝐹𝐹𝜎𝜎𝑃𝑃∗ = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆 

 
β=-0.4 β=-0.3 β=-0.2 β=-0.1 β=0 β=0.1 β=0.2 β=0.3 β=0.4 

α=-1 1.134 1.209 1.315 1.404 1.498 
    α=-0.9 1.066 1.148 1.252 1.347 1.424 
    α=-0.8 1.000 1.082 1.191 1.289 1.352 
    α=-0.7 0.904 1.032 1.134 1.223 1.288 
    α=-0.6 

 
0.990 1.075 1.156 1.227 1.420 

   α=-0.5 
 

0.946 1.028 1.119 1.185 1.360 
   α=-0.4 

 
0.901 1.000 1.092 1.166 1.320 

   α=-0.3 
 

0.812 0.940 1.057 1.142 1.280 
   α=-0.2 

 
0.680 0.837 1.000 1.113 1.250 1.500 

  α=-0.1 
  

0.710 0.916 1.061 1.230 1.460 
  α=0 

  
0.585 0.799 1.000 1.195 1.430 

  α=0.1 
  

0.460 0.654 0.873 1.124 1.380 
  α=0.2 

  
0.353 0.550 0.758 1.000 1.314 1.918 

 α=0.3 
   

0.456 0.643 0.858 1.181 1.769 
 α=0.4 

   
0.384 0.558 0.740 1.000 1.572 

 α=0.5 
   

0.326 0.476 0.630 0.813 1.293 
 α=0.6 

   
0.257 0.405 0.546 0.686 1.000 

 α=0.7 
    

0.340 0.470 0.588 0.794 1.730 
α=0.8 

    
0.290 0.403 0.506 0.634 1.000 

α=0.9 
    

0.223 0.333 0.430 0.543 0.746 
α=1 

    
0.169 0.265 0.358 0.456 0.495 

 

Fig.5. 𝐹𝐹𝜎𝜎𝑃𝑃 is constant when h/W≥1.0  

  

Fig.6. 𝐹𝐹𝜎𝜎𝑃𝑃∗ is constant when h/W≤0.01   
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3. Mesh-independent technique to evaluate the ISSF of cylindrical butt joint 
 

In this section, the mesh-independent technique will be explained for the 

readers to understand how to obtain accurate ISSFs for cylindrical butt joints 

although the similar method was used to analyze bonded cylinder and bonded pipe 

in [24]. The ISSF of a semi-infinite butt joint 𝐾𝐾𝜎𝜎𝑃𝑃 has been analyzed in the 

previous section. To obtain the ISSF of cylindrical butt joint 𝐾𝐾𝜎𝜎𝐶𝐶, the new results 

of 𝐾𝐾𝜎𝜎𝑃𝑃 can be used as the reference solution. Table 5 shows an example of stress 

ratio for the cylindrical butt joint in Fig.1 (c) over the semi-infinite butt joint in 

Fig. 1(a). Different ftom Table 1, the ratios of stress components are not always 

consistent with each other even though the same FE mesh is applied. It should be 

noted that the value of 𝜎𝜎𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  is quite different from other stress ratios. 

Therefore, we have to consider the mesh-independent technique for axi-symmetric 

problems in some special aspects.  

 

Table 5 Ratio of 𝜎𝜎𝑖𝑖𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑖𝑖𝑗𝑗0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃   
(E1=1000,𝜈𝜈1=0.23, E2=105.06,𝜈𝜈2=0.32,h/W=0.001) 

 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  𝜎𝜎𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  𝜏𝜏𝑟𝑟𝑟𝑟,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜏𝜏𝑥𝑥𝑥𝑥,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  
Material Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 Mat. 1 Mat. 2 

𝑒𝑒min =2.5-15 0.9937 0.9937 0.9955 0.5679 0.9745 0.9937 

Fig.7 Normalized ISSF 𝐹𝐹𝜎𝜎𝑃𝑃∗ of a semi-infinite butt joint in Fig.1 (b) 

which is useful for h/W≤0.01 in Fig.1(a) 
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𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 =2.5-18 0.9937 0.9937 0.9949 0.7187 0.9813 0.9937 
 

The difference between Table 1 and Table 5 can be explained in the 

following way. For the plane strain problem as shown in Fig. 1(a), the strain in the 

z-direction is zero. While for the axi-symmetric problem as shown in Fig. 1(c), the 

strain in the θ direction on the outer cylinder surface can be expressed as [25]: 

𝜀𝜀𝜃𝜃 =
𝑢𝑢𝑟𝑟

(𝑊𝑊 2⁄ )
, 

which can lead to non-zero stresses [24, 26]. Then the stress of the unknown 

problem shown in Fig. 1(c) is expressed as: 

( )C
1 1ˆ ˆ, , ,j xy

C C
C C C C C C C

j j j j rz rz rz rz

K K
j r z

R R
σ τ

l lσ σ σ σ θ τ τ τ τ− −= + = + = = + = +% % % % .     (9)             

where R is the local distance from the axisymmetric interface end. 

In Equation (9), the first terms ˆ C
jσ  and ˆC

rzτ denote singular stress and the 

second terms 𝜎𝜎�𝑗𝑗𝐶𝐶  and �̃�𝜏𝑟𝑟𝑟𝑟𝐶𝐶  denote non-singular stress[26-28] as 

( ) ( ) ( ) ( )mat1 mat1 mat1 mat1

0 0 0, , ,C C C C
r z rzθσ σ σ τ% % % %  in material 1; 

( ) ( ) ( ) ( )mat2 mat2 mat2 mat2

0 0 0, , ,C C C C
r z rzθσ σ σ τ% % % %  in material 2. 

These eight stress components should satisfy the boundary conditions for 

bonded interface and free edge of the outer surface as well as the compatibility 

condition. As a result, they are reduced to the following equations. 

( ) ( ) ( ) ( )mat1 mat2 mat1 mat2

0 0 0C C C C
r r rz rzσ σ τ τ= = = =% % % %                  (10) 

( ) ( )mat1 mat2

0 0 0
C C C
z z zσ σ σ= =% % %                        (11) 

( ) ( )mat1 mat2

0 0 0
C C C
θ θ θε ε ε= =% % %                        (12) 

( ) ( )mat1 mat2

0 0 0
C C C
r r rε ε ε= =% % %                        (13) 

By substituting Eqs. (10), (11) into Eq. (12), we have 

( ) ( ) ( ) ( ) ( ) ( )mat1 mat2 mat1 mat1 mat2 mat2

0 0 0 1 0 0 2 0
1 2

1 1 0C C C C C C
z zE Eθ θ θ θε ε σ n σ σ n σ   − = − − − =      

% % % % % % . 

Thus 

( ) ( )mat1 mat2

0 01 2
0

1 2 1 2

C C
C
zE E E E

θ θε εn n
σ

 
− = − 

 

% %
%                 (14) 

Similarly, for Eq. (13), we have  
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( ) ( ) ( ) ( ) ( ) ( )mat1 mat2 mat1 mat1 mat2 mat2

0 0 0 1 0 0 2 0
1 2

1 1 0C C C C C C
r r r z zE E θε ε σ n σ σ n σ   − = − − − =      

% % % % % % . 

Substitute Eq. (14) into the above equation, we have 

( )
( )

mat1

0 2 1
mat2

1 20

1
1

C

C

E
E

θ

θ

σ n
nσ

+
= ⋅

+

%

%
.                    (15) 

From Eq. (14) and Eq. (15) we can obtain 

( )
1mat1

1 2
0 2

1 20

21

C

C
z

E
Eθ

n nσ
n nσ

n

−
= −

−
+

%
%

.                   (16) 

And 

( )
2mat2

2 1
0 1

2 10

21

C

C
z

E
Eθ

n nσ
n nσ

n

−
= −

−
+

%
%

.                  (17) 

For axis symmetric problem under cylindrical coordinate system, there is   

r
r

r

r z
rz

u
r

u
r
u u
z r

θ

ε

ε

γ

∂ = ∂
 =


∂ ∂
= + ∂ ∂

                   (18) 

 

Recall Eq. (12) we can obtain:  

( ) ( )

( ) ( ) ( ){ }
( ) ( )

( )

mat1 mat2

0 0 0

mat1 mat1 mat1

0 1 0 0
1

1 1 2 2 2 1
0

1 2 1 2

1

1 1

C C C r

C C C
r z

C
z

u
r

E
E E

E E

θ θ θ θ

θ

ε ε ε ε

σ n σ σ

n n n n
σ

n n

= = = =

 = − +  

+ − +
= −

−

% % %

% % %

%

 

Thus 

( ) ( )
( )

( ) ( )
( )

( ) ( )

mat1 mat2

0 0 0

1 2 1 2

1 1 2 2 2 1

1 2 1 2 0

1 1 2 2 2 1

1 1

1 1 ( / 2)

C C C
z z z

r

C
r

E E u
E E r

E E u
E E W

σ σ σ

n n
n n n n

n n
n n n n

= =

−
= −

+ − +

−
= −

+ − +

% % %

                  (19) 

 

Substituting Eq. (19) into Eqs. (16), (17) gives 
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( ) ( ) ( )
( ) ( )

mat1 2 1 2 2 1 1 0
0

1 1 2 2 2 1

1
1 1 ( / 2)

C
C rE E E u

E E Wθ

n n n
σ

n n n n
+ −

=
+ − +

%                 (20) 

( ) ( ) ( )
( ) ( )

mat2 1 1 2 2 1 2 0
0

1 1 2 2 2 1

1
1 1 ( / 2)

C
C rE E E u

E E Wθ

n n n
σ

n n n n
+ −

=
+ − +

%                 (21) 

And recall Eq. (10) 

( ) ( ) ( ) ( )mat1 mat2 mat1 mat2

0 0 0C C C C
r r rz rzσ σ τ τ= = = =% % % %                 (22) 

The validity of equations (19)-(22) to express non-singular stress 

components will be discussed in Tables 6, 7, 8. By using the material combination 

shown in Table 5, Table 6 shows the radial displacement at the interface end, 𝑢𝑢𝑟𝑟0𝐶𝐶 , 

and the non-singular stresses which are obtained from Eqs. (19), (20), (21) and 

(22). Here, displacement 𝑢𝑢𝑟𝑟0𝐶𝐶  is independent of the element size. Table 7 shows 

the singular stresses by subtracting the non-singular stresses in Table 6 from the 

stresses at the interface end. Table 8 shows the ratios of the singular stresses at the 

interface end of the cylindrical butt joint to those of the semi-infinite butt joint. It 

is found that the ratio 0.9937 is independent of the element size emin. Since the 

raio is also independent of the stress components, the validity of (19)-(22) has 

been confirmed. From the comparison between Table 5 and Table 8, it is seen that 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  and 𝜏𝜏𝑟𝑟𝑟𝑟,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  do not have the non-singular stresses because 

𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  = �̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  = 0. The correct ratio of the ISSF can be calculated from 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  and 𝜏𝜏𝑟𝑟𝑟𝑟,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  easily since the subtraction process is not necessary.    

 

Table 6 Non-singular stresses of cylindrical butt joint 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  𝜎𝜎�𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  �̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  
0

C
ru  

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 
2.5-15 0.0000 0.0000 0.0065 -0.2616 -0.0255 0.0000 -0.00013153 
2.5-18 0.0000 0.0000 0.0065 -0.2616 -0.0255 0.0000 -0.00013154 

 
Table 7 Singular stresses of cylindrical butt joint 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  𝜎𝜎𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  𝜏𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －�̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 
2.5-15 -1.5377 0.9911 4.1917 0.6104 1.3238 0.2144 
2.5-18 -2.3816 1.5356 6.4919 0.9454 2.0503 0.3323 

 
Table 8 The ratios of singular stresses at the interface e of the cylindrical butt joint 

and the semi-infinite butt joint 

𝑒𝑒𝑚𝑚𝑖𝑖𝑚𝑚 
𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃  

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃  

𝜎𝜎𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝜃𝜃0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃  

𝜏𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －�̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶

𝜏𝜏𝑥𝑥𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃  

Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 Mat.1 Mat.2 
2.5-15 0.9937 0.9937 0.9937 0.9937 0.9937 0.9937 



16 

2.5-18 0.9937 0.9937 0.9937 0.9937 0.9937 0.9937 
 

4. Effect of bondline thickness on the ISSF for cylindrical butt joint 

For plane stress and plane strain problems, Dundurs’ parameters (α, β) fully 

control the solution and results [21]. Under fixed (α, β), therefore, the ISSFs are 

always the same for plane problems. However, since the cylindrical butt joint is 

axi-symmetric, (α, β) cannot totally control the ISSFs. Fig.8 shows an example 

when (α, β) = (0.8, 0.3). Fig. 8(a) and Fig. 8(b) show the possible material 

combinations under (α, β) = (0.8, 0.3). Here, v2 and E2/E1 are calculated by 

varying v1 from 0 to 0.5. It can be seen that v2 changes from 0.183 to 0.250, and 

E2/E1 changes from 0.107 to 0.139. Fig. 8(c) shows 

𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃 = [𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 －𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶 ] 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃��  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃�  calculated by 

varying v1 from 0 to 0.5. It is seen that 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  changes from 0.998 to 1.081, and 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  changes from 0.998 to 1.032. Different from plane problems, 

𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  are not constants under fixed (α, β). Therefore, in 

this study the maximum and minimum values will be focused to evaluate the 

strength of cylindrical butt joint. 

 

 

For several material combinations, Table 9 shows normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶 

defined in Equation (23). And Fig.9 shows 𝐹𝐹𝜎𝜎𝐶𝐶 vs. h/W relation.  

Normarized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶 = 𝐾𝐾𝜎𝜎𝐶𝐶/𝜎𝜎𝑊𝑊1−𝜆𝜆.            (23) 

(a)  

Fig. 8 (a) v2,  (b) E2/E1, (c) 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  values  

depending on v1 under fixed (α, β) = (0.8, 0.3) 

(c)  (b)  

   
𝜈𝜈1 𝜈𝜈1 𝜈𝜈1 

  𝜈𝜈 2
 

E 2
/E

1 
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As shown in Fig.9 when adhesive thickness h is large, the normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶 

always becomes constant. In Table 9, the normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶 has the same 

value in the range h/W≥ 1 since the thickness effect can be negligible.  

Table 10 shows normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶∗ values defined in Equation (24). 

And Fig.10 shows 𝐹𝐹𝜎𝜎𝐶𝐶∗ vs. h/W relation.  

Normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶∗ = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆.             (24) 

It is seen that when the bondline thickness is small, the 𝐹𝐹𝜎𝜎𝐶𝐶∗  value always 

becomes constant. From Fig.9 and Fig.10, it is found that 𝐹𝐹𝜎𝜎𝐶𝐶∗ = 𝐾𝐾𝜎𝜎𝐶𝐶/𝜎𝜎ℎ1−𝜆𝜆  is 

suitable for evaluating the adhesive strength when the bondline thickness is small, 

because 𝐹𝐹𝜎𝜎𝐶𝐶∗ is more insensitive to small h/W than 𝐹𝐹𝜎𝜎𝐶𝐶 = 𝐾𝐾𝜎𝜎𝐶𝐶/𝜎𝜎𝑊𝑊1−𝜆𝜆. As shown 

in Table 10, the normalized ISSF 𝐹𝐹𝜎𝜎𝐶𝐶∗ has almost the same value in the range 

h/W≤0.01 within 0.3% deviation and in the range h/W≤0.1 within 4% deviation 

since the width effect is smaller.   

 

 

 

Table 9  𝐹𝐹𝜎𝜎𝐶𝐶 and 𝐹𝐹𝜎𝜎𝐶𝐶/𝐹𝐹𝜎𝜎𝐶𝐶|h/W→∞of cylindrical butt joint by 
varying the bondline thickness 

𝐹𝐹𝜎𝜎𝐶𝐶  
Mat 
 

 
 
h/W 

E1=1000 
v1=0.23 

E2=535.963 
v2=0.239 

E1=1000 
v1=0.23 

E2=339.392 
v2=0.189 

E1=1000 
v1=0.23 

E2=413.754 
v2=0.293 

E1=1000 
v1=0.23 

E2=312.891 
v2=0.333 

0.001 0.722 0.623 0.478 0.302 
0.002 0.734 0.642 0.498 0.324 
0.005 0.750 0.667 0.526 0.357 
0.01 0.763 0.688 0.549 0.384 
0.05 0.798 0.743 0.610 0.459 
0.1 0.819 0.774 0.645 0.504 
0.5 0.890 0.860 0.762 0.650 
1 0.901 0.871 0.779 0.669 

10 0.901 0.871 0.779 0.669 
→∞ 0.901 0.871 0.779 0.669 

𝐹𝐹𝜎𝜎𝐶𝐶/𝐹𝐹𝜎𝜎𝐶𝐶 |h/W→∞ 
Mat 
 

 
 
h/W 

E1=1000 
v1=0.23 

E2=535.963 
v2=0.239 

E1=1000 
v1=0.23 

E2=339.392 
v2=0.189 

E1=1000 
v1=0.23 

E2=413.754 
v2=0.293 

E1=1000 
v1=0.23 

E2=312.891 
v2=0.333 

0.001 0.801  0.715  0.614  0.451  
0.002 0.815  0.737  0.639  0.484  
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0.005 0.832  0.766  0.675  0.534  
0.01 0.847  0.790  0.705  0.574  
0.05 0.886  0.853  0.783  0.686  
0.1 0.909  0.889  0.828  0.753  
0.5 0.988  0.987  0.978  0.972  
1 1.000  1.000  1.000  1.000  

10 1.000  1.000  1.000  1.000  
→∞ 1.000 1.000 1.000 1.000 

 

Table 10  𝐹𝐹𝜎𝜎𝐶𝐶∗ and 𝐹𝐹𝜎𝜎𝐶𝐶∗/ 𝐹𝐹𝜎𝜎𝐶𝐶∗|h/W→0 of cylindrical butt joint 
with varying the bondline thickness 

𝐹𝐹𝜎𝜎𝐶𝐶  
Mat 
 

 
 
h/W 

E1=1000 
v1=0.23 

E2=535.963 
v2=0.239 

E1=1000 
v1=0.23 

E2=339.392 
v2=0.189 

E1=1000 
v1=0.23 

E2=413.754 
v2=0.293 

E1=1000 
v1=0.23 

E2=312.891 
v2=0.333 

→0 0.851 0.833 0.722 0.616 
0.001 0.851 0.833 0.722 0.616 
0.002 0.851 0.833 0.722 0.616 
0.005 0.851 0.834 0.722 0.617 
0.01 0.852 0.835 0.723 0.618 
0.05 0.857 0.843 0.729 0.626 
0.1 0.866 0.852 0.741 0.639 
0.5 0.905 0.886 0.794 0.699 
1 0.901 0.871 0.779 0.669 

10 0.853 0.790 0.678 0.527 
𝐹𝐹𝜎𝜎𝐶𝐶∗/ 𝐹𝐹𝜎𝜎𝐶𝐶∗|h/W→0 

Mat 
 

 
 
h/W 

E1=1000 
v1=0.23 

E2=535.963 
v2=0.239 

E1=1000 
v1=0.23 

E2=339.392 
v2=0.189 

E1=1000 
v1=0.23 

E2=413.754 
v2=0.293 

E1=1000 
v1=0.23 

E2=312.891 
v2=0.333 

→0 1.000 1.000 1.000 1.000 
0.001 1.000  1.000  1.000  1.000  
0.002 1.000  1.000  1.000  1.000  
0.005 1.000  1.001  1.000  1.002  
0.01 1.001  1.002  1.001  1.003  
0.05 1.007  1.012  1.010  1.016  
0.1 1.018  1.023  1.026  1.037  
0.5 1.063  1.064  1.100  1.135  
1 1.059  1.046  1.079  1.086  

10 1.002  0.948  0.939  0.856  
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Fig. 11 and Fig. 12 show the maximum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and the 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  by varying α from -0.2 to 1.0 when β = 0.2 and β = 0.3. Those 

values were calculated in a similar way as shown in Fig.8. For the bad pair 

𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) > 0, the solid line indicates the ISSF ratio 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and the broken 

line indicates the stress ratio 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� . For 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) > 0, the singular 

stress appears at the interface end, and therefore 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  may be useful for 

evaluating the debonding strength [7-9, 12, 20]. For the good pair 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) <

0, the solid line indicates the stress ratio �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

. In this case, the 

singular stress does not appear at the interface end.  

It is found that the ISSF ratio (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄ → ∞ as 𝛼𝛼 → 2𝛽𝛽. However, it 

should be noted that the singular stress field disappears since the singular index 

 𝜆𝜆 → 1 as 𝛼𝛼 → 2𝛽𝛽. Therefore, the stress ratio �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

 may be 

useful than the ISSF ratio 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  around 𝛼𝛼 = 2𝛽𝛽.  

Fig.9. 𝐹𝐹𝜎𝜎𝐶𝐶 is constant when h/W≥1.0  

  

Fig.10. 𝐹𝐹𝜎𝜎𝐶𝐶∗ is constant when h/W≤0.01   
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Fig. 13 and Fig. 14 and Tables 11 and 12 show the maximum and minimum 

values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  calculated by varying (α, β). As 

mentioned above, 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  is useful for predicting the debonding strength for bad 

pairs α(α-2β)>0, this is because the stress singularity occurs at the interface end 

when α(α-2β)>0. On the other hand, 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  may be useful for 

predicting the debonding strength for good pairs α(α-2β)≤0. However, when 𝛼𝛼 ≅
  

 

 

Fig. 11 Maximum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  when β = 0.2  

Fig. 12 Maximum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  when β = 0.3  
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2𝛽𝛽 , it is not known whether 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  or 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  is suitable for 

predicting the strength because (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  goes to infinity when 𝛼𝛼 → 2𝛽𝛽. 

Figures 13 and 14 and Tables 11 and 12 are useful for h/W≤0.01 in Fig.1(c). 

Since the solution for h/W≥1.0 in Fig.1(c) was shown in the Appendix B, the 

accurate results can be obtained by the interpolation also in the range for 

0.01≤h/W≤1.0. 

Fig. 15 shows the variations of the parameters in the α-β space for the 

materials combinations among metal, ceramics, resin, and glass [29]. Although 

(𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  in Fig. 13 goes to infinity around the equal pair condition, 

(𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  is less than 1.5 for most of the bad pair region 𝛼𝛼 (𝛼𝛼 − 2𝑘𝑘𝛽𝛽) ≥ 0, 

𝑘𝑘 = 1.0 + 0.61(𝛽𝛽2 − 0.25) as indicated in Fig. 15. 

 

(𝐾𝐾𝜎𝜎𝐶𝐶)max
𝐾𝐾𝜎𝜎𝑃𝑃

≤ 1.5     when      𝛼𝛼 (𝛼𝛼 − 2𝑘𝑘𝛽𝛽) ≥ 0, 

𝑘𝑘 = 1.0 − 0.61(𝛽𝛽2 − 0.25)  
(23) 

 

In the previous studies [24], the authors obtained 𝑘𝑘 = 1.35 − 0.7|𝛽𝛽| for the 

bonded cylinder and 𝑘𝑘 = 1.3 − 0.6|𝛽𝛽| for the bonded pipe with the infinite inner 

radius. As shown in Fig. 15, the butt joint ISSF ratio satisfies less than 1.5 in the 

wide range of the bonded cylinder and the bonded pipe. This is because the butt 

joint has the small 3D effect on the ISSF in comparison with the bonded cylinder 

and the bonded pipe. 

Fig. 15 also shows that almost all (𝛼𝛼, 𝛽𝛽) of engineering materials are 

distributed in 0 ≤ |𝛽𝛽| ≤ 0.3 [24], therefore, the stress ratio 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  can 

be discussed in this range. It should be noted that the stress 

ratio �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

 is always finite in this range. Comparing Fig. 13 with 

Fig. 14, it is found that the value of 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  varies depending on 

(𝛼𝛼, 𝛽𝛽) but the value of �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

 is in the small range for most of 

good pairs satisfying  𝛼𝛼 (𝛼𝛼 − 2𝛽𝛽) < 0 and 0 ≤ |𝛽𝛽| ≤ 0.3. Also, the difference 

between �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

 and �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
min

 is small in this 

region. The value range and the maximum and minimum value difference can be 

expressed in Eq. (24). 
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0.971 ≤ �
𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 �

max

≤ 1.143 ,　 
�
𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 �

max
− �

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 �

min

�
𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 �

max
+ �

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶

𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃 �

min

≤ 0.1 ,  

when  0 ≤ |𝛽𝛽| ≤ 0.3 and 𝛼𝛼 (𝛼𝛼 − 2𝛽𝛽) < 0 

(24) 

 

The difference between �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
max

 and �𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃� �
min

 is 

less than 10% in Eq. (24), and therefore, Dundurs' parameters can almost control 

the results and be useful for axisymmetric bonded structures. For two-dimensional 

problems, Dundurs' parameters are most useful since they control the results 

completely (no difference). 

Since (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  goes to infinity when 𝛼𝛼 → 2𝛽𝛽, it is not clear whether 

𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  or 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  is suitable for predicting the strength at present.  

 

Useful parameter is unknown near the equal pair 

 𝛼𝛼 (𝛼𝛼 − 2𝑘𝑘𝛽𝛽) < 0,𝑘𝑘 = 1.0 − 0.61(𝛽𝛽2 − 0.25)  and 𝛼𝛼 (𝛼𝛼 − 2𝛽𝛽) ≥ 0 in Fig. 15 
(25) 

 

Table 11 Maximum and minimum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  which is useful for 
/ 0.01h W ≤  in Fig.1(c) 

  β 
α -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

-1 1.220 1.102 0.951 0.696 0.615 
    0.977 0.945 0.838 0.697 0.636 
    -0.9 1.294 1.141 0.991 0.738 0.652 
    0.986 0.949 0.845 0.703 0.646 
    -0.8  

1.187 1.044 0.819 0.720 
    

 
0.956 0.855 0.722 0.670 

    -0.7  
1.260 1.121 0.906 0.779 

    
 

0.978 0.875 0.748 0.709 
    -0.6   

1.258 0.988 0.829 0.650 
   

  
0.889 0.771 0.737 0.684 

   -0.5   
1.364 1.043 0.887 0.687 

   
  

0.902 0.791 0.758 0.704 
   -0.4    

1.108 0.919 0.708 
   

   
0.811 0.776 0.721 

   -0.3    
1.153 0.938 0.736 

   
   

0.834 0.796 0.736 
   -0.2     

0.952 0.779 0.688 
  

    
0.825 0.749 0.658 

  -0.1     
0.962 0.795 0.698 

  
    

0.861 0.763 0.683 
  0   

0.987 0.989 
 

0.803 0.710 
  

  
0.961 0.895 

 
0.775 0.698 

  0.1 
  

0.987 0.990 0.991 
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0.972 0.914 0.924 

    0.2   
0.987 0.991 0.992 

    
  

0.981 0.938 0.942 
    0.3    

0.992 0.993 1.153 
   

   
0.951 0.954 0.971 

   0.4    
0.992 0.994 1.052 

   
   

0.960 0.965 0.972 
   0.5    

0.993 0.994 1.022 1.228 
  

   
0.966 0.973 0.977 0.988 

  0.6    
0.994 0.995 1.010 1.108 

  
   

0.970 0.980 0.982 0.987 
  0.7     

0.994 1.003 1.056 1.205 
 

    
0.985 0.986 0.989 0.994 

 0.8     
0.995 1.000 1.029 1.079 

 
    

0.987 0.990 0.992 0.995 
 0.9     

0.996 1.000 1.008 1.018 1.091 

    
0.989 0.995 0.996 0.997 0.999 

1     
0.996 0.996 0.997 0.998 1.000 

    
0.991 0.996 0.997 0.998 1.000 

Upper: maximum value, lower: minimum value 

 

Table 12 Maximum and minimum values of 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃   

which is useful for / 0.01h W ≤  in Fig.1(c) 

Table 12 Maximum and minimum values of 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 /𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃  which is useful for 
/ 0.01h W ≤  in Fig.1(c) 

  β 
α -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 

-1 1.001 0.966 0.922 0.856 0.815     1.001 0.966 0.922 0.856 0.815     
-0.9 1.032 0.988 0.937 0.879 0.832     1.016 0.974 0.931 0.874 0.830     
-0.8 1.085 1.011 0.968 0.896 0.844     1.035 0.983 0.942 0.891 0.841     
-0.7 1.136 1.052 0.996 0.934 0.861     1.047 0.993 0.956 0.911 0.853     
-0.6  1.103 1.037 0.992 0.890 0.826    

 1.001 0.969 0.925 0.864 0.826    
-0.5  1.131 1.075 1.025 0.921 0.831    

 1.013 0.987 0.947 0.876 0.831    
-0.4  1.143 1.095 1.044 0.952 0.846    

 1.021 1.000 0.963 0.889 0.846    
-0.3  1.134 1.101 1.044 0.973 0.866    

 1.024 1.004 0.982 0.909 0.866    
-0.2  1.121 1.087 1.043 0.987 0.901 0.861   

 1.024 1.006 1.000 0.949 0.901 0.861   
-0.1   1.065 1.039 0.995 0.939 0.879   

  1.005 1.001 0.983 0.929 0.879   
0   1.045 1.032 1.000 0.966 0.924   

  1.003 1.001 1.000 0.965 0.924   
0.1   1.029 1.020 1.004 0.992 0.971   

  1.003 1.000 1.000 0.986 0.971   
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0.2   1.003 1.003 1.002 1.000 1.003 1.082  
  1.003 0.998 0.999 0.998 0.989 1.010  

0.3    1.000 0.999 1.004 1.021 1.082  
   0.996 0.997 0.999 0.996 1.009  

0.4    0.996 0.997 1.006 1.027 1.082  
   0.995 0.994 0.996 0.997 1.008  

0.5    0.996 0.996 1.005 1.026 1.073  
   0.994 0.992 0.994 0.998 1.006  

0.6    0.995 0.996 1.004 1.020 1.063  
   0.993 0.991 0.992 0.996 1.000  

0.7     0.995 1.001 1.013 1.042 1.085 

    0.991 0.992 0.994 0.998 1.001 

0.8     0.995 1.000 1.006 1.024 1.054 

    0.991 0.993 0.995 0.997 1.000 

0.9     0.995 1.000 1.003 1.010 1.025 

    0.991 0.996 0.997 0.998 1.000 

1     0.996 0.996 0.997 0.998 1.000 

    0.991 0.996 0.997 0.998 1.000 
Upper: maximum value, lower: minimum value 

 

 

Fig. 13 Maximum value of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  which 
is useful for h/W ≤0.01 in Fig.1(c)  
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5. Experimental evaluation of debonding strength of cylindrical butt joint 
and plate butt joint 
 
The debonding strength of the cylindrical butt joints was studied 

experimentally by several researchers [30]. Fig. 16 shows the schematic 

Fig. 14 Minimum value of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  which 
is useful for h/W ≤0.01 in Fig.1(c)  

  

Fig. 15 Dundurs’ parameters for the several engineering materials 
and the range of �𝛼𝛼,   𝛽𝛽� satisfies ISSF ratio < 1.5[24]  
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illustration of the specimens. In this experiment of Naito et al [30], the adherent is 

aluminum alloy 5052-H34 (Young’s modulus E1 = 69.6GPa, Poisson's ratio ν1 = 

0.33) and the adhesive is polyimide (E2 = 3.77GPa, ν2 = 0.342). Table 13(a), (b) 

show Dundurs' parameters (α, β) and singular index λ. The length of the adherent l 

is 38.1 mm and the adhesive thickness t is varied from 0.2mm to 0.6mm. 

Fig. 17(a) shows the tensile strength 𝜎𝜎𝜎𝜎 which increases with increasing the 

adhesive thickness. In the experiment, the fracture was initiated at the 

axisymmetric interface end between the adhesive and the adherent. Fig. 17(b) 

shows the dimensionless of ISSFs for the cylindrical butt joint 𝐹𝐹σ𝐶𝐶 = 𝐾𝐾σ𝐶𝐶/

(𝜎𝜎𝑟𝑟∞𝑊𝑊1−𝜆𝜆) and 𝐹𝐹σ𝐶𝐶∗ = 𝐾𝐾σ𝐶𝐶/(𝜎𝜎𝑟𝑟∞ℎ1−𝜆𝜆) obtained by the method shown in Section 

4. In Fig.17(b) 𝐹𝐹𝜎𝜎𝐶𝐶  and 𝐹𝐹σ𝐶𝐶∗ increase with increasing the adhesive thickness. 

However, 𝐹𝐹σ𝐶𝐶∗ is insensitive of h/W and almost constant within 2%. It is seen that 

𝐹𝐹σ𝐶𝐶∗ can be used conveniently to evaluate the adhesive strength. Fig. 17(c) shows 

the critical ISSF at 𝜎𝜎𝑟𝑟∞ = 𝜎𝜎𝜎𝜎 , 𝐾𝐾𝜎𝜎𝜎𝜎 = 𝐾𝐾𝜎𝜎𝐶𝐶 |𝜎𝜎𝑧𝑧∞=𝜎𝜎𝑐𝑐 . The 𝐾𝐾𝜎𝜎𝜎𝜎  values are almost 

constant independent of the adhesive thickness. It can be confirmed that the ISSF 

is useful for evaluating the debonding strength. 

Similarly, the debonding strength of the plate butt joints [15] was considered 

again by using the present results. Fig. 18 (a), (d) shows the tensile strength 𝜎𝜎𝜎𝜎. 

𝜎𝜎𝜎𝜎 increases with increasing the adhesive thickness. In Suzuki’s experiment [15], 

it was observed that the fracture is initiated from the interface end between the 

adhesive and the adherent. Fig. 18 (b),(e) shows the ISSFs for the cylindrical butt 

joint 𝐹𝐹σ𝑃𝑃 = 𝐾𝐾σ𝑃𝑃/(𝜎𝜎𝑟𝑟∞𝑊𝑊1−𝜆𝜆) and 𝐹𝐹σ𝑃𝑃∗ = 𝐾𝐾σ𝑃𝑃/(𝜎𝜎𝑟𝑟∞ℎ1−𝜆𝜆) obtained by the method 

shown in Section 4. In Fig.18 (c),(f) 𝐹𝐹𝜎𝜎𝑃𝑃  and 𝐹𝐹σ𝑃𝑃∗ increase with increasing the 

bondline thickness. However, 𝐹𝐹σ𝑃𝑃∗ is also insensitive of h/W and almost constant 

with 2%. It is seen that 𝐹𝐹σ𝑃𝑃∗ can be used conveniently to evaluate the adhesive 

strength. Fig. 18 (c),(f) shows the critical ISSF at 𝜎𝜎𝑟𝑟∞ = 𝜎𝜎𝜎𝜎, 𝐾𝐾𝜎𝜎𝜎𝜎 = 𝐾𝐾𝜎𝜎𝑃𝑃 |𝜎𝜎𝑧𝑧∞=𝜎𝜎𝑐𝑐. 

The 𝐾𝐾𝜎𝜎𝜎𝜎 values are almost constant independent of the bondline thickness. It can 

be confirmed that the ISSF is useful for evaluating the debonding strength. 
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Table 13 Results of cylindrical butt joint in Fig.16 [30] 
 

(a) Dundurs' parameters (𝛼𝛼, 𝛽𝛽) and order of singular index 𝜆𝜆 in cylindrical butt 
joint(aluminum/polyimide) 

Materials 
Adherend Adhesive Dundurs’ 

parameter 
Singular 

index 
𝐸𝐸1 

[GPa] 𝜈𝜈1 𝐸𝐸2 
[GPa] 𝜈𝜈2 𝛼𝛼 𝛽𝛽 𝜆𝜆 

Aluminum/Polyimide 69.9 0.33 3.77 0.342 0.8963 0.2145 0.7398 

 

(b)Tensile strength 𝜎𝜎𝜎𝜎, 𝐹𝐹𝜎𝜎𝐶𝐶, 𝐹𝐹𝜎𝜎𝐶𝐶∗, 𝐾𝐾𝜎𝜎𝜎𝜎 for plate butt joint 

h h/W 
S35C/Epoxy resin A S35C/Epoxy resin B 

𝜎𝜎𝜎𝜎 [MPa] 𝐹𝐹𝜎𝜎𝐶𝐶 𝐹𝐹𝜎𝜎𝐶𝐶∗ 𝐾𝐾𝜎𝜎𝜎𝜎 𝜎𝜎𝜎𝜎 [MPa] 𝐹𝐹𝜎𝜎𝐶𝐶 𝐹𝐹𝜎𝜎𝐶𝐶∗ 𝐾𝐾𝜎𝜎𝜎𝜎 
0.05 0.00394 57.2 0.0671 0.384 0.970 76.8 0.0620 0.377 1.15 
0.1 0.00787 53.3 0.0831 0.382 1.120 71.4 0.0778 0.377 1.34 
0.3 0.0236 32.5 0.119 0.387 0.978 49.7 0.112 0.380 1.34 
0.6 0.0472 25.9 0.150 0.392 0.981 41.2 0.142 0.384 1.41 
1.0 0.0787 22.6 0.178 0.396 1.020 25.3 0.171 0.392 1.04 

 

Table 14 Results of plate butt joint [15] 
 

 (a)Dundurs' parameters (𝛼𝛼, 𝛽𝛽) and order of singular index 𝜆𝜆 

Materials 
Adherend Adhesive Dundurs’ 

parameter 
Singular 

index 
𝐸𝐸1 

[GPa] 𝜈𝜈1 𝐸𝐸2 
[GPa] 𝜈𝜈2 𝛼𝛼 𝛽𝛽 𝜆𝜆 

S35C/Epoxy resin A 210 0.30 3.14 0.37 0.969 0.199 0.685 

S35C/Epoxy resin B 210 0.30 2.16 0.38 0.978 0.188 0.674 

 

(b) Tensile strength 𝜎𝜎𝜎𝜎, 𝐹𝐹𝜎𝜎𝐶𝐶, 𝐹𝐹𝜎𝜎𝐶𝐶∗, 𝐾𝐾𝜎𝜎𝜎𝜎 for the specimen in Fig.16 with l=38.1mm, 
t=0.2~0.6mm, W=12.7mm 

h h/W 𝜎𝜎𝜎𝜎 [MPa] 𝐹𝐹𝜎𝜎𝐶𝐶 𝐹𝐹𝜎𝜎𝐶𝐶∗ 𝐾𝐾𝜎𝜎𝜎𝜎 
0.02 0.0157 22.5 0.154 0.453 1.109 
0.03 0.0236 20.9 0.172 0.456 1.155 
0.04 0.0315 18.6 0.186 0.458 1.111 
0.05 0.0394 17.5 0.198 0.460 1.114 
0.06 0.0472 15.7 0.209 0.462 1.052 

 

 

 

 

 

 

 

 

 Fig. 16 Schematic illustration of cylindrical butt joint  
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6. Conclusions 

In this study, the ISSF variations were clarified over the entire thickness 

range of plate and cylinder butt joints. An effective mesh-independent technique 

was applied to obtaining the ISSFs under arbitrary material combinations. A 

reference solution was used to eliminate FEM error since the solutions are 

available for simple bonded plate solved by the body force method. Then, the 

following conclusions can be summarized.  

(1) For the plate butt joints, the ISSF 𝐹𝐹𝜎𝜎𝑃𝑃∗ = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎ℎ1−𝜆𝜆 normalized by the  

bondline thickness ℎ becomes constant with decreasing the bondline thickness 

when h/W≤0.01. In this case, the adhesive joint can be regarded as a bonded 

semi-infinite plate. If the adhesive layer is thin,  𝐹𝐹𝜎𝜎𝑃𝑃∗ is more suitable because the 

variation is smaller than the variation of 𝐹𝐹𝜎𝜎𝑃𝑃 = 𝐾𝐾𝜎𝜎𝑃𝑃/𝜎𝜎𝑊𝑊1−𝜆𝜆 . To improve the 

interface strength, thin adhesive layers are desirable. For a certain value β , it is 

found that 𝐹𝐹𝜎𝜎𝑃𝑃∗ decreases with increasingα . Since the solution for h/W≥1.0 in 

Fig.1(a) was shown in the Appendix A, the accurate results can be obtained by the 

interpolation also in the range for 0.01≤h/W≤1.0. 

(2) For the cylindrical butt joint, the circumferential strain at the interface 

end, 𝜀𝜀𝑟𝑟0𝐶𝐶 , is not influenced by the stress singularity because 𝜀𝜀𝑟𝑟0𝐶𝐶  is obtained from 

the radial displacement 𝑢𝑢𝑟𝑟0𝐶𝐶  and the cylinder radius. It was found that the non-

singular stresses caused by the 𝜀𝜀𝑟𝑟0𝐶𝐶  are contained in the FEM stresses at the 

interface end. The accurate method was therefore used for calculating the ISSF 

from the ratio of the stress obtained by subtracting the non-singular stress to the 

stress of the semi-infinite butt joint adopted as the reference solution. The stress-

free boundary condition causes the nonsingular stresses 𝜎𝜎�𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  = �̃�𝜏𝑟𝑟𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  = 0. 

The ISSF can be calculated easily without subtraction process of the non-singular 

stresses when the radial stress 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶  or the shear stress 𝜏𝜏𝑟𝑟𝑟𝑟,𝐹𝐹𝐹𝐹𝐹𝐹

𝐶𝐶  is used. 

(3) For a certain material combination, the ISSF 𝐹𝐹𝜎𝜎𝐶𝐶∗  normalized by 

adhesive thickness h becomes constant with decreasing the bondline thickness 

when h/W≤0.01. Thin adhesive layer can be used to improve the interface 

strength of the cylindrical butt joint. Since the ISSFs of the cylindrical butt joint 

cannot be totally dominated by the Dundurs’ parameter α and β, the maximum and 

minimum values of the 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and the 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  were shown in the 
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charts and tables for various (𝛼𝛼 ,𝛽𝛽 ). The value 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  may be useful for 

predicting the debonding strength under the bad pairs α (α - 2β ) > 0. On the other 

side, the 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  may be more important for predicting the debonding 

strength under the good pairs α (α - 2β ) ≤ 0. Since the solution for h/W≥1.0 in 

Fig.1(c) was shown in the Appendix B, the accurate results can be obtained by the 

interpolation also in the range for 0.01≤h/W≤1.0. 

 

Appendix A: ISSF for the bonded plate 

Figure A1 shows the ISSF 𝐹𝐹𝜎𝜎𝑃𝑃 for the bonded plate calculated by varying 

Dundurs’ parameter (𝛼𝛼,𝛽𝛽)[14]. Then, the non-dimensional function of 𝜃𝜃 has 

been already clarified by Carenter and Byers[32]. The bonded plate in Fig.A1 can 

be regarded as a plate butt joint with a very thick adhesive layer for / 1.0h W ≥ . 

The 𝐹𝐹𝜎𝜎𝑃𝑃  values are obtained by the body force method under the bad pair 

condition of 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) > 0 [14] and obtained by FEM under the good pair 

condition of 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) < 0 [7-9, 20]. Since the solution for thin adhesive layer

/ 0.01h W ≤  is indicated in Table 4 and Fig.7 under aribitrary material 

combination, the accurate results can be obtained by the interpolation also in the 

range for 0.01 / 1.0h W≤ ≤ . 

 

Table A1 𝐹𝐹σ𝑃𝑃 of bonded plate useful for / 1.0h W ≥  in Fig.1 (a) 

  
 
𝛽𝛽 

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 

𝛼𝛼 

-1.00 0.540 0.446 0.395 0.357 0.332 － － － － 
-0.95 0.643 0.491  0.422  0.381 0.349 － － － － 
-0.90 0.726 0.534 0.456 0.412 0.381 － － － － 
-0.80 1.000 0.636 0.538 0.487 0.450 － － － － 
-0.70 1.855 0.800 0.626 0.558 0.486 － － － － 
-0.60 3.291 1.000 0.724 0.638 0.559 0.505 － － － 
-0.50 － 1.264 0.842 0.722 0.635 0.551 － － － 
-0.40 － 1.467 1.000 0.822 0.718 0.615 － － － 
-0.30 － 1.609 1.118 0.913 0.796 0.697 － － － 
-0.20 － 1.690 1.153 1.000 0.889 0.797 0.404 － － 
-0.10 － － 1.103 1.037 0.955 0.890 0.767 － － 
0.00 － － 1.000 1.000 1.000 1.000 1.000 － － 
0.10 － － 0.767 0.890 0.955 1.037 1.103 － － 
0.20 － － 0.404 0.797 0.889 1.000 1.153 1.690 － 
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0.30 － － － 0.697 0.796 0.913 1.118 1.609 － 
0.40 － － － 0.615 0.718  0.822 1.000 1.467 － 
0.50 － － － 0.551 0.635 0.722 0.842 1.264 － 
0.60 － － － 0.505 0.559 0.638 0.724 1.000 3.291 

0.70 － － － － 0.486 0.558 0.626 0.800 1.855 

0.80 － － － － 0.450 0.487 0.538 0.636 1.000 

0.90 － － － － 0.381 0.412 0.456 0.534 0.726 

0.95 － － － － 0.349  0.381 0.422 

 

 

0.491 0.643 

1.00 － － － － 0.332 0.357 0.395 0.446 0.540 

 

 

Appendix B: ISSF for the bonded cylinder in comparison with the bonded 

plate 

In the previous study [24], the ISSF of bonded cylinder was 

compared with the ISSF of bonded plate under arbitrary material 

combination. The bonded cylinder can be regarded as a cylindrical butt joint with 

a very thick adhesive layer for / 1.0h W ≥  in Fig.1 (c). Table B1 and Figure B1 

show the maximum values and the minimum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  calculated by varying(𝛼𝛼,𝛽𝛽). The solid lines indicate 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  

under 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) > 0 and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  under 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) < 0. The dahed 

lines indicate 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  with 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) > 0. The circle marks indicate 

𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  for 𝛼𝛼(𝛼𝛼 − 2𝛽𝛽) = 0 . All 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  values are distributed 

between (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and (𝐾𝐾𝜎𝜎𝐶𝐶)min 𝐾𝐾𝜎𝜎𝑃𝑃⁄ . Because (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  goes to ∞ 

when 𝛼𝛼 → 2𝛽𝛽, the solid lines are very important for predicting the debonding 

Fig. A1 ISSF for the bonded plate useful for h/W≥1.0 in Fig.1(a)  
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strength except for the bad pair condition near 𝛼𝛼 ≅ 2𝛽𝛽. Because there are only 

10% differences between (𝐾𝐾𝜎𝜎𝐶𝐶)max 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and (𝐾𝐾𝜎𝜎𝐶𝐶)min 𝐾𝐾𝜎𝜎𝑃𝑃⁄  except for the bad 

pair condition near 𝛼𝛼 ≅ 2𝛽𝛽 , 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄  and 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  can be  almost 

controlled by (𝛼𝛼, 𝛽𝛽). Since the solution for thin adhesive layer / 0.01h W ≤  is 

indicated in Table 11, Table 12, Fig.13 and Fig.14 under aribitrary material 

combination, the accurate results can be obtained by the interpolation also in the 

range for 0.01 / 1.0h W≤ ≤ .  

 

Table B1 Maximum and minimum values of 𝐾𝐾𝜎𝜎𝐶𝐶 𝐾𝐾𝜎𝜎𝑃𝑃⁄ useful for / 1.0h W ≥  in Fig. 1 (c) 

  
 

 

 

𝛽𝛽 
-0.45 0.4 0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.45 

𝛼𝛼 

-1.0 0.995 0.981 0.937 0.898 0.866 0.839      
     

-0.9  1.146 0.996 0.935 0.892 0.859      
 0.992 0.944 0.899 0.863 0.834      

-0.8   1.089 0.977 0.919 0.879      
  0.957 0.906 0.865 0.832      

-0.7   1.321 1.032 0.948 0.899      
  0.976 0.918 0.870 0.833      

-0.6    1.121 0.981 0.918 0.802     
   0.936 0.88 0.837     

-0.5    1.346 1.022 0.937 0.827     
   0.962 0.895 0.843 0.804     

-0.4     1.084 0.955 0.845     
    0.916 0.854 0.808     

-0.3     1.234 0.972 0.856     
    0.944 0.87 0.814     

-0.2      0.986 0.861 0.775    
     0.885 0.825    

-0.1      0.996 0.855 0.789    
     0.896 0.835 0.781    

0.0    0.791 0.866 1.000 0.866 0.791    
0.789 0.820 0.820 0.789 

0.1    0.789 0.855 0.996      
   0.781 0.835 0.896      

0.2    0.775 0.861 0.986      
   0.825 0.885      

0.3     0.856 0.972 1.234     
    0.814 0.870 0.944     

0.4     0.845 0.955 1.084     
    0.808 0.854 0.916     

0.5     0.827 0.937 1.022 1.346    
    0.804 0.843 0.895 0.962    

0.6     0.802 0.918 0.981 1.121    
    0.837 0.88 0.936    

0.7      0.899 0.948 1.032 1.321   
     0.833 0.870 0.918 0.976   

0.8      0.879 0.919 0.977 1.089   
     0.832 0.865 0.906 0.957   

0.9      0.859 0.892 0.935 0.996 1.146  
     0.834 0.863 0.899 0.944 0.992  

1      0.839 0.866 0.898 0.937 0.981 0.995 
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Table B2 Maximum and minimum values of 𝜎𝜎𝑟𝑟0,𝐹𝐹𝐹𝐹𝐹𝐹
𝐶𝐶 𝜎𝜎𝑥𝑥0,𝐹𝐹𝐹𝐹𝐹𝐹

𝑃𝑃�  useful for / 1.0h W ≥  in 
Fig.1 (c) 

  
 
𝛽𝛽 

-0.45 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.45 

𝛼𝛼 

-1.0 0.995 0.981 0.937 0.898 0.866 0.839      
     

-0.9 1.237 1.098 0.993 0.934 0.892 0.859      
1.000 0.994 0.945 0.900 0.864 0.834      

-0.8 2.276 1.327 1.066 0.974 0.919 0.879      
1.000 0.962 0.909 0.866 0.833      

-0.7  1.862 1.165 1.020 0.946 0.899      
 1.564 0.986 0.925 0.875 0.835      

-0.6  3.117 1.299 1.071 0.975 0.918      
 1.000 0.951 0.890 0.843      

-0.5   1.447 1.127 1.000 0.937      
  1.134 0.983 0.914 0.857      

-0.4   1.525 1.172 1.031 0.955      
  1.343 1.000 0.948 0.880      

-0.3   1.444 1.184 1.050 0.972      
  1.358 1.036 0.984 0.914      

-0.2   1.246 1.145 1.052 0.986      
  1.060 1.000 0.955      

-0.1    1.065 1.032 0.996      
   1.022 1.000 0.989      

0.0    0.978 0.997 1.000 0.997 0.978    
   0.948 0.981 0.981 0.948    

0.1    0.903 0.956 0.996 1.032 1.065    
   0.878 0.936 0.989 1.000 1.022    

0.2    0.844 0.920 0.986 1.052 1.145 1.246   
   0.896 0.955 1.000 1.060   

0.3     0.889 0.972 1.050 1.184 1.444   
    0.850 0.914 0.984 1.036 1.358   

0.4     0.863 0.955 1.031 1.172 1.525   
    0.826 0.880 0.948 1.000 1.343   

0.5     0.838 0.937 1.000 1.127 1.447   
    0.812 0.857 0.914 0.983 1.134   

0.6     0.808 0.918 0.975 1.071 1.299 3.117  
    0.843 0.890 0.951 1.000  

0.7      0.899 0.946 1.020 1.165 1.862  
     0.835 0.875 0.925 0.986 1.564  

0.8      0.879 0.919 0.974 1.066 1.327 2.276 
     0.833 0.866 0.909 0.962 1.000 

0.9      0.859 0.892 0.934 0.993 1.098 1.237 
     0.834 0.864 0.900 0.945 0.994 1.000 

1.0      0.839 0.866 0.898 0.937 0.981 0.995 
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