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Abstract 

We propose a method to efficiently search for superconductors with higher critical 

temperature Tc by machine learning based on a superconductor database. The Tc 

prediction and the search for new superconductors are still difficult problems. With the 

progress of computer power and calculation algorithms, the possibility of finding new 

materials with higher Tc at high throughput is emerging. Using the obtained Tc prediction 

model, the scope is expanded to the search space of multielement materials which has 

never been searched, and candidates for superconductors with higher Tc and which can 

be synthesized are proposed. 
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Material development is highly dependent on the experience and intuition of 

developers, and its development requires a long time and high cost. With the 

diversification and complexity of materials themselves, it is also becoming difficult to 

understand their physical properties and functions. There is a need for new development 

methods that are more efficient and comprehensive ones, as well as provide hints for 

understanding of the physical properties and functions. Materials Informatics which 

utilizes first-principles calculations, evolving material databases, and artificial 

intelligence technology meets these needs.1,2,3) There are various theoretical studies on 

methods to predict the superconducting critical temperature Tc, and the McMillan's 

equation4) and the Allen-Dynes modified equation5) have been known. These were used 

in recent predictions of high Tc of hydrogen sulfide and LaH10 under ultra-high 

pressures6,7) and were great motivators to conduct the experiments.8,9) However, the 

prediction requires calculations of electron-phonon coupling parameter after determining 

the crystal structure, which is somewhat less versatile. As an early study to find the 

correlation between experimental values of Tc and material parameters, there was also the 

valence electron rule by Matthias.10) This is an empirical rule that Tc is maximal at a 

certain electron concentration e/a (e: total number of valence electrons, a: total number 

of atoms), and clear correlations between Tc and electron concentration in transition 

metals and their alloys have been reported.11) Similar studies include heuristic quantum 

structure diagrams, correlations between normal state properties and superconductivity 

and so on.12, 13) As a modern approach, the method of classifying Tc by acquiring the 

fingerprints of the Brillouin zone and the density of states, the Tc prediction method by 

using machine learning (ML) based on a superconductor database, etc., have been 

reported one after another.14,15,16,17)  New attempts at such Tc prediction are just beginning, 
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but with the evolution of databases and ML packages, there is a potential for significant 

development in the future. The purpose of this study is also to predict high Tc materials 

using ML and database. Especially we focused on the elemental composition rather than 

the crystal structure and examined the search space for ternary materials. Assuming 

abc ternary system consisting of a combination of 78 elements    from hydrogen 

(H) in the first period to bismuth (Bi) in the sixth period of the periodic table excluding 

rare gas elements, the prediction of Tc for all possible compositions a, b, c (a + b + c = 

1) by using ML has been carried out and the Tc distribution maps for the ternary substance 

group have been successfully constructed. By comparing with the known stable phases 

in the equilibrium diagram collected from the material database, it is also possible to 

identify the composition area of unknown ternary materials with higher Tc. 

Superconductivity often appears by adding or partially replacing elements in the basic 

matrix. Under these conditions, calculations on stable crystal structures and electronic 

states based on density functional theory with the supercell require enormous 

computational costs, making their execution difficult.18) On the other hand, use of 

superconductor database and ML can reveal the relationship between substance 

composition and Tc more easily. Based on the composition information of the higher Tc 

substances thus predicted, efficient experimental verification will be possible. In this 

study, we aimed to find out unknown higher Tc material candidates by comprehensively 

examining the region that has not been searched so far. 

ML applies statistical analysis methods to a large amount of data, and extracts useful 

rules and classifications existing among them. For example, when Tc of a superconductor 

is taken as function F, in addition to the known F values, the features and composition of 

the accompanying constituent elements are selected as the descriptors x1, x2, ..., xn in a 
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dataset from the search space of a large amount of material data. Then, the computer 

learns the prediction model of 1 2 3( , , , , )nF f x x x x=    by the ML procedure.2) The 

obtained prediction model can be applied to the combination of other elements and 

compositions in the vast search space to calculate Tc, and to select the substance groups 

with high Tc. We used ML to investigate the relationship between known substances and 

Tc based on the “SuperCon” database,19) which has been collected by NIMS for many 

years. Focusing on combinations of ternary systems and below, we obtained the 

information of both chemical formula and measured Tc values for about 2000 substances 

including AlB2, Chevrel, A15 (Cr3Si), spinel, NaCl (B1), skutterudite type 

superconductors. The initial datasets were made by adding the Tc values of the elemental 

superconductors to this information. When the same compound name and composition 

existed in multiple numbers in the database, the average value was used as Tc. Since we 

focused on ternary materials, cuprate and Fe-based superconductors20) were omitted from 

the datasets; therefore, the substance showing the highest Tc in the datasets is MgB2 

(average Tc of MgB2 listed in SuperCon is 38.6 K).21) This mainly corresponds to the 

limitation to the Tc prediction of superconductors based on the phonon mechanism. In 

addition to constituent element name and element ratio, “atomic number”, “atomic 

weight”, “valence electron number”, “period”, “group”, “van der Waals radius”, 

“covalent bond radius”, “Pauling electronegativity”, “electron affinity”, “first ionization 

energy”, “melting temperature”, and “s, p, d, f orbital electron numbers” for the target 

ternary substances were obtained from the existing databases such as Materials Project, 

Pymatgen and Mendeleev22,23,24) and these were made the element parameter group xi. 

Euclidean norm f  for the composition ratio fi (f1 + f2 + f3 = 1) of constituent elements 
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was used as the stoichiometric attribute.25) For element parameter groups, mean value 

xmean, mean deviation xavd, and standard deviation xstd were calculated for each 

composition and made into 53 descriptors in total, and these were combined with Tc 

values to make 1221 datasets. Equations (1) to (4) used to create the descriptors are given 

as 26)    

2

if f=  ,       （１） 

 mean i ix f x=  ,       （２） 

 avd i i meanx f x x= − ,      （３） 

 ( )
2

std i i meanx f x x= −  .     （４） 

ML procedure for prediction of Tc was performed by dividing the datasets into training 

data and test data at a ratio of 80:20 at random. We tried ML methods27) including 

"regression", "random forest", "support vector machine", etc., at the preliminary 

examination stage, but in this research, we adopted the "random forest" regression method 

with the highest prediction accuracy. The cross-validation method was adopted to reduce 

the bias of predicted values, so the learning process was repeated 10 times to obtain the 

final values as the average values. The R2 determination coefficient used to evaluate the 

prediction accuracy of the learning model is given as  

( )
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where, exp

iy is the measured value, pred

iy is the predicted value, and 
expy is the average 

value of the measured values. R2 represents the correlation between the measured values 

and the predicted values, and the closer to 1.0, the higher the accuracy. 
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The correlation between predicted Tc and measured Tc by the random forest regression 

model is shown in Fig. 1. As a result of cross-validation, the R2 determination coefficients 

were high, 0.98 for training data and 0.92 for test data. It should be noted that the random 

forest regression method is powerful for the present datasets and its prediction accuracy 

is much higher than other regression methods. The reason why R2 was so high is that the 

datasets were limited to the ternary group containing MgB2, which are phonon 

mechanism superconductors, and high Tc groups such as cuprate and Fe-based 

superconductors were excluded. The same tendency can be seen in the report of Tc 

prediction by Stanev15) using the SuperCon database as well as present study. The 

combination of all the elements of the -- ternary system using 78 elements was 

78C3=76076 in total. In this research, the composition space was divided into 231 points 

for each combination, and Tc was calculated for each composition using this prediction 

model. The Tc distribution in the Mg-B-Ti system thus obtained is shown in Fig. 2 as an 

example. The equilibrium phase diagram at absolute zero including stable and unstable 

phases, created from Materials Project,28) is also shown in the figure. The high Tc region 

was concentrated near the Mg:B=1:2 composition, and its maximum value was 38 K, 

which correctly reflects the experimental results. The Tc distribution and the phase 

diagram in the Fe-Te-Se system found after the discovery of the Fe-based superconductor 

are shown in Fig. 3. A comparison of the two figures shows that the high Tc region is 

present on the tie line of FeTe and FeSe. The predicted maximum value of Tc was 14 K, 

which is similar to the relationship of Tc of FeTe1-xSex with x dependence reported by 

Mizuguchi and Takano.29) The datasets do not contain any data on so-called “Fe-based 

superconductors”, but it was possible to accurately predict the Tc distribution of the Fe-

Te-Se system. This means that the prediction model works well because the Fe-Te-Se 
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system is a superconductor like the material group of present datasets. The same high 

prediction accuracy was obtained also in the Tc distribution of the Fe-Te-S system in 

which Se is substituted with S. However, the situation was different for the Mg-B-Ti 

system. If the prediction was performed by intentionally excluding MgB2 and its series 

(over 150 datasets) from the whole datasets, the prediction accuracy was extremely 

reduced, and the maximum Tc became 20 K or less. That is, it seems that the present 

model cannot predict beyond the maximum value of Tc in the datasets. 

Although the prediction model has certain limitations, it is very effective for material 

search of phonon mechanism superconductors, especially material search below the Tc of 

MgB2. Therefore,  was fixed to a specific element in the -- system, and the maximum 

Tc when various elements of  and  were replaced was comprehensively calculated and 

compared. The number of combinations of  and  elements was 77C2=2926 in total. As 

in the previous methods, the maximum Tc value in each system was determined after 

dividing the composition into 231 points and generating the Tc distribution. The 

distribution maps of maximum Tc when  was fixed to Fe or B (boron), while  and  

were variously changed to perform exhaustive prediction are shown in Fig. 4. In Fe--, 

there was a high Tc region when it contained a light element whose atomic number was 

smaller than that of Ne, in contrast to this, Tc was lower in systems with larger atomic 

numbers. On the other hand, in the B-- system containing the light element B, periodic 

fluctuations of Tc was observed, and high Tc regions also appeared in three places near 

atomic numbers 10, 20, and 38. The periodic variation of Tc seems to be similar to the 

behavior in Matthias’s valence law. The prediction of high Tc in a system containing light 

elements is appropriate from the fact that the datasets almost consist of phonon 

mechanism superconductors. The Tc distribution map for the Ca-B-C system at absolute 
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zero is shown in Fig. 5 as an example of a candidate substance with high Tc. This system 

is based on the B-C binary system including B, C, B13C2 as stable phases and B9C, B4C, 

BC, BC5, BC7 as unstable phases, but these phases do not match regions where high Tc is 

expected. However, the addition of a third element such as Ca broadens the high Tc region. 

For example, if a compound can be successfully synthesized on a tie line of CaB6 and 

B13C2 or in the vicinity, a high Tc substance exceeding 30 K is expected. Such a Tc 

distribution map can be seen not only with the addition of Ca but also with the addition 

of other elements. In boron-carbide system, 23 K has already been reported in the 

YPd2B2C quaternary system,30) and recently, there has also been a report of Tc = 36 to 55 

K in the B-doped Q carbon thin film,31) so, this system is expected as a target substance 

of experimental verification. 

In summary, ML was used to establish a Tc prediction model for ternary materials 

based on the SuperCon database. The R2 determination coefficient showed high accuracy 

of 0.92, and the Tc distribution maps of Mg-B-Ti system and Fe-Te-Se system predicted 

using this model showed a good correspondence with the experimental results, despite 

the lack of crystal structure information. Even though the data of Fe-based 

superconductors were not included in the datasets, the fact that Tc could be predicted 

correctly indicates the effectiveness of the prediction model. We established an algorithm 

to predict the maximum Tc of various -- systems using this model and revealed that 

the Tc of systems containing light elements is high and that the behavior of Tc periodically 

changes as the atomic number increases. We also suggested the Ca-B-C system as a 

candidate substance of high Tc. In order to search for higher Tc, it is necessary to develop 

the present prediction method into a quaternary or a five-element system including 

cuprate and Fe-based superconductors. 
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Figure captions 

Fig. 1 Correlation between predicted Tc and measured Tc by the random forest 

regression model. The 1221 datasets were divided into training data and test data at a ratio 

of 80:20. According to cross validation, the R2 determination coefficient is 0.92. 

 

Fig. 2  (a) The predicted Tc distribution map of Mg-B-Ti system. (b) The equilibrium 

phase diagram of Mg-B-Ti system at absolute zero, where black points are stable phases 

and blue ones are unstable phases. The high Tc region exists only near the Mg: B = 1: 2 

composition, and the maximum Tc is 38 K. 

 

Fig. 3 (a) The predicted Tc distribution map of Fe-Te-Se system. (b) The equilibrium 

phase diagram of Fe-Te-Se system at absolute zero, where black points are stable phases 

and blue ones are unstable phases. The high Tc region is present on a tie line of FeTe and 

FeSe, which corresponds to the relationship of Tc of FeTe1-xSex with x dependence 

reported by Mizuguchi and Takano.29)   

 

Fig. 4 Predicted maximum Tc distribution map of -- system when  was fixed to Fe 

or B, while  and  were variously changed. (a) Fe-- system. (b) B-- system. The 

number of composition combinations in each system is 77C2=2926. 

 

Fig. 5 (a) The predicted Tc distribution map of Ca-B-C system. (b) The equilibrium 

phase diagram of Ca-B-C system at absolute zero, where black points are stable phases 

and blue ones are unstable phases. The predicted high Tc region is on a tie line of CaB6 

and B13C2 or in the vicinity and the maximum Tc is 36 K. 
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Fig. 1 K. Matsumoto 
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Fig. 2 K. Matsumoto 
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Fig. 3 K. Matsumoto 



16 

 

 

 

 

 

 

 

 

Fig. 4 K. Matsumoto 
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Fig. 5 K. Matsumoto 


