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Abstract 

 
Transfer of human intentions into myoelectric hand prostheses is generally achieved 

by learning a mapping, directly from sEMG signals to the Kinematics using linear or 
nonlinear regression approaches. Due to the highly random and nonlinear nature of 
sEMG signals such approaches are not able to exploit the functions of the modern pros- 
thesis, completely. Inspired from the muscle synergy hypothesis in the motor control 
community, some studies in the past have shown that better estimation accuracies can 
be achieved by learning a mapping to kinematics space from the synergistic features 
extracted from sEMG. However, mainly linear algorithms such as Principle Compo- 
nent Analysis (PCA), and Non-negative matrix factorization (NNMF) were employed 
to extract synergistic features, separately, from EMG and kinematics data and have not 
considered the nonlinearity and the strong correlation that exist between finger kine- 
matics and muscles. To exploit the relationship between EMG and Finger Kinematics 
for myoelectric control, we propose the use of the Manifold Relevance Determination 
(MRD) model (multi-view learning) to find the correspondence between muscular and 
kinematics by learning a shared low-dimensional representation. In the first part of the 
study, we present the approach of multi-view learning, interpretation of extracted non- 
linear muscle synergies from the joint study of sEMG and finger kinematics and their 
use in estimating the finger kinematics for the upper-limb prosthesis. Applicability of 
the proposed approach is then demonstrated by comparing the kinematics  estimation 

*Doctoral Dissertation, Department of Life Science and Systems Engineering, Graduate School of 
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accuracies against linear synergies and direct mapping. In the second part of the study, 
we propose a new approach to extract nonlinear muscle synergies from sEMG using 
multiview learning which addresses the two main drawbacks ( 1. Inconsistent syner- 
gistic patterns upon addition of sEMG signals from more muscles, 2. Weak metric for 
accessing the quality and quantity of muscle synergies ) of established algorithms and 
discuss the potential of the proposed approach for reducing the number of electrodes 
with negligible degradation in predicted kinematics. 

 

Keywords: 
 
Electromyography (EMG), muscle activation model, multi-fingered hand, finger joint 
kinematics, regression, Nonlinear muscle and kinematic synergies, dimensionality re- 
duction 
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Chapter 1 

Introduction 

With the number of active controllable joints in robotic hands and powered prostheses 
substantially increasing every year, the capability to perform complex movements in- 
volving simultaneous control of a large degree-of-freedom (DOF) available in the hand 
is possible [1]. This makes it possible for the robot devices to generate human-like dex- 
terous manipulation and replicate biomechanically realistic hand movement. Among 
many potential options, muscle interfacing using surface electromyographic (sEMG) 
signals is still currently the only viable noninvasive biological signal that can be used 
to control assistive devices for neurorehabilitation [2], such as active prostheses, or 
accomplish seamless myoelectric control of many applications. 

There are many dexterous robotic hands and hand-prostheses but the difficulty in 
controlling all available degree-of-freedom (DOF) via myoelectric control has moti- 
vated many researchers to focus on more limited control mechanisms. Clinically avail- 
able EMG-based controllers are only able to control a few DOF at a time [1]. Multiple 
dimensions have to be controlled sequentially, requiring slow mode-switching mech- 
anisms initiated by different muscle co-contraction. As a result, significant research 
has been done on pattern recognition-based techniques to output multiple classes of 
movements, with many studies reaching decoding accuracies of above 95% and classi- 
fying up to more than six different hand gestures [3, 4]. Although in these approaches, 
the number of output movements is still limited and does not provide control of mul- 
tiple correlated DOFs available in the hand. Current proportional myoelectric control 
strategies fall short in only being able to control a few numbers of DOFs [5, 6], among 
other existing limitations listed in [2].  Deployment of proportional and simultaneous 
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control for multiple DOFs remains one of the major challenges in improving the next- 
generation myoelectric prostheses and interfaces [7]. 

Mapping of fine finger kinematic information from sEMG inputs has been done 
by numerous studies. However, dexterous hand manipulation remains to be one of the 
most complex biological movements to replicate [8]. This is because the human hand 
not only has a highly articulated system, with possibly more than 20 kinematic DOF, 
but also has a complex muscular system involved in the motor control. Indeed a large 
part of the brain is shown to be devoted to controlling the hand’s complex musculo- 
tendon network [8]. 

In neurophysiology, it has been argued that synergies control the coordination of 
muscle recruitment for posture control [9]. The muscle synergy hypothesis claims that 
the motor system directly initiates movement through flexible combinations of control 
modules recruited by the central nervous system to simplify control. Similarly, the con- 
cept of synergies has also been widely used in the field of robotics, where robot control 
laws are expressed in low-dimensional space to drive forces applied to the higher di- 
mensional robot space. In motion planning, for example, synergies can often reduce 
complexity, where searching for an adequate kinematic configuration can increase ex- 
ponentially with the dimensionality of the structure [10]. Thus, synergies can provide 
a natural modeling paradigm where muscle activation inputs and high-dimensional 
joint kinematics can be represented in low-dimensional space, where common latent 
features are shared. Estimating finger kinematics from sEMG input signals usually in- 
volves highly correlated patterns and high dimensionality in both the input and output 
domains. Nevertheless, few studies have given attention in considering such correla- 
tions in doing proportional and simultaneous control of the high dimensional finger 
kinematics from sEMG signals. 

The present study aims at the proportional and simultaneous estimation of finger 
kinematics from surface EMG by learning an association between muscle and kine- 
matic synergies. 
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1.1. Research Motivation 

This study is inspired by studies in the motor control community that claims that syner- 
gistic patterns can be observed in the muscle coordination and posture space. Grinya- 
gin et al. [11] presented different types of synergies. First, static postural synergies, that 
refer to correlated models between single kinematic poses. Second, kinematic syner- 
gies, that consider time-dependent correlation during a motor action task [12]. Lastly, 
muscle synergies that use recruited muscle coordination patterns from electromyo- 
graphic (sEMG) activity to address low-level representations of motor control [13–15]. 
While only the third type of synergy has been largely used in the motor control com- 
munity, the first two types have inspired a lot of work in robotics [10]. 

The use of a muscle synergy model together with regression-based methods for 
robust myoelectric control has inspired a lot of work [5, 16–21]. Studies have shown 
that muscle synergy features are inherently robust to single-channel electrode shift and 
amplitude cancellation [6, 22]. 

For better understanding of muscle synergies and their functional role, input spaces 
such as sEMG or EEG should be studied simultaneously with output spaces such as 
Kinematics or Force, etc. [23] and studies [24] [25] in the past have also focused in 
this direction by extracting the components using Nonnegative Matrix Factorization 
(NNMF) from a dataset containing sEMG and task-related variables. However, the use 
of NNMF to study a dataset obtained from the concatenation of muscle activations and 
task-related variables, is not well justified due to the following three reasons. 

First, NNMF is a linear decomposition algorithm that may not be able to handle the 
nonlinearity that exists in sEMG and the corresponding task-related variables. Romero 
et al. [10] have shown that the postural synergies extracted using linear models failed to 
represent nonlinear motions even in a simple hand reaching and grasping tasks. Martin 
et al. [26] have shown that how synergies extracted using linear models failed to extract 
the agonist-antagonist relationships while synergies extracted using nonlinear models 
like auto-encoders can represent such information, successfully. 

Second, non-negative constraint in the NNMF is suitable for extracting positive 
coefficients from the muscle activations and giving a physiological interpretation to 
the extracted components and coefficients but not an appropriate choice for studying 
the task-related variables which may also have negative values [23]. 

Third, the number of synergy components chosen are based on the reconstruction 
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accuracy, in terms of the Variance Accounted For (VAF) or the Pearson Correlation 
Coefficient (ρ), which are only valid to a certain extent due to the noisy fluctuation in 
the biological data, instead of capturing task-specific variations in the muscle activity 
[27]. To understand and extract the task-specific variations from the muscle activity, 
the relationship between these two (sEMG and finger kinematics) related but different 
observation spaces has to be analyzed. 

To address these issues, in the first part of the thesis, we present the use of the Man- 
ifold Relevance Determination (MRD) model to extract nonlinear muscle and kinemat- 
ics synergies by studying muscle activation and finger kinematic together and their use 
in estimating finger kinematics from muscle activations input while at the second part 
we extract muscle synergies only from sEMG data and provide a better alternative than 
a linear algorithm such as NNMF to the motor control community. 

 
1.2. Research Contribution 

This study aims to extract and analyze the nonlinear muscle and kinematic synergies 
and their application in myoelectric control. The main contributions of this study are 
as follows:1) To propose a new strategy to extract the relationship between the muscle 
activations and the corresponding finger kinematics, using the Manifold Relevance 
Determination (MRD). 2) To present a thorough analysis of the nonlinear muscle and 
kinematic synergies extracted using the MRD model. 3) To present the use of the 
acquired synergies to reconstruct the finger kinematics of a full 23-joint skeletal hand 
model, we show that our estimation method can outperform commonly used regression 
methods and leads to the intuitive control of multi-fingered prosthesis 4) To present 
extraction of nonlinear muscle synergies only from sEMG which are consistent over 
addition of sEMG signals from new muscles which not only provide a better alternative 
to study co-activation among muscles than a linear algorithm such as NNMF but also 
gives a possibility to reduce the number of electrodes with only negligible degradation 
in the predicted kinematics. 
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1.3. Thesis Overview 

This thesis is organized and divided into Five chapters. Chapter 2 presents the related 
literature and works. Chapter 3 presents the first part of our work, where we propose 
the use of Manifold Relevance Model (MRD) to understand the relation between mus- 
cle activation (input-space) and finger kinematics (output-space). In this work, the 
acquired nonlinear synergies and the association between them are further used for the 
estimation of finger kinematics. Chapter 4 presents the second part of our work, where 
we present a new approach to extract muscle synergies from sEMG data, which pro- 
vide a better alternative to study the co-activations of muscles than a linear algorithms 
such as NNMF. Chapter 5 draws some conclusions to our work on in the overall con- 
text of synergies and their use in myoelectric control and gives our recommendation 
and perspective for the future direction of this study. 
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Chapter 2 

Related Work 

Each time you take a step, 200 muscles work in unison to lift your foot, propel it for- 
ward, and set it down. It’s just one of the many thousands of tasks performed by the 
muscular system: this network of over 650 muscles covers the body and is the rea- 
son we can blink, smile, run, jump, and stand upright. So how does it work? Our 
muscular system is made of three different muscle types namely skeletal, cardiac and 
smooth muscles. All three kinds of muscles are made of small cells called muscle 
fiber bundled tightly together. These bundles receives the signal from the central ner- 
vous system which contract the muscle fibers and generate force or motion. Due to 
some unavoidable circumstances,  When a person lose a limb,  he is no longer able   
to participate in daily life activities, but the control signals could be recovered from 
the remaining muscles which could be utilized to transfer the human intentions to the 
robotic arm. The approach of decoding and transferring the human intentions to the 
robotic arm, from the electromyography (EMG) obtained from the remaining muscles, 
is getting significantly better with the advancement of machine learning approaches. 
This chapter discusses such existing approaches and their drawbacks in detail. 
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2.1. Myoelectric Controlled Prosthesis 

The use of sEMG for controlling prosthetic arms has been started since the 1950s, 
where the first practical myoelectric controlled prostheses were introduced. Since then, 
there has been significant research both in control algorithms and robotics. However, 
most of the clinically and commercially available myoelectric controlled prostheses are 
based on the principles developed during the early time due to the lack of robustness 
in state of the art approaches. And that is the reason myoelectric controlled prosthesis 
suffers from an average rejection rate of 25 percent. Among other reasons of rejections, 
one of the reasons is the lack of functionality, robust and intuitive control. Users are 
willing to reconsider the prosthetic arms with enhanced functionality, such as simul- 
taneous and proportional control, individual digit movement, thumb and wrist control, 
robust and natural control. 

With the advancement in machine learning approaches, researchers have applied 
various classification and regression-based techniques to decode the human intentions 
from sEMG. Among other features, synergies based features have the potential to pro- 
vide robust myoelectric control, which took attention of many researchers. Studies 
have extracted synergies from sEMG using different linear algorithms and used them 
further for kinematics estimation. One of the classic approach to extract synergies from 
sEMG has been discussed in the next section. 

 
2.2. Synergy Extraction Methods 

The human body has more muscles than joints, which indicates that there are infinite 
possibilities to perform a given task. To simplify the control mechanism, the Central 
Nervous System (CNS) might be controlling a group of muscles simultaneously rather 
than controlling them individually to perform any task. Which gives birth to the idea 
of muscle synergies. Muscle synergies are usually extracted out of electromyography 
(EMG) data, which is obtained by placing electrodes on the muscles and recording the 
electrical activity. To extract the synergies, different matrix factorization algorithms 
such as Principle Component Analysis (PCA), Independent Component Analysis, And 
Non-Negative Matrix Factorization (NNMF) can be used. Among all these three al- 
gorithms, NNMF is a widely used algorithm in literature to extract muscle synergies. 
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Because of its property,  that factorized matrix cannot have negative values.  Hence  
it provides a physiologically meaningful way to interpret synergy vectors as neurons 
either firing action potentials (positive) or in resting state (zero). 

In this formulation, muscle patterns are assumed to be the linear combination of 
set of time invariant activation balance profiles with time varying activation coefficient 
as follows: 

N 

m = ∑ ciwi (2.1) 
i=1 

where m is a vector that represents multiple EMG channels, w contains the synergies 
or basis functions and c represents each activation of each component to the measured 
muscle activation patterns.  See Figure 2.1 to visualize this relationship.  In order   to 

Figure 2.1: Time-invariant synergies capture spatial regularities in the motor output. 
 
find out the optimal number of synergy vectors and also to ensure that the method has 
learned from the training data sufficiently, the Variance Accounted For (VAF) metric 
is calculated [28]. The VAF of above 90% across all training points is considered to 
find good decompositions [29]. 

 
2.3. Drawbacks of Synergy Extraction Methods 

2.3.1 Unable to Extract Complex Coupling among   Muscles 

Synergies extracted using NNMF, PCA or any other linear decomposition algorithm 
are linear in nature and do not capture the inherent nonlinearity that exists in the data. 
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Spuler et al., have shown it their study by synthesizing the nonlinear nature of data 
assuming two muscles in an agonist-antagonist relationship as shown in Fig. 2.2. It 
resembles the activation patterns of biceps and triceps during elbow extension/flexion 
[26].     This study [26] has demonstrated that the autoencoder (a nonlinear algorithm 

 

 

Figure 2.2: Shows the results from [26] in simulated data, which has only one synergy 
with a sinusoidal pattern. As can be observed from the figure, NNMF and ICA failed 
to extract the actual synergy pattern, while PCA can only extract synergy but failed to 
regenerate the actual muscle weights. Only the autoencoder was successfully able to 
extract both the synergy and muscle weights. 

 
) better models the co-activation of muscles not only in simulated data but also in    
the real data, collected from the nine subjects when compared with other traditional 
approaches. This suggests that there is a need to focus on nonlinear algorithms for 
studying the synergies. 

 
2.3.2 Lack of Functional  Meaning 

Most of the studies in neuroscience extract synergies from sEMG signals and do not 
associate them at the task-level. While in robotics, synergies are synthesized at the 
task-level giving little or no considerations to the biomechanics of human hand. It has 
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been discussed in great detail, in the study by Alessandro et al. [23], a brief overview 
is presented over here as follows: 

In neuroscience, most of the scientific studies follow these steps to extract muscle 
synergies: 

1. Subjects perform the tasks prescribed by the experimenter. 
 

2. Muscle synergies are extracted from the recorded EMG signals in step 1, apply- 
ing some linear or nonlinear dimensionality reduction algorithms. 

3. Many of the research does not show the reconstruction of tasks from the ex- 
tracted muscle synergies, which is something missing in the field and need to be 
addressed. 

While in robotics 
 

1. Synergies are synthesized based on the requirements of the desired class of tasks. 
 

2. Then, the synthesized synergies are appropriately combined to generate the mo- 
tor signals to solve a specific task instance. 

3. The quality of the synthesized synergies is finally tested in terms of the obtained 
task performance. 

Studying input space together with the output space will help to associate some 
functional meaning to the extracted synergies, which in the future could be used for 
generating human-like motions in a robotic arm provided that the hardware of the 
robotic hand has similarities with the biomechanics of the human hand. To investigate 
the relationship between input (sEMG) and output Space (task-level), a joint study of 
sEMG and finger kinematics has been presented in detail in chapter 3. 
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Figure 2.3: Shows the steps (1 − 2 − 3) of extracting synergies in neuroscience   and 

robotics. Green arrow shows the flow of steps most of the studies follow in respec-tive 
fields, while dotted red arrow in neuroscience block indicates the process of re- 
constructing the task space from the extracted muscle synergies, which is generally 
avoided in the field of neuroscience, whereas blue arrow indicates the future possi- 
bility of reusing the muscle synergies in robotics from the neuroscience ( a bridge 
between step 3 in neuroscience to the step 1 in robotics ). 

 
2.3.3 Inconsistent  Synergistic Structures 

In general, EMG is recorded from the surface muscles only, and it is difficult to record 
the EMG from the muscles beneath the surface muscles. Due to this constraint, Steele 
et al. [30] have performed a detailed analysis to investigate if the number and choice 
of muscles impact the result of muscle synergies. They have considered sEMG from  
a total of 30 muscles. Applying NNMF on the data from all the 30 muscles generated 
a master set of synergies. While a subset of synergies extracted by ranging the data 
from 5 to 29 muscles. A similarity metric had been calculated between the subset and 
master set synergies. This study [30] finds that the structure of synergies is dependent 
upon the number and choice of muscles included. 

To address this problem, a new approach based on multi-view learning has been 
presented in chapter 4. 

Neuroscience Robotics 

1 

? 2 1 3 

3 
2 
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Chapter 3 

Extraction of nonlinear synergies for 
proportional and simultaneous 
estimation of finger kinematics 
 
Proportional and simultaneous estimation of finger kinematics from surface EMG 
based on the assumption that there exists a correlation between muscle activations and 
finger kinematics in low dimensional space. We employ Manifold Relevance Determi- 
nation (MRD), a multi-view learning model with a nonparametric Bayesian approach, 
to extract the nonlinear muscle and kinematics synergies and the relationship between 
them by studying muscle activations (input-space) together with the finger kinematics 
(output-space). This study finds that there exist muscle synergies which are associ- 
ated with kinematic synergies. The acquired nonlinear synergies and the association 
between them has further been utilized for the estimation of finger kinematics from 
muscle activation inputs, and the proposed approach has outperformed other com- 
monly used linear and nonlinear regression approaches with an average correlation 
coefficient of 0.91±0.03.  There exists an association between muscle and  kinematic 
synergies which can be used for the proportional and simultaneous estimation of fin- 
ger kinematics from the muscle activation inputs. The findings of this study not only 
presents a viable approach for accurate and intuitive myoelectric control but also pro- 
vides a new perspective on the muscle synergies in the motor control community. 
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3.1. Overview 

The chapter presents the use of the MRD model to study muscle activation together 
with the finger kinematics. Firstly, the schematic overview ( Fig. 3.1 ) and formu- 
lation of the MRD model to extract the relationship between the muscle activations 
and the corresponding finger kinematics, using the Manifold Relevance Determination 
(MRD) [31] is presented. Secondly, the thorough analysis of the nonlinear muscle and 
kinematic synergies (the shared latent space) extracted using the MRD model from the 
combined study of muscle activations (input-space) is presented. Finally, we present 
the use of the acquired nonlinear synergies (the shared latent space) to estimate the 
finger kinematics of a full 23-joint skeletal hand model. We provide an experimental 
evaluation that shows how the proposed method outperforms commonly used linear 
and nonlinear regression approaches, in terms of estimating finger kinematics using 
muscle activation inputs. 

 
3.2. Methods 

In this section, we present the MRD model [31] and its formulation, used for finding 
the nonlinear muscle and kinematic synergies and the interaction between them (shared 
latent space). First, the MRD model and its formulation is presented. The inference 
algorithm is then described, which is used to estimate finger kinematics from sEMG 
using the obtained shared latent space. Finally, the implementation details of the linear 
regression and artificial neural network are presented, which are later used in the study 
to compare the estimation performance of the MRD model. 

 
3.2.1 Manifold  Relevance Determination(MRD) 

Gaussian processes (GPs) are powerful models that can be used for classification or re- 
gression that incorporates numerous classes of function approximators [32]. Lawrence 
proposed the Gaussian Process latent variable model (GPLVM) as a new technique for 
nonlinear dimensionality reduction that uses Gaussian processes (GPs) to find a non- 
linear manifold to preserve the variance of the data in a latent space representation [33]. 
Several studies have been proposed to handle multi-view learning. For example, Shon 
et al.  proposed a generalization of the GPLVM that represents multiple    observation 
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Figure 3.1: Schematic overview of the proposed method for extracting the nonlinear 
muscle and kinematic synergies and their relationship, using the MRD model. Two 
different but related observation spaces, namely sEMG (Y), recorded from eight mus- 
cles in the forearm and the corresponding 3D coordinates of 23 joint marker posi- 
tions in the hand (Z), which include three set of tasks,  namely:  (1) individual fin-  
ger flexion-extension (IFFE), (2) all finger flexion-extension (AFFE), and (3) random 
flexion-extension of one or more fingers (RFFE), are given to the MRD model as input. 
The learned shared latent space (X) is comprised of three subspaces. First subspace 
(Xy) represents the independent muscle synergies, second subspace (Xyz) represents 
the association of muscle and kinematic synergies while the third subspace (Xz) which 
would represent the independent kinematic synergies, is rarely observed, in this study. 

 
spaces that are linked via a single shared latent variable model [34]. Ek et al. pre- 
sented a factorized latent variable model where the shared and individual variances of 
two correlated observation data were represented in separate subspaces [35]. In these 
previous methods, however, the dimensionality of the latent spaces was heuristically 
set, and inference for new test data points had to rely on maximum a posteriori (MAP) 
search in the latent space. To overcome these limitations, Damianou et al. [31] pro- 
posed a full Bayesian factorized latent variable model based on GPLVM that allows 
for the automatic estimation of dimensionality of the latent space, and provides an ap- 
proximation to the full posterior of the latent points given the data.  In this study,   we 

EMG(Y) Estimated 
Kinematics(Z) 

 
EMG (Y) 

Finger Kinematics (Z) 

The MRD Model 
 
 

Shared Latent Space(X) 
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follow the same approach. 
The problem is formulated as follows: Given that we have two observation data  

Y ∈ RN×DY and Z ∈ RN×DZ , the goal of the model is to find a factorized latent variable 
parameterization in a space X ∈ RN×Q  that relates corresponding pairs of    observa- 
tions from different spaces Y  and Z. It is assumed that the two datasets are generated 
from a low dimensional manifold mapped from smooth functions { f Y }DY : X→Y and 

Z   DZ 

d   d=1 
: X→Z (Q<< D), corrupted by noise: 

yid = f Y (xi)+ εY 

d   d=1 

d id 
zid = f Z (xi)+ ε Z , (3.2) 

d id 
 

where {y, z}id represents dimension d of sample point i and εY , ε Z  are sampled from 
a zero mean Gaussian distribution.         This leads to the likelihood under the model, 
P(Y, Z|X, θ ), where where θ = {θY , θ Z} contains the parameters of the mapping func- 
tions and noise variances.  Finding the latent representation X and mapping functions 
f Y and f Z is an ill-constrained problem. Lawrence provided a solution by placing GP 
priors over the mapping and the resulting model is the Gaussian Process Latent Vari- 
able Model (GPLVM) framework [33]. In this framework, each generative mapping 
is modeled as a product of independent GP’s parametrized by the kernel or covariance 
function K = {KY , KZ} evaluated over the latent variable X , so that 

DY 

P(FY |X, θY ) = ∏ N (fY |0, KY ), (3.3) 
d=1 

where FY  = {fY }DY with f Y  = f Y (xi), and similarly for FZ . This allows the general 

nonlinear mapping function F to be marginalized out leading to a likelihood function 
in the form of a product of Gaussian densities: 

P(Y, Z|X, θ ) = ∏K={Y,Z} ∫ p(K|FK)p(FK|X, θ K)dFK (3.4) 

Integration over (4) is then done by variationally marginalizing out X by using 
variational approximation techniques used for standard GPLVMs. A non-standard 
but analytical solution through variational learning techniques and using induced vari- 
ables is described in [31, 36, 37]. The shared latent space (X ) is composed of three 
subspaces,  representing the  shared and  private variance  for each  observation  data, 
X = {XY , XYZ, XZ}. Bayesian training automatically allocates the dimension of this 
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shared latent space (X ) using automatic relevance determination (ARD) priors [31]. In 
the automatic allocation of the dimensionality, the dimensions DY and DZ of the latent 
functions f Y and f Z , respectively, are selected to be independent draws of a zero-mean 
GP with an ARD kernel or covariance function with the following form: 

 

k{Y,Z}(x , x ) = (σ{Y,Z})2e− 1 ∑Q
 

 
 

w{Y,Z} (xi,q−xj,q)2 
. (3.5) 

i j ard 
2     q=1    q 

 

where w{Y,Z} = α(l{Y,Z})−2, with α  a constant positive scale value and length scales 
l.  Although a common distribution for X  is learned, two sets of ARD weights W   = 
{wY , wZ} are obtained to automatically infer the relevance of each latent dimension for 
generating points in the Y and Z spaces respectively. The latent shared subspace XYZ ∈ 
RN×QS  is then defined by the set of dimensions q ∈ [1, · · · , Q] for which wY , wZ > δ , 

with δ  close to zero and QS ≤ Q. As for the two private spaces, XY  and XZ , these are 
also inferred automatically along with their corresponding dimensionalities, QY      and 
QZ , respectively. More specifically: 

 

XY = {xq}QY    : xq ∈ X, wY > δ , wZ < δ . (3.6) 
 

and analogously for XZ . This model is summarized in the graphical model shown in 
Fig. 3.2. The Bayesian GPLVM Matlab toolbox [38] was used to implement the model 
training and dimensionality relevance determination in this study. 

 
Inference Algorithm 

To predict finger kinematics from sEMG, the nearest neighbor approach (NN) to search 
for a similar point in the training data for the given sEMG was used, details of which 
explained in algorithm 1. 

 

Algorithm 1 Inference of Finger Kinematics Z, given sEMG Y 
 

1:  Given : MRD model trained on two views (Y, Z) 
2:  Given : A test point y∗ 

3:  Find ytrain = NN(Ytrain, y∗) 
4:  Select x∗(xy, xyz, xz ) from X (Xy, Xyz, Xz) corresponding to the index of ytrain 
5:  Find xss = 

∗ ∗ 
Xyz xyz) 

∗ NN( , ∗ 

6:  Predict z∗ = P(Z|xss) 



17  

 
 
 
 

 
 

Figure 3.2: Graphical model of the MRD model. A distribution for shared latent space 
X is learned and the hyperparameters wY,Z and θY,Z are the ARD weights that deter- 
mine the dimensionality and the function model parameters, respectively. 

 
3.2.2 Linear Regression (LR) 

A simple linear regression has been performed between muscle activations and finger 
kinematics using the MATLAB “\” operator. Simple linear regression in the MATLAB 
considers only one independent variable (x) as : 

y = mx + c + ε (3.7) 

where y is the response variable, c is the y-intercept, m is the slope (or regression 
coefficient), and ε is the error term. 

 
3.2.3 Artificial Neural Network  (ANN) 

ANN has been implemented using the fitnet function of MATLAB with default training 
algorithm Levenberg-Marquardt ( ’trainlm’ ) from the Netlab toolbox. The network is 
made of an input layer, a hidden layer with a tan-sigmoidal activation function, and a 
single linear output layer. The number of neurons in the hidden layer is set to be the 
2/3 of the sum of the neurons in the input and output layer. Parameters of the network 
were obtained by minimizing a mean square error function.  A single network is used 
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to simultaneously and continuously estimate the finger kinematics from the muscle 
activations. 

 
3.3. Datasets 

3.3.1 Data Collection 

Surface EMG signals were extracted from eight extrinsic muscles of the hand that 
known to contribute to the wrist and finger movements (Fig. 3.3). Bipolar active-type 
Ag-AgCl electrodes, with an inter-electrode distance of 20 mm, were placed on the 
extrinsic muscles of the forearm. The target muscles and the related finger movements 
are listed in Table 3.1. These target muscles were mostly found by palpation and 
commonly known anatomical landmarks described in [39]. A single electrode was 
also placed on the subject’s olecranon to serve as ground and reference electrode. 

The sEMG signals were measured using a compact BA1104 pre-amplifier and a 
TU-4 telemetry unit (Digitex Lab. Co. Ltd). The hardware provided a high-frequency 
filter of 1 kHz during the sEMG data acquisition process. The sEMG signals were 
sampled at 2 kHz, and were digitized by an A/D converter with 12-bit precision.  The 

 
Table 3.1: Selected sEMG channels and the target muscles 

 
 

C Target Muscle Hand/Finger 
1 Abductor  pollicis longus(APL) Thumb abduction,extension 
2 Flexor carpi radialis(FCR) Wrist, hand flexion 
3 Flexor  digitorum superficialis(FDS) 2-5th finger PIP flexion 
4 Flexor  digitorum profundus(FDP) 2-5th finger DIP flexion 
5 Extensor digitorium(ED) 2-5th finger extension 
6 Extensor indices(EI) Index finger 
7 Extensor  carpi ulnaris(ECU) Wrist extension and  abduction 
8 Extensor  carpi radialis(ECR) Wrist and thumb 

Source: Anatomy and Kinesiology of the Hand [40]. 
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sEMG signals were displayed on a real-time monitor and visually inspected to check its 
quality. Along with the sEMG signals, unconstrained and continuous wrist and finger 
movements were also simultaneously recorded using a MAC3D motion capture sys- 
tem (Motion Analysis Corp.). Twenty-three passive reflective markers were attached 
on the subject’s hand (see Fig. 3.3), one on each joint and tip of the finger, three in 
the wrist area and one in the forearm for reference. The Cortex software from Mo- 
tion Analysis was used to concurrently record and synchronize the sEMG and motion 
data. The marker positions were recorded at 200 Hz sampling rate with measurement 
units in millimeters (mm). The full hand kinematic dimension is given by the 23- 
marker hand skeleton model 3D information in the motion capture space. Later on, the 
metacarpophalangeal (MCP), the proximal interphalangeal (PIP) and the distal inter- 
phalangeal (DIP) joint angles were also calculated from the recorded marker positions 
following the procedure described in [41]. Because the thumb does not have a DIP 
joint, the carpometacarpal (CMC) joint was considered. These joint angle values are 
used in EMG-to-Muscle activation model. 

The total data used included those of 10 healthy and intact participants (9 Male,   
1 Female, aged 26-31 years old). The subject, seated with their dominant hand and 
elbow comfortably positioned on a flat surface table, were asked to do different flexion 
and extension finger movement tasks which includes the following: 

1. Individual finger flexion-extension (IFFE) 

2. All finger flexion-extension (AFFE) 

3. Random flexion-extension of one or more fingers (RFFE) 

In the first task, the subject was asked to move one finger at a time, in the flexion- 
extension plane of each finger. The second task involved the subject moving all fingers 
simultaneously, in the same flexion-extension plane. This motion resembled the open- 
ing and semi-closing of the hand. Full closing of the hand was not possible as some 
markers at the tip of the fingers would not be seen by the motion capture system. In 
these first two tasks, the subjects mainly did MCP flexion and extension, in which the 
PIP and DIP followed the movements of the MCP joint. Finally, for the third and last 
part of the experiment, the subject was asked to move any finger freely in any direction 
within the motion capture volume space while still maintaining a fixed neutral posi- 
tion for the arm and elbow. Irregular movements and different finger combinations for 



20  

 
 
 
 

 
 

Figure 3.3: General overview of electrode placement in the forearm 
 
flexion and extension movement were encouraged from the subject in this last part of 
the experiment. However, in this task fingers barely reached to maximum flexion or 
extension. 

The first task consisted of 5 sets of movement, one for each finger. While the re- 
maining tasks consisted of 1 set each. Each set consisted of 5 trials with each trial 
lasting 20 seconds. All the movements were limited to finger flexion and extension 
movements while the rest of the arm (e.g. wrist, elbow, etc.) maintained a fixed posi- 
tion upon instruction. Markers on the wrist joint were also recorded to ensure that the 
wrist maintained a fixed position, or at least minimal ulnar/radial angle deviation. A 
ringing sound, from the motion capture device, signaled the start and end of a trial in 
the experiment. All the trials were sequentially done and the participants were allowed 
to rest anytime throughout the experiment.  The subjects could make as many  move- 
ments but were instructed to move in their own perceived normal velocity (≤ 2 cycles 
of movement per second) and to maintain the least amount of wrist ulnar/radial angle 
deviation. The subjects were tasked to reach maximum flexion and extension for each 
finger at least once at any point in any of the trials. There was no obstacle or object to 
impede/induce force in the experiment. A video demonstration (Recorded Kine.mp4) 
of the recorded finger kinematics corresponding to all three tasks are provided in the 
supplementary material. This dataset is available online at IEEE DataPort as open 
access datasets [42]. 

Chanel8 
Chanell 

Chanels 
Chanell 

Chanel6 
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3.3.2 Data Preprocessing 

EMG-to-Muscle activation model 

The raw sEMG signals were first preprocessed into a form, that after further manipula- 
tion, can be used to estimate muscle activation [43,44]. An EMG-to-Muscle Activation 
model is used to consider the effects of electromechanical delay (EMD) and activation 
dynamics in place of sEMG delay lines. It has been shown in previous studies, that 
using this feature works very well in estimating muscle force [45] and finger kinemat- 
ics [46]. 

The raw sEMG signals were digitally band-pass filtered in the range of [10, 500] Hz 
using a 4th-order Butterworth filter. The sEMG signals were then rectified, normalized 
by the overall peak rectified sEMG obtained, low-pass filtered (4 Hz cut-off frequency, 
zero-phase, 4th-order Butterworth filter) and downsampled to match the frequency of 
the motion data. 

Buchanan et al. proposed a second-order model filter that works more efficiently 
to model the relationship between sEMG and muscle activation [43, 44]. In this study, 
we employed such a filter to obtain muscle activation u j(t) given by: 

u j(t) = αej(t − d) − β1uj(t − 1) − β2uj(t − 2) (3.8) 

v j = e
Ajuj (t) − 1 
eAj − 1 

(3.9) 

where e j(t) is the rectified, normalized and filtered sEMG of muscle j at time t. In 
this model, α, β1, β2 are recursive coefficients of the filter, d is the EMD parameter 
and A handles the nonlinearity parameter of the activation feature. Filter stability is 
guaranteed by subjecting α, β1, and β2 to the following constraints: 

β1 = γ1 + γ2 (3.10) 
β2 = γ1 · γ2 (3.11) 

|γ1| <1,|γ2| < 1 (3.12) 

α − β1 − β2 = 1 (3.13) 

The muscle activation model parameters are obtained using a linear regressor and op- 
timized through constrained nonlinear programming using the Matlab    Optimization 
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Toolbox by minimizing the following cost function: 
1 ∑(ZANGLE  EST − ZANGLE  TARGET)2 (3.14) 

N  t 

where N is the total number of training samples, and ZANGLE EST and ZANGLE TARGET are 
the estimated and calculated finger joint angles, respectively. 

 
Finger Kinematics 

The motion data, on the other hand, were also low-pass filtered (4 Hz cut-off fre- 
quency) to remove any jitters. In this study, a factorized latent representation X is  ex- 
tracted from the 8-channel muscle activation input Y ∈ RN×8 and from the 23-marker 
finger posture Z ∈ RN×69. We considered all the 3D information on each marker which 
summed up to a total of 69 dimensions in the hand kinematic space. 

 
3.3.3 Training Data to the  Models 

All the models are separately trained for each subject and for a subject there are in 
total 140, 000 sample data points ( R140,000×8 and R140,000×69 for muscle activations 
and finger kinematics, respectively ) from three sets of tasks corresponding to all five 
trials. 

 
MRD Model 

For Synergistic Analysis Data points from all five trials of task 1 (IFFE) and task 2 
(AFFE) combined together, shuffled and then further downsampled by a factor of 30. 
Downsampling is done because training the MRD model is computationally expensive 
for large datasets, but handles data with large dimensions very well. 70% of the down- 
sampled dataset is used as training data, while the full dataset (around 136,000 data 
points) without down-sampling except the training data are used as test data. 

For Synergistic Analysis, task 3 (RFFE) have not been included in the model train- 
ing as the motions were random across the trials and subjects, and may pose difficulties 
in the interpretation and comparison of the obtained synergy components across the 
subjects. 
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For Finger Kinematics Estimation To check and compare the estimation capability 
of the nonlinear synergistic features obtained from the MRD model with other com- 
monly used approaches, new sets of MRD models were trained for each subject, but 
now including the data from all three tasks, keeping rest of the training and test pro- 
cedure same as used for synergistic analysis. The effect of including the third task in 
the training data over extracted synergistic patterns has been analyzed and presented 
in discussion section. 

 
Artificial Neural Network (ANN) and Linear Regression (LR) 

Data points from all the five trials and three set of tasks were combined together, shuf- 
fled and then further down-sampled by a factor of 30. Similar to the MRD model, 70% 
of the down-sampled dataset is used as training data, while the full dataset (around 
136,000 data points) excluding the training points are used as the test data. 

As the MRD model makes use of reduced dimensions (shared latent space) to map 
data from one view into another, both of these models (ANN and LR) were also trained 
on reduced dimensions obtained after applying Principle Component Analysis (PCA) 
on each of the downsampled datasets. 

The number of reduced dimensions or principal components was selected based 
on 90% total accumulated data variance. Five and nine principal components were 
needed to explain 90% of the data variance in the sEMG and finger kinematics data, 
respectively. Predicted data points were recovered back to the original space to evaluate 
the performance metrics. 

For ANN and LR, the down-sampling of the dataset has been done to keep the 
number of training data points similar to that of the MRD model. Increasing the train- 
ing samples [46], using the deep neural network architecture Or creating a dedicated 
MLP for each DOF [47] may lead to better estimation performance, but how large the 
training data is required or how deep the network architecture should be or to what 
extent retraining the model is needed, has not been investigated in this study. 

As the focus of the study is to provide a data efficient approach to extract and 
interpret the nonlinear synergy components by studying sEMG (input space) together 
with the task-related variables (output space) and their application in estimating finger 
kinematics. 
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3.3.4 Performance  Evaluation Metrics 

The quality of estimated finger kinematics is evaluated using the three metrics namely 
root-mean-square error (RMSE), Correlation Coefficient (ρ) and R-square. 

 
RMSEi = 

 
N 
t=1 

(ZMEASURED  − ZEST)2 

N 

 
(3.15) 

 

where ZMEASURED   and ZEST   are the measured and estimated x,  y and z coordinates   
of the 23 marker positions, respectively. The value of N would be 69. The RMSE 
performance index gives the square root of the mean of the square of all of the error. 
Compared to other error metrics, RMSE amplifies and severely punishes large errors. 
The other two performance metrics, correlation Coefficient (ρ) and R-square are also 
calculated between ZMEASURED  and ZEST. 

 
3.4. Results 

This section first describe the latent space obtained after applying MRD on EMG 
(input-space) and kinematics (output-space) separately. Then the the shared latent 
space (X ) and its synergistic interpretation is discussed when analyzing EMG (input- 
space) together with the kinematics (output-space) using the MRD model and then the 
proportional and simultaneous estimation of finger kinematics from surface EMG sig- 
nals using shared latent space (X ) is presented. The dataset obtained from subject 1 
(S1) is used for visualization of results. Significant improvement in the estimation of 
the finger kinematics is achieved, when compared with other regression methods as 
shown later in Table 3.3. 

 
3.4.1 Analyzing EMG and Kinematics  Separately 

To find a latent space based only on the EMG dataset, 8 dimensional EMG data are 
given as input to the Bayesian GPLVM model (MRD on one view). Initially the di- 
mensionality of the latent space is set equal to the dimensionality of the original EMG 
space because Automatic Relevance Determination (ARD) procedure in BGPLVM sets 
the weight (inverse length scale) of a latent dimensions almost close to zero when it has 
no significance in reconstructing the higher dimensional space, while higher  weights 
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(a) (b) (c) (d) (e) 
 

Figure 3.4: Shows the latent spaces for EMG and kinematics obtained using the 
Bayesian GPLVM (a) shows the scaled ARD weights for each dimension in the la- 
tent space corresponding to the EMG while (b) shows the projection of latent space 
into dimension {1 and 2}. (c) Shows the muscle activations values obtained by follow- 
ing the procedure of sampling latent points along the dimensions 1 as shown in dotted 
blue line in (b). Yellow bar on the top of blue bars indicates the amount of modulation 
in the activation values with respect to the first point when moving from left to right in 
(b). 

 
are assigned for relevant dimensions. Fig. 3.4a shows the scaled ARD weights with 
respect to each latent dimension. It is clear from Fig. 3.4a that latent dimension {1, 
and 2} are of significant importance while other latent dimensions can be omitted for 
further analysis. Fig. 3.4b shows the projection of the latent space into dimension {1, 
and 2}.  The red dots in Fig.  3.4b correspond to the posterior mean of each   training 
data points projected onto a 2D space, while the gradient of the background corre- 
sponds to the posterior variance (white for low variance and black for high variance). 
Encoded information in a latent dimension can be understood by sampling new la- 
tent points along that dimension, and mapping the sampled latent point (Xsamp) to the 
higher dimensional space by calculating the likelihood P(Y|Xsamp). 

Latent dimension {1} in 3.4a has been investigated by mapping the muscle  acti- 
vations corresponding to the sample latent points along the dimension 1 as shown by 
dotted blue line in 3.4b while keeping the points fixed corresponding to the other la- 
tent dimensions. Fig. 3.4c shows the obtained muscle activations corresponding to the 
sample latent points. Blue bars on the top of the yellow bars shows the modulation in 
the activation values when moving from left to right in Fig. 3.4b along the blue line, 
while yellow bars shows the activation values at the left most point. 

Similarly, Fig. 3.4d shows the ARD weights corresponding to 23 latent dimensions 
obtained after applying BGPLVM separately on 69 dimensional kinematics data.  Six 
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Figure 3.5: The shared latent space (X ) obtained using the MRD model, it shows the 
scaled ARD weights corresponding to every latent dimension in X . Dimensions {1, 2} 
represents the subspace, private to sEMG (Xy), while dimensions {9, 10, 11, 12, 13 and 
14} represents the shared subspace (Xyz) between sEMG and the finger kinematics, 

 
significant latent dimension {1,2,3,4,5 and 6 } are considered for further analysis. A 

similar process of reconstructing the higher dimensional space from sampled latent 
point along a dimension has been used to find the encoded kinematics motion in those 
six significant latent dimension. Recovered finger motions for latent dimensions are as 
follows: 1. AFFE, 2.Middle, Ring+Little, 3. Ring, Index 4. AFFE and Thumb. 

 
3.4.2 Shared Latent Space Obtained using the MRD   Model 

To find the shared latent space (X ) between the sEMG and the finger Kinematics, 
eight muscles activations and the corresponding 3D coordinates of the 23 joint marker 
positions, are given as inputs to the MRD model. To ensure that the model finds the 
correspondence between the two spaces if and only if it exists, the dimensionality of 
the latent space (X ) is set to the sum of the dimensionality of the original spaces, i.e. 
8 + 23 = 31, in spite of the fact that the dimensionality of the latent space (X ) could 
be much lower because of the inherent correlation that exists in the dataset. The model 
automatically finds the relevance of every dimension in latent space (X ) using the 
ARD procedure by assigning higher ARD weights to relevant dimensions, and making 
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Figure 3.6: Sample investigation process to find encoded information in the latent di- 
mensions, (a) shows the projection of latent space into dimensions {1 and 2}, and   a 
sample process to find the encoded information in a latent dimension. Muscle acti- 
vation values corresponding to dimension {1} can be obtained by sampling the latent 
points along it as shown by the dotted blue line, while keeping the points fixed on the 
other dimensions. Visualization of muscle activation values corresponding to the three 
latent points, indicated by the blue arrow, are shown in (b). Yellow bars on the top of 
blue bars indicate the amount of modulation in the activation values with respect to the 
first point when moving from left to right in (b). 
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Figure 3.7: Exploration of couped latent dimension in the shared latent space (X ), (b) 
shows the projection of latent space (X ) into dimensions {9, 10}. When sampling the 
latent points along the dimension {9} as shown by the dotted blue line,  proportional 
and simultaneous estimation of flexion and extension of all fingers along with related 
muscle activations is achieved. The visualization of muscle activations and finger kine- 
matics corresponding to the six latent points, indicated by the blue arrow, are shown in 
(a) and (c), respectively. 
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it close to zero when there is little relevance, as such high dimensionality of the latent 
space, in the beginning, will not be a problem either. 

Fig.  3.5 shows the scaled ARD weights for all 31 dimensions of the latent  space 
(X ) obtained using the MRD model. The threshold is set to 0.04 as shown by the dot- 
ted black line, leads to six significant dimensions {1,2,9,10,11,12,13 and 14} which 
are considered for further investigations. Dimensions {1 and 2} represents the sub- 
space (Xy), which is private to sEMG space and dimensions {9,10,11,12,13 and  14} 
represents the shared subspace (Xyz) between sEMG and the finger kinematics, while 
dimensions representing the subspace private to finger kinematics (Xz), can rarely be 
seen, which is a consistent trend across all subjects. 

A dimension in latent space (X ) represents either only a muscle synergy, or only  
a kinematic synergy, or a coupling of both synergies. Encoded information in a la- 
tent dimension related to sEMG or finger kinematics can be understood by  sampling 
new latent points (Xsamp) along a dimension, and mapping them to the related higher 
dimensional spaces by calculating the likelihood P(Y|Xsamp) or P(Z|Xsamp). 

 
Muscle Synergies Independent of Kinematic Synergies 

Latent dimensions {1 and 2} represent the muscle synergies that are independent of 
finger kinematics.  Fig.  3.6a shows the projection of the latent space into   dimension 
{1,  and 2}.   The red dots in Fig.        3.6a corresponds to the posterior mean of each 
training data points projected onto a 2D space, while the gradient of the background 
corresponds to the posterior variance (white for low variance and black for high vari- 
ance). 

Encoded muscle activation values in the dimension {1} are obtained by sampling 
the latent points along with it (the dotted blue line), while keeping the values fixed 
corresponding to other latent dimensions. Visualization of muscle activation values 
corresponding to three latent points, indicated by the blue arrow in Fig. 3.6a, are shown 
in Fig. 3.6b. Yellow bars on the top of blue bars indicate the amount of modulation in 
the activation values with respect to the first point when moving from left to right   in 
Fig.  3.6a.  Similarly, the activation values corresponding to the latent dimension {2} 
can also achieved. 

However, the presence of second latent dimension private to sEMG space was  
not consistent across the subject and have not been considered for further analysis. 
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Table 3.2: Encoded kinematics in latent dimensions for 10 subjects 
 
 

 9 10 11 12 13 14 15 
S1 AFFE Middle Ring Index Thumb Thumb —- 
With RFFE AFFE Middle Ring Index, Little Thumb Thumb —- 
S2 AFFE Ring+Little Thumb Middle+Ring+Thumb Index —- —- 
With RFFE AFFE Ring+Little,Thumb Thumb+Middle Index, Middle+ring  —- —- 
S3 AFFE Ring+Little Middle Thumb+Index Middle+Ring —- Thumb 
With RFFE AFFE Ring+Little Middle Ring Thumb+Index+Ring —- —- 
S4 AFFE Middle+Ring Ring+Little+Thumb Thumb Thumb+Index —- – 
With RFFE AFFE Middle+Ring Ring+Little+Thumb Thumb Thumb+Index —- – 
S5 AFFE —- Middle Ring Thumb,Index —- Thumb 
With RFFE AFFE —- Middle+Ring Ring+Little Similar to AFFE Thumb+Little —- 
S6 AFFE Thumb Middle+Ring+Little+Thumb Little —- Ring —- 
With RFFE AFFE Thumb Thumb Ring+Little Middle+Ring Ring AFFE 
S7 AFFE Ring+Little Middle Index —- —- —- 
With RFFE AFFE Ring+Little Middle Index Thumb —- —- 
S8 AFFE Ring+Little Thumb Middle —- —- —- 
With RFFE AFFE Ring+Little Thumb Middle AFFE —- —- 
S9 AFFE Thumb+Little Index+Middle+Ring+Little Thumb+Index Thumb+Index Index+Ring —- 
With RFFE AFFE Thumb+Little Index+Middle+Ring+Little Thumb,Index —- Index+Ring/Middle —- 
S10 AFFE Thumb Index Middle Little —— —- 
With RFFE AFFE —- Index Middle Little Thumb,Ring —- 

 
 
When moving along these independent latent dimensions from left to right as shown 
in Fig. 3.6b, muscle activations, corresponding to all the muscles, increase contin- 
uously. Monotonically increasing activation values for all the muscles indicate that 
these latent dimensions capture the overall variance of the sEMG data, instead of any 
task-specific variability. A video demonstration ( Independent LD.mp4 ) of change in 
activation values when moving along the independent latent dimension is provided in 
the supplementary material. 

 
Muscle Synergies Coupled with Kinematic Synergies 

Dimensions {9,10,11,12,13 and 14} represent the muscle synergies which are coupled 

with kinematic synergies.  This coupling can be understood by the same procedure of 
sampling the latent points along one of the coupled dimension at a time and correlating 
it with both, the muscle activations and finger kinematics as shown in Fig. 3.7. 

Fig. 3.7b shows the projection of latent space into dimensions {9 and 10} with the 
dotted blue line, along which the sampled latent points Xsamp are mapped back to both 
the observational spaces by calculating the likelihoods P(Y|Xsamp) and    P(Z|Xsamp). 
Reconstructed finger kinematics motion resemble with the all finger flexion-extension 
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Figure 3.8: Shows the muscle activation values encoded in the shared latent dimensions 

{9,10,11,12,13, and 14} . Muscle activation values are obtained by following the same 
procedure of sampling latent points along a dimension. Yellow bars on the top of blue 
bars indicate the amount of modulation in the activation values with respect to the first 
point when moving along that dimension. 

 
task. Visualization of the reconstructed muscle activation values and the corresponding 
finger kinematics at those six latent points which are indicated by the blue arrow in Fig. 
3.7b are shown in Fig. 3.7a and 3.7c, respectively. Again the yellow bars on the top 
of blue bars in 3.7a indicate the amount of modulation in the activation values with 
respect to the first point when moving from left to right in Fig. 3.7b . Recovered 
finger motions corresponding to these coupled latent dimensions for all the subjects is 
presented in Table 3.2 while the muscle activation values for subject 1 (S1) are shown 
in Fig. 3.8. 

Muscle activation values represented by coupled latent dimensions do not follow 
the trend of those represented by independent latent dimensions. In fact, moving along 
a coupled latent dimension, when resulting in the increase of activation values for some 
muscles, it results in the increase or decrease or no change in the activation values 
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corresponding to other muscles, and these variations are specific to a coupled latent di- 
mension. This gives a notion that a coupled latent dimension encodes those activation 
values which are desired to achieve the finger kinematics represented by it. A video 
demonstration (Coupled LD.mp4) of the generated muscle activations and related fin- 
ger kinematics, when moving along the coupled latent dimensions are provided in the 
supplementary material. 

It could be argued that the muscle synergy represented by a coupled latent dimen- 
sion could be capturing the task-specific variability for a subject in contrast to the 
independent muscle synergy (dim. {1}) which is capturing the overall variance of the 
sEMG data. As coupled synergies are responsible for generating only a subset of val- 
ues rather than large range of activation values (overall variance of the input sEMG), 
justifies the lower values of the ARD weights for the coupled muscle synergies (com- 
paratively smaller blue bars for the dimensions 9,10,11,12,13, and 14 ) when compared 
with the higher ARD weight of an independent muscle synergy (blue bar for the di- 
mension -1). A similar trend has also been observed in the remaining subjects. 

It could be summarized from Fig. 3.4a and 3.5 that the variance presented in sEMG 
data from the eight muscles can be captured in the first two latent dimensions using a 
nonlinear approach. The independent muscle synergies (Dim. 1 and 2) in the both 
cases(EMG analyzed separately, and EMG analyzed together with finger kinematics), 
capture the overall variance of the sEMG data but shared synergies (coupled latent di- 
mensions: {9,10,11,12,13 and 14}) in latter case (EMG studied together with the kine- 
matics) could be capturing the task-specific variability for a subject and responsible for 
generating only those activation values which are desired to achieve the kinematics rep- 
resented by it. Please watch the attached video demonstration (Independent LD.mp4, 
Coupled LD.mp4) for further visualization. 

 
3.4.3 Kinematic Estimation 

The MRD model facilitates a way to interpret how different but related observation 
spaces interact with each other, by finding a shared latent space (X ). In this study,  
the shared latent dimensions (muscle synergy coupled with finger kinematic synergy) 
represent the association of muscle activation with finger kinematics. The shared latent 
space provides us with a platform to visualize in the kinematic space, from what can be 
seen in the sEMG space within a fully probabilistic framework.  Hence, the predicted 
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Table 3.3: The mean RMSE, Correlation Coefficient (ρ) and R-Square calculated be- 
tween the estimated and original finger kinematics along with time required to predict 
a sample point. 

 
Regression Methods RMSE Correlation coefficient(ρ) R-Square Time (in milliseconds) 
Linear Regression on PCA Dimension 
Linear Regression on Full Dimension 
NN on PCA Dimension 
NN on Full Dimension 
Proposed Method 

8.08± 1.28 
7.66±1.22 
6.64±1.19 

5.07 ± 0.90 

3.4±0.89 

0.50±0.08 
0.57±0.07 
0.68±0.04 
0.82 ±0.04 

0.91 ± 0.03 

0.31±0.13 
0.38±0.12 
0.46±0.10 
0.68±0.07 

0.84± 0.05 

0.000,09±0.000,1 
0.000,43±0.000,10 

0.06±0.002 
0.09±0.010 

2.6 ± 0.79 

NN - Neural Network, PCA - Principle Component Analysis. 
 

point in the kinematic space gives a distribution instead of a point estimation, which 
makes the entire prediction process robust [48]. The finger kinematics is estimated 

from the shared latent space (X ) by following the procedure presented in Algorithm 1. 
Quality of the estimated finger kinematics using the proposed and other commonly 

used regression approaches have been evaluated on three metrics namely RMSE, R- 
square,  and the Correlation Coefficient (ρ) as shown in Table  3.3.       The estimated 
marker positions follow the measured values with an average correlation of 0.91 ± 
0.03, R-square of 0.84 ± 0.05 and the RMSE of 3.44 ± 0.87, respectively, which show 
the best results when compared with other regression methods. Subject wise RMSE 
corresponding to all the five methods have been shown in Fig. 3.9. 

Statistical significance was evaluated using one-way Annova on three evaluation 
metrics namely Correlation Coefficient, R-square and Root Mean Square Error (RMSE) 
as dependent or response variable to determine if the accuracy of estimated finger 
kinematics were significantly improved using MRD model when compared with other 
commonly used regression approaches. There are five different regression approaches 
(independent variable) namely LR trained on reduced dimensions (LR-PCA), Linear 
Regression using full dimension (LR-Full), Neural Network (NN) on reduced dimen- 
sions ( NN-PCA), NN on full dimensions (NN-FULL) and proposed method the MRD 
model. It can be seen from Fig. 3.11a, 3.11b and 3.11c that MRD has statistically sig- 
nificant improvement (p ≤ 0.0001) in the prediction accuracies over other regression 
approaches. 
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Figure 3.9: Root Mean Square Error (RMSE) calculated between the measured and 
estimated 3D coordinate corresponding to 23 marker positions in the hand for all 10 
subjects corresponding to all the five methods. 

 

Figure 3.10: Multi-fingered kinematics estimation performance over 10 subjects across 
all three sets of tasks using the MRD model, showing the Root Mean Square Error 
(RMSE) calculated between the measured and estimated 3D coordinates corresponding 
to 23 marker positions in the hand, respectively. The x-axis letter labels represent the 
index, middle, ring, little and thumb, while the numbers 1,2,3 and 4 are the MCP, PIP, 
DIP, and tip for the fingers, and CMC, MCP, PIP, and tip marker positions for the 
thumb, respectively. The x-axis label, Wr, in the figure, referring to the three markers 
used in the wrist. Error bars in the red shows the standard deviation across the subjects. 

3.5. Discussion 

This paper showed that there exists an association between finger kinematics and mus- 
cle activations, manifested in coupled muscle synergies, by jointly studying the two 
related spaces through multi-view learning. This study also demonstrated how the pro- 
portional and simultaneous estimation of finger kinematics can be achieved by making 
use of the shared variance between the Muscle Activation space (Y) and the Kinematic 
space (Z) in a probabilistic framework. 
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Figure 3.11: Comparison of estimation performance between MRD and other com- 
monly used regression approaches.  Evaluation on three metrics:  (a) Correlation   (b) 
R-square and (c) Root Mean Square Error (RMSE). *** indicates p ≤ 0.0001 for one- 
way Annova. 

 
3.5.1 Nonlinear  Kinematic Synergies 

Table 3.2 shows the reconstructed finger kinematics when the dimensions representing 
kinematic synergies in the shared latent space (X ) were explored. Dimension 9 consis- 
tently encodes the kinematic information of the All Finger Flexion-Extension (AFFE) 
task even across different subjects.  This can be attributed that dimension 9 captures  
a larger variance of kinematic data from this task, nearly 20 markers’ positions vary- 
ing as compared to only 5 to 6 markers’ position changing at a time in the Individual 
Finger Flexion-Extension (IFFE) task. 

The kinematics of the thumb, on the other hand, is encoded in a separate dimension. 
This highly independent motion of the thumb is captured in most of the subjects (8 
out of 10). While, coupled motion of the thumb with other fingers is captured in the 
other dimensions. From the kinematics point of view, this is likely due to the opposite 
direction of the thumb as compared with motions of the other fingers. The thumb also 
has more degrees-of-freedom (DOFs) and has more independent movements compared 
to the rest of the other fingers. 

The kinematics of the individual finger's movement are inconsistently encoded in 
different dimensions 10-13 across subjects. Some dimensions contain only the data 
variance of individual finger exclusively, while others contain the variance of individ- 
ual finger movements coupled with other finger's movements. This natural coupling 
of finger movements is also summarized in Table 3.2, which describes the anatomi- 
cal and kinesiological similarities of the targeted muscles to control similar fingers. 
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The synergies obtained by our method captures these anatomical couplings quite well, 
with couplings that occur between adjacent fingers, for example Index-Middle-Ring, 
rather than with distant fingers Index-Little. These result consistently showed that the 
extracted muscle synergies are congruent with the hand physiology. 

The nonlinear kinematic synergies have also been analyzed for the models trained 
with including the random finger flexion-extension task. Extracted kinematics for 
some coupled latent dimensions in some subjects, however, has been changed, but 
similar observations can be observed in Table 3.2 with RFFE task as well. 

The finger kinematics and the sEMG signals are highly nonlinear in nature, and 
therefore an algorithm that can cope with nonlinearities is better suited for their analy- 
sis. Thus extracting nonlinear muscle and kinematic synergies, using the MRD model, 
and its effectiveness in reconstructing the related higher dimensional spaces and accu- 
rately predicting finger kinematics justifies its use. From the best of our knowledge, 
this is the first sEMG study to introduce a factorized latent model to nonlinearly ex- 
tract the muscle synergies with relevant weights associated with each synergy, which 
explains its importance in the related spaces. 

 
3.5.2 Estimation of Finger  Kinematics 

The experimental results in the previous section show that the MRD model with the 
automatic dimensionality determination of the latent spaces is an effective model for 
learning the correlations that exist between the muscle activations and the finger kine- 
matics.   Although the dimensions are highly redundant in the kinematic    space,  the 
proposed model is able to reconstruct back as large as 69 dimensions (23 × 3 = 69) on 
the hand skeleton model. 

The choice of operating in the output joint marker space was to induce high di- 
mensionality in the output space and to show that the model is capable of dealing with 
high dimensional data very well. One other advantage of the proposed method is that 
it can learn corresponding latent space manifolds from any data representation or out- 
put spaces, such as joint velocity or joint torque and stiffness space [49]. Operating in 
these spaces is particularly useful since these can be explicitly used as direct control 
signals for robotic devices. 

One advantage of using the proposed shared synergistic model is its ability to con- 
sider nonlinear mappings using GPs with an ARD covariance function shown in  (5). 
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This gives a data-driven approach to address the compact representation of both the 
sEMG and high-DOF finger kinematics. 

 
3.5.3 Implementation  and limitations 

This study is limited to offline analysis with data from healthy and able-bodied subjects 
to test the feasibility of our approach. Though this can be used as an initial benchmark, 
for future implementations, further verification and validation has to be done for train- 
ing different models using data from amputees or subjects with hand impairments. A 
good candidate for this is to use large sEMG and motion datasets obtained from both 
healthy and impaired subjects such as those provided by the Ninapro database [50]. 

In practice, it is desirable for the controller to use as little calibration data as pos- 
sible and should generalize to movements for which exhaustive training data is not 
available [1]. Most of the computational time (99%) is due to the training of the MRD 
model. The typical computational complexity of a sparse implementation of the MRD 
model is O(Nm2), where N    is the number of data sample used, and m is the number 
of inducing points. This can be quite prohibitive with many sEMG applications where 
re-calibration is done to adapt to the time-varying nature of sEMG. 
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Chapter 4 

An Approach to Extract Nonlinear 
Muscle Synergies from sEMG through 
Multi-Model Learning 
 
How does the Central Nervous System (CNS) controls a group of muscles is an impor- 
tant question in the field of motor control. A common conception is developed over 
the years that the CNS make use of predefined activation patterns, known as muscle 
synergies during task execution. These muscle synergies are extracted by applying any 
of the factorization algorithms such as Non-Negative Matrix Factorization (NNMF), 
Independent Component Analysis (ICA) or Principle Component Analysis (PCA) on 
a concatenated surface EMG data set recorded from the target muscles. However, the 
step to concatenate sEMG signals before they are given as input to these linear algo- 
rithm is crucial as the synergistic structure changes significantly based on the number 
and choice of muscles considered during concatenation step. To address this problem, 
we propose a new approach of extracting muscle synergies by treating sEMG signals 
from each muscle as an individual view and then learning the synergistic structure 
among them if it exists using multi-view learning. In this study, we propose to use 
Manifold Relevance Determination (MRD) to find nonlinear synergies from sEMG by 
assuming the sEMG of a muscle as an individual view. Results have shown that syn- 
ergistic patterns extracted using our approach are consistent upon addition of sEMG 
signals from new muscles. 
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4.1. Introduction 

Motor tasks are generated when certain group of muscles activated in some coordina- 
tion by the central nervous system (CNS). But how does the CNS generate the control 
signals for such large and complex muscular system to achieve a wide variety of tasks? 
The idea that CNS does not control each and every muscle independently instead group 
of muscles are controlled through some predefined patterns termed as muscle syner- 
gies, developed over the years [51]. 

To extract these synergistic structures, surface electromyography (sEMG) data is 
recorded by placing the number of electrodes on the target muscles while user per- 
form the desired task set. Concatenated sEMG data corresponding to all muscles as a 
whole is then given as input to any linear or nonlinear factorization or dimensionality 
reduction algorithms such as non-negative matrix factorization (NNMF), independent 
component analysis (ICA) or principle component analysis (PCA). All of these are 
most commonly used and established methods in the literature. However, in a study 
by M. Spuler et al. [26], it has been shown that these algorithms failed to represent 
agonist-antagonist muscle relationships in the extracted synergies due to their linear 
nature while autoencoder (non-linear approach) have successfully represented it. 

Other than the linear nature of these algorithms, Steele et al. [30] have shown that 
the step to concatenate sEMG signals before they are given as input to the algorithm 
is crucial, as the synergistic structure changes significantly based on the number and 
choice of muscles during the concatenation step, also demonstrated, later in this study. 
The quality and quantity of such synergistic patterns are decided, based on their ability 
to reconstruct original signals, which in turn themselves can be contaminated or may 
not be the actual representation of electrical activity took place in muscles during task 
execution as such experiments are generally based on surface sEMG [6]. 

In this study, we propose a new approach of extracting muscle synergies with an ini- 
tial assumption that CNS is controlling every muscle individually and hence sEMG of 
each muscle should be treated as a separate view. However, if a group of muscle is con- 
trolled together through some underlying synergistic patterns then such co-activation 
should be reflected in a shared latent space, learned, corresponding to all modalities 
(muscles). 

We propose to use Manifold Relevance Determination (MRD) model [31] for learn- 
ing any correlation if it exists among a group of muscles by learning a shared low di- 
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Figure 4.1: Schematic overview of proposed method for extracting muscle synergies 
using Manifold Relevance Determination (MRD) model. Muscle activations corre- 
sponding to the eight muscles of the forearm which are known to contribute finger 
movements are given as eight separate modalities (Y 1,Y 2, ...,Y 8) to the MRD model 
as input. MRD learns a shared latent space (X ) which explains the relationship or co-
activation among muscles when subject was performing individual and all finger 
flexion-extension task. 

 
mensional space. The MRD model is an example of multi-view learning where data 
from different but related sources are studied together as the data from one source can 
not comprehensively describe the whole phenomenon [52]. Learning from multimodal 
sources offers the possibility of capturing correspondences between modalities and 
gaining an in-depth understanding of natural phenomena [53]. 

MRD models the relationship between M modalities through a common latent 
space (X). The MRD model can be understood as an extension of Shared Gaussian 
Process Latent Variable Model (SGPLVM) [54] with an approximate Bayesian infer- 
ence which allows the use of a more complex covariance function to determine the 
relevance of every dimension in the latent space automatically. 

 
4.2. Methods 

In this section, we present the MRD model [31] and its formulation, used for finding 
the shared latent space from M modalities of the data. 
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4.2.1 Manifold  Relevance  Determination (MRD) 

MRD is an example of multi-modal learning in which factorization of the nonlinear 
latent space is learned from multiple modalities of the data. Damianou et al. [31, 55] 
have presented the model formulation and experiment analysis of shared latent space 
for the two modalities, however it can easily be extended to the M modalities of the 
data. The problem is formulated as follows: Given that we have observation data from 
M different modalities, each containing N samples Ym ∈ RN×Dm where m∈M, the goal 
of the model is to find a shared latent variable parameterization in a space X ∈ RN×Q, 
(Q << Dm), that relates corresponding pairs of observations from M modalities.  It  
is assumed that the each view is generated from a low dimensional manifold  mapped 
from smooth functions { f m}Dm   : X→Y m, corrupted by noise: 

d    d=1 

y1  = f Y 1 (xi)+ εY 1
 

id d id 
y2  = f Y 2 (xi)+ εY 2

 
id d id 
... 

yM = f YM (xi)+ εYM
 

id d id 
 
 
where {ym}id represents dimension d of sample point i and εY are sampled from a 

zero mean Gaussian distribution for the view m. This leads to the likelihood under the 
model, P(Y 1,Y 2, ...,Y M|X, θ ), where θ = {θY , θY , ..., θY } contains the parameters 
of the mapping functions and noise variances. Finding the latent representation X and 
mapping functions f 1, f 2, ..., f M is an ill-constrained problem. Lawrence provided a 
solution by placing GP priors over the mapping and the resulting model is the Gaussian 
Process Latent Variable Model (GPLVM) framework [33]. In this framework, each 
generative mapping is modeled as a product of independent Gaussian processes (GP’s) 
parametrized by the kernel or covariance function K = {K1, K2, ..., KM} evaluated over 
the latent variable X , so that 

 

D1 

P(F1|X, θ 1) = ∏ N (f1 |0, K1) 
d=1 
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D2 

P(F2|X, θ 2) = ∏ N (f2 |0, K2) 

... 
d=1 

 
 

DM 

P(FM|X, θ M ) = ∏ N (fM|0, KM ) 
d=1 

 
 

where F1 = {f1 }D1 with  f 1  = f 1(xi) and similarly for other M modalities. This 

allows the general nonlinear mapping function F to be marginalized out leading to a 
likelihood function in the form of a product of Gaussian densities: 

P(Y 1,Y 2, ..YM X, θ ) = (4.1) ∫ p(M|FM)p(FM|X , θ M)dFM 

∏M={Y 1,Y 2,...,Y M} 

Integration over (1) is then done by variationally marginalizing out X by using vari- 
ational approximation techniques used for standard GPLVMs. A non-standard but 
analytical solution through variational learning techniques and using induced variables 
is described in [31, 36, 37]. The shared latent space (X ) is composed of private sub- 
spaces corresponding to each view, representing the private variance for each view 
(X = X 1, X 2, ..., XM ) and shared subspaces, representing the shared variances among 
the modalities (X = XS, S ⊆ 1, 2, ..., M). Bayesian training automatically allocates the 
dimension of this shared latent space (X ) using automatic relevance determination 
(ARD) priors [31]. 

 

4.3. Datasets 

For this study,  we used a publicly available     dataset [56]. In  this dataset, surface 
EMG signals were extracted from 8 extrinsic muscles of the hand using bipolar active- 
type Ag-AgCl electrodes, with inter-electrode distance of 20 mm, were placed on the 
following extrinsic muscles in the forearm: Abductor Pollicis Longus(APL), Flexor 
Carpi Radialis(FCR), Flexor Digitorum Superficialis(FDS), Flexor Digitorum Profun- 
dus(FDS), Extensor Digitorium(ED), Extensor Indices(EI), Extensor Carpi Ulnaris(ECU) 
and Extensor Carpi Radialis(ECR). The sEMG signals were measured using a compact 
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BA1104 pre-amplifier and a TU-4 telemetry unit (Digitex Lab. Co. Ltd). Each par- 
ticipant, seated with their dominant hand and elbow comfortably positioned on a flat 
surface table, were asked to do different flexion and extension finger movement tasks 
which include the (i) individual finger flexion-extension and (ii) flexion-extension of 
all fingers. Five trials of each task were recorded where in a trial every task was re- 
peated for 20 seconds. All the trails were recorded sequentially. And participants were 
allowed to take rest anytime during the experiment. All raw sEMG signal were first 
preprocessed which include rectification, normalization, and low pass filtered (4Hzcut- 
off frequency). After sEMG signals were converted into muscle activations using the 
model proposed by Buchanan et al. [43]. The total data used included those of 5 
healthy and intact participants (4 Male, 1 Female, aged 26-31 years old). Dataset from 
subject 1 is used for visualization of the results from NNMF and MRD. 

 
4.4. Results and Discussion 

This section first describes the synergies extracted using NNMF and their limitation, 
then the synergies discovered using the MRD model are presented and explained. In 
the last, it has been demonstrated that the synergies extracted using the MRD model 
are consistent upon addition of sEMG data corresponding to new muscles. 

 
4.4.1 Synergies Extracted Using  NNMF 

Synergies are extracted using NNMF from the data obtained after concatenation of 
muscle activations corresponding to the first six (Y 1,Y 2, ...,Y 6) and then all eight 
muscles (Y 1,Y 2, ...,Y 8) as shown in Fig. 4.2a and 4.2b, respectively. The number 
of synergies is decided based on standard criteria of Variance Accounted For    metric 
(VAF ≥ 90%). Synergies extracted in Fig. 4.2a should be retained in the synergies ob- 
tained upon addition of sEMG from two more muscles, in Fig. 4.2b, with some added 
activation corresponding to the newly added muscles as and if predefined patterns are 
used to control the muscles during task execution, according to muscle synergy hy- 
pothesis. And it is reflected to an extent for muscle synergies 1 and 2 (if we ignore 
APL and EI activation in synergy 1 while ED activation in synergy 2). However, it is 
hard to relate the muscle synergies 3, 4 and 5 from Fig.  4.2a to the muscle  synergies 
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(a) 

(b) 
 
Figure 4.2: Shows the muscle synergies extracted using NNMF from the sEMG of 
subject 1. (a) shows the extracted muscle synergies from the dataset obtained after  
the concatenation of first six muscles while (b) shows the extracted muscle synergies 
for all eight muscles.   In both the cases no.       of synergies are decided based on the 
VAF metric (VAF ≥ 90%).  Synergies shown in (b) should retain the co-activation of 
muscles learned in (a), with some added activation or new patterns corresponding to 
the new muscles as and if predefined patterns are used to control the muscles during 
task execution, according to muscle synergy hypothesis. And it is reflected till a extent 
for muscle synergies 1 and 2. However, it is hard to relate the muscle synergies 3, 4 
and 5 from Fig. 4.2a to the muscle synergies shown in Fig. 4.2b because the algorithm 
comes up with some new co-activation patterns. 

 
shown in Fig. 4.2b because the algorithm comes up with some new co-activation pat- 
terns. Based on this result it can be argued that the addition of sEMG signals from new 
muscles influences the synergistic structure significantly extracted using NNMF [30]. 
And it is difficult to measure electrical activities for all the muscles, CNS controls 
during a task, at least, in the multi-fingered movement for the dexterous manipulation 
of objects, to find out which set of the pattern might be the actual because originals 
are never known. Results, shown in this section suggest that the approach to extract 
synergies should be reconsidered and need to be redefined. 
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Shared Latent Space (X) Among the Eight Modalities 
 

(a) (b) 

 
Figure 4.3: The Shared latent space obtained among the eight muscles (a) shows the 
scaled ARD weight corresponding to all eight modalities. For easy interpretation, they 
are depicted in the form of stacked bars. A dimension is shared in the latent space 
when the same latent dimensions corresponding to two or more views are active. Every 
shared dimension in the latent space represents a muscle synergy.  (b) shows the    2D 
projection of shared latent space X into latent dimension{1 and 2}. Muscle activation 
values corresponding to the latent dimensions can be obtained by varying the latent 
points along it as shown by the dotted blue line in (b), while keeping the points fixed 
on the other dimensions. 

 
4.4.2 Synergies Extracted Using  MRD 

To discover the synergistic patterns among the muscles group, muscle activation cor- 
responding to each muscle is treated as an individual view, and hence eight modalities 
corresponding to eight channel sEMG are analyzed together in the MRD model. Inter- 
action among the various modalities can be visualized through the shared latent space 
in the MRD model. Initially, the dimensionality of the shared latent space can be set 
to eight or more. Setting the larger value for latent dimensions in the beginning will 
not force the model to show correspondence among modalities when it does not exist 
while ARD kernel will automatically turn off a latent dimension when it has no or very 
little significance in reconstructing the higher dimensional spaces. 

Fig. 4.3a shows the shared latent space obtained using the MRD model while Fig. 
4.3b shows the 2D projection of shared latent space into dimensions {1 and 2}.   The 
red dots in Fig.  4.3b represents the posterior mean of each training data point,  while 

APL 
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ED 
EI 
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Figure 4.4: Visualization of muscle activation values corresponding to all active latent 
dimensions as shown in the 4.3a. Yellow bars on the top of blue bars indicate the 
amount of modulation in the activation values with respect to the first point when 
moving from left to right in 4.3b. 

 
 
gradient of the background represents posterior variance which signifies the confidence 
of the model in projecting the corresponding point in higher dimensional space (high 
confidence for the white region while the low for the black region). 

A dimension in the shared latent space represents a muscle synergy. Stacked bars 
in a latent dimension represents the co-activation of concerned muscles while length 
of a bar signifies the amount of modulation in the activation values with respect to 
each other. To understand the shared information (co-activation) encoded in each la- 
tent dimension clearly, higher dimensional space (sEMG) corresponding to each view 
(muscle) are reconstructed back by varying the latent points along a dimension while 
keeping the latent points fixed corresponding to other latent dimensions as shown in 
Fig. 4.3b by a dotted blue line. 

The reconstructed sEMG of all eight muscles corresponding to all latent dimen- 
sions are shown in Fig. 4.4a. Where blue bars represent the activation values corre- 
sponding to the left most point in the dotted blue line in Fig. 4.3b while yellow bars 
on the top of blue bars are representing the change in the activation values as mov- 
ing from left to right along that line.  The yellow bars are the actual representation  of 
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(c)  
 

Figure 4.5: Shows the comparison of synergies learned with the sEMG dataset cor- 
responding to the (a) four (b) six and (c) eight muscles for Subject 1. Learned co- 
activation with fewer muscles are retained upon addition of more muscles as can be 
observed by matching the stacked bars corresponding to the muscles. 

 
co-activation which is encoded in the latent dimensions. It is worth noting that the syn- 
ergies obtained using MRD are not directly comparable with the synergies extracted 
using traditional algorithms such as NNMF, PCA or Autoencoder. Latent dimension 1 
in Fig. 4.3a can be interpreted as synergy representing the co-activation of almost all 
muscles except the FDS and EI with the large range of variation in the activation values 
for the APL muscle (long bar) with respect to the variation in the activation values for 
other muscles, as can be observed in reconstructed muscle activations corresponding 
to the latent dimension 1 in Fig. 4.4a in yellow bars. 

 
Consistency of the Extracted Synergistic Patterns using MRD 

To ensure that the synergistic structures extracted through the approach of considering 
sEMG from each muscle as an individual view is not affected by addition of sEMG 
signals from other muscles, separate set of MRD Models were trained with four and 
six individual modalities corresponding to sEMG of first four and six muscles for ev- 
ery subject. Shared latent space corresponding to four, six, and eight modalities for 
subject 1 are shown in Fig. 4.5a, 4.5b and 4.5c, respectively. It can be observed in the 
three shared latent spaces that coupling among muscles detected with fewer muscles 
is retained upon addition of more muscles. Latent dimension 1 in Fig. 4.5a, shows the 
coupling of APL, FCR and FDP which can also be observed in the latent dimension 1 
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of Fig.4.5b with an added co-activation of ED and in Fig. 4.5c with a negligible or a 
little co-activation with respect to the muscles FDS and ECU. A similar trend has also 
been observed for other four subjects used in this study. 
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Chapter 5 

Conclusion and Future Work 

 
5.1. Conclusion 

This study has focused on exploring the relationship between the EMG and kinematics 
space and come up with an approach to mitigate the drawbacks of linear algorithms. 
In chapter 3 two different but related nonlinear spaces the EMG and the Kinematics 
have been analyzed independently and jointly in the shared low dimensional space. 
We have found out that the studying EMG together with the kinematics, an association 
between the two spaces can be discovered in low dimensional space. Further analysis 
of this learned association reveals that each muscle synergy (a latent dimension) which 
is shared with the kinematic synergies could be capturing the task-specific variations 
and can be utilized for estimating the kinematics from the EMG signal for proportional 
myoelectric control. 

This study has further shown the application of such extracted nonlinear synergies 
and the discovered association between muscle and kinematics synergies for estimating 
the finger kinematics using the nearest neighbor approach and the inference algorithm 
presented in chapter 3. The proposed approach has outperformed other standard lin- 
ear and nonlinear regression techniques in the kinematics estimation from the muscle 
activations. 

In the later part of this study, we have focused on proposing an approach to ex- 
tract the synergistic patterns which are consistent over the addition of EMG signals 
from new muscles. As previous studies have shown how the number and choice of 
muscles affect the extracted synergistic patterns from the most popular Non-Negative 
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Matrix Factorization (NNMF) algorithm. Chapter 4 has presented the use of the MRD 
model, and shown that the extracted nonlinear muscle synergies (co-activation of mus- 
cles) with fewer muscles, retained, over the addition of sEMG data from new muscles, 
which suggest that the proposed approach has potential to extract consistent synergistic 
patterns from the surface electromyography. 

As a conclusion, the findings of Chapter 3 presents a viable solution for accurate 
and intuitive myoelectric control for handling high DOFs in robotic hand prosthesis 
while Chapter 4 presents a new approach to extract muscle synergies, for the motor 
control community by removing the drawbacks of existing linear synergy extraction 
algorithms such as NNMF. 

 
5.2. Future Work 

For future work, the approach presented in chapter 3 can be used to understand the 
neural implementation of muscle synergies by simultaneously recording neural and 
muscle activities when performing different motor tasks [57–60]. The existence of  
the shared part in the latent space supports the muscle synergy hypothesis and the 
method for extracting muscle synergies from sEMG signals. This work can be further 
extended by including task-related variables for understanding the relationship among 
these three different but related observational spaces. 

Training the MRD model is a computationally expensive task, and retraining of the 
model is needed frequently due to the time-varying nature of sEMG. For the clinical 
application, the use of the MRD model may not be an appropriate choice, and explo- 
ration of some time-efficient multiview learning algorithms such as presented in [61] 
is one of the crucial future work of this study. 

The approach presented in chapter 4 can further be extended to predict muscle 
activation values for a large group of muscles from the small group of muscles by 
making use of learned non-linear correlation among muscles to reduce the number of 
electrodes required for mapping accurate kinematics as discussed in [62]. 
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