
Optimization of a Nano-satellite Communication
System Using a Software Defined Radio (SDR)
Platform Implementation Strategy

著者 Rodriguez Leon Rafael Armando
year 2020
その他のタイトル ソフトウェア無線プラットフォームの実装戦略を用

いた超小型衛星通信システムの最適化
学位授与年度 令和元年度
学位授与番号 17104甲工第498号
URL http://hdl.handle.net/10228/00007798

OPTIMIZATION OF A NANO-SATELLITE COMMUNICATION

SYSTEM USING A SOFTWARE DEFINED RADIO (SDR)

PLATFORM IMPLEMENTATION STRATEGY

By

RAFAEL ARMANDO RODRÍGUEZ LEÓN

ID: 16595905

Thesis Supervisor

PROF. KENICHI ASAMI

Department of Integrated Systems Engineering

Graduate School of Engineering, Kyushu Institute of Technology

Kitakyushu, Japan

2020

OPTIMIZATION OF A NANO-SATELLITE COMMUNICATION

SYSTEM USING A SOFTWARE DEFINED RADIO (SDR)

PLATFORM IMPLEMENTATION STRATEGY

By

RAFAEL ARMANDO RODRÍGUEZ LEÓN

ID: 16595905

A dissertation submitted for in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in Engineering

Thesis Supervisor

PROF. KENICHI ASAMI

Department of Integrated Systems Engineering

ACKNOWLEDGMENT

I would like to thank to my supervisor Professor Kenichi ASAMI for allowing

me to continue being a part of his laboratory for my PhD studies. I want to

express my gratitude for his support, for his guidance, respect, kindness and

patient along my formation and education process and during this research

period.

I would like to express my profound gratitude to the Professor Kei-Ichi

OKUYAMA for giving me the opportunity to join for the Ten-Koh project. His

help and his support during my PhD studies were so important to reach fruitful

results. I got many important knowledges which I could apply during this research

and which I hope to apply in my future professional career.

Appreciations to all professors who taught me many tools in their classes useful

in my professional life and for my research career, especially to the Professor

Mengu CHO for his impeccable work and leadership converting the SEIC course

one of the most relevant programs among the space engineering community. I am

so proud to have been part of it.

I would like to thank to all my colleagues in the Kyushu Institute of

Technology, in first place to all Asami’s laboratory members (especially Mohamed

Elhady, Amar, Tugi, Cosmas and Yasir). To all Ten-Koh developers team

(especially Isai FAJARDO, Jesus GONZALEZ, Rigoberto MORALES, Sidi

BENDOUKHA) and to all LaSEINE members. I learned many valuable things

from them and I received support from them when I needed, both in my personal

and professional life.

Finally, I deeply appreciate the love and support of my parents Elizabeth and

Armando that even from the distance always have been cheering me up and

helping me to overcome the difficulties presented in my life. A very special

mention to Kaori, who always was by my side helping and supporting when I had

difficulties during my life in Japan.

ABSTRACT

In nano-satellite missions, Software Defined Radios (SDR) have been widely

used in the implementation of communication subsystems in order to increase the

flexibilization both in the space segment and on the ground stations. Also,

Commercial Off-The-Shelf components (COTS) are widely used to develop

subsystems for nano-satellite missions in order to reduce development costs and

because those are relatively easy to purchase especially for developing countries.

However, COTS components are not space-certified and it becomes a problem

when satellites are wanted to be used in high reliability missions. An example of

that is Ten-Koh, a Low Earth Orbit (LEO) environment observation satellite

developed in the Kyushu Institute of Technology in Japan, in which one of the

top-level mission requirements was to re-use as much as possible the components

utilized on a previous successful mission (Shinen-2) in order to mitigate the failure

risks by using non-certified/non-space heritage components and to decrease the

development time following the lean satellite design methodology.

 In this research, an SDR implementation for the space segment is proposed

in order to optimize the communication system designed for Ten-Koh satellite.

The proposed implementation consists of the integration of two COTS modules

(a single-board computer with a radio frequency module) using embedded Linux,

Python and GNU radio developing tools. The purpose is to demonstrate that the

proposed system can be used safely in future satellite missions overcoming the

design constraints, limitations and issues experimented during the Ten-Koh

design and operation phases showing the improvements in terms of performance,

flexibility, cost and development time.

In addition to above, this research shows the on-orbit issues presented in the

Ten-Koh mission due to the radiation effects and describes the facilities,

equipment, methodology and results of a radiation test performed for the main

processor used in the Ten-Koh mission and for the single-board computer used in

the proposed SDR system in order to find the possible causes of the failures

presented on-orbit and to compare the results for verifying if the proposed system

can be used safely in the radiation environment on LEO orbit.

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION ... 1

1.1. Software Defined Radio (SDR) ... 1

1.2. SDR in the space .. 3

1.3. SDR platforms available in the market .. 5

1.4. COTS based SDR in satellite applications .. 7

1.4.1. Previous studies/publications ... 7
1.4.2. Commercial SDR available on market .. 10

1.5. Processing Modules Description ... 12

1.5.1. Raspberry Pi ... 12
1.5.2. FPGA (Field-programmable gate array) module .. 13

1.6. Single Event Effects (SEEs)... 15

1.6.1. Single Event Upset (SEU) .. 17
1.6.2. Single Event Latch-up (SEL) .. 17
1.6.3. Linear Energy Transfer (LET).. 17
1.6.4. Device cross-section... 18

1.7. Research objectives and outline ... 21

CHAPTER 2 - TEN-KOH MISSION OVERVIEW 23

2.1. Ten-Koh system architecture ... 24

2.1.1. Main microcontroller ... 26
2.1.2. Data flow architecture .. 26
2.1.3. OBC EEPROM data management ... 28
2.1.4. OBC resets management ... 29

2.2. Ten-Koh On-orbit issues .. 30

2.2.1. OBC resets events ... 30
2.2.2. EEPROM failures into other subsystems ... 34

2.3. Reset events analysis ... 35

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM

ARCHITECTURE ... 37

3.1. Hardware architecture ... 37

3.2. Software architecture ... 39

3.3. System constraints and limitations .. 40

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION 43

4.1. Methodology and Raspberry Pi prerequisites .. 43

4.2. Partial SDR implementation ... 46

4.3. Complete SDR implementation ... 49

4.4. SDR transmitter improvement .. 56

4.4.1. FPGA modulators design methodology .. 58
4.4.2. FPGA modulators implementation ... 61
4.4.3. FPGA reprogramming system .. 74

CHAPTER 5 - RESULTS AND DISCUSSION 79

5.1. Receiver sensitivity test ... 80

5.2. Receiver Signal-to-noise ratio (SNR) simulation 81

5.3. Transmitter RF output power test .. 89

5.4. Power consumption test .. 90

5.5. FPGA reprogramming system test .. 91

5.6. Discussion .. 93

CHAPTER 6 - RADIATION TEST... 96

6.1. Purpose of the test... 96

6.2. Test facility description: WERC Synchrotron accelerator 96

6.2.1. Ion beam conditions .. 98
6.2.2. Proton beam conditions .. 99

6.3. Device Under Test (DUT) preparation .. 101

6.3.1. PIC16F877 ... 101
6.3.2. Raspberry Pi 3B+ and Zero .. 104

6.4. Radiation test set-up ... 105

6.4.1. Proton beam calibration .. 106
6.4.2. Alignment of the DUT in the proton beam ... 107
6.4.3. Facility set-up .. 107

6.5. DUT irradiation procedure .. 111

6.6. Test results .. 112

6.6.1. PIC16F877 Results .. 112
6.6.2. Raspberry Pi Results ... 119

6.7. Discussion .. 125

CHAPTER 7 - CONCLUSION .. 128

7.1. Conclusion ... 128

7.2. Future perspectives .. 130

APPENDIX 1 - Integrated modulators internal block diagrams .. 133

APPENDIX 2 - OpenOCD configuration files description 135

Raspberry Pi 3B+ and Kintex 7 configuration file example............................ 135

Raspberry Pi Zero and Spartan 6 configuration file example 136

REFERENCES .. 138

LIST OF FIGURES

Figure 1 – General SDR architecture block diagram. ... 2

Figure 2. Evolution of terrestrial and space software defined radios [3]. 4

Figure 3. Nano-satellite launches by year [6]. ... 5

Figure 4 - SDR platform overview (cost vs mass) [2]. .. 6

Figure 5 - Maximum channel bandwidth vs. Frequency bands in SDR platforms

[2]. .. 7

Figure 6 - SEE produced by heavy ions (electrons) and nucleons (protons and

neutrons) in a semiconductor device. .. 16

Figure 7 - SEE cross-section as a function of LET produced by heavy ion

irradiation [15]. ... 20

Figure 8 - SEE cross-section as a function of energy for proton irradiation [15]. ... 20

Figure 9 - Ten-Koh system architecture. ... 25

Figure 10 - Ten-Koh uplink data flow. .. 27

Figure 11 - Ten-Koh downlink data flow... 27

Figure 12. Number of OBC reset events during 123 days of Ten-Koh operations. 31

Figure 13 - OBC normal reset events occurrences. The red and green regions

illustrate the count rate of electrons and protons greater than 0.5 MeV [22]. ... 32

Figure 14 - OBC unknown reset events occurrences. The red and green regions

illustrate the count rate of electrons and protons greater than 0.5 MeV [22]. ... 33

Figure 15 - Ten-Koh communication system block diagram.................................. 38

Figure 16 - Final Ten-Koh communication system PCB with RF modules. 38

Figure 17 - Ten-Koh software architecture. ... 40

Figure 18 - SDR design methodology flow chart using GNU Radio. 44

Figure 19 - GNU Radio Companion basic exemplar diagram. 45

Figure 20 - Generated phyton code script from basic exemplar diagram. 46

Figure 21 - Partial SDR implementation architecture. .. 47

Figure 22 - AFSK decoder block diagram implemented on GNU Radio. 48

Figure 23 - AFSK encoder block diagram implemented on GNU Radio. 49

Figure 24 - Complete SDR hardware implementation. .. 49

Figure 25. Complete SDR architecture block diagram. ... 50

Figure 26 - AFSK BELL 202 transmitter implemented in GNU Radio. 54

Figure 27 - AFSK BELL 202 receiver implemented in GNU Radio. 54

Figure 28 - GMSK G3RUH transmitter implemented in GNU Radio. 55

Figure 29 - GMSK G3RUH receiver implemented in GNU Radio. 55

Figure 30 - SDR transmitter improvement hardware architecture 56

Figure 31 - SDR transmitter improvement software architecture 57

Figure 32 - FPGA design methodology example using Xilinx System Generator

and MATLAB Simulink .. 59

Figure 33 – Generated Xilinx Vivado IDE suite from the System Generator

design methodology example ... 60

Figure 34 - BPSK modulator implementation ... 61

Figure 35 - BPSK modulator simulation results .. 62

Figure 36 - FSK modulator implementation .. 64

Figure 37 - FSK modulator simulation results .. 65

Figure 38 - QPSK modulator implementation ... 66

Figure 39 - QPSK modulator simulation results ... 68

Figure 40 - MSK modulator implementation ... 70

Figure 41 - MSK modulator simulation results ... 71

Figure 42 - Integrated modulators implementation ... 72

Figure 43 - Integrated modulators simulation results .. 73

Figure 44 - FPGA programmer block diagram .. 76

Figure 45 - Receiver sensitivity test configuration. .. 80

Figure 46 - Number of received packets in function of the received RF power...... 82

Figure 47 - Packet Error Rate (PER) in function of the received RF power......... 82

Figure 48 - GMSK SNR simulation diagram. .. 84

Figure 49 - AFSK SNR simulation diagram. ... 85

Figure 50. Noise effects in GSMK transceiver constellation diagram I. 86

Figure 51. Noise effects in GSMK transceiver constellation diagram II. 87

Figure 52 - Noise effects on AFSK modulated signal. ... 87

Figure 53 - Number of received packets in function of the Signal-to-noise ratio

SNR. ... 88

Figure 54 - Packet Error Rate (PER) in function of the Signal-to-noise ratio

SNR. ... 89

Figure 55 - Transmitter RF power output set-up .. 90

Figure 56 - JTAG Connections ... 92

Figure 57 - Synchrotron accelerator facility diagram from [51]. 98

Figure 58 - LET in silicon for different ions [52]. .. 99

Figure 59 - PIC16F877 radiation test software flow chart. 102

Figure 60 - EEPROM memory data format. ... 103

Figure 61 - RAM memory data format. .. 103

Figure 62 - Proton beam attenuation process. ... 107

Figure 63 - Final beam alignment for Raspberry Pi Zero and PIC

microcontroller. ... 108

Figure 64 - Sketch of the DUT alignment with the proton beam. 108

Figure 65 - Synchrotron irradiation room DUT set up. 109

Figure 66 - Radiation facility set-up .. 109

Figure 67 - Arduino-based power control relay circuit schematic. 110

Figure 68 – Radiation test data acquisition set up. ... 110

Figure 69 - PIC16F877 FLASH/RAM cross-section. ... 116

Figure 70 - PIC16F877 EEPROM cross-section. ... 118

Figure 71 - Raspberry Pi Zero device cross-section. .. 121

Figure 72- Raspberry Pi 3B+ device cross-section. ... 122

Figure 73. Cross-section data comparison for all tested devices. 123

Figure 74. Ten-Koh orbital parameters configured on SPENVIS 124

Figure 75. SEU rate calculation parameters configured in SPENVIS 125

Figure 76 - BPSK Modulator .. 133

Figure 77 - FSK Modulator ... 133

Figure 78 - QPSK Modulator .. 133

Figure 79 - MSK Modulator .. 134

LIST OF TABLES

Table 1. Traditional radios vs. SDR architectures [4]. ... 5

Table 2. Noncommercial SDR key performance parameters summary. 9

Table 3. Commercial SDR key performance parameters summary. 11

Table 4 - Raspberry Pi modules main performance parameters. 13

Table 5 - Xilinx FPGAs performance comparison. .. 14

Table 6 - PIC16F877 parameters [21] .. 26

Table 7 - OBC EEPROM memory usage. ... 28

Table 8 - OBC reset events summary. .. 30

Table 9 - Reset events results summary. ... 34

Table 10 - Ten-Koh subsystems EEPROM failures summary. 34

Table 11. Data generation for the Ten-Koh payloads. .. 41

Table 12 - Signal-to-noise ratio performance for AFSK and GMSK modulations. 89

Table 13 - Maximum transmitter RF power output measurements for both

systems transmitters. .. 90

Table 14 - Power consumption of Ten-Koh system and SDR implementations

on different Raspberry Pi modules. ... 91

Table 15 - JTAG Connections... 92

Table 16 – R-Pi 3B+ FPGA system reprogramming time (sysfsgpio driver) 93

Table 17 – R-Pi Zero FPGA system reprogramming time (bmc2835gpio driver) .. 93

Table 18 - Synchrotron protons and ion characteristics [50]. 97

Table 19 - LET in silicon for He and C ions for WERC synchrotron beam

energy range. ... 99

Table 20 - Proton beam calibration values. ... 111

Table 21 - PIC16F877 proton irradiation parameters (1st experiment). 113

Table 22 - PIC16F877 cross-section calculation (1st experiment). 113

Table 23 - PIC16F877 proton irradiation parameters (2nd experiment). 114

Table 24 - PIC16F877 cross-section calculation (2nd experiment). 114

Table 25 - Raspberry Pi Zero proton irradiation parameters. 120

Table 26 - Raspberry Pi 3B+ proton irradiation parameters. 120

Table 27. Cross-section parameters for all tested devices. 123

Table 28. SEU rate estimation results. .. 125

LIST OF EQUATIONS

Equation 1 - Linear Energy Transfer (LET). .. 18

Equation 2 - Deposited energy over a distance. ... 18

Equation 3 - Unidirectional integral intensity flux. ... 18

Equation 4 - Particle fluence. .. 19

Equation 5 - SEE cross-section for ions. .. 19

Equation 6 - SEE cross-section for protons. .. 19

Equation 7 - Effective LET. .. 21

Equation 8 - Effective SEE cross-section. .. 21

Equation 9 - LimeSDR resample rate calculation. ... 52

Equation 10 - Resample rate for GNU radio rational resampler block. 53

Equation 11 - BPSK modulation waveform output ... 61

Equation 12 - FSK modulation waveform output ... 63

Equation 13 - QPSK modulator waveform output .. 66

Equation 14 - MSK modulation waveform output ... 69

Equation 15 - Packet Error Rate calculation. ... 81

Equation 16 - Signal-to-Noise Ratio calculation. ... 83

Equation 17 - Noise voltage calculation... 86

Equation 18 - Total dose received from a proton beam. 100

CHAPTER 1 - INTRODUCTION

1

CHAPTER 1 - INTRODUCTION

1.1. Software Defined Radio (SDR)

A Software Defined Radio (SDR) is a communication system in which several

of its components (typically filters, modulators, demodulators, tuners, etc.) can

be implemented by software merely, instead than using a fixed hardware. It offers

to the developers a very flexible wireless communication platform in comparison

with the typical communication systems implemented entirely by hardware. In

satellite communications, SDR systems have been used for minimizing the costs

and give flexibilization in the ground station implementations. An example of it

is the SatNOGS project, which is a complete satellite ground station network

platform. This project offers the possibility to build a Do It Yourself (DIY) /

fully capable ground station for receiving satellite data and for joining in a global

ground station network [1]. Currently, it is possible to build a basic functional

ground station using an ODROID U3 module or a Raspberry Pi 3 module in

conjunction with some open libraries implemented in Python and GNU Radio

platform. SDR systems has been also used to develop communication subsystems

in the space segment. Also, it is possible to find several SDR platforms available

in the market e.g. GomSpace SDR, URSP, LimeSDR and FunCube among others

[2].

The key parameters that can be configurable via software are:

 Modulation schemes

 Transmitter and receiver frequency

 Transmitter power output gain

 Tunable Filters

 Tunable codification/packet processing

 Tunable sample rates

CHAPTER 1 - INTRODUCTION

2

Figure 1 – General SDR architecture block diagram.

CHAPTER 1 - INTRODUCTION

3

The SDR block diagram architecture is shown in the Figure 1. It is possible to

observe that the SDR is divided in two main parts, the software part and the

hardware part.

The software part usually consists in a processor, FPGA (Field-programmable

gate array) or DSP (Digital Signal Processor) in charge of the following functions:

 Controls of the data flow between all SDR block components.

 Performing the data packet encoding/decoding.

 Performing the digital modulation/demodulation of the encoded/decoded

data.

 Filtering the data transmitted and received from the hardware part.

 Controls the RF front-end module parameters (e.g. the frequency of the

transmitter and the receiver, the power output of the transmitter and the

sensitivity of the receiver).

 Processing the instructions that come from the user application and configure

the respective SDR components according the received parameters.

The hardware part consists in the Digital to Analog/Analog to Digital

converters (DAC/ADC) and the RF front-end module which is in charge to

receive the FM signal (in MHz or GHz), demodulate it to the baseband frequency

(in kHz) and vice versa.

1.2. SDR in the space

In [3] the author provides a wide overview, a detailed characteristics and

advantages of using a software radio architecture in communications systems

since its conception in 1995. As shown in [4], the grow of the terrestrial

applications of SDRs has been exponential as shown in the Figure 2 which has

resulted in an evolution on the hardware and software capabilities as well as the

reduction of the size, mass and power consumption in comparison with the

CHAPTER 1 - INTRODUCTION

4

traditional radio architectures. It became the SDRs a great option to be used in

satellite applications. As a result of that, SDR systems started to be included as

payload missions for bigger satellites as the Mars Reconnaissance Orbiter (MRO)

and the NASA Space Communications and Navigation (SCAN) Testbed [5] in

2010 and 2013 respectively.

Figure 2. Evolution of terrestrial and space software defined radios [3].

However, the current trend of the small satellite missions (nanosatellite) has

been increasing slightly as shown in [6] reaching until 236 nanosatellite launches

in 2019 and it becomes a challenge to develop SDR platforms capable to overcome

the constraints presented in this type of missions like the reduced size, mass and

especially low power consumption, aspects that in terrestrial applications are not

so relevant and that is why terrestrial SDR solutions do not provide currently.

Also, most of these nano-satellite missions must to be developed in a very limited

cost which force to the developers to use Commercial off-the-shelf (COTS)

components on their implementations, aspect that commercial SDR systems

available in the market lacks.

In the Table 1 based on [4], it is possible to observe clearly the key differences

between the traditional radio and SDR architectures. As shown, the challenges

to face in the development of an SDR architecture are to reduce the power

consumption, to develop a reliable software and the use of adequate processing

CHAPTER 1 - INTRODUCTION

5

units (e.g. FPGA, DSP or microcontroller).

Figure 3. Nano-satellite launches by year [6].

Table 1. Traditional radios vs. SDR architectures [4].

 Traditional radios SDRs

Pros

 Limited processing and the

selection of processor /

controller / ADC is less critical.

 Cheap and readily available

 Flexible design: Multi-band /

multi-mode.

 Software based reconfigurable

platform

 Upgradable during mission lifetime

Cons

 Fixed design: Single-band /

single-mode.

 Complexity in hardware

 More analogue components

 Cross talk between the narrow

bands due to aging

 Complexity in software

 Vulnerable to software threats

 Faster FPGAs and DSPs and

larger bandwidth ADCs are

required

 Power Consumption

1.3. SDR platforms available in the market

Currently, there are several SDR platforms available in the market as

CHAPTER 1 - INTRODUCTION

6

presented in [2]. In the Figure 4, it is possible to observe the relation between the

cost and the mass of the available hardware systems. Platforms as the GomSpace

SDR are very expensive because they offer space-proven products, also, platforms

like the USRP or the EPIQ are not suitable for this research purposes due to the

mass and cost constraints. However, platforms like the LimeSDR or FunCube are

more suitable for low cost and mass constraint missions.

On the other hand, in the Figure 5, the channel bandwidth and frequency

characteristics are shown. In this case, the FunCube and the RTL-SDR platforms

have limited characteristics in comparison with the LimeSDR options.

Taking into account the mentioned above, the LimeSDR options are the more

balanced options for the SDR implementation and for that reason the LimeSDR

mini is the option chosen for the implementation of the SDR architecture

proposed in this research.

Figure 4 - SDR platform overview (cost vs mass) [2].

CHAPTER 1 - INTRODUCTION

7

Figure 5 - Maximum channel bandwidth vs. Frequency bands in SDR platforms [2].

1.4. COTS based SDR in satellite applications

In this section a survey of the SDR systems currently available on the market

or already developed for nanosatellite missions in the last years is presented. The

idea is to analyze the key characteristics, performance parameters and software/

hardware platforms used for their development in order to get a clear idea about

the current state of the art about SDR systems for nanosatellite applications.

1.4.1. Previous studies/publications

Searching in the existing literature, the following studies and implementations

about SDR in nano-satellite applications are presented due to their relevancy in

this research and similarity. At the end in the Table 2, a summary of the key

parameters and characteristics are presented in order make a comparison.

The first relevant study is an SDR implementation for CubeSat presented in

[7]. The hardware platform consists in a single board that includes an Analog

Devices ADSP-BF537 Blackfin DSP as processing unit. The RF module is divided

CHAPTER 1 - INTRODUCTION

8

in two parts, the former which consist in a baseband Signal Front-End chip

(Analog Devices AD9863) with digital to analog converters (DAC) and analog to

digital converters (ADC) included, the latter is an RF daughter board which is

not specified (just the author mentions that it could operate in VHF, UHF and

S bands). Regarding the software, the author mentions that National Instruments

LabView is used to create the software for the DSP module using the Blackfin

embedded module. The study was published in 2008.

In [8] an SDR implementation for CubeSat based on an FPGA device is

presented. The hardware platform consists of a single board designed from scratch

which includes the processing unit, a Xilinx Spartan3A-1400 and the RF circuits.

There are not details about what chip or device was used for the RF circuits,

however, the author mentions that the hardware is largely similar to an USRP

XCVR 2450 transceiver. Regarding the software, the author mentions that is

developed using VHDL (Very High-Speed Integrated Circuits Hardware

Description Language) to implement an embedded MicroBlaze processor used for

controlling all the SDR modules and to modify the URSP libraries developed and

provided by Ettus Research for their RF boards with the purpose to make them

compatible with Xilinx devices. The system requires an external processor

running Linux and GNU Radio tools in order to be controlled and operated. The

study was published in 2012.

In [4], the results of two SDR implementations proposed as a communication

system for a CubeSat constellation are shown. Regarding the hardware platform,

the first testbed includes a SmartFusion2 board acting as a processing unit which

include an ARM Cortex M3 with an FPGA fabric included in the same device

and a FunCube Dongle as an RF module. The second testbed includes a ZedBoard

which includes a Xilinx Zynq 7020 SoC (System on a Chip) acting as processing

unit and a Lime Microsystem’s Zipper + MyriadRF boards as RF modules. In

the case of software platform, the first testbed was configured and controlled

using a Linux operating system running the FunCube dongle utilities (FCD

CHAPTER 1 - INTRODUCTION

9

Control). The second testbed was configured using Linux operative system

running GNU Radio and the modules implemented in the FPGA fabric were

generated using the Xilinx Processing System (XPS). As conclusion, the author

mentions that the second testbed is the most suitable option for their application

because the first testbed lacks of a direct interface to the received IQ signal, the

USB interface creates a speed limit to 480 Mbps and it lacks of transmission

functionality. The study was published in 2014.

The last relevant publication is [9] in which an SDR implementation of the

satellite and ground segments are described. The hardware platform consists in

an FPGA board which includes an Altera EP3C25E144I7N FPGA as processing

unit and two independent boards for the receiver and receiver working in half-

duplex mode. Those RF modules were developed completely from scratch (there

are not details about which RF chips they used in the design). The software

platform was designed in VHDL using the Quartus development tool provided

by Altera and it does not run any operative system. The study was published in

2016.

Finally, in the Table 2, a summarize of the key performance parameters

reported in the mentioned research studies are shown.

Table 2. Noncommercial SDR key performance parameters summary.

Study

Reference
Key Parameters

[4]

Modulation schemes: BPSK, QPSK, 16 and 32 QPSK

Processor: Xilinx Zynq 7020, RF Front End: LMS6002D

Frequency: 914 MHz (1st Generation), 26.1 GHz (2nd Generation) - Fixed

Power Consumption: RX=1.2W, TX= 2.5W, Total = 3.7W

Power Output: 30dBm (1W)

Software: Linux + GNU Radio

[9]

Modulation schemes: FSK

Processor: Altera EP3C25E144I7N, RF Front End: Not specified

Frequency: 433.92 MHz - Fixed

Power Consumption: RX = 0.7W, TX = 2W, Total = 2.7W

Power Output: Not specified.

Software: VHDL + Quartus development tools

[7]
Modulation schemes: Not specified

Processor: Analog Devices ADSP-BF537, RF Front End: Not specified

CHAPTER 1 - INTRODUCTION

10

Frequency: VHF - UHF

Power Consumption: 165mW (only the processor unit)

Power Output: Not specified

Software: LabView

[8]

Modulation schemes: Not specified

Processor: Xilinx Spartan3A-1400, RF Front End: USRP XCVR 2450

Frequency: 2.4 - 2.5GHz, 4.9 - 5.9GHz

Power Consumption: Not specified

Power Output: Not specified.

Software: Modified USRP libraries and Linux + GNU Radio for

controlling.

1.4.2. Commercial SDR available on market

At the time of this survey, the commercial SDR platforms available in the

market are:

GomSpace NanoCOM SDR [10]: GomSpace is a manufacturer and

supplier of nanosatellite parts and buses located in Denmark with experience since

2007. Their SDR is a PC-104 form factor, space-proven platform that includes as

a processor unit one Xilinx Zynq 7030 programmable SoC which includes a dual

ARM Cortex A) running at 800MHz plus an FPGA logic in a single chip. The

device is on-orbit programmable and runs Linux operative system plus a

proprietary software developed for themselves. The RF hardware is not detailed

since it is a proprietary design.

Vulcan Wireless INC. SDR [11]: Vulcan Wireless INC. Is a provider of

digital communication solutions for terrestrial and space applications, located in

the USA. They offer two options of SDR, one for S-Band and the other for UHF

frequencies. Both of them have a CubeSat form factor with space heritage and

compatible with NASA Near Earth Network (NEN). Unfortunately, in their web

page there is not a datasheet available (probably can be obtained through a

quotation), then, there are not details about the hardware they utilized in their

devices.

Tethers Unlimited, Inc. – SWIFT SDRs [12]: Thethers Unlimited INC.

is a company that provides space services including satellite parts. They offer

CHAPTER 1 - INTRODUCTION

11

SDR platforms in L, S, X, K and UHF frequency bands with configurable

BPSK/QPSK/OQPSK/8PSK and 16PSK modulations. The form factor of the

radios is 0.25U (a quarter of CubeSat standard). In their datasheets is not possible

to find information about the hardware used in their devices.

Allen Space TOTEM [13]: Allen Space is a spin-off company from the

University of Vigo’s Xatcobeo satellite, the first Spanish satellite. TOTEM is a

PC-104 form factor SDR based in the Xilinx Zynq 7000 SoC running embedded

Linux with a GNU Radio support. The frequency is configurable from 70MHz to

6GHz with up to 56MHz of bandwidth. It offers safe in-orbit software updates,

flight heritage and the front-end RF module is provided as an additional

piggyback board.

In the Table 3, a summary of the relevant features of the mentioned

commercial SDR platforms available in the market is presented.

Table 3. Commercial SDR key performance parameters summary.

SDR Key Parameters

GomSpace -

NanoCOM

Modulation: TDD (Time Division Duplex), FDD (Frequency

Division Duplex)

Processor: Xilinx Zynq 7030, RF Front End: Non-specified

Frequency: 70MHz – 6GHz,

Power Consumption: TX = 3W.

Software: Linux and proprietary software

Tethers -

SWIFT

Modulation schemes: Non-specified

Processor: Altera EP3C25E144I7N, RF Front End: Non-

specified

Frequency: L, S, X, K and UHF bands

Power Consumption: 15W total

Power Output: Non-specified.

Software: Non-specified

Allen Space -

TOTEM

Modulation schemes: Depends of piggyback RF front end

daughterboard.

Processor: Xilinx Zynq 7000, RF Front End: Non-specified

Frequency: 70MHz to 6GHz

Power Consumption: 4W total

Power Output: Not specified

Software: Linux and GNU Radio support.

CHAPTER 1 - INTRODUCTION

12

1.5. Processing Modules Description

1.5.1. Raspberry Pi

The Raspberry Pi is a family of devices created in the United Kingdom by the

Raspberry Pi foundation in order to promote the teaching of basic computer

sciences in schools, universities and developing countries. The hardware of those

modules is open for everyone, but the firmware is closed source.

The first Raspberry Pi generation (Pi 1) was released in 2012 in two models,

the model A and the model B, the difference between them is that the second

one has higher performance specifications. Since that time, four families have

been released with higher performance changes but keeping the same size and

price.

The Raspberry Pi is one of the most popular single-board computers nowadays,

it has been used in several educational, academic and scientific projects. It has a

huge community that develops modules and open source code to handle several

kinds of devices, sensors, screens and other peripherals. Also, the community is

very enthusiastic to develop several kinds of applications with many functions to

be used easily on the device.

In the hardware part, the community and some companies have developed

several compatible modules that can be connected easily to the board, for

example, the camera module is one of the most famous compatible hardware

peripherals, it is easy to integrate to the main module and it is possible to find a

variety of open source image processing software to be used with it.

In the Table 4, a comparison between the most popular Raspberry Pi modules

is presented where it is possible to check the main features of each module in

order to compare the pros and cons between the existing modules in the market.

For this research purposes, the Zero and the 3B+ models were chosen and the

idea is to compare the benefits and disadvantages to use the high performance

and a budget options available currently in the market.

CHAPTER 1 - INTRODUCTION

13

Table 4 - Raspberry Pi modules main performance parameters.
 R-Pi 2B v1.2 R-Pi 3B+ R-Pi ZERO

CPU
64 bits Quad-core

ARM Cortex-A7

64 bits Quad-core

ARM Cortex-A53

32 bits Single-core

ARM1176JZF-S

FREQ (MHz) 900 1400 1000

RAM (MB) 1024 1024 512

STORAGE (GB) Up to 32 microSD Up to 32 microSD Up to 32 microSD

PERIPHERALS

17×GPIO, 2×I²C,

2×UART, 1×SPI,

1xEthernet,

4xUSB-B and

Camera

17×GPIO, 2×I²C,

2×UART, 1×SPI,

1xEthernet,

4xUSB-B and

Camera

17×GPIO, 2×I²C,

1×SPI, 2×UART,

PCM and PWM

SIZE (mm) 85.6 × 56.5 85.6 × 56.5 65 × 30

PRICE (USD) $35 $35 $5

1.5.2. FPGA (Field-programmable gate array) module

An FPGA is a programmable device designed to be configured by the end-user

after its manufacturing. It differs with the microprocessors in the fact that the

hardware in the device can be modified as the application needs, making these

devices a very flexible option used especially for parallel processing and digital

signal processing. Xilinx, Inc. is a very well-known manufacturer of FPGA devices

which includes a wide portfolio of several families divided by its application

purpose and performance.

The Spartan is a well-known family of FPGAs for applications where the low

cost, low power and high volume are the important targets. It is the most basic

Xilinx FPGA and for that reason is most typically used. Those are built using

the 45nm, nine metal layers, dual oxide process technology. The most common

applications for that family is automotive, wireless communications and video

surveillance.

Another set of families is the 7 series consisting of the Artix, Kintex and Virtex

devices. Those families have better performance than the 6 family, however its

cost is higher. The Artix family has 50% lower power consumption in comparison

with the Spartan family and it can deliver the performance required to address

cost-sensitive, high-volume markets previously served by ASICs (Application-

Specific Integrated Circuits), and low-cost FPGAs. However, its price is still

CHAPTER 1 - INTRODUCTION

14

higher than the Spartan families. Because of the low-power consumption

improvements, the target applications for the Artix family are for portable

equipment, military and avionics communications.

Table 5 - Xilinx FPGAs performance comparison.
 SPARTAN 6 ARTIX-7 KINTEX-7 VIRTEX-7

Logic cells 147K 215K 478K 1,955K

Block Ram 4.5Mb 13 Mb 34 Mb 68 Mb

DSP slices 180 740 1,920 3,600

Peak DSP

performance
930 GMAC/s 929 GMAC/s 2,845 GMAC/s 5,335 GMAC/s

Transceivers 4 16 32 96

Peak

Transceiver

speed

3.2 Gb/s 6.6 Gb/s 12.5 Gb/s 28.05 Gb/s

Peak Serial

Bandwidth
51 Gb/s 211 Gb/s 800 Gb/s 2,784 Gb/s

PCIe Interface X2 Gen1 x4 Gen2 x8 Gen2 x8 Gen3

Memory

Interface
800 Mb/s 1,066 Mb/s 1,866 Mb/s 1,866 Mb/s

I/O pins 500 500 500 1200

I/O voltage

1.2V, 1.35V,

1.5V, 1.8V,

2.5V, 3.3V

1.2V, 1.35V,

1.5V, 1.8V, 2.5V,

3.3V

1.2V, 1.35V, 1.5V,

1.8V, 2.5V, 3.3V

1.2V, 1.35V, 1.5V,

1.8V, 2.5V, 3.3V

Supports

partial

reconfiguration

Not natively Yes Yes Yes

Price $400 USD $880 USD $980 USD $7000 USD

The Kintex family is the mid-range FPGAs from Xilinx, It has 50% lower

power consumption than the Virtex 6 family with similar performance. It can be

used to cover applications that needs 12.6 Gbit/s or 6.5 Gbit/s serial

communication, enough memory and logic performance needed in optical

communications. It can provide a good balance between processing performance,

power consumption and costs.

Finally, the Virtex which is the Xilinx high-end family, typically this family

integrates FIFO (First Input First Output) logic, DSP, Ethernet blocks and high-

speed transmitters additionally to the normal FPGA logic. Additionally, it can

include embedded hardware functions like multipliers, memories, serial

transceivers and processor cores in order to facilitate the application development.

CHAPTER 1 - INTRODUCTION

15

The Virtex family usually is used for wired and wireless communication

measuring instruments, medical equipment and defense systems.

In Table 5, a performance and features comparison table is shown. For this

research purpose, the Spartan 6 and the Kintex 7 devices are the chosen options

in order to compare the performance of two different generations of Xilinx

FPGAs.

1.6. Single Event Effects (SEEs)

When charged particles such as electrons, protons or heavy ions pass through

semiconductor material like silicon, they lose energy in two ways: electronic loss

and nuclear interactions. As the particle travels along the sensitive volume in the

device, the energy loss appears as a cloud of electron-hole pairs [14]. In the case

of heavy ions, different failures in semiconductor devices occur as a consequence

of the direct ionization created in the device (the charge deposited by a single

particle in the sensitive volume of the device being irradiated).

Other sources of energetic particles that can produce SEEs are protons and

neutrons. These particles can produce SEEs by nuclear reactions when the direct

impact of the incident particle energy to a recoil atom transfer in the form of an

elastic/inelastic collision or spatial mechanism. Depending on the orbit designated

for a spacecraft, protons can be the main source of SEEs: “the probability of such

reactions are low (approximately 10�� for most devices of interest), however,

fluxes of protons can be very high in the inner proton belt or during solar particle

events and this mechanism can dominate the SEEs rates in many situations for

modern devices that have a low Linear Energy Transfer (LET) threshold” [15].

Protons and neutrons generate secondary products that bring additional energy

and charge deposition in the sensitive volume.

The injection of charge occurs in a very short time scale (in the order of

picoseconds), and in small amounts (10��� �� 10��� coulombs), however, these

magnitudes are enough to disrupt temporarily or permanently the operation of

CHAPTER 1 - INTRODUCTION

16

electronic devices [14].

Depending on the resulting effect on the device, temporal or permanent, the

SEEs are divided into two main groups:

 Non-destructive SEEs: The resulting effect disables temporarily the

device and its operation can be recovered after some time. Examples of

those effects are Single event transient (SET), single event disturbs

(SED), single event upset (SEU), multiple-cell upset (MCU), single-

word multiple-bit upset (SMU), single event functional interrupt (SEFI)

and single event hard error (SEHE).

 Destructive SEEs: The resulting effect on the device disables it

definitively from operating. Examples of those effects are Single event

latch-up (SEL), single event snapback (SESB), single event dielectric

rupture (SEDR), single event gate rupture (SEGR) and single event

breakdown (SEB).

Figure 6 - SEE produced by heavy ions (electrons) and nucleons (protons and

neutrons) in a semiconductor device.

For the most common digital devices such as processors, microcontrollers and

solid-state memories used for space applications, extended tests for SEE (SEU

and SEL) are required. Depending on the complexity, technology and

Electron Proton

n-substrate n-substrate

p-substrate p-substrate

Each particle

produces ionization

directly

Nuclear reaction

produces direct

ionization

Direct ionization produced by

heavy ions

Indirect ionization produced by

protons

CHAPTER 1 - INTRODUCTION

17

manufacturing process of the device, a particular test can be designated for

performing an evaluation through ground testing. Figure 6 shows the SEE

produced by heavy ions and protons.

1.6.1. Single Event Upset (SEU)

Single event upsets are non-destructive SEEs that affect mainly digital devices

such as memories, registers, latch devices and solid-state recorders (e.g. SRAM,

EEPROMs and FLASH devices). Those events are registered as a bit-flip leading

to the change in the stored information or state in the device.

Similar to SEUs, Multiple-Cell Upsets (MCUs) or Multiple-Bit Upsets (MBUs)

occurs in memories, registers and latch devices when a single particle impacts

them affecting several adjacent bits due to the large particle ranges [15].

1.6.2. Single Event Latch-up (SEL)

Single event latch-up affect semiconductor devices by creating a path of low

impedance between the power supply rails of a device due to the creation of an

ionized path along the particle trace in the device. In CMOS devices, an SEL

makes the transistors to enter conduction due to a forward biased state from the

ionization created by heavy ions or protons. This increases the current

consumption of the device to a level that can destroy it due to a current avalanche

effect. A power reset is required to remove the SEL condition, however, if the

system is not able to detect and provide a power reset after the SEL occurred,

the device may end with a permanent damage.

1.6.3. Linear Energy Transfer (LET)

The linear energy transfer refers to the deposited energy per unit path length.

For SEE analysis, the units of the LET are [��� ∙ ���/�] or [��� ∙ ���/��].

The LET is also related to the stopping power, which is the energy loss per unit

path length by a particle in a medium. The LET is can be described by the

CHAPTER 1 - INTRODUCTION

18

Equation 1 [15]:

���(�) =

⎩
⎨

⎧
1

�

��

��
(�), 0 ≤ � ≤ �

0, ��ℎ������

Equation 1 - Linear Energy Transfer (LET).

Where � is the energy of the particle, � is the range of the particle, and ρ the

density of the target material. For silicon, the value of ρ is [2.32 �/���]. From

the values of the LET, the deposited energy over a distance � can be computed

by Equation 2 [15] if the LET remains constant over the distance:

���� = ��� · � · �

Equation 2 - Deposited energy over a distance.

The LET concept is important for the testing and evaluation of SEEs due to

heavy ions. Depending on the ion source and energy, different LET values can be

achieved in a target device, which for most of devices of interest is silicon (Si).

1.6.4. Device cross-section

The cross-section of a device refers to the probability of SEEs to occur. It is

measured as the number of events recorded per unit of particle fluence. The

fluence Φ (Equation 4 [15]) for a specific type of particle is the integral of the

flux (unidirectional integral intensity flux represented j in Equation 3 [15]) over

a given interval (e.g. one minute, one hour, one day):

��� = � �
�

�

��

Equation 3 - Unidirectional integral intensity flux.

CHAPTER 1 - INTRODUCTION

19

� = � � ��
��

Equation 4 - Particle fluence.

The fluence has units of [���������/���] , while the flux has units of

[���������/���/�].

The SEE cross-section for ions is expressed as a function of LET and in energy

for protons and neutrons as shown in Equation 5 and Equation 6 [15],

respectively:

����(���) =
������ �� ������

��� �������

Equation 5 - SEE cross-section for ions.

�������(�) =
������ �� ������

������ �� ������� �������

Equation 6 - SEE cross-section for protons.

In the case of ions, the evaluation of the cross-section is straightforward, it

measures the sensitiveness of the device as a function of the LET. In the case of

protons and neutrons, where the SEE is produced by nuclear interactions, the

cross-section interpretation becomes more complex since it incorporates the

probability of a nucleon-nuclear interaction and the probability that the nuclear

recoil and other nuclear fragments results in charge deposition along the sensitive

volume of the device that produces an event [15].

The cross-section is expressed in units of [���/������] for SEEs in general and

in the specific case of SEUs, MCUs, and SMUs in [���/����] �� [���/����] . The

typical cross-section curve obtained for a particular device for heavy ions is shown

in the Figure 7 and for protons is shown in the Figure 8.

CHAPTER 1 - INTRODUCTION

20

Figure 7 - SEE cross-section as a function of LET produced by heavy ion irradiation

[15].

Figure 8 - SEE cross-section as a function of energy for proton irradiation [15].

The most important values to obtain from the cross-section curves are the ����

which is the cross-section of saturation where the device starts to experiment the

same and stable probability of errors and the ����� which is the Linear Energy

Transfer threshold value where the device starts to experiment errors (��� proton

energy threshold in the case of protons).

When a device has a sensitive volume with a larger horizontal dimension

compared to the vertical one, the deposited effective LET (������) is expressed

CHAPTER 1 - INTRODUCTION

21

in Equation 7 [15], where θ is the angle of the flux beam hitting the normal

surface of the DUT.

������(�) =
���(� = 0)

����

Equation 7 - Effective LET.

If the incident angle is varied, then the effective fluence will vary too, so, the

cross-section has to be computed according to Equation 8 [15]:

����(�) =
������ �� ������

������� · ����

Equation 8 - Effective SEE cross-section.

1.7. Research objectives and outline

The main purpose of this research is to develop an SDR system architecture

for improving the Ten-Koh communication system performance and flexibility

overcoming the constraints and limitations found in the design, implementation

and on-flight operation phases.

The objectives of this research are:

 To demonstrate the feasibility of using a Raspberry Pi module integrated

with a COTS RF front-end module for designing a suitable SDR platform

for the space segment application.

 To evaluate the performance of the proposed SDR implementation by

comparing it with the implemented Ten-Koh communication system.

 To perform a radiation test to verify the possible causes of the issues

presented in the microcontroller used in the Ten-Koh mission subsystems

and to obtain the radiation tolerances of the Raspberry Pi module in the

CHAPTER 1 - INTRODUCTION

22

space environment on LEO.

The dissertation is divided in 7 chapters as follows: In the chapter 1, the

background, motivation, objectives and goals of the research are described.

The chapter 2 describes the Ten-Koh satellite mission overview, the payload

data requirements, the system architecture, the constraints, limitations and on-

orbit issues found during the satellite design and operation.

The chapter 3 describes in detail the communication system included on-board

of Ten-Koh satellite. It includes the design methodology and the detailed

description of the hardware and software architectures, analyzing the constraints,

limitations and issues experimented with the design and operation phases.

The chapter 4 describes the proposed SDR implementation for optimizing the

Ten-Koh communication system in which the design strategy, developing tools

and the hardware/software architectures are described in detail showing the

advantages and improvements obtained in the mission design phases in

comparison with the used in Ten-Koh.

The chapter 5 presents the results of the simulations and test performed for

the proposed SDR system and for the Ten-Koh implemented system in order to

verify and compare the performance between the two systems.

The chapter 6 describes the radiation test performed for the PIC16F877

microcontroller used in the Ten-Koh subsystems in order to verify if the failures

presented in the chapter 2 were produced due to radiation phenomena and for

the single-board processor modules used for the implementation of the proposed

SDR system in order to define with more clarity if the system can be used safely

in future LEO satellite missions.

Finally, the chapter 7 summarizes the main results and conclusions obtained

in this research and describes some recommendations for possible future works in

related areas.

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

23

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

Ten-Koh mission is a 23.5 kg satellite developed by Kyushu Institute of

Technology, Japan, in conjunction with the Radiation Institute for Science and

Engineering of Prairie View A&M University, Holland-Space LLC and the Space

Research and Technology Institute of the Bulgarian Academy of Sciences. Ten-

Koh was launched on October 2018 on-board the HII-A rocket as a piggyback

payload of the JAXA’s Greenhouse gas Observing Satellite (GOSAT-2). The

main mission objective is the observation of the LEO environment measuring the

radiation effects on the satellite. In order to achieve that, the main payloads are:

 A Charged Particle Detector (CPD), developed by the Radiation Institute

for Science and Engineering Prairie View A&M University, TX, USA and

the Space Research and Technology Institute - Bulgarian Academy of

Sciences. The system includes 8 CMOS (Complementary Metal Oxide

Semiconductor) detectors mounted in a cube form factor and one Liulin

type detector [16] mounted on the top of the assembly. The CPD allows the

measurement of the radiation environment inside the satellite, the detection

of the MeV-range electrons and protons in LEO and the investigation of the

space environment in the presence of a low solar activity.

 A Double Langmuir Probe (DLP) which is in charge of the characterization

of the plasma environment around the spinning spacecraft.

Also, the mission includes the following secondary payloads:

 A material mission device which is in charge of measuring the degradation

and thermal expansion of a Carbon Fibber Reinforced Thermoplastic

(CFRTP) material covered with three different coatings exposed directly to

the space environment.

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

24

 An ultra-capacitor system to test a high-density energy storage device for

space applications.

 A thermal switch assembly, developed by The University of New South

Wales, Canberra (UNSW Canberra). This payload includes one device for

demonstrating a thermal control technique in nano-satellites.

Ten-Koh was designed with the lean satellite philosophy (low cost and reduced

development time), for that reason, one of the top-level requirements was to use

as much as possible the components and architectures used for the previous

mission Shinen-2 [17], [18] due to it worked successfully in the presence of a high

radiation space environment using COTS components. It was achieved at a high

rate; however, it was necessary to change some components because some of them

were obsolete, others were not able to purchase in the market and due to Ten-

Koh mission complexity was higher than the Shinen-2 mission, it was necessary

to change some components in order to meet the additional mission requirements.

The main reason to do that was to reduce the risk to have failures generated by

the hazardous space environment, using components already used successfully in

previous missions, also to reduce the development time re-using some of the

previous designs and architectures.

2.1. Ten-Koh system architecture

Ten-Koh system architecture is shown in the Figure 9. It consists in the bus

section and the payload section. The bus section includes the Electronic Power

System (EPS), the On-Board Computer (OBC), the Communication system

(COMM) and the Attitude Determination (ADS). The payload section includes

the Experiment Control unit (ECU), the Ultra-Capacitor Experiment Control

Unit (UECU) and the Material Mission Experiment Unit (MMECU). All

subsystems are interconnected using a single-master multi-slave serial

communication bus I2C in which the OBC acts as a master who controls all the

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

25

writing and reading transactions, the rest of subsystems are acting as slave units.

It means that the Ten-Koh architecture is a star shape architecture due to

subsystems are not allowed to communicate each other’s directly, all data

transactions must pass through by the OBC who is in charge to manage and

deliver the data property.

Figure 9 - Ten-Koh system architecture.

 Due to the FLASH and RAM memory limitations, the system architecture

includes a microcontroller in every single subsystem which basically is in charge

to manage and process all local data (e.g. sensor measurements, calculation

algorithms, etc.), pack it in a proper way and deliver it when OBC requests. The

only direct communication between subsystems is between the COMM and EPS

thru a General-Purpose-Input-Output (GPIO) connection in order to provide the

possibility to reset the OBC if it fails or hangs sending a direct command from

the ground station.

Depending the Ten-Koh operational mode, some subsystems are turned on or

off by the EPS subsystem in order to optimize the power consumption and the

processing resources of the OBC due to the processor limitations, as was

mentioned before, the OBC is in charge to manage and deliver the data to every

subsystem and additionally it has to change the operational mode of the satellite

GPIO
EPS COMM OBC ADS

Power Line

ECU UECU

I2C Bus

MMECU

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

26

depending of the received command from the ground station or depending the

critical housekeeping parameters (e.g. battery voltage, battery temperature, etc.).

2.1.1. Main microcontroller

The microprocessor used in Ten-Koh mission was the Microchip PIC16F877

which was used in several successful missions (e.g. CubeSat-XI-IV and CubeSat-

XI-V from Tokyo university [19], Shinen-2 from Kyushu Institute of Technology

[17] - [18], and AlcatelSat [20]). The main parameters of this microprocessor are

shown in Table 6. The data memory (RAM) of this microcontroller is divided

into banks of 96 bytes which it is the maximum buffer allowed to use.

Table 6 - PIC16F877 parameters [21]

Name Value

Program Memory (FLASH) 14 Kbytes

Data Memory (RAM) 368 bytes

Data memory (EEPROM) 256 bytes

Max Clock Frequency 20 MHz

Digital communication peripherals 1-UART, 1-MSSP(SPI/I2C)

Operating Voltage Range 2 to 5.5 V

Operating Temperature Range -40 to 85 °C

2.1.2. Data flow architecture

The data into the satellite flows in two ways (uplink and downlink). In the

case of uplink, the data is a command which is a data packet with all required

information to perform different events in the satellite (e.g. start a payload

mission, turn on/off any subsystem, reset satellite, request specific data

parameters etc.) In the case of downlink, the data are formed as a

telemetry/payload data which is a packet that contains all information about

housekeeping and scientific data coming from the satellite. The uplink will be

initiated always by the ground station and the data will flow as shown in the

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

27

Figure 10. The downlink will be initiated by the OBC due to a requested

command from a ground station (complete telemetry request, for example

complete sensor report or payload data) via FM link. Of course, a command

should be received first, then, the data will follow the same flow as shown before

in the uplink case. After that, data will flow as shown in the Figure 11.

Figure 10 - Ten-Koh uplink data flow.

Figure 11 - Ten-Koh downlink data flow.

 As is shown in the Figure 10 and Figure 11, every payload subsystem has a

MicroSD card in which the measured data performed by any mission are stored

in order to be sent when a ground station data download request command is

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

28

received by the OBC. All SD card parameters (last writing address, the read

pointer address and counters) are stored into the local microprocessor EEPROM

memory in order to be used lately even if the power supply is turned off by the

EPS. The only two subsystems into the satellite, which do not include SD card

are the OBC and the COMM subsystems.

 Additionally, the OBC and the ECU subsystems store in the microcontroller

EEPROM critical mission parameters. In the case of OBC, the satellite log which

stores any event occurred into the satellite and the backup of the Real Time

Clock (RTC) time. In the case of the ECU, the CPD threshold parameters are

stored and can be updated via ground station command.

2.1.3. OBC EEPROM data management

One of the purposes of this research is to report the failures presented in four

months of satellite operation due to the radiation environment. One of the

presented failures was the OBC microcontroller EEPROM data corruption, but

before to discuss the results in the next section is pertinent to revise the OBC

EEPROM memory data usage. Into the OBC, the entire EEPROM memory (256

bytes in total) is used to store three types of data, the OBC reset counter, the

minute byte of Real Time Clock (RTC) and the satellite log. The memory

assignation for each part is shown in the Table 7.

Table 7 - OBC EEPROM memory usage.

Data Type EEPROM Memory Address (Decimal)

Reset Counter 0 to 1

RTC 2 to 95

Satellite Log 96 to 255

 The reset counter increases every time the OBC experiment a reset and

consist in two bytes which allows to store up to 65,535 reset events. In the case

of the RTC, the minute, hour and day bytes are stored every minute in the

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

29

EEPROM memory region in order to have a partial backup of the satellite time.

Finally, in the satellite log region, the OBC stores every event that occurs into

the satellite with the corresponding time taken from the RTC; it consists in four

bytes in total, three for the RTC time (day, hour and minutes) and one for the

command ID, wherewith, a total of 40 events can be stored. The reason for using

a region into the EEPROM memory for the RTC time backup is to avoid to

overwrite several times the same memory address constantly and produces a

damage into the entire memory due to the excess of writing cycles given by the

microcontroller datasheet [21].

2.1.4. OBC resets management

Finally, is important to show how the resets are managed into the satellite.

The only subsystem allowed to reset other subsystems is the EPS. The resets can

be of two types, soft resets in which the EPS sends a digital reset signal directly

to the Master Clear Pin External Reset (MCLR) to the respective PIC

microcontroller and hard resets in which the EPS turns off for a short time the

respective power line in order to reset all the entire components into the

subsystem. The EPS resets the OBC in two specific cases, the first is when the

OBC does not send any I2C data request to the EPS during more than 15 minutes

and the second is when the COMM subsystem receives a satellite reset command

from the ground station; in this case, the COMM subsystem sends a direct digital

signal to the EPS without any OBC intervention via GPIO and then, the EPS

resets all the subsystems into the satellite. Based on the above, in the satellite

log, it is possible to differentiate two types of OBC resets, a satellite reset which

came from the ground station and unknown resets generated due to an OBC

hang.

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

30

2.2. Ten-Koh On-orbit issues

2.2.1. OBC resets events

The operation of satellite was divided into two stages, the first one called

Launch and early phase (LEOP) stage in which the operations were limited to

test the correct functionality of every subsystem into the satellite and whose

duration was one month, the second called mission stage in which the satellite

started to perform payload missions in normal mode. Since LEOP operations, the

OBC has started to show in the satellite log several resets due to OBC hangs or

unexpected resets and that resets continued appearing during the mission stage.

Those resets can be divided into two types, normal resets and unknown resets.

As was explained in the previous section, the satellite log stores the events

occurred into the satellite including the time in which those occurs taken from

the RTC. In the case when the time of the reset event is correct and corresponds

or is similar to the real time, then that event is a normal reset and the

approximate position of the satellite in the orbit can be estimated. Otherwise, in

the case when the time of the reset event is incorrect, then, that event is

designated as unknown reset due to the value was corrupted in the EEPROM

memory probably because a radiation effect and therefore, is not possible to know

the exact point on the orbit where the event occurred. In view of above, the

number of resets events occurred on the satellite since the launching day is shown

in the Figure 12. The summary of the data obtained by the Figure 12 is shown

in the Table 8.

Table 8 - OBC reset events summary.

Name Value

Days of operation 123

Total reset events 132

Number of normal resets 102

Number of unknown resets 30

Average reset events by day 1.073

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

31

Figure 12. Number of OBC reset events during 123 days of Ten-Koh operations.

0

1

2

3

4

5

6

10
/2

8/201
8

11
/5

/2018

11
/1

3/20
1

8

11
/2

1/20
1

8

11
/2

9/20
1

8

12
/7

/201
8

12
/1

5/20
1

8

12
/2

3/20
1

8

12
/3

1/20
1

8

1/8
/2019

1/1
6

/201
9

1/2
4

/201
9

2/1
/2019

2/9
/2019

2/1
7

/201
9

2/2
5

/201
9

3/5
/2019

N
u

m
b

er of R
eset E

ven
ts

Day
Normal Resets Unknown Resets

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

32

It is possible to estimate the location of the satellite when the normal reset

events occurred using the time that appears in the satellite log and using a

software for orbit calculation (e.g. Orbitron or STK). In the Figure 13, every red

point represents the locations of the satellite where the normal resets occurred.

In the case of the unknown resets, is difficult to estimate the position of the

satellite where those resets occurred because the time stored in the satellite log

is incorrect, however, comparing the satellite log with the ground station log, it

is possible to estimate the correct value of the time when some resets occurred if

the next event is a command sent from the ground station and the time between

the two events is not big. Following that methodology, it was possible to recover

the time of five unknown resets and therefore, it was possible to estimate their

respective location in the orbit. In the Figure 14, the red points represent the

position of the satellite when those unknown events occurred.

Figure 13 - OBC normal reset events occurrences. The red and green regions

illustrate the count rate of electrons and protons greater than 0.5 MeV [22].

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

33

Figure 14 - OBC unknown reset events occurrences. The red and green regions

illustrate the count rate of electrons and protons greater than 0.5 MeV [22].

 In order to analyze if the reset events were presented in the zones of the orbit

where the amount of radiation is high, the resets occurrence location points are

shown over a count rate of proton and electrons greater than 0.5 MeV in LEO

plot measured by the NASA/SAMPLEX satellite [22]. The summarize of the

results for the normal and unknown reset events are shown in the Table 9.

In the case of normal resets, the 62.06% of those events occurred in the region

with presence of proton and electron flux greater than 0.5 MeV while the 37.94%

of those events occurred outside the radiation region. Regarding the unknown

events, only five of those events could be recovered from the satellite log of which

all of them occurred in the region with radiation fluxes greater than 0.5 MeV.

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

34

Table 9 - Reset events results summary.

Name Value

Total number of normal resets plotted 87

Normal resets into the region > 0.5 MeV 54

Normal resets outside the region > 0.5% MeV 33

Total number of unknown resets plotted 5

Unknown resets into the region > 0.5 MeV 5

Unknown resets outside the region > 0.5% MeV 0

2.2.2. EEPROM failures into other subsystems

As mentioned previously, every subsystem except the OBC and the COMM

use an SD card memory to store the measured data and all those subsystems

store the SD card parameters (addresses and counters) into the EEPROM

memory of each PIC microcontroller in order to be able to use it after a power

off performed by the EPS. Same as the OBC, several subsystems also

experimented data corruption into the EEPROM memories, probably for the

same reasons as OBC.

Table 10 - Ten-Koh subsystems EEPROM failures summary.

Subsystem Always
turned on? Failures?

OBC Yes Yes, EEPROM (satellite log, reset counter and
RTC backup)

COMM Yes No, EEPROM not used

ADS Yes Yes, SD card does not respond

EPS Yes Yes, EEPROM (SD card address pointer)

ECU No No, SD card parameters and payload thresholds
stored in EEPROM works well

UECU No No, SD card has not been used

MMECU No No, SD card has not been used

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

35

In the Table 10, a summary of all satellite subsystem failures is shown, also

the table shows if the subsystem is always turned on in order to analyze if that

can be another reason that facilitate the EEPROM failures into the PIC

microprocessor.

It is possible to see based on the data shown in the Table 10 that only the

subsystems that are permanently turned on (bus subsystems) are those that had

been presented failures, especially with the EEPROM memory, the payload

subsystems are turned on only in the mission mode that generally do not take

more than one orbit, then those are not exposed to the radiation environment in

operation for a long time. Regarding the EPS EEPROM failure, it also consists

in a data corruption, similar to the OBC case. In this scenario, it is possible to

know that the value was corrupted because the EPS stores the housekeeping

values every minute and it stores the corresponding value in the successive SD

card address, however, after OBC unknown resets also the EPS started to save

the housekeeping data in a different memory address and in some cases even the

previous values were overwritten due to the address pointer data corruption.

The ECU uses the same methodology for saving the mission data into the SD

card but because it is not turned on for a long time then the subsystem has not

experimented failures as yet.

2.3. Reset events analysis

In the previous section, Ten-Koh on-orbit issues were presented and discussed.

The results show that the EEPROM memory into the PIC16F877 microprocessor

experiments failures when is working continuously and several writing and

reading transactions are performed. However, it is not possible to conclude that

the failures are generated only due to the radiation environment because it was

not possible to know the position of the satellite in all resets events where the

data into the EEPROM was corrupted. It was possible to estimate just 5 of 30

CHAPTER 2 - TEN-KOH MISSION OVERVIEW

36

of those events and the location matches with the zones in which the proton and

electron flux is greater than 0.5 MeV (matches with the south and north radiation

belts and the South Atlantic anomaly), also the 62.06% of the normal resets

occurred inside that region which it is possible to formulate the hypothesis that

probably these failures are mostly presented due to radiation phenomena.

However, previous missions like Shinnen-2 used the same processor and no

malfunctions was reported, even some radiation test was performed and the

results shown that the PIC16F877 is suitable for space applications as mentioned

in [18]. Also, as mentioned previously, the Ten-Koh CPD includes a Liulin

spectrometer detector which can measure the total absorbed dose rate and the

flux surrounding energetic particles in the space. This instrument has been used

in several missions (included the International Space Station and deep space

missions). It includes two PIC microprocessors (PIC16C74) and they have not

reported any malfunction. The Liulin instrument was used in the Indian

Chandrayaan-1 satellite performing experiments crossing the SAA directly at

about 3000 km altitude, the maximum dose per channel reaches 1800 ���/ℎ���

(~100000 ���/ℎ��� in total) [23]. Is important to mention that the PIC

microcontroller used in the Liulin instrument belongs to the same family used in

the Ten-Koh mission, but is not the same reference, also is not mentioned if the

EEPROM memory into the microcontrollers has been used and additionally, the

Liulin instrument is mounted into an aluminum cover plate plus some additional

shielding which provide more protection against radiation issues [24].

In order to get more relevant information and to conclude the causes of the

malfunctions discussed in this chapter, a radiation test was performed to the PIC

microcontroller and the results will be presented in the chapter 6.

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

37

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM

ARCHITECTURE

3.1. Hardware architecture

The communication subsystem consists of two lines of communications, both

were designated to work in the Ultra-High-Frequency (UHF) band. The downlink

line includes a transmitter at 437.3 MHz and the uplink line includes a receiver

at 435.2 MHz for downlink. The main purpose of the communication system is

to receive uplink commands from the ground station and downlink data from

satellite to ground station using the specified frequencies. The block diagram is

illustrated in the Figure 15. The system consists in a Communication Control

Unit (CCU) which is an 8-bit Microchip PIC16F877 microcontroller, it is in

charge of managing the data received and to be sent to the On-Board Computer

(OBC) using the Inter-Integrated Circuit (I2C) bus. For the transmitter part,

the CCU is in charge to receive the data coming from the OBC, in order to do

that, it has a software module which encodes the data using the AX.25 G3RUH

protocol and send the encoded data to the Nishimusen TXE430MFMCW-302A

module. Also, the CCU needs to configure the operation mode of the transmitter

module using a digital interface. A level converter between the CCU and the

transmitter module is needed in order to convert the voltage levels from 5V to

3.3V. For the receiver part, the CCU is in charge of processing the command

data received from the ground station through the Nishimusen RXE430M-301A

by generating a General-Purpose-Input-Output (GPIO) signal. It interrupts the

OBC and send the data using the I2C bus. In addition, the CCU has an AX.25

Bell 202 decoder implemented by software and also, it has the duty to configure

the receiver module frequency using a special digital interface similar to Serial

Peripheral Interface (SPI). Two additional components are present between the

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

38

receiver module and the CCU, the first is a low pass filter at the input of the

AFSK modem in order to reduce the noise in the audio output generated by the

Nishimusen module and the second is the AFSK modem itself (MX-614) which

is in charge to demodulate the AFSK analogue signal into a digital one. The final

Printed Circuit Board (PCB) implementation is shown in the Figure 16.

Figure 15 - Ten-Koh communication system block diagram.

Figure 16 - Final Ten-Koh communication system PCB with RF modules.

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

39

Ten-Koh communication subsystem utilizes two UHF amateur frequency

bands in full duplex mode. The data transmission is a packet based using the

AX.25 protocol with baud rates of 1,200bps using a Frequency Shift Keying

(FSK) modulation for uplink and 9,600bps using a Gaussian Minimum Shift

Keying (GMSK) modulation for downlink. Also, as a system requirement, it

includes a hot redundancy reception module and a cold redundancy transmitter

module. The ground station is located in the Kyushu Institute of Technology

(Tobata Campus) and includes an ICOM9100 transceiver, a Kantronics

KPC9100+ Terminal Node Controller (TNC), a Yaesu G-5500 rotator, a Low

Noise Amplifier and a dual Yagi antenna array.

3.2. Software architecture

The software architecture of the communication system is shown in the Figure

17. It consists of two hardware driver modules, the first one performs the I2C

slave communication with the OBC for receiving the control commands e.g. CW

mode, transmission mode and receiving mode. The second hardware driver is for

controls the GPIO interfaces necessary to interrupt the OBC when a valid

command is received from the ground station and to control and configure the

Nishimusen transmitter and receiver modules. The receiver software module

consists of two blocks, the Bell 202 AX.25 1,200bps modem and the configuration

blocks, the first is in charge to decode the packets received by the Nishimusen

receiver module and store those locally in the microcontroller buffer in order to

be read by the OBC lately, the second is in charge to generate the digital interface

needed to tune the Nishimusen receiver to the correct frequency values at boot

up.

The transmitter software module also includes two blocks, the configuration

block in charge to generate the GPIO signals needed to change the Nishimusen

transmitter mode (CW or 9,600bps data) regarding the corresponding state

machine state and the G3RUH AX.25 9,600bps modem block in charge to encode

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

40

the data received from the OBC to be sent to the ground station. Finally, the

software is controlled entirely by a state machine which is constantly waiting for

interruptions coming from the OBC thru the I2C bus.

Figure 17 - Ten-Koh software architecture.

Regarding the development tools for the software development, the Microchip

MPLAB IDE and the XC8 compiler were used and the programming language

for writing the code was C.

3.3. System constraints and limitations

After four months of on-orbit operations and during the system development

phase, some constraints were found that made the design and the satellite

operations complex. The first and the most important was the microcontroller,

the Microchip PIC16F877 which was used in several successful missions. The

major limitation using this microcontroller was that it has a 368 Bytes of SRAM

and those are divided into four parts of 96 bytes in total [21], then, the system

To OBC and RF modules

To OBC

I2C driver

GPIO driver

COMM state machine

G3RUH

AX.25

9200bps

Transmitter

TX

CONFIG

BELL 202

AX.25

1200bps

RX

CONFIG

Receiver

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

41

has two major buffers, one for reception (35 bytes) and the other for transmission

(65 bytes). For that reason, the system was limited to sending packets of just 65

bytes when the AX.25 protocol allows to send packets until 255 bytes of data. Of

course, it decreased the capabilities of the entire system and it took more time

and processing resources when a large amount of data is needed to be sent,

especially the data coming from the payloads. In the Table 11, the amount of

data generated by the Ten-Koh payloads and the number of AX.25 packets

needed to download a single measurement experiment using the 65 bytes packet

size in comparison with the full AX.25 available packet size is shown. It is possible

to observe that due to the microcontroller memory limitation in the system, the

number of packets needed to download a single payload experiment is four times

higher than using the full AX.25 packet size. According to the above, this

constraint affects directly the number of passes required to download a single

payload experiment.

Table 11. Data generation for the Ten-Koh payloads.

Payload

Amount of

data

generated

per single

measurement

by channel

[Bytes/ch]

Maximum

time

duration of

the

experiment

[minutes]

Total data

generated

for one

experiment

by 2

channels

[Bytes]

Number of

packets

needed to

download 1

experiment

(Ten-Koh

system –

65 bytes)

Number of

packets

needed to

download 1

experiment

(AX.25 –

255 bytes)

DLP (Hi-

Resolution)
3,000 15 900,000 13,847 3,530

DLP (Mid-

Resolution)
1,500 15 672,000 10,339 2,636

DLP (Low-

Resolution)
600 15 180,000 2,770 706

CPD 2,528 15 75,840 1,668 298

ADS 64 15 57,600 887 226

Material

Mission
60 15 18,000 277 71

The Ten-Koh orbit is Sun Synchronous at 613 km altitude and 97.8 degrees of

inclination, then, in one day, the satellite passes over the ground station in Japan

CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM ARCHITECTURE

42

four times, however, typically only two of those passes have a good elevation for

data downlink. In the real practice, in a good elevation pass, it was possible to

download around 300 valid packets on average. Therefore, for example, to

download a single DLP in high-resolution measurement with the mentioned

limitation, the system requires 46 passes (23 days) which is a considerable

operation time. On the other hand, using the full AX.25 packets, the operation

time needed is 12 passes (6 days).

Other constraints regarding the microcontroller are the limitation to use only

one level of priority in the interruptions, the low clock speed (20 MHz maximum)

[21] and the size of the SRAM memory (for the final software implementation it

occupied the 97% of the entire available memory).

The second major constraint is regarding the Nishimusen transmitter and

receiver modules. These modules have been used successfully in several Japanese

satellite missions e.g. Shinen-2 and Horyu-IV, but those devices are only limited

to operate in VHF and UHF bands using AFSK (AX.25 Bell 202 at 1200 bps)

and GMSK (AX.25 G3RUH at 9600 bps) modulations respectively which is not

quite enough to meet the amount of data generated by the main payloads.

Other constraints regarding those modules are that is not possible to modify

the modulation schemes by software and in the case of the transmitter, even is

not possible to modify the transmission frequency by software. The only way to

do it is reprogramming the corresponding values in a specific EEPROM memory

allocation using a PICKit programmer [25].

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

43

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

4.1. Methodology and Raspberry Pi prerequisites

In order to be able to use the Raspberry Pi as the main processor for the SDR

proposed architecture, some software tools are necessary. The first requirement

is to prepare the operating system into the MicroSD card in order to be loaded

at boot up. The operative system used for the proposed designs, simulation and

testing is the Raspbian Stretch Linux distribution, it is based on Debian and is

the official distribution provided by the Raspberry Pi foundation, it includes the

required libraries that allows to use a graphical desktop environment (required

for the GNU Radio Companion environment).

The second and the principal tool is the GNU Radio suite, which is a free and

open source software toolkit that provides signal processing blocks in order to

implement and simulate software defined radios. It includes a graphical

environment called GNU Radio Companion in which it is possible to create,

configure and connect the corresponding blocks required to build the design.

Moreover, the graphical environment allows to execute and simulate the design

in real time using the adequate blocks (QT GUI blocks), however, that blocks

must be removed completely at the moment of the final implementation. Before

installing the GNU Radio package, it is recommendable to check whether the

system has the required dependencies and libraries to build various signal

processing blocks [26], after that, the installation process can be completed by

executing the command “sudo apt-get install gnuradio gnuradio-dev” on a terminal

window.

By default, GNU Radio offers several signal processing blocks and modules for

SDR development. However, the installation of additional open-source libraries

is needed in order to implement the proposed architectures presented in this paper.

That libraries are: The SatNOGS GNU Radio Out-Of-Tree module [27], the gr-

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

44

satellites library which includes several decoders for several radio amateur

satellites [28] and the gr-bruninga library which includes some tools to encode

and decode Audio Frequency-Shift Keying (AFSK) signals [29]. The libraries

mentioned above were installed into the Raspberry Pi following the instructions

that appear on their respective web sites.

Another advantage to using the Raspberry Pi in conjunction with Raspbian is

that there are available native drivers for managing the I2C, SPI, UART and

GPIO interfaces. It facilitates the development because if any of that interfaces

are needed in the design, from the software standpoint, just importing and calling

the corresponding drivers is enough to use them.

The methodology used to develop all the components into the SDR

architecture is shown in the Figure 18. The creation, configuration and connection

of the corresponding signal processing blocks are made in the GNU Radio

Companion graphical interface in order to perform the corresponding testing,

tuning and simulations to verify the design performance.

Figure 18 - SDR design methodology flow chart using GNU Radio.

YES

NO

Create, configure and interconnects

signal processing blocks

Perform graphical simulations and

performance test

Are performance

and results

adequate?

Reconfigure/Reconnect

signal processing blocks

Generate python code scripts for final

implementation

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

45

Figure 19 - GNU Radio Companion basic exemplar diagram.

Finally, the functional scheme is exported in a Python code script that can be

used by the main program (state machine) to exchange input/output data and

configuration parameters. To explain the above in a better way, the most basic

exemplar diagram in the GNU Radio Companion is shown in the Figure 19, which

is a Cosine Signal Generator. Here the Signal Source block is configured to output

a 1 kHz cosine signal with amplitude equals to 1, without offset and the output

signal is connected to the Audio Sink block which controls the audio output into

the Raspberry Pi to generate the analog signal. In the Figure 20, a part of the

generated python code is shown in which it is possible to observe how the

variables are declared, how the blocks are defined and how the configuration

values are included as function inputs into the blocks. For example, in the case

of the Signal Generator block, it is declared calling the function

“analog.sig_source_f” in which the input parameters are the sample rate, the

waveform, the frequency in Hz, the amplitude and the offset. Those parameters

can be reconfigured externally using another script or high-level application.

Finally, the physical connection declaration between the two blocks is shown.

In the next section, the proposed SDR implementations will be shown. The

GNU Radio companion diagrams that will appear corresponds to those that were

used for testing the parameters and performance of the system.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

46

Figure 20 - Generated phyton code script from basic exemplar diagram.

4.2. Partial SDR implementation

The partial SDR proposed implementation consists in replacing the Ten-Koh

communication PCB by only a Raspberry Pi module, a USB external audio card

and keeping the same Nishimusen RF modules. In this case, it is not possible to

implement an entire SDR architecture property because the constraints

previously discussed and still present in the transmitter and receiver modules.

However, the major constraints due to the microcontroller can be solved and the

hardware implementation is significantly improved because basically the PIC

microcontroller is upgraded by the Broadcom BCM2837B0, with Cortex-A53

(ARMv8) 64-bit SoC included into the Raspberry Pi.

The block diagram of the hardware architecture is shown and explained in the

Figure 21. To be able to receive the AFSK audio signal generated by the receiver

RF module, an available audio input is needed, but unfortunately the Raspberry

Pi has only an available audio output. To solve it, a simple USB sound card is

connected and configured as the main audio card into the Raspbian operative

system. Another advantage that this implementation brings is the option to add

easily and without additional hardware an AX.25 Bell 202 1,200bps encoder using

the same audio interface and just connecting it to the audio input in the

Nishimusen transmitter module as is shown in the Figure 21.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

47

Figure 21 - Partial SDR implementation architecture.

In the case of the software, the architecture is similar as the Ten-Koh case,

there is one part in charge to handle with the transmitter at 9,600bps and the

other in charge to handle the receiver at 1,200bps. For the receiver, the GNU

Radio platform is used to implement the AFSK decoder replacing the passive

input filter and the FX614 AFSK modem into the Ten-Koh system. As shown in

the Figure 22, the Audio Source block is used to receive the audio signal provided

by the receiver RF module, after, the signal is connected to the FSK Demodulator

block from the gr-bruninga library which decodes the AFSK signal into digital

data (the same function that the FX614 does in the Ten-Koh system). Finally,

the signal is connected to the input of the HDLC Deframer block from the gr-

satellites library which is in charge to decode the AX.25 into raw data. To verify

if the correct data is received, the HDLC to AX.25 block is used to print out in

the terminal the decoded data. The GNU Radio Companion diagram of the

receiver AFSK decoder is shown in the Figure 22.

In the case of the transmitter, the 9,600bps encoder and the control interfaces

to configure the RF module cannot be implemented by using the GNU Radio

platform because everything is controlled digitally by GPIO interfaces, a function

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

48

which the platform does not support. The same situation happens with the digital

interface for configuring the receiver RF module. In this case, the proposed

solution is modifying the Python code generated previously by GNU Radio,

adding the GPIO driver support to handle the digital interfaces for controlling

the Nishimusen modules and for implementing the AX.25 G3RUH encoder at

similar way as implemented in the PIC microcontroller.

Additionally, as mentioned previously, due to the inclusion of the USB audio

card that can provide an audio output to the transmitter RF module, it is possible

to implement an AFSK Encoder using the GNU Radio platform. The diagram is

shown in the Figure 23, on it is possible to observe three blocks that take the

data coming from a text or hex file and convert it into strings, that strings are

input to the AX.25 encoder and FSK modulator that consist in two blocks, the

String to APRS block in charge to add the AX.25 headers (call sign source and

destination) and the AX.25 AFSK Modulator block in charge to include the flags,

preamble and postamble required to the AX.25 encoding, same as the value of

the frequency of the two tones required for the FSK modulator. The two

mentioned blocks are part of the gr-bruninga library. Finally, the encoded AFSK

data is connected to the input to the Audio Sink block which will generate the

analog signal in the USB audio card output in order to be sent to the Nishimusen

transmitter input.

Figure 22 - AFSK decoder block diagram implemented on GNU Radio.

AFSK MODEM
DECODER

AX.25 DEFRAMER

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

49

Figure 23 - AFSK encoder block diagram implemented on GNU Radio.

4.3. Complete SDR implementation

The complete SDR implementation consists in the previously shown

improvement contributed by the replacement of the Ten-Koh CCU PIC by the

Raspberry Pi module plus the replacement of the Nishimusen modules by a single

LimeSDR-mini module. In this case, the complete SDR architecture is shown in

the Figure 25 in which the two typical parts of an SDR architecture are present,

the software part that is controlled entirely by the Raspbian operative system

and the hardware part that consist in the Raspberry Pi module and the

LimeSDR-mini RF module connected by one USB port. The hardware part is

shown in the Figure 24.

The software part is divided into four modules, two of them consists of a

transmitter and a receiver in AFSK Bell 202 1,200bps and the other two consist

in a transmitter and a receiver in GMSK G3RUH 9,600, all of them were

designed, simulated and tested using the GNU Radio Companion suite.

Figure 24 - Complete SDR hardware implementation.

AX.25 FRAMER AND AFSK MODEM ENCODER

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

50

Figure 25. Complete SDR architecture block diagram.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

51

The AFSK transmitter block diagram implemented in GNU Radio is shown in

the Figure 26. It consists if a Socket PDU block which establishes a Protocol

Data Unit (PDU) session in order to receive the data to be transmitted, an AFSK

modulator that includes a block to generate the AX.25 headers (source and

destination call signs) and the FSK modulator block itself in charge to generate

the Bell 202 audio tone, same as the AFSK encoder in the partial SDR

implementation. Also, it includes a Frequency Modulator (FM) block which is in

charge to modulate the audio tone into the carrier frequency (437.3 MHz) and

finally, the LimeSuite Sink transmitter block that configures all the parameters

needed for the LimeSDR-mini module, e.g. frequency, internal filters, power

output gain and frequency channel.

The AFSK receiver implemented in GNU radio is shown in the Figure 27. It

consists in the LimeSuite Source receiver block that tune the RF frequency at

435.2 MHz, the internal filters, the channel band and the receiver Low Noise

Amplifier (LNA) power level. It includes also a low pass filter block for removing

the undesirable frequencies, an FM demodulator in order to recover the audio

tone from the radio frequency carrier, an amplifier block to adequate the correct

level value for the audio tone, an FSK demodulator which decodes the digital

data from the audio tone and finally, a High-Level Data Link Control (HDLC)

deframer that decode the AX.25 packets and outputs the row received data.

Joining the AFSK transmitter and receiver, we have a complete SDR solution for

the AX.25 BELL 202 at 1,200bps used in Ten-Koh and typically used in satellite

communications using the radio amateur frequency band.

Regarding the GMSK G3RUH 9,600bps transmitter, the proposed solution

implemented in the GNU Radio Companion is shown in the Figure 28. It includes

a User Datagram Protocol (UDP) Message Source block which establishes a UDP

session in order to receive the data to be transmitted, an AX.25 encoder (which

is part of the SatNOGS library) for encode the data in AX.25 G3RUH which

include the flags, headers and one additional scrambler required for 9,600bps baud

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

52

rate. Also, a GMSK modulator block is used to modulate the encoded data in a

carrier wave. The resulting signal needs to be resampled depending the value of

the samples per symbol used in the modulator block and the baud rate (10

samples per symbol and 9,600bps respectively). For that duty, the Rational

Resampler block calculates the resampler rate adequate for the input of the

LimeSuite transmitter block. The resampler rate is calculated as shown in the

Equation 9. The �������������_���� is the sample rate which is configured

into the LimeSuite sink (TX) block, the baud rate is 9,600bps, the

 ������������� are the number of samples to represent one GMSK

constellation point (in this case is 10) and the interpolation and decimation

values are the parameters needed by the resampler block in order to

perform the sample rate escalation.

�������������_���� =
(�������� × �������������) × �������������

����������

Equation 9 - LimeSDR resample rate calculation.

Finally, the resulting signal is connected to the input of the LimeSuite Sink

(TX) block that configures the frequency value at 437 MHz, the sample rate at

500 kHz, the internal filters, the power output and the channel band. The power

output has to be modified depending how far is the receiver in order to avoid the

saturation.

For the GMSK G3RUH receiver, the GNU Radio Companion implementation

is shown in the Figure 29. At first, the LimeSuite source (RX) block is used to

configure the parameters of the receiver at the same way used in the AFSK

implementation.

Then, the received signal has to be resampled properly to the 9,600bps baud

rate using the Rational Resampler block, the interpolation and decimation values

are chosen in adequate way using the Equation 10.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

53

��������_���� = �
�������������_���� ∙ �������������

����������
�

Equation 10 - Resample rate for GNU radio rational resampler block.

The above changes the sample rate from 500 kHz used by the LimeSuite block

to 96 kHz needed in the Low Pass Filter block which is in charge to remove the

undesired frequency component of the received signal. After the GMSK

demodulator block is used to demodulate the signal and to divide the sample rate

by the modulation samples per symbol to recover the original G3RUH baud rate

(9,600 bps). Finally, to decode the data packets, the G3RUH AX.25 decoder is

implemented using an NRZI decoder block, a descrambler block and one HDLC

deframer block (part of the gr-satellites library). The decoded data packets are

printed out and stored using the HDLC to AX.25 block which is part of the

SatNOGS library which includes different utilities and tools in GNU Radio to

develop ground station software for radio amateur satellites [27].

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

54

Figure 26 - AFSK BELL 202 transmitter implemented in GNU Radio.

Figure 27 - AFSK BELL 202 receiver implemented in GNU Radio.

AX.25 ENCODER AND FSK MODULATOR FM MODULATOR

FM DEMODULATOR AUDIO
AMPLIFIER AX.25 PACKET DEFRAMER

FILTER
AFSK DEMODULATOR

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

55

Figure 28 - GMSK G3RUH transmitter implemented in GNU Radio.

Figure 29 - GMSK G3RUH receiver implemented in GNU Radio.

G3RUH ENCODER
GMSK MODULATOR RESAMPLER

FILTER
GMSK DEMODULATOR

G3RUH AX.25 DECODER
RESAMPLER

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

56

4.4. SDR transmitter improvement

The proposed SDR transmitter has previously covered the Ten-Koh mission

requirements and overcome the main limitations, however there are still two

considerable constraints. The first one is the transmission data rate limitation

due to the USB interface used in the LimeSDR mini module, it allows data

transmission rate up to 19.2 MSPS (Mega Samples Per Second) which can be a

limitation for satellite missions with more payload data generation. The second

one is that there is not a possibility to reprogram the microcontroller on-flight,

feature which would be very important for maintenance purposes and for

correcting possible data corruptions due to radiation effects.

For the above reasons, a transmitter improvement is proposed and described

hereunder in this numeral. It consists in the inclusion of an FPGA device in which

the transmitter modulators are implemented. The FPGA device can be

reprogrammed via the Raspberry Pi using a JTAG interface. The proposed

hardware architecture is shown in the Figure 30.

On it is possible to observe the data interface connections which consist of a

data line that provide the raw data from the Raspberry Pi to the FPGA and two

selection lines that will be used to select the desired modulation scheme depending

the application requirements. The modulated output is provided by eight-bit

digital data which can be connected directly to any RF front end module for its

transmission.

Figure 30 - SDR transmitter improvement hardware architecture

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

57

Regarding the software architecture, it is divided in two parts. The former is

the implementation of the transmitter modulators into the FPGA and the latter

is the implementation of the JTAG interface to reprogram the FPGA logic into

the Raspberry Pi.

In the Figure 31, the transmitter improvement software architecture is

presented. In the FPGA, four modulators (BPSK, FSK, QPSK and MSK) are

implemented, those can all be programmed at the same time and also can be

selected via GPIO selection pins data interface. Additionally, only one of the

modulators can be programmed depending the mission requirements and to use

the remaining free FPGA logic for other applications. Into the Raspberry Pi, the

FPGA configuration files (bit files) are stored locally, those can be selected and

reprogrammed into the FPGA logic via the JTAG controller depending the

definitions and requirement defined in the user app. The advantage of the above

is that it is possible to change the modulation schemes of the transmitter

depending the mission requirements and also if there is a malfunction detected

on the transmitter, the respective modulator scheme can be reprogrammed in

order to recover the system due to a failure produced by a single event upset.

Another advantage is that this architecture allows reprogramming the system in-

flight due to the FPGA configuration files can be received from the ground station

via uplink and stored locally into the Raspberry Pi for performing on-flight

upgrades to the transmitter system.

Figure 31 - SDR transmitter improvement software architecture

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

58

4.4.1. FPGA modulators design methodology

For the implementation of the respective transmitter modulators, the Xilinx

Vivado IDE suite is used in conjunction with a MATLAB suite via the System

Generator tool. This tool allows to design and simulate the modulators using the

MATLAB Simulink environment to verify the correct functionality. After that,

the design can be exported into a Xilinx Vivado project in which the design can

be synthesized, implemented, programmed and simulated on the real FPGA

environment.

In the Figure 32, a very basic example of the used methodology is shown. It is

a sinusoidal signal generator which consists in the following blocks:

 A System Generator block used to configure all the parameters of the

design like the FPGA model, the system clock settings, the hardware

description language and the synthesis and implementation strategies.

 A DDS Compiler block used to configure all the parameters to generate a

sinusoidal wave with a frequency of 1MHz.

 An FPGA output port used to assign a real FPGA pin in which the signal

will be generated.

After configuring and connecting the respective blocks, a simulation can be

executed to verify the correct functionality of the design.

The next step of the design methodology process is to generate the respective

Xilinx Vivado Project. It can be possible pressing the “Generate” button into the

System Generator block. This action will generate a complete project with all the

required configurations that can be opened into the Vivado IDE suite. In the

Figure 33 a screenshot of the generated project is shown, on it is possible to

observe the exported VHDL code simulated, synthetized and implemented into

the FPGA.

Finally, the project can be programmed into the FPGA and it is possible to

debug and make real time simulations using the real hardware to finishing to

verify the correct functionality of the design.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

59

Figure 32 - FPGA design methodology example using Xilinx System Generator and MATLAB Simulink

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

60

Figure 33 – Generated Xilinx Vivado IDE suite from the System Generator design methodology example

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

61

4.4.2. FPGA modulators implementation

In this section, the design of four modulators is presented. The respective

System Generator block diagram generated in MATLAB Simulink and the

simulation results is presented for a BPSK, FSK, QPSK and MSK modulators.

 Binary Phase-Shift Keying (BPSK)

The BPSK is a phase-based modulation where the phase of the carrier wave

is shifted by π (180 degrees) to represent a “1” or “0” binary values [30]. The

signal waveform output of the modulator is given as:

��(�)＝

⎩
⎪
⎨

⎪
⎧

�
2��

��
sin(2����) , �������� = 0

−�
2��

��
sin(2����) , �������� = 1

Equation 11 - BPSK modulation waveform output

Where �� is the bit period and �� = ∫ ��
�(�)�� 0 ≤ � < ��

��

�
 is the energy per

bit.

Figure 34 - BPSK modulator implementation

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

62

Figure 35 - BPSK modulator simulation results

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

63

The implementation of the BPSK modulator in the System Generator is shown

in the Figure 34. On it is possible to observe a DDS compiler generator that is

configured to generate a sinusoidal signal with a frequency of 1MHz, that signal

is connected to the first input of a multiplexer (d0) and represents the carrier

wave when the data input bit is “0”. The same sinusoidal signal is inverted using

the logical “not” block and it is connected to the second input of the multiplexer

(d1). The data input is connected to the selector input of the multiplexer, then,

depending of its binary value, the signal is commuted at the output.

In the Figure 35, the simulation results of the modulator are shown. The data

input bits, the sinusoidal wave and the modulation output signals are plotted.

Here, it is possible to see how the phase is shifted π (180 degrees) when the input

bits change which is the expected behavior of the BPSK modulator. Also, the

FPGA logic utilization and the estimated on-chip power consumption is shown.

 Binary Frequency Shift Keying (FSK)

The FSK is a frequency-based modulation where the frequency of the

carrier signal varies with the value of the binary data input in which “0”

corresponds to one frequency value and “1” corresponds to another frequency

value. The modulated signal output is given by:

⎩
⎪
⎨

⎪
⎧

��(�) = �
2��

��
cos(2����) , �������� = 0

��(�) = �
2��

��
cos(2����) , �������� = 1

Equation 12 - FSK modulation waveform output

Where �� is the bit period (0 ≤ � < ��) and �� = ∫ ��(�)��(�)�� = 0
��

�
 is the

energy per bit.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

64

The implementation of the FSK modulator in the System Generator is

presented in the Figure 36. The implementation is based on a multiplexer as same

as the BPSK implementation with the difference that in this case, there are two

DDS Compiler generator blocks in charge of generating the sine carrier waves at

1MHz and 2MHz respectively which are connected in the inputs (d0 and d1). The

modulator output will change between the different frequency carrier waveforms

depending of the binary value of the data input connected with the selector port

of the multiplexer.

Figure 36 - FSK modulator implementation

In the Figure 37, the simulation results of the FSK modulator are shown. The

data input bits, the two sinusoidal waveforms and the modulation output signals

are plotted. Here, it is possible to observe how the carrier wave signals are

commuted when the binary value of the input changes, which is the expected

behavior of the FSK modulator. Also, the FPGA logic utilization and the

estimated on-chip power consumption is presented.

.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

65

 Figure 37 - FSK modulator simulation results

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

66

 Quadrature Phase-Shift Keying (QPSK)

As explained previously, a BPSK modulator is defined by two carrier

signals with a phase shifting of π (180 degrees) which represents the binary

data input (“0” or “1”). In the case of the QPSK modulator, it is defined by

four carrier signals with a phase shifting of π/2 (90 degrees) in which each

signal represents a pair of binary data input (“00”, “01”, “10” and “11”). It

means that two data bits are transmitted per carrier signal duplicating the

data transmitted by the BPSK modulator. The QPSK modulator output is

defined by:

�(�) = �
2��

��

[cos�(�) cos(2����) − sin�(�) cos(2����)],

�(�) = � �

 0 → 00
�/2 → 01

−�/2 → 10
 � → 00

Equation 13 - QPSK modulator waveform output

Where �� is the bit period (0 ≤ � < ��) which is the double than in the BPSK

case.

Figure 38 - QPSK modulator implementation

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

67

The implementation of the QPSK modulator in the System Generator is

presented in the Figure 38. It consists basically in two BPSK modulators

implementation, same as previously explained. The DDS Compiler generator

block is in charge of generating the sine and cosine waves. Each signal is inverted

using an inverter “not” block and the resulting two signals are connected to the

inputs (d0 and d1) of a different multiplexer (1 and 2). For dividing the data

input bit stream into the even and odd components, a Time Division

Demultiplexer (TDD) block is used, it acts as a serial to parallel (2 bit) converter

which provides the selector outputs to control the output of the multiplexers that

represent the I and Q components of the modulator signals. Finally, for obtaining

the QPSK modulated signal, the I and Q components are added using an addition

block.

In the Figure 39, the simulation results of the QPSK modulator are shown. In

the first place, the data input bit stream and the I and Q components resulting

in the output of the TDD block are plotted for verifying the correct 2-bit parallel

conversion. Here, it is possible to observe clearly that the period of the I and Q

signals are two times the period of a single bit from the data stream. Finally, it

is possible to see how the carrier wave phase varies correctly depending on the I

and Q combinations as explained on the Equation 13.

 In addition, on the Figure 39, the FPGA logic utilization and the estimated

on-chip power consumption is presented.

 Minimum-Shift Keying (MSK)

The QPSK modulation presented previously is one of the most used in satellite

communications due to the better spectral efficiency that offers the possibility to

send two bits trough one carrier signal. However, in a satellite communications

system, RF amplifiers are typically used to increase the power output of the

transmitted signals.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

68

 Figure 39 - QPSK modulator simulation results

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

69

When those amplifiers operate near to the saturation, those generally exhibits

a nonlinear output causing distortion to non-continuous modulated signals [30].

That is the case of the BPSK and QPSK modulators due to the carrier wave

phase changes. To overcome the above, continuous or near-continuous phase

modulated signals are desired like the OQPSK (Offset QPSK) or MSK

modulators.

The OQPSK (Offset QPSK) modulator is a variation of the QPSK modulator

where the I and Q bitstreams are offset in time by one time period ��. It results

in a phase change of only 0 and ±π/2 which means that the modulation signal is

nearly continuous. [30]. Additionally, if the I and Q signals of the OQPSK

modulator are shaped with a sinusoidal pulse, then the phase changes became

completely continuous and it is the principle of the MSK modulator.

Taking into account the above, the MSK modulated signal can be represented

as same as the QPSK modulator (Equation 13) whit the addition of the sinusoidal

shaped pulses to the I and Q components which result in the following expression:

�(�) = �
2��

��
�cos�(�) cos �

��

2��
� cos(2����) − sin�(�) sin �

��

2��
� cos(2����)�

Equation 14 - MSK modulation waveform output

Where cos(��/2��) is the sinusoidal shape of the I component and

sin(��/2��) is the sinusoidal shape of the Q component.

The implementation of the MSK modulator in the System Generator is

presented in the Figure 40. It consists in a TDD block that takes the binary data

input to generate the binary I and Q signals with bit period 2�� ; after, a

combination of a DDS Compiler and an inverter “not” blocks which are used

to generate two 0.25MHz sinusoidal signals with a phase difference of π (180

degrees). Those sinusoidal signals are connected to the inputs of two

multiplexers which are controlled by the binary I and Q signals generated by

the TDD block. Doing the above, the sinusoidal shaped I and Q signals are

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

70

generated as the MSK modulator requires. Next, the resulting signals are

multiplied with a 1MHz sine and cosine signals generated by another DDS

Compiler block respectively. Finally, the two resulting signals are added using

an addition block generating the MSK modulated signal.

Figure 40 - MSK modulator implementation

In the Figure 41, the simulation results of the MSK modulator are presented.

In the first place, the data input bit stream and the I and Q components resulting

in the output of the TDD block are plotted for verifying the correct 2-bit parallel

conversion, same as in the QPSK modulator simulation. Next, the sinusoidal

shape I and Q signals are plotted; here, it is possible to observe the �� offset of

the Q component to comply with the OQPSK modulator property as explained

before. Finally, we can notice how the resulting MSK modulated signal varies the

phase changes are completely continuous as expected. In addition, on the Figure

41, the FPGA logic utilization and the estimated on-chip power consumption is

presented.

The presented implementations until here can be implemented individually

into the FPGA logic. Then, the configuration files generated can be used by the

Raspberry Pi application to reprogram the FPGA logic depending the mission

needs.

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

71

Figure 41 - MSK modulator simulation results

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

72

Next, an integrated implementation where the four presented modulators are

included in the case that the Raspberry Pi application can change the modulation

scheme via GPIO selection pins.

 Integrated modulators implementation

In the Figure 42, a complete integration of the previous modulators

implementations is presented. As we can see, the DDS Compiler block that

generates the 1MHz sine and cosine signals is shared for all modulators as same

as the TDD block is shared for the generation of the I and Q signals required for

the QPSK and MSK modulators. Each modulator block consists in the same

implementations presented and explained previously, however, to be more

specific, the internal block diagrams that conforms each modulator are detailed

in the appendix 1. Finally, to be able to select the desired modulation output, a

multiplexer is added to the implementation. All the outputs of the modulators

are connected to the multiplexer inputs and a modulator selection is performed

via a selection port that consist of two lines which are controlled externally;

depending the input combinations of that port, each modulator can be selected.

Figure 42 - Integrated modulators implementation

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

73

 Figure 43 - Integrated modulators simulation results

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

74

The result of the above implementation is presented in the Figure 43. In

the plot the following signals are shown:

 The decimal value of the selection port, if the value is “0” (00) the

BPSK modulator is selected, if the value is “1” (01) the FSK modulator

is selected, if the value is “2” (10) the QPSK modulator is selected and

finally, if the value is “3” (11) the MSK modulator is selected.

 The data input serial stream

 The binary I and Q components generated by the TDD block

 The modulated output in which it is possible to observe the BPSK

output from 0 to 1,600ns when the value of the selector input is “0”,

the FSK output from 1,600 to 3,200ns when the value of the selector is

“1”, the QPSK output from 3,200 to 6,400ns when the value of the

selector is “2” and finally, the MSK output from 6,400 to 9,600ns when

the value of the selector is “3”

As it is possible to observe, the simulation of the complete integration of the

four modulators works according to the explained previously. Additionally, on the

Figure 43, the total FPGA logic utilization and the estimated on-chip power

consumption is presented.

4.4.3. FPGA reprogramming system

As shown in the Figure 30 and the Figure 31, the complete SDR transmitter

optimization consists into the FPGA part in which the modulators can be

programmed and executed and the Raspberry Pi part in which the

reprogramming module is implemented via a JTAG interface and can be

controlled by the application app. The implementation of the modulators into the

FPGA part was already described, now, the FPGA reprogramming system

implemented into the Raspberry Pi is explained.

The base of the system is a JTAG controller which is in charge to control and

execute the reprogramming process using the JTAG protocol. JTAG (Join Test

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

75

Action Group) is the name of the group that developed the IEEE 1149.1 standard

used for verifying, testing and debugging printed circuit boards via Test Access

Ports (TAP), the complete description of the standard can be consulted on [31].

A good summary of the JTAG standard is presented in [32] in which the most

relevant features and characteristics are explained as well as the flow charts about

the TAP controller state machine.

The JTAG standard is used for Xilinx FPGAs also for programming, debug

and readback their devices, usually using their Platform Cable USB II device [33].

However, on [34] there are a clear explanation about the Xilinx In-System

Programming for their devices using bit configuration files, Serial Vector Format

(SVF) and Xilinx SVF (XSVF) files.

Due to the Raspberry Pi is a device capable to run under Linux distribution,

there are some tools that allows to use it as a JTAG standard controller using

the GPIO drivers as TAP controller, for example, UrJTAG [35] and OpenOCD

[36]. Both have the capability of executing SVF files conforming to the JTAG

standard in order to program or debug Xilinx FPGAs, however, not all SVF

commands are compatible and it generates some errors executing the SVF files

generated by Xilinx IDEs (Vivado and ISE). Another limitation using SVF files

is the size which, depending the logic utilization, can be in the order of MB which

is a problem if we want to send the file via uplink to the satellite for maintenance

purposes.

After testing the both options, the tool used for this implementation was

OpenOCD because additionally to the SVF player feature, it has the possibility

of programming the configuration bit file directly to the FPGA which decrease

the time needed for the FPGA programming for flashing the device and also

allows to send the configuration file easily via uplink to the satellite due to the

typical size of the bit files is in the order of hundreds of kB.

The block diagram of the FPGA reprogramming system is shown in the Figure

44. The system was tested for two Xilinx FPGA families, the Spartan 6 (included

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

76

in the HumanData XCM-110-LX75 module [37]) and the Kintex 7 (included in

the HumanData XCM-112-160T module [38]). According with the Xilinx

application note “Using SPI Flash with 7 Series FPGAs” [39], an SPI flash

memory is recommended to store the configuration bit file of the FPGA in order

to reprogramming the logic every time the power is shut down. Also, a typical

connection between the FPGA and the flash memory is shown and it explains

how that memory can be programmed via JTAG standard. Both tested modules

already include the flash SPI memory with their respective connections as shown

in detail in the mentioned application note.

Figure 44 - FPGA programmer block diagram

In the Raspberry Pi side, the bit configuration files of the implemented

modulators for the FPGA are stored into the SD card, then, the JTAG controller

is in charge to program that files only into the FPGA logic or into the FPGA

logic plus the SPI flash memory depending the user application needs. As

mentioned previously, the selected tool for the implementation is the OpenOCD,

then, the first step is to compile and install it into the Raspberry PI. To do that,

the followed procedure was based the official repository [40] and the tutorial

created by Ardafruit for ARM microcontrollers [41].

TDO

TDI TMS

TCK

JTAG

INTERFACE

FSK BPSK

QPSK MSK

FSK

FPGA LOGIC

JTAG

CONTROLLER

BIT CONFIG FILES

RASPBERRY PI

FSK

SPI FLASH MEMORY

FPGA

SPI

USER APPLICATION

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

77

In [42], an extensive user manual about all the OpenOCD functions and

commands is presented. The tool needs two configuration (.cfg) files, the first is

the interface file which includes the details and definitions about the hardware

used as a JTAG interface (e.g. a JTAG adapter or specifically in this

implementation, the Raspberry Pi GPIOs); the second is the target file which

includes the definition of the JTAG TAPs of the device that OpenOCD should

control/debug/program (e.g. ARM CPU or specifically in this implementation

the Xilinx FPGAs).

Regarding the interface configuration file, by default, the OpenOCD repository

includes three files to use a Raspberry Pi as a JTAG interface in the “interface”

folder, one of them uses the sysfs driver to access to the GPIOs which is

compatible with all Pi versions and the other two files use the bcm2835 driver,

one of them is compatible only with the Pi version one or the Pi Zero and the

other is compatible with the Pi version two only. After test the two available

options with the Pi Zero and the Pi 3B+, in the case of the Pi Zero, the most

reliable and fastest driver was the bcm2835 and in the case of the Pi 3B+, the

most suitable and fastest driver was the sysfs. The details and differences of the

both drivers are presented in [43].

Regarding the target files, by default, the OpenOCD repository includes the

target files for the Xilinx Spartan 6 and 7 family FPGAs in the “cpld” folder. For

this implementation the default files worked successfully without any

modification.

Until now, OpenOCD with the default configuration allows the possibility to

debug and reprogram the FPGA logic, however, it is not possible to reprogram

the SPI flash memory attached to the FPGA device. In order to achieve that, a

custom interface configuration file should be created, including the TAP

instructions to program the SPI flash memory through the FPGA itself,

programing in the logic a bscan-SPI bitstream controller to manage the flash

memory programing via the SPI protocol. The custom configuration file used in

CHAPTER 4 - PROPOSED SDR IMPLEMENTATION

78

this implementation was created on the base of the configuration files included in

the netv2mvp-scripts repository [44], and the final version used for all the

implementation and test are shown in the appendix 2 with respective comments

explaining the functionalities. The bscan-SPI bitstream files used to program the

FPGA logic temporarily for performing the SPI flash memory programing task

can be found in the Quartiq repository [45] (“bscan_spi_xc7k160t.bit” for the

Kintex 7 FPGA and the “bscan_spi_xc6slx75.bit” for the Spartan 6 FPGA).

The test and results of the FPGA reprogramming system are shown in the

next chapter.

CHAPTER 5 - RESULTS AND DISCUSSION

79

CHAPTER 5 - RESULTS AND DISCUSSION

In order to test and characterize the Ten-Koh system and the proposed SDR

architecture, some key parameters were chosen to be measured and compared.

 The parameters are: for the receiver part, the performance for different signal

strengths in order to obtain the practical sensitivity values and the maximum

number of received bytes per AX.25 packet; for the transmitter part, the power

output and the maximum number of bytes allowed to send per AX.25 packet.

A power consumption test was performed on the two systems executing the

receiving and transmitting functions at the same time and in the specific case of

the proposed SDR implementation, it was implemented in a different Raspberry

Pi model in order to compare the different power consumptions depending the

used model.

On the other hand, some simulations were performed in order to have an idea

about the performance of the proposed SDR implementation for the signal-to-

noise ratio (SNR) and the Packet Error Rate (PER) modeling an Additive White

Gaussian Noise (AWGN) channel between the transmitter and the receiver using

the GNU Radio Companion graphical interface and the signal processing blocks

available to perform that kind of simulations. Also, it is possible to observe the

modulated and demodulated signals in the presence of controlled noise level in

the channel and how it affects the constellation diagram and the entire system

performance.

Finally, for the FPGA reprogramming system implemented on the Raspberry

Pi using OpenOCD, a test was performed in order to verify the required time for

programing the different modulators implemented for the Kintex 7 and Spartan

6 FPGAs, to compare the results for the Zero and the 3B+ models and define if

the system can be suitable for using on-board in a nanosatellite mission.

CHAPTER 5 - RESULTS AND DISCUSSION

80

5.1. Receiver sensitivity test

In the receiver part, one of the most important parameters for characterization

is the sensitivity. This value, usually varies depending the modulation scheme,

power supply quality, component tolerances, etc. In order to perform this test,

the configuration shown in the Figure 45 was used. In this case, a base band

signal was generated using the same TNC used in the Ten-Koh ground station,

the Kantronics KPC9100+, in the case of the 1,200bps AFSK signal, it is obtained

from the port 1 and in the case of the 9,600bps GMSK signal, it is obtained from

the port 2. That signal is connected to the modulation input port into the RF

signal generator (Hewlett Packard 8656B) which is in charge to put the base

band signal in the desired RF carrier wave. The frequency value was fixed at

435.2 MHz and the power of the carrier wave varies from -100 dBm to -120 dBm.

Finally, the RF output signal is connected directly to the input of the receiver

module using a coaxial cable and the received data packets can be observed in

the GNU Radio companion in the case of the proposed SDR system and in the

HyperTerminal in the case of the Ten-Koh system via UART serial

communication port. The test consists in send 250 AX.25 packets from the TNC

to the receiver at different power level steps and monitoring how many packets

were successfully decoded into the receiver. At the power level when no packets

are received, it is the sensitivity value of the receiver module.

Figure 45 - Receiver sensitivity test configuration.

The results of this test are shown in the Figure 46 and Figure 47, in the first

one, it is possible to observe the number of receiving packets in function of the

CHAPTER 5 - RESULTS AND DISCUSSION

81

power input strength into the receiver and in which it is possible to determine

the sensitivity threshold which is the RF power level where the receiver start to

receive valid packets. Those values are -119.5 dBm for the Ten-Koh AFSK

receiver, -112 dBm and -110 dBm for the proposed SDR AFSK and GMSK

receivers respectively. However, for defining a practical receiver sensitivity value

usable for link budget calculations and for determining the receiver performance,

is better to calculate the Packet Error Rate (PER) in percentage which is

calculated using the Equation 15.

���% = �
������_�������

������_�������
� ∙ 100

Equation 15 - Packet Error Rate calculation.

The PER performance for Ten-Koh and SDR proposed systems are shown in

the Figure 47. For optimal packet communication performance in a nano-satellite

mission like Ten-Koh, the practical receiver sensitivity threshold value can be

chosen when the PER is 1%. Then, in the case of the Ten-Koh AFSK receiver,

the measured value is -115.5 dBm and in the case of the proposed SDR AFSK

and GMSK receivers the values are -108.5 dBm and -106 dBm respectively.

The testing was performed using the ground station already implemented and

in operation with the Ten-Koh satellite. The software used to send and receive

the data is exactly the same used to do the same duty in the daily satellite

operations. For receiving the data at the ground station, the AGW Online KISS

decoder [46] was used and for sending data, the control software development for

the Ten-Koh team was used.

5.2. Receiver Signal-to-noise ratio (SNR) simulation

The signal-to-noise ratio (SNR) is the relation between the received RF signal

strength and the noise signal strength presented at the input of the

communication receiver.

CHAPTER 5 - RESULTS AND DISCUSSION

82

Figure 46 - Number of received packets in function of the received RF power.

Figure 47 - Packet Error Rate (PER) in function of the received RF power.

When the noise signal strength becomes comparable with the received signal

strength, the system performance starts to decrease which means that the

probability to lose data packets starts to increase. In a satellite communication

CHAPTER 5 - RESULTS AND DISCUSSION

83

link, the noise is produced by different sources, e.g. by the atmosphere that

generates thermal noise and by interfering signals generated from other

communication systems working in near frequency bands. For that reason, it is

difficult to measure the SNR and the performance of the communication system

due to this effect. However, GNU radio includes a special signal blocks to generate

Gaussian noise which makes possible the simulation of the effects of an Additive

white Gaussian noise (AGWN) channel in the system. For this simulation, the

implemented diagrams in GNU radio are shown in the Figure 48 (for the GMSK

transceiver) and in the Figure 49 (for the AFSK transceiver). The methodology

is to create a loopback between the transmitter and the receiver, excluding the

LimeSuite RF blocks to avoid undesirable/uncontrollable noise sources and

including the respective signal blocks to add the AGWN channel effects. In the

real case, the noise is introduced to the system via the RF signal and the

expression for the SNR is given by the Equation 16.

���(��) = 10 ∙ log�� �
�������

������
�

Equation 16 - Signal-to-Noise Ratio calculation.

However, in the simulation, the RF modules cannot be included because the

GNU radio blocks can introduce random Gaussian noise only for baseband

signals, then, the method for simulating the same effects in the system is to add

the noise to the baseband modulated signals. In the case of the GMSK system,

the modulator output signal is complex type; then, it is possible to use the

Channel Model block to include the noise effects in the system as showed in the

Figure 48. On the other hand, in the AFSK system case, the modulator output

signal is float type and it is necessary to use a Noise Source block to add the

AGWN channel effects to the system as shown in the Figure 49 since the Channel

Model block only works for complex signals.

CHAPTER 5 - RESULTS AND DISCUSSION

84

Figure 48 - GMSK SNR simulation diagram.

CHAPTER 5 - RESULTS AND DISCUSSION

85

Figure 49 - AFSK SNR simulation diagram.

CHAPTER 5 - RESULTS AND DISCUSSION

86

The expression to calculate the noise voltage amplitude parameter depending

of the desirable SNR is given by the following formula:

������ = ��2 ∙ ��������� ∙ 10
�

���(��)
��

�
�

��

Equation 17 - Noise voltage calculation.

Were ��������� is the number of bits transmitted by one modulation symbol

(1 for AFSK and 2 for GMSK).

In the plot is clear to observe how the constellation points are distorted and

displaced as the SNR value is decreasing. In the case of the AFSK transceiver, a

QT time sink block is connected at the output of the AFSK modulator block and

after the addition of the Gaussian Noise to observe how the noise interferes with

the modulated signal. In the Figure 52, it is possible to observe how the AFSK

modulated signal is affected when the SNR value decreases. Additionally, in both

systems, a Throttle block is used between the transmitter and receiver in order

to establish the sample rate used by the LimeSuite RF blocks and to avoid

consuming the entire CPU resources since there are not hardware included in the

simulation.

Figure 50. Noise effects in GSMK transceiver constellation diagram I.

No Noise SNR = 5dB

Q
ua

dr
at

ur
e

Q
ua

dr
at

ur
e

In-phase In-phase

CHAPTER 5 - RESULTS AND DISCUSSION

87

Figure 51. Noise effects in GSMK transceiver constellation diagram II.

Figure 52 - Noise effects on AFSK modulated signal.

SNR = 0dB SNR = -5dB
Q

u
ad

ra
tu

re

Q
u

ad
ra

tu
re

In-phase In-phase

No Noise

SNR = 0dB

CHAPTER 5 - RESULTS AND DISCUSSION

88

After verifying that the noise effects are included with the system correctly, it

is possible to run the simulations to obtain the PER vs SNR performance of the

system. In order to do that, a simulation in which 10,000 packets were sent from

the transmitter to the receiver for every SNR variation step (from -5 to 4 dB in

steps of 0.5 dB) were performed. For every step, the HDLC Deframer block in

the receiver part decodes the AX.25 packets and decides which packets are correct

or not. With this information, it is possible to calculate the PER using the

Equation 15 used previously in the numeral 5.1. The time interval used to send

the packets were 0.25ms for the GSMK transceiver and 1s for the AFSK

transceiver. The results are shown in the Figure 53, Figure 54 and summarized

in the Table 12. Here, it is possible to observe the SNR performance for the both

transceivers are similar and it is possible to deduct that for values of SNR greater

than 3.5 dB, the packet error rate is less than 10�� (0.01%) which is a typical

value used for ensuring correct communication in nano-satellite link budgets.

Figure 53 - Number of received packets in function of the Signal-to-noise ratio SNR.

CHAPTER 5 - RESULTS AND DISCUSSION

89

Figure 54 - Packet Error Rate (PER) in function of the Signal-to-noise ratio SNR.

Table 12 - Signal-to-noise ratio performance for AFSK and GMSK modulations.

5.3. Transmitter RF output power test

For the transmitter part, the maximum RF output power was measured using

a spectrum analyzer. In the case of the Ten-Koh Nishimusen transmitter, it only

operates in the UHF band, the power output is factory fixed and cannot be

modified by software. In the case of the proposed SDR system, the maximum

power output allowed by the LimeSuite Source (TX) block was configured (Gain

dB = 60) and it was measured in the VHF, UHF and S bands since those are

PER (%) AFSK SNR (dB) GMSK SNR (dB)

0.01 3.50 3.50

0.10 3.10 3.10

1.00 1.90 2.10

10.00 0.20 0.60

50.00 -1.16 -1.05

CHAPTER 5 - RESULTS AND DISCUSSION

90

typically assigned for satellite radio amateur communications. The test set-up is

shown in the Figure 55, the transmitter (LimeSDR mini and Nishimusen) is

connected to the spectrum analyzer through an attenuator in order to decrease

the power level for protection. The power output level is measured when valid

AX.25 packets are sent. The results of the test are shown in the Table 13.

Figure 55 - Transmitter RF power output set-up

Table 13 - Maximum transmitter RF power output measurements for both systems

transmitters.

5.4. Power consumption test

In a nano-satellite mission, the power consumption is one of the biggest

constraints in the bus subsystem design, for that reason is important to measure

the power performance of the proposed SDR architecture for comparing it with

the existing ones. In this test, the power consumption was measured for the Ten-

Koh and proposed architecture monitoring the current when the systems were

operating in different modes and at the same time the processor usage. In the

case of the SDR, it was implemented in three different Raspberry Pi model

variations. The results of the test are shown in the Table 14. Here, it is possible

Module Power (dBm) Power (mW)

Ten-Koh @ 437.385 MHz 29.0 794.00

SDR @ 437.385 MHz 2.0 1.58

SDR @ 145.980 MHz 3.5 2.23

SDR @ 2.4 GHz -4.5 0.35

TRANSMITTER SPECTRUM ANALIZER ATTENUATOR

CHAPTER 5 - RESULTS AND DISCUSSION

91

to observe that the Ten-Koh system has the less power consumption both in the

idle mode as in the transmission mode.

Regarding the SDR, the implementation in the Raspberry Pi Zero model has

the less power consumption in all modes followed by the Pi 3B and the Pi 3B+

model respectively, which was expected since the Zero model includes a single

core processor ARMv6 running at 1GHz and the 3B and 3B+ models include a

quad core processor ARMv8 running at 1.2 and 1.4 GHz respectively. On the

other hand, regarding the processor usage, it is possible to note the advantage to

use a quad core processor in the 3B and 3B+ modules, running the corresponding

python scripts, the maximum usage was just 25% in comparison with the 100%

usage presented in the Pi Zero model running the applications in a single core.

Table 14 - Power consumption of Ten-Koh system and SDR implementations on

different Raspberry Pi modules.

5.5. FPGA reprogramming system test

The purpose of this test is to verify the correct functionality of the

reprogramming system implemented into the Raspberry Pi module for the FPGA

logic and the SPI flash memory attached to the device and also to establish the

required time to perform the reprogramming task for the Kintex 7 family as well

as for the Spartan 6. As explained in the numeral 4.4.3, the JTAG controller uses

PARAMETTER

R-PI ZERO

W
R-PI3 B R-PI3 B+ Ten-Koh

I

(mA)

Power

(W)

I

(mA)

Power

(W)

I

(mA)

Power

(W)

I

(mA)

Power

(W)

IDDLE 110 0.550 280 1.400 490 2.450 30 0.150

100% CPU USAGE 195 0.975 770 3.850 685 3.425 -- --

IDDLE +

LIMESDR
475 2.375 655 3.275 885 4.425 -- --

FSK

TRANSMITTER
650 3.250 775 3.875 1050 5.250 -- --

GMSK

TRANSMITTER
580 2.900 875 4.375 985 4.925 550 2.750

PROCESSOR

USAGE
100% 25% 25% --

CHAPTER 5 - RESULTS AND DISCUSSION

92

the GPIOs on the Raspberry Pi to create a TAP to be connected directly to the

JTAG port into the FPGA device. The JTAG port consists in four connections

defined as follow: TDI (Test Data In), TDO (Test Data Out), TCK (Test Clock)

and TMS (Test Mode Select).

The connections between the Raspberry Pi and the FPGA JTAG port used in

the test are shown in the Figure 56 and described in the Table 15. The GPIO

port number into the Raspberry Pi can be chosen in a different way changing

those into the configuration file presented in the appendix 2.

The test was performed using the Raspberry Pi Zero and the 3B+ models to

define if there is a representative difference in performance between the both

models. The configuration bit files used for performing the FPGA programming

where the files resulting of every modulator implementation described in the

numeral 4.4.2 (BPSK, FSK, QPSK, MSK and the integration of those

modulators).

 Figure 56 - JTAG Connections

Table 15 - JTAG Connections

Raspberry Pi FPGA
Header

Pin

GPIO

Driver

JTAG

Port

19 10 TDI

21 9 TDO

22 25 TMS

23 11 TCK

VCC VCC VCC

GND GND GND

The results of the test are shown in the Table 16 and Table 17, the required time

for programming the different modulators into the SPI flash memory and the FPGA

logic for the Spartan 6 and Kintex 7 families. It is possible to observe that the difference

in time between the simplest modulator (BPSK) and the integration of all modulators

has been just 3 seconds, then, for that reason for the Raspberry Pi Zero the test were

performed only for the modulator implementations mentioned above. To program the

Kintex 7 FPGA logic takes 10 seconds less than the Spartan 6 case.

CHAPTER 5 - RESULTS AND DISCUSSION

93

Table 16 – R-Pi 3B+ FPGA system reprogramming time (sysfsgpio driver)

Table 17 – R-Pi Zero FPGA system reprogramming time (bmc2835gpio driver)

For the SPI flash memories, the Kintex 7 takes 50 seconds less than the Spartan 6

case which shown that the Kintex architecture can be programmed faster using this

reprogramming system implementation.

Comparing the results between the two Raspberry Pi modules, we can observe that

the required reprogramming time in every case is almost the same which shows that

the programming speed does not depend on the processor used in the Raspberry Pi

module.

5.6. Discussion

As mentioned in the introduction section, this research intends to show an

optimization of the Ten-Koh communication system, though an SDR

implementation using a Raspberry Pi module in conjunction with Linux, Python

and GNU Radio tools. The above sections showed the Ten-Koh system

architecture, the SDR design procedures, testing and simulations performed for

the both systems. In this section we will discuss and analyze the obtained results.

As shown in the chapter 4CHAPTER 4 -, the proposed SDR implementation

offers the possibility to send and receive data in AFSK (1,200bps) and GMSK

(9,600bps) modulations at a tunable frequency (VHF, UHF and S bands) by

MODULATOR

SPARTAN 6 KINTEX 7

SPI

MEMORY

FPGA

LOGIC

SPI

MEMORY

FPGA

LOGIC

BPSK 02:04.7 00:25.3 01:15.2 00:15.5

FSK 02:04.7 00:25.5 01:15.8 00:15.3

QPSK 02:09.9 00:25.9 01:16.6 00:15.7

MSK 02:10.6 00:26.5 01:21.1 00:16.3

ALL MODULATORS 02:14.8 00:28.0 01:21.9 00:16.6

MODULATOR

SPARTAN 6 KINTEX 7

SPI

MEMORY

FPGA

LOGIC

SPI

MEMORY

FPGA

LOGIC

BPSK 02:05.3 00:32.7 01:16.5 00:19.3

ALL MODULATORS 02:14.8 00:36.0 01:22.0 00:21.2

CHAPTER 5 - RESULTS AND DISCUSSION

94

software. The transmitter output power and the receiver sensitivity can be also

modified by software and additionally, it is possible to implement other kind of

modulation schemes using the available library blocks in GNU radio without the

need to modify the hardware. Comparing the above with the characteristics of

the Ten-Koh architecture mentioned in the chapter 3; clearly, it is possible to

conclude that the proposed SDR architecture offers more flexibility and

reusability which is very desirable for future nano-satellite missions.

Regarding the transmitter performance, about the maximum number of data

bytes allowed per packet, is clear to observe that the proposed SDR system

improves the value almost 3 times since it is possible to send the complete 255

bytes allowed by the AX.25 protocol in comparison with the 65 bytes allowed by

the Ten-Koh transmitter due to the PIC microcontroller RAM memory

limitations mentioned in the section 3.3. Regarding the maximum RF power

available in the both systems, it is possible to observe that the proposed SDR has

a disadvantage due to the value is 27 dBm lower than the Ten-Koh system for

the same frequency band as showed in the table 2. However, it can be improved,

including and RF power amplifier or choosing another RF module which can

provide the required RF power output level.

In the case of the receiver performance, in the numeral 5.1, the packet error

rate for different signal strengths were analyzed. Here, it is possible to observe

that the Ten-Koh system has slightly better sensitivity performance (-115.5 dBm

against -108.5 dBm for a packet error rate of 1%), however, the system offers a

good performance comparing it with commercial/space heritage systems available

in the market e.g. ISIS VHF/UHF Duplex Transceiver (-104 dBm) [47]. Also, the

maximum amount of data allowed by received AX.25 packets was increased by

almost 8 times, since the proposed SDR is able to receive up to 255 bytes while

the Ten-Koh receiver can only receive up to 32 bytes transmitter due to the PIC

microcontroller RAM memory limitations mentioned in the numeral 3.3.

Regarding the power consumption of the systems, the proposed system is more

CHAPTER 5 - RESULTS AND DISCUSSION

95

power hungry as expected since we are making an upgrade in the processor side,

we can observe that using a powerful Raspberry Pi module increases the

processing performance while the power consumption also increases up to 2 times

more comparing it with the Ten-Koh system. It is clear to observe that the

implementation using the Zero model can be more convenient for nanosatellite

missions since the power consumption is not significantly higher compared with

the Ten-Koh system. However, having the possibility to use different Raspberry

Pi models offers flexibility and it is possible to make a trade-off between the

processing capabilities versus the power consumption depending the mission

constraints without need to modify the implemented software modules.

We can observe how using Linux and GNU Radio Companion as development

tool offer the possibility to simulate and monitoring several signals into the design

to analyze the performance of the system without needing external equipment. A

good example of that is the simulations preformed in the numeral 5.2 to estimate

the SNR performance, adding the noise effects into the system and measuring the

packet error rate. We obtained reasonable results in comparison with other

simulation cases like shown in [48] or [49] for similar modulation schemes. Also,

it is possible to make changes to the design only modifying the parameters into

the signal processing blocks and observe the changes immediately, which is a big

advantage to using an SDR platform over hardware fixed systems like Ten-Koh

implementation.

Finally, the FPGA reprogramming system implemented into the Raspberry Pi

was tested, we could verify that the time required to perform an FPGA

programming is not high in comparison with the typical time required to program

the device using a normal JTAG interface, then the system could be used in a

nanosatellite mission in order to allow maintenance and error correction due to

SEEs generated by radiation effects or if the system hangs unselectively.

CHAPTER 6 - RADIATION TEST

96

CHAPTER 6 - RADIATION TEST

This chapter describes the procedures and details of a Single Event Effects

(SEE) testing by using a beam of energetic protons in a synchrotron facility. The

key definitions, test facility description, procedure steps, materials, methods and

instrumentation needed for performing the test are included. Finally, the analysis

of the obtained results is discussed.

6.1. Purpose of the test

The main objectives of the SEE testing are:

 To verify if the Ten-Koh on-flight failures discussed in the CHAPTER 2 -

2 (numeral 2.2) are produced by the radiation environment effects or

perhaps by other causes.

 To verify the behavior and operation of the Raspberry Pi devices used in

the proposed SDR platform described in the chapter 4 in a high-energy

radiation environment such as the scenarios encountered in space. From

the results of the tests, it will be possible to conclude if the Raspberry Pi

could be selected as a processor candidate for future missions and in such

a case, mitigation strategies can be deducted as well as operation margins.

 To estimate and compare the SEE sensitivity of the processor used in the

Ten-Koh subsystem (PIC16F877) with on-ground testing versus in-orbit

testing.

6.2. Test facility description: WERC Synchrotron

accelerator

The facility used for this testing is the synchrotron located at the Wakasa Wan

Energy Research Center in Fukui prefecture, Japan. The synchrotron can produce

protons, helium and carbon ions with the characteristics presented in Table 18.

CHAPTER 6 - RADIATION TEST

97

Table 18 - Synchrotron protons and ion characteristics [50].

Incident energy
H+(protons): 10 MeV (B = 0.46 Tm)

He2+, C6+: 2.08 MeV (B = 0.42 Tm)

Outgoing energy
H+(protons): 10 to 200 MeV/u (B = 2.15 Tm)

He2+, C6+: 2.08 to 55 MeV/u (B = 2.15 Tm)

Operation repetition frequency 0.5 Hz

Format Function separation time.

Beam injection method Multiple rotation injection method.

High frequency acceleration

cavity
Multi-Feed Untuned Accelerating Cavity.

Beam extraction method

Resonance extraction method (diffuse resonance

method) that applies high frequency with

constant electromagnet strength.

The Figure 57 shows a diagram of the synchrotron facility used for the SEE

testing. Here, the particles (ions or protons) are generated by the ion source and

are injected into the Tandem accelerator which is in charge to accelerate the

particles at an energy of around 5 MeV; then, the pre-accelerated particles can

be provided in the irradiation rooms 1 and 2 or can be used to feed the

synchrotron accelerator. The synchrotron is a ring that consist in 8 synchronized

coils (red blocks) that are in charge of accelerate the particle beam at an energy

of around 200 MeV. Afterwards, the accelerated beam is ready to be provided to

the irradiation rooms 3 and 4 through the high energy transport system. In the

case of this experiment, the irradiation room 4 was used in which all the test

equipment for data acquisition set-up was configured. The synchrotron facilities

are located underground for avoiding external interferences and for avoiding

undesirable particle radiation to the external environment. For obvious security

reasons, when the synchrotron is in operation, there should be no people inside

of any irradiation room.

CHAPTER 6 - RADIATION TEST

98

Figure 57 - Synchrotron accelerator facility diagram from [51].

6.2.1. Ion beam conditions

The objective of this test is to obtain the SEE cross-section for the PIC16F877

and for the Raspberry Pi module processor. As mentioned in the numeral 6.4.1,

depending on the particles used to radiate the device. In the Figure 7, it is possible

to see that the typical LET range to obtain the SEE cross-section using ions is

from about 10 �� 100 ��� ∙ ���/��. As shown in Table 18, the beam energy

range that the synchrotron can supply is from 10 �� 100 ���. By using helium

and carbon ions, different levels of LET can be estimated in the selected energy

range using the information provided by the NASA Space Radiation Laboratory

shown in the Figure 58. The LET values are shown in the Table 19. From that

values, it is possible to observe that the LET range available for this synchrotron

is in the order from 0.014 �� 1.1 ��� ∙ ���/�� which is not enough to obtain the

desired SEE cross-section from the devices.

CHAPTER 6 - RADIATION TEST

99

From the Figure 58, it is possible to observe that to be able to achieve the

required LET using ions in silicon, heavy ions as Xenon (Xe), Tantalum (Ta),

Gold (Au) and Thorium (Th) are needed, however, this type of heavy ions are

not available in the WERC synchrotron.

Figure 58 - LET in silicon for different ions [52].

Table 19 - LET in silicon for He and C ions for WERC synchrotron beam energy

range.

Beam energy [MeV]
He2+ LET in Si

[MeV·cm2/mg]

C6+ LET in Si

[MeV·cm2/mg]

10 0.12 1.10

50 0.04 0.31

100 0.011 0.21

150 0.019 0.17

200 0.014 0.13

6.2.2. Proton beam conditions

Because the LET of the recoil nucleus is unknown when using protons for SEE,

CHAPTER 6 - RADIATION TEST

100

the characterization of the device cross-section is performed with the primary

incident proton beam energy as shown in the Figure 8. According to [53], the

delivered energy by the accelerator shall be in the range from 20 to 200 MeV

with a variable flux ranging from 10� to 10� ������/���/� on the device under

test.

It is also important for considering the total ionizing dose (TID) damage. Some

devices can show an increase in SEU susceptibility of up to two orders of

magnitude as a result of TID effects from proton irradiation [2]. In this regard,

the TID received by the device shall be accounted by adjusting the irradiation

time of each device to the lowest possible that allows the SEE cross-section

characterization. The total dose received by a device from a high-energy proton

beam can be estimated from Equation 18:

�[��] = � · �(1 × 10��)(1/�)��/��

Equation 18 - Total dose received from a proton beam.

Where � is the dose in gray (Gy) units, Φ is the proton fluence in

�������/���, � is a constant to convert MeV into J (joule) with a value of

1.602 × 10���, ρ is the target material density in �/��3, ��/�� is the deposited

energy in the material of thickness in ���/��. The value of 1 × 10�� converts g

into kg. � can be converted from Gy to rad by multiplying the result of Equation

18 by a factor of 100.

The deposited energy can be replaced by the energy loss per unit path length,

also known as the stopping power, which is approximately true if the energy along

the particle path remains constant (i.e. long-range protons).

The proton beam provided for the WERC synchrotron consists of protons

(H+) with the following characteristics:

1. The beam energy starts at the level of 20 MeV, the following is desired

to be set at 50 MeV and then increasing in steps of 50 MeV until getting the

CHAPTER 6 - RADIATION TEST

101

maximum beam energy of 200 MeV (20, 50, 100, 150, 200).

2. The flux of protons is in the order of 10� �� 10� ������/���/� so enough

protons produced recoil atoms. The exact flux has to be confirmed during the

test at the facility. The upper value (10� ������/���/�) is preferable, however,

for very sensitive devices, the flux can be adjusted to the lower

value (10� ������/���/�).

In base of the discussed above and in the numeral 6.2.1, the proton beam

conditions are the most suitable to perform the test using the WERC synchrotron

and where the conditions chosen for testing the devices.

6.3. Device Under Test (DUT) preparation

The devices chosen for the radiation test are the following:

 PIC16F877 which was used for all the subsystems included on-board

of Ten-Koh satellite.

 Raspberry Pi Zero and Raspberry Pi 3B+ used in the proposed SDR

architecture.

6.3.1. PIC16F877

As discussed in the CHAPTER 2 - 2, some failures were present on-board during

the Ten-Koh operation phase. It included several reset events in the OBC system

and several failures into the EEPROM/RAM memories. For that reason, the

microcontroller was programmed with a specific software which permits

monitoring the mentioned parameters during the irradiation time. The flow chart

that describes the software implemented for the microcontroller is shown in the

Figure 59. The idea is to configure the entire EEPROM and RAM memories

with a known default value; afterwards, the program enters in a loop that read

and send the entire memory data via UART protocol every second in order to

detect if the values are modified due to the proton irradiation beam.

CHAPTER 6 - RADIATION TEST

102

Additionally, for the EEPROM memory, some specific positions are written with

another known value (15 bytes in specific) in every loop iteration in order to

check if the radiation beam affects the writing operation. It is not necessary for

the RAM memory to perform a specific writing operation because of the data

UART transmission, a buffer (57 bytes) is used which is constantly written whit

the values read from the memory positions.

Figure 59 - PIC16F877 radiation test software flow chart.

The format of the data received from the DUT via the UART protocol is

divided in two parts, the EEPROM memory data and the RAM memory data.

The EEPROM memory data format is shown in the Figure 60. It consists of 4

packets of 57 bytes and 1 packet of 28 bytes to complete a total of 256 bytes

which is the entire size available on the device. For every packet, the first three

Programing EEPROM initial values

Programing RAM initial values

Writing specific memory positions in

EEPROM (15 bytes)

Reading entire EEPROM memory positions

(256 bytes) and send it via UART.

4 packets = 57 bytes + 1 packet = 28 bytes

Reading RAM memory positions (274 bytes) and send it via UART.

3 packets = 57 bytes + 2 packet = 39 bytes + 1 packet = 25 bytes

Wait for 1 second

CHAPTER 6 - RADIATION TEST

103

bytes “F” are the packet header values that are written in every loop iteration,

the next 53 bytes are the default memory values “A” which are the values

programmed permanently in the EEPROM memory and the software does not

modify it in the entire execution and the last byte “X” which is the packet ending

value and acts as same as the previous default values.

Figure 60 - EEPROM memory data format.

The RAM memory data format is shown in the Figure 61. The RAM memory

in divided in 3 regions identified by the default values “1”, “2” and “3” respectively.

The regions 1 and 2 are divided in 1 packet of 57 bytes plus 1 packet of 39 bytes

and the region 3 is divided of 1 packet of 57 bytes plus 1 packet of 25 bytes. The

other identifiers into the packet work as same as mentioned in the EEPROM

packets with the difference that no values are written during any loop iteration.

The total amount of RAM data received via UART is 274 bytes.

Figure 61 - RAM memory data format.

As mentioned before, in the case of the RAM memory, it is not necessary to

write data in every loop iteration because the UART transmission buffer is part

of the RAM memory and it is written automatically in every UART data

CHAPTER 6 - RADIATION TEST

104

transaction; then, if the data corruption due to the radiation effect is in the buffer

memory region, the data received will be corrupted temporary and will be

recovered in the next loop iteration. On the other hand, if the data corruption is

in the other memory positions, the data received will be corrupted permanently

due to the other positions on the RAM are not modified in any part of the loop

iteration.

6.3.2. Raspberry Pi 3B+ and Zero

As discussed in the previous chapters, the Raspberry Pi seems to be a good

candidate to be used in the design of subsystems for nano-satellite applications.

However, this single-board computer still has not enough space-heritage to

become a widely used device for space applications as discussed in the CHAPTER

1 - 1.

One of the most important characteristics to define if the device can be used

or not safely in space applications is its performance in the presence of radiation

environment. For that reason, it is very useful to be able to perform a radiation

test in the ground in order to characterize the radiation performance of the

Raspberry Pi; however, there are not too much information regarding it. The

most relevant test found in the literature is the case of the radiation experiment

performed by the University of Surrey [54] in which a Raspberry Pi Compute

Module 3 was tested for TID conditions, the result of the test is the evidence that

the module can work without failure under beta ray irradiation of up to 130 krad.

On the other hand, there are not so much information about the radiation

performance of the Raspberry PI in satellite missions. The most relevant is Astro

Pi, a mission which allows to run a code aboard the International Space Station

(ISS) [55]. They included a CCD sensor in order to measure random ionizing

radiation events and also a reset counter to detect if the module experiments

unexpected resets due to ionizing radiation; however, the initial conclusion was

that the radiation sensor experiment was not successful and no unexpected resets

CHAPTER 6 - RADIATION TEST

105

were counted because the experiment was inside of an aluminum case and

probably the thickness keep out much the radiation levels.

Due to the Raspberry Pi is a module that runs an operative system which runs

over an SD card memory (used as a FLASH/ROM memory) and includes an

external dedicated RAM memory, it will not be possible to detect errors at

memory/byte level. In this case, the idea is to monitoring the correct functionality

of the operating system at kernel level using the UART interface activating the

kernel serial log functionality. At his way, the operating system will notify any

error presented at the system/kernel level (e.g. CPU execution error, memory

error, etc.) and error/device events can be monitored instead of error/byte events

monitored in the PIC microcontroller case.

The preparation and prerequisites of the Raspberry Pi in this case are the same

as mentioned in the CHAPTER 3 - and additionally a python script executing

an algorithm following the flow chart shown in the Figure 59 as for the PIC test,

reading and transmitting memory data in the same format as explained in the

Figure 61 via UART interface. In this case, it is not necessary to write/read

EEPROM memory because the SD card is treated as a ROM memory and it will

not be radiated in the test.

6.4. Radiation test set-up

Before starting the test, the synchrotron proton beam has to be calibrated in

order to measure the precise energy and fluence values for every desired energy

step as well as the radiation field dimensions and characteristics. After, the DUT

has to be located in the irradiation room, correctly aligned to the beam according

the radiation field characteristics obtained during the calibration process and

finally, connect the DUT to the control and data acquisition system providing

the controlled power supply line and data interfaces.

CHAPTER 6 - RADIATION TEST

106

In the following numerals, the process to perform the beam calibration, the

DTU alignment and the test set-up conditions are presented.

6.4.1. Proton beam calibration

The proton bean always works at a desired maximum energy and nominal

fluence values; however, a different energy values are needed for this test. The

way to achieve that is locating a degrader material between the beam output and

the DUT as shown in the Figure 62. The material used is called “Solid Water”

which is a solid block that attenuates electrons and protons same as the normal

water. Different lower beam energies can be obtained increasing the thickness of

the solid water blocks, then, for every energy step that need to be attenuated, a

different thickness of a solid water material should be located between the DUT

and the proton beam output.

Before the test operation, the proton beam must be calibrated for every desired

energy step level. The calibration procedure was performed with the support of

the WERC staff and it includes the following steps:

 The WERC staff set-up the maximum bean energy level and the nominal

fluence.

 In the DUT position, a dummy target is aligned to the beam at the same

desired distance from the beam output.

 The beam is activated in order to measure the following parameters:

 The beam energy (in MeV).

 The degrader thickness if it is present (in mm).

 The beam flux (in ������/���/�).

 The beam radiation field (beam spot size in cm).

 The beam efficiency.

To reduce the energy to the next step, it is necessary to enter into the

irradiation room and locate the adequate solid water material thickness between

CHAPTER 6 - RADIATION TEST

107

the dummy DUT and the output of the proton beam as shown in the Figure 62.

After that, the same procedure should be performed for every energy level step

(150, 100, 50 and 20 MeV) obtaining the corresponding beam characteristics.

Figure 62 - Proton beam attenuation process.

6.4.2. Alignment of the DUT in the proton beam

The spot or irradiation field of the beam was provided by the facility team

after performing the calibration procedure providing the exact dimensions of the

radiation field; then, the DUT can be aligned before starting the tests. It must

to be located orthogonal and perfectly centered in the beam as shown in the

Figure 64. In order to do that accurately, a laser source provides the guide for

the vertical and horizontal axis and indicates the exact center point of the target

where the beam will be irradiated. The final alignment for the PIC

microcontroller and for the Raspberry Pi Zero is shown in the Figure 63.

6.4.3. Facility set-up

As shown in the Wakasa Wan Research Center facility description in the

numeral 6.2. The test was performed in the irradiation room 4 which is located

underground where there is no possibility to control the acquisition equipment

CHAPTER 6 - RADIATION TEST

108

inside the room and it was necessary to control everything remotely. The

irradiation room final set-up is shown in the Figure 65 in which the DUT is

located in front of the proton beam and aligned using the laser source guides.

Figure 63 - Final beam alignment for Raspberry Pi Zero and PIC microcontroller.

Figure 64 - Sketch of the DUT alignment with the proton beam.

The Figure 66 shows the experiment diagram at radiation facility. In the

control room, the equipment to control the irradiation beam is located which is

completely controlled by the WERC staff. Also, a computer executing a remote

desktop software is used to control remotely the data acquisition desktop located

in the irradiation room via the Local Access Network (LAN) available in the

CHAPTER 6 - RADIATION TEST

109

radiation facilities.

Figure 65 - Synchrotron irradiation room DUT set up.

Figure 66 - Radiation facility set-up

DUT

Degrader

material
Laser sources

Beam

out

Power and data lines

IRRADIATION ROOM

USB
DUT

USB TO

UART

GPIO

Power

Control

Power Relay

Power

Supply

USB

Proton Beam
In-series

Resistor

Power

Line

CONTROL

ROOM

LAN Connection

CHAPTER 6 - RADIATION TEST

110

Figure 67 - Arduino-based power control relay circuit schematic.

Figure 68 – Radiation test data acquisition set up.

In the irradiation room, the DUT is connected to the desktop via USB to

UART converter transmitting the test data continuously every second. The

power line to the DUT is controlled by the control laptop using an Arduino board

which is in charge of controlling a power relay board in order to connect or

disconnect the power supply remotely, the Arduino board is controlled by the

control laptop via USB interface. The complete power relay control circuit is

shown in the Figure 67. The current on the DUT is monitored via an in-series

Power relay circuit

In-series resistor for

current measurement

Oscilloscope used

for current

Control PC for data

acquisition & power

relay

CHAPTER 6 - RADIATION TEST

111

resistor and one oscilloscope which is connected to the control laptop via USB

interface, the control desktop executes a proprietary acquisition software in

charge of receiving and store the current consumption. The data acquisition set-

up is shown in the Figure 68.

6.5. DUT irradiation procedure

Once the proton beam has been calibrated, the DUT has been aligned correctly

and the control & data acquisition system set-up is done, then everything is ready

to start the test. The obtained calibration values provided from the WERC staff

and used to conduct the test are summarized in the Table 20.

Table 20 - Proton beam calibration values.

Beam Energy

(MeV)

Beam Flux

(������/���/�)

Degrader

Thickness

(mm)

Beam Spot Size

(mm)

Beam

Efficiency

200 10� 0 20 x 20 0.0946

150 10� 96 20 x 20 0.0946

100 10� 172 20 x 20 0.0946

50 10� 224 20 x 20 0.0946

20 10� 240 20 x 20 0.0946

The test process steps followed for all the DUT were:

1. Inside the irradiation room, turn on the DUT board and data acquisition

system, perform a device initialization and functional test to confirm all

systems are operating as expected.

2. From the control room, turn on the DUT power supply and initialize the

software that control and store the current consumption data verifying the

nominal values and correct functionality.

3. Start to store the data received via UART interface verifying the correct

functionality.

4. Start the beam irradiation with the desired fluence, the synchrotron system

will calculate the irradiation time and will automatically stop the beam

CHAPTER 6 - RADIATION TEST

112

when the time is elapsed.

5. During the beam irradiation time, collect the data and make annotations

about relevant and unexpected events and the beam irradiation time.

6. If necessary, change the desire fluence and start again the process from the

step 2.

7. When finish the test, inform to the WERC staff in order to turn off

completely the beam and to be able to enter into the irradiation room to

include the degrader material to attenuate to the next energy level.

8. Repeat the steps from 1 to 7 for every energy level.

9. Repeat the procedure for every DUT.

6.6. Test results

6.6.1. PIC16F877 Results

The PIC microcontroller was subjected to two irradiation time conditions, in

the first experiment the device was radiated during 30 seconds and in the second

one it was radiated during 60 seconds.

The irradiation parameters for the first experiment are presented in the Table

21 and for the second experiment are presented in the Table 23. As discussed

previously, the proton beam energy is varying (1st column) whit a constant flux

(2nd column). The desired fluence (4th column) is calculated multiplying the flux

by the desired irradiation time (3rd column).

In order to set the beam at that value, it is necessary to preset the synchrotron

with the fluence value expressed in dose unit values (5th column) which were

obtained previously as a result of the calibration process. The preset value

configured in the synchrotron (6th column) is calculated dividing the fluence value

by the dose unit value.

During the irradiating time, a real time measurement of the fluence (7th

column) expressed in dose units is provided by the synchrotron and is the value

used to calculate the real fluence irradiated to the device (8th column).

CHAPTER 6 - RADIATION TEST

113

Table 21 - PIC16F877 proton irradiation parameters (1st experiment).

Beam energy

[MeV]

Flux

[������/���/�]

Irradiation

time

preset [s]

Desired

Fluence

[������/���]

Dose

(1-unit value)

Dose

Preset

[Gy]

Measured

Dose [Gy]

Real applied

fluence

[������/���]

20 1.00E+08 30 3.00E+09 1.62E+04 185185.19 185350.00 3.00E+09

50 1.00E+08 30 3.00E+09 1.96E+04 153061.22 153584.00 3.01E+09

100 1.00E+08 30 3.00E+09 2.38E+04 126050.42 126830.00 3.02E+09

150 1.00E+08 30 3.00E+09 2.74E+04 109489.05 109987.00 3.01E+09

200 1.00E+08 30 3.00E+09 4.25E+04 70588.24 70691.00 3.00E+09

Table 22 - PIC16F877 cross-section calculation (1st experiment).

Beam energy

[MeV]

No errors in

EEPROM

bytes

No errors in

FLASH/RAM

bytes

Cross-section of

(EEPROM +

FLASH/RAM

 [���/����]

Cross-section of

EEPROM

[���/����]

Cross-section of

FLASH/RAM

[���/����]

20 0 0 0.00E+00 0.00E+00 0.00E+00

50 0 1 3.32E-10 0.00E+00 3.32E-10

100 1 0 3.31E-10 3.31E-10 0.00E+00

150 0 5 1.66E-09 0.00E+00 1.66E-09

200 0 7 2.33E-09 0.00E+00 2.33E-09

CHAPTER 6 - RADIATION TEST

114

Table 23 - PIC16F877 proton irradiation parameters (2nd experiment).

Beam

energy

[MeV]

Flux

[������/���/�]

Dose Monitor

(1-unit value)

Irradiation

time preset

[s]

Desired

Fluence

[������/���/�]

Dose

Monitor

Preset [Gy]

Measured

Dose [Gy]

Real applied

fluence

[������/���/�]

20 1.00E+08 1.62E+04 60 6.00E+09 370370.37 370908.00 6.01E+09

50 1.00E+08 1.96E+04 60 6.00E+09 306122.45 306787.00 6.01E+09

100 1.00E+08 2.38E+04 60 6.00E+09 252100.84 252793.00 6.02E+09

150 1.00E+08 2.74E+04 60 6.00E+09 218978.10 219321.00 6.01E+09

200 1.00E+08 4.25E+04 60 6.00E+09 141176.47 141176.00 6.00E+09

Table 24 - PIC16F877 cross-section calculation (2nd experiment).

Beam

energy

[MeV]

No errors in

EEPROM

bytes

No errors in

FLASH/RAM

bytes

Cross-section of

(EEPROM +

FLASH/RAM

 [���/����]

Cross-section of

EEPROM

[���/����]

Cross-section of

FLASH/RAM

[���/����]

20 0 1 1.66E-10 0.00E+00 1.66E-10

50 2 1 4.99E-10 3.33E-10 1.66E-10

100 0 9 1.50E-09 0.00E+00 1.50E-09

150 25 12 6.16E-09 4.16E-09 2.00E-09

200 0 13 2.17E-09 0.00E+00 2.17E-09

CHAPTER 6 - RADIATION TEST

115

It is possible to observe that the measured values are close to the calculated

ones which indicate that the beam is giving the desired fluence correctly. The

results of the both experiments are presented in the Table 22 and Table 24.

The number of byte error events presented in the EEPROM and in the

FLASH/RAM memory of the microcontroller are counted in the 2nd and 3rd

column respectively. With those values, it is possible to calculate the SEE cross-

section values using the Equation 6 presented in the numeral 1.6.4.

As the calculation of the SEE cross-section is a result from nuclear reactions

caused by protons as in this case, the experimental values obtained in the test

can be fitted in order to obtain more accurate results and to be able to estimate

the threshold kinetic energy ��� and the saturation cross-section ���� values as

presented in the Figure 8 in the numeral 1.6.4. As mentioned in the Space

Environment Information System (SPENVIS) help on single events upsets section

[56], the experimental values can be fitted using a 2-parameter function or a 4-

parameter Weibull function. The former is a good approximation when a few

experimental data are obtained and when there are a few close to the threshold

kinetic energy and the latter provides a better approximation when there are

several experimental data, especially near to the threshold kinetic energy point,

however it cannot be used when the experimental data available is obtained from

four or less beam energy levels [57].

For performing the data fit, the OMERE 5.3.2 radiation software developed

by Test & Radiations (TRAD) [58] was used. On its SEE rate estimation module,

it is possible to introduce the proton cross-section experimental data and the

software calculates the parameters of the Bendel or the Weibull function that

best fit to the given data.

In the case of the RAM memory results, errors occurred both in the writing

and reading operations. In the Figure 69, the SEE cross-section experimental

values and the fitted curves using 2-parameters Bendel and 4-parameters Weibull

functions for the FLASH/RAM memory are shown for the second experiment.

CHAPTER 6 - RADIATION TEST

116

Here, it is possible to see how the probability of errors is growing as the proton

kinetic energy also grows as expected. Comparing the data fit curves obtained by

Bendel and Weibull functions, we can observe that both fit well the data;

however, the Weibull fit assumes that the threshold kinetic energy point is the

minimum beam energy level used which may not be correct because we got errors

at that energy point. In the case of the Bendel fit, it is possible to see how the

function estimates the threshold kinetic energy point which seems to be more

adjusted to the expected behavior of the cross-section curve.

Figure 69 - PIC16F877 FLASH/RAM cross-section.

Finally, in accordance with the recommendations on the numeral 1.6 of the

“Single Event Test Method And Guidelines” European Space Components

Coordination (ESCC) basic specification No 25100 [53], when a few experimental

cross-section data is obtained, error bars must be plotted with the experimental

data for showing the uncertainly of the cross-section values. Following the

procedure showed in the guideline, we calculated the uncertainly of our

experimental data and the error bars are shown in red color on the Figure 69.

CHAPTER 6 - RADIATION TEST

117

The parameters of the Bendel function obtained in OMERE 5.2 are � =

14.00 ���, � = 24.72 ��� and the cross-section representative values are:

 Proton Kinetic Energy Threshold ��� = 14.00 ���.

 Saturation cross-section ���� = 2.83 × 10�����/������.

On the other hand, in the case of the EEPROM memory, errors only occurred

in the memory positions where the data were written in every loop iteration. In

the first experiment, errors only occurred at 100 MeV proton kinetic energy which

proves that the EEPROM memory is more radiation tolerant than the RAM

memory. However, in the second experiment when the beam energy was 150 MeV,

the mentioned memory positions were written with an unknown value. After that

event, the programmed software were not able to write the correct value “F” in

those memory positions anymore, which could mean that those memory positions

could be damaged permanently. However, we tested the DUT after the radiation

experiment and we found that the EEPROM values were changed to unknown

value “F” due to the program memory was corrupted. We tested that connecting

a PICKit programmer in order to verify the integrity of the FLASH program

memory values comparing the values that was read from the DUT and the values

of the programing file used to program the device before the radiation test.

Afterwards, we proceeded to reprogramming the device in order to verify if

the EEPROM memory or the FLASH memory were completely damaged by the

proton beam; however, the device were successfully reprogrammed and the

application worked normally as expected which indicates that the device can be

recovered of the failures generated by SEEs reprogramming completely the

device.

In the Figure 70, the SEE cross-section for the EEPROM memory is presented.

For the second experiment, errors were only detected at 50 and 150 MeV beam

energies; then, for that reason, the data can be fitted only using the Bendel

distribution because the 4-parameter Weibull fit requires at least the cross-section

CHAPTER 6 - RADIATION TEST

118

value for 4 energy levels. The parameters of the Bendel function obtained in

OMERE 5.2 are � = 20.00 ��� , � = 36.27 ��� and the cross-section

representative values are:

 Proton Kinetic Energy Threshold ��� = 20.00 ���.

 Saturation cross-section ���� = 4.09 × 10�����/������.

Figure 70 - PIC16F877 EEPROM cross-section.

The summary of the PIC radiation test results is:

 The EEPROM is less sensitive than the flash-based SRAM for reading

operations.

 The EEPROM is more sensitive than the flash-based SRAM for writing

operations.

 The flash-based SRAM got corrupted values after radiation with beam

energy of 150 MeV. However, it could be recovered only after a full re-

programming process via PICKit programmer.

CHAPTER 6 - RADIATION TEST

119

6.6.2. Raspberry Pi Results

The purpose of this test is to perform the experiment with the same parameters

and characteristics performed in the PIC microcontroller in order to compare

their performance. However, at the end the device was tested in a different

condition due to when it was tested at the same fluence value

 (3 × 10� ������/���/�), the device stopped completely to work. It happened

because the Raspberry Pi uses an operative system that constantly is monitoring

the CPU and memory regarding errors and if a critical error is detected in the

execution, the system notifies it via UART interface and try to fix it

automatically. However, if the system is not able to recover from the error, it

stops the functionality until a power reset is executed. It is good for the reliability

standpoint since the operative system automatically protects the device about

errors produced by radiation upsets. Nevertheless, it indicates that the Raspberry

Pi is more sensitive to radiation events when is executing its own operative

system. Then, in order to perform the test in a meaningful way, the fluence was

decreased until the system could continue working without losing its complete

functionality. After finding that fluence level, then, the test was performed in the

same way followed for the PIC microcontroller. The irradiation parameters for

the R-Pi Zero experiment are presented in the Table 25 as well as the

corresponding ones for the R-Pi 3B+ in the Table 26. The parameters in the

table are calculated as the same way as in the case of the PIC microcontroller

case in the numeral 6.6.1, the difference is that in order to change the fluence

level, the beam flux is changed (note the differences in the values of the second

column in the Table 21, Table 25 and Table 26). The experimental data results

with their respective uncertainly error bars are plotted in the Figure 71 and

Figure 72; here, it is possible to appreciate how the R-Pi Zero cross-section grows

as the proton kinetic energy is increasing following the trend of the expected

cross-section curve; however, in the case of the R-Pi 3B+, the errors seem to be

more random for every proton energy steps.

CHAPTER 6 - RADIATION TEST

120

Table 25 - Raspberry Pi Zero proton irradiation parameters.

Beam

energy

[MeV]

Flux

[������/���/�]

Irradiation

time

[s]

Desired

Fluence

[������/���]

Dose

(1-unit value)

Dose Preset

[Gy]

Measured

Dose [Gy]

Real applied

fluence

[������/���]

20 1.00E+08 30 3.000E+09 1.62E+04 185185.19 185185.00 3.000E+09

50 1.00E+07 30 3.000E+08 1.96E+04 15306.12 15760.00 3.089E+08

100 5.00E+06 30 1.500E+08 2.38E+04 6302.52 6324.00 1.505E+08

150 7.00E+06 30 2.100E+08 2.74E+04 7664.23 7784.00 2.133E+08

200 5.00E+06 50 2.500E+08 4.25E+04 5882.35 5942.00 2.525E+08

Table 26 - Raspberry Pi 3B+ proton irradiation parameters.

Beam

energy

[MeV]

Flux

[������/���/�]

Irradiation

time

[s]

Desired

Fluence

[������/���]

Dose

(1-unit value)

Dose Preset

[Gy]

Measured

Dose [Gy]

Real applied

fluence

[������/���]

20 1.00E+06 30 3.000E+07 1.62E+04 1851.85 1921.00 3.112E+07

50 1.00E+06 30 3.000E+07 1.96E+04 1530.61 1607.00 3.150E+07

100 1.00E+06 30 3.000E+07 2.38E+04 1260.50 1298.00 3.089E+07

150 1.00E+06 30 3.000E+07 2.74E+04 1094.89 1141.00 3.126E+07

200 1.00E+06 30 3.000E+07 4.25E+04 705.88 771.00 3.277E+07

CHAPTER 6 - RADIATION TEST

121

Probably, it is due to the Raspberry Pi 3B+ is a quad-core processor and the

operating system monitors every core as a different CPU; then, there is a more

probability to get a system error than in the case of the Raspberry Pi Zero which

is a single-core processor only.

Same as in the case of the PIC, the cross-section experimental values can be

fitted using the OMERE 5.2 radiation software with a 2-parameter Bendel and

4-parameter Weibull functions. As shown in the Figure 71 and Figure 72 the

Bendel fit provides more accuracy in the estimation of the threshold kinetic

energy point than the Weibull fit, even more than the observed in the PIC case.

For that reason, the relevant parameters of the cross-section will be obtained

from the Bendel fit. For the Raspberry PI Zero, the Bendel fit parameters are:

� = 8.00 ��� and � = 16.14 ���. The result is shown in the Figure 71 and the

cross-section parameters are:

 Proton Kinetic Energy Threshold ��� = 8.00 ���.

 Saturation cross-section ���� = 1.831 × 10�����/������

Figure 71 - Raspberry Pi Zero device cross-section.

CHAPTER 6 - RADIATION TEST

122

Figure 72- Raspberry Pi 3B+ device cross-section.

For the Raspberry PI 3B+, the Bendel fit parameters are: � = 8.00 ��� and

� = 19.47 ��� . The result is shown in the Figure 72 and the cross-section

parameters are:

 Proton Kinetic Energy Threshold ��� = 8.00 ���.

 Saturation cross-section ���� = 2.54 × 10�����/������

The above shows that the probability of errors in the Raspberry Pi 3B+ is a

one-order of magnitude greater than in the case of the Raspberry Pi Zero which

indicates that the R-Pi Zero is more tolerant to the radiation effects. It is

compressible since the R-Pi Zero worked without a system failure for fluences

below 1.5 × 10� ������/��� while the Pi 3B+ worked for fluences below

 3 × 10� ������/���.

To summarize the obtained results and for comparing them for all the tested

devices, in the Figure 73, the obtained cross-section for every device is shown and

CHAPTER 6 - RADIATION TEST

123

in the Table 27. Cross-section parameters for all tested devices., the relevant cross-

section parameters are presented.

Figure 73. Cross-section data comparison for all tested devices.

Table 27. Cross-section parameters for all tested devices.

 PIC R-PI ZERO R-PI 3B+

��� (���) 14 8 8

���� �
���

������
� 2.83E-09 1.83E-08 2.54E-07

Fluence 3.00E+09 2.00E+08 3.0E+07

Finally, the cross-section parameters can be used to estimate the Single Event

Upset (SEU) rate on a specific satellite orbit. In order to make that estimation

the SPENVIS environment is used. With the software, the first step is to create

a project with the mission orbital parameters (for this case, the Ten-Koh orbital

parameters) as shown in the Figure 74. Afterwards, the trapped proton flux, the

CHAPTER 6 - RADIATION TEST

124

solar particle mission fluxes and the galactic cosmic ray fluxes should be chosen

and executed. For this calculation in particular the selected models were:

 AP-8 MIN trapped proton model

 CREME96 (peak 5min) solar particles model (H - U)

 CREME96 Galactic Cosmic Rays (GCR) particles model (H - U)

Finally, the Short-term SEU rates and LET spectra module should be selected

for performing the SEU rate calculation. The module was configured with the

parameters shown in the Figure 75 used for the calculation on the Raspberry Pi

Zero as an example. As a result, running the module, the SEU rate

upsets/device/day can be obtained.

The results of the SEU rate for the three tested devices are shown in the Table

28 with the respective sensitive area used for assumed for each device. Here, it is

possible to see that the PIC is the device which has the less SEU rate and the

Raspberry Pi 3B+ is the device which has the major value. It was expected since

the cross-section values shown that the PIC is less sensitive than the R-Pi Zero

and the R-Pi 3B+ in four and five orders of magnitude respectively.

Figure 74. Ten-Koh orbital parameters configured on SPENVIS

CHAPTER 6 - RADIATION TEST

125

Figure 75. SEU rate calculation parameters configured in SPENVIS

Table 28. SEU rate estimation results.

 PIC R-PI ZERO R-PI 3B+

Sensitive Area (���) 0.5 1 1

������� �������
���� � 5.84E-1 5.6E+00 7.8E+01

6.7. Discussion

In this numeral, an analysis of the obtained results will be discussed in the

base of the test objectives presented in the numeral 6.1.

In the first place, regarding the results presented in the numeral 6.6.1, it is

possible to observe that the EEPROM memory in the PIC16F877 microcontroller

used in the Ten-Koh subsystems are sensitive to the proton radiation events when

write operations are performed. The results show that no SEE were presented in

the memory allocations were only reading operations were performed. Also, in

the proton energy of 150 MeV, the allocations where writing operations were

presented a complete corruption and those were not corrected even after a hard

reset of the microcontroller. It means that the EEPROM memory can be

CHAPTER 6 - RADIATION TEST

126

corrupted due to proton radiation events which proves that the issues presented

in the numeral 2.2.2 possibly were caused by the LEO radiation environment.

We verified the functionality of the DUTs after the test and we found that the

corrupted EEPROM memory positions could be reprogrammed successfully

which means that the EEPROM were just corrupted temporarily due to the

proton radiation effects.

On the other hand, no soft resets were presented during the entire test;

however, taking into account that the RAM memory presented several errors

during the test and considering that the OBC reset management is commanded

by the EPS microcontroller via I2C communication time-out (which is a counter

stored temporarily in the RAM memory), if the counter bytes are changed to a

random value that exceed the defined time-out, then the EPS will reset the OBC

unexpectedly which can explain the resets events analyzed in the numeral 2.2.1.

Regarding the Raspberry Pi modules, the first aspect to take into account is

that the test could not be performed whit the same parameters used for the PIC

test because using the same amount of proton fluence, the Raspberry Pi modules

stopped the operation due to the operating system kernel error protection which

indicates that the Raspberry Pi modules running the official operative system

(Raspbian) are more sensitive than the PIC microcontroller due to radiation

events. Due the above fact, the calculation of the cross-section was more difficult

since to for evaluating the error events occurred in the system, it was necessary

to analyzing the kernel logs provided by the system via UART interface as shown

in this document provided by Texas Instruments [59] which is a difficult task

that may produce inaccurate counting of the real error events. However, for this

research purposes that is acceptable since the idea was to evaluate the

performance of the Raspberry Pi modules running the official Linux distribution

and open source tools for nano-satellites applications.

In contrast with the above, the Raspberry Pi modules always recovered the

nominal functionality after a power reset due to the kernel error management

CHAPTER 6 - RADIATION TEST

127

mentioned previously, it is beneficial because it reduces the risk to have

permanent damage as presented in the EEPROM in the PIC microcontroller. It

makes the Raspberry Pi modules a suitable candidate for use in applications that

operated during a reduced time like payloads.

Finally, the results also shown that the Raspberry Pi Zero module is less

sensitive than the 3B+ for radiation events, aspect to make the Zero module

more reliable to be a candidate for future designs.

CHAPTER 7 - CONCLUSION

128

CHAPTER 7 - CONCLUSION

7.1. Conclusion

In this research an improvement of a Ten-Koh satellite communication system

using an SDR architecture is presented. Using the Raspberry Pi module in

conjunction with the LimeSDR mini RF module, we achieve more flexibility and

less limitations comparing with the Ten-Koh presented system. The possibility

to use a Linux distribution in conjunction with Python and GNU radio suite,

gives to developers several tools to develop flexible communications systems

reducing the prototyping and software development time. GNU radio offers a

bunch of precompiled signal processing blocks and even it is possible to find blocks

developed for enthusiasms and specialists (e.g. SatNOGS) that can be used to

facilitate the SDR design for satellite applications. In addition, several SDR

hardware manufacturers offer precompiled blocks on the GNU radio to configure

their modules easily, for example, the LimeSDR mini module used in the proposed

architecture.

Additionally, the research proved that it is possible to develop a significantly

low-cost, functional SDR system with the trade-off of compromising parameters

like the receiver sensitivity and the power consumption mainly. It became an

interesting option for missions, which the budget is very limited and that are able

to overcome with the presented limitations, especially for non-developed

countries.

On the other hand, there are some aspects to keep in mind which merits more

researching. For example, the Raspberry Pi is a module created for general

purpose projects and the Linux Raspbian distribution is a good operating system,

but it does not focus on real time applications and can be not suitable enough for

satellite applications. Also, the Raspberry Pi power consumption can be high for

small satellite applications (specially CubeSats), even in the Zero model is slightly

CHAPTER 7 - CONCLUSION

129

high in comparison with typical low power consumption microcontrollers used in

small satellite applications.

As experimented in Ten-Koh mission, satellite systems are becoming more

complex because of the diversification of the missions and payloads. For that

reason, new satellite communication systems have to be flexible, reconfigurable

and adopt functionalities in higher frequency bands e.g. S and K bands that

enable large capacity communications. Although old PICs are good

microcomputers with space heritage, they cannot cope with these requirements

very well. That is why in the future, we will be forced to use new microcomputers

such as a Raspberry Pi that can supply satisfactorily the requirements discussed.

Also, mitigation techniques against radiation effects and reduction of power

consumption are challenges to be faced.

Regarding the performed radiation test for the PIC16F877 used in the Ten-

Koh subsystems, it is possible to conclude that some of the EEPROM memory

failures and the reset events presented in some of the subsystems were caused

due to radiation events. The PIC microcontroller results shown that the RAM

memory is more sensitive to the radiation effects than the EEPROM and the

FLASH memory was permanently corrupted using fluences under

 6.00 x 10�� proton/cm�/s but recovered after a full chip re-programming

externally. It explains why in the Ten-Koh mission, the subsystems started to

present undesired functionalities that could not be recovered even after

performing a hard reset in the system.

Regarding the Raspberry Pi radiation performance, it is possible to conclude

that the obtained tolerances are lower than the obtained from the PIC which

means that probably is not a recommended device for a critical satellite mission

application e.g. bus subsystems. However, the device always recovered the normal

functionality after a power reset which indicates that the use of the native

operating system ensure a reliable protection against permanent damage as

presented in the PIC microcontroller EEPROM. It makes the Raspberry Pi a

CHAPTER 7 - CONCLUSION

130

good candidate for developing satellite systems which do not have to work

continuously during a long time such as payloads.

Finally, regarding the FPGA reprogramming system implemented for the SDR

transmitter optimization, we probed the correct functionality for the Spartan 6

and Kintex 7 Xilinx families and we tested that the reprogramming times are

suitable to be considered in using for future nanosatellite missions. The system

can be considered for using in another subsystem or payload for maintenance and

fault recovery purpose.

7.2. Future perspectives

In this research, we described a methodology to develop an SDR for

nanosatellite applications using a Raspberry Pi and a LimeSDR mini modules

optimizing the hardware development, demonstrating that the use of the GNU

Radio tools in conjunction with Linux and Python facilitating the complexity

that the developing of software requires in this type of systems and performing

functional and radiation testing in order to prove that the proposed system

performance can meet with Ten-Koh requirements. However, the system can be

improved taking into account the following issues found in this research:

 Creating a library with different transceiver modulation combinations in

order to be used for the nanosatellite community interested in it.

 Following the proposed methodology using GNU Radio plus python in

another specialized operating system for embedded systems applications for

improving the overall performance. The Raspberry Pi is compatible with

several Linux distributions and real time operating systems and probably will

be possible to overcome the issues presented using the stock Linux

distribution (Raspbian) used in this research disabling or not including

unnecessary modules into the system. It could improve the processing

CHAPTER 7 - CONCLUSION

131

performance, the real time response and even the power consumption.

 Implementing the proposed SDR architecture in another single processor

board, e.g. Zynqberry, beagleboard, etc. There are several options that even

include ARM processors and FPGA logic in a single chip which can optimize

the power consumption, the processing performance and the software

development due the easy integration between the processor part and the

FPGA part that this kind of modules offer.

 Developing a safe protocol system to upload the required files for the FPGA

reprogramming functionalities, in this research the possibility of

reprogramming the transmitter was tested locally, but the protocol used to

upload the file is an important aspect that have to be improved in future

applications.

 Regarding the radiation test, performing the test using a low-level software

in the Raspberry Pi in order to be able to obtain the cross-section in

���/��� or ���/���� same as performed for the PIC microcontroller. We

tested the Raspberry Pi running the test software under the operating

system and due to the kernel execution protection, we could find only errors

at the system level.

 Another possibility for improving the obtained cross-section results on the

Raspberry Pi is to test only the microcontroller externally because we tested

the device in the board as is shipped from factory and there are several

components near to the processor that received radiation and it could

generate undesired system errors. Another recommendation is to

isolate/protect the components situated near to the processor using a proper

proton degrader e.g. aluminum or solid water with the proper thickness.

CHAPTER 7 - CONCLUSION

132

 If there is a special requirement of using the PIC16F77 or similar in future

missions even knowing the presented limitations in this research. A

recommendation for using it is to implement a self-reprogramming system

in order to recover the FLASH memory due corruptions produced by

radiation effects. We proved that reprogramming externally the device, it

recovers the normal functionality after a radiation issue.

APPENDIX 1 - Integrated modulators internal block diagrams

133

APPENDIX 1 - Integrated modulators internal block diagrams

Figure 76 - BPSK Modulator

Figure 77 - FSK Modulator

Figure 78 - QPSK Modulator

APPENDIX 1 - Integrated modulators internal block diagrams

134

Figure 79 - MSK Modulator

APPENDIX 2 - OpenOCD configuration files description

135

APPENDIX 2 - OpenOCD configuration files description

Raspberry Pi 3B+ and Kintex 7 configuration file example

This file is a modification of the original configuration file located in the OpenOCD root
directory /interface/sysfsgpio-raspberrypi.cfg

Config for using RaspberryPi's expansion header

This is best used with a fast-enough buffer but also
is suitable for direct connection if the target voltage
matches RPi's 3.3V

Do not forget the GND connection, pin 6 of the expansion header.

Raspberry Pi JTAG GPIO interface configurations and definitions

interface sysfsgpio # Define the interface (sysfs) to control the R-Pi GPIOs

transport select jtag # Select the JTAG mode into the OpenOCD

Each of the JTAG lines need a gpio number set: TCK TMS TDI TDO
Header pin numbers: 23 22 19 21 # Corresponding pins designators into the R-Pi header
sysfsgpio_jtag_nums 11 25 10 9 # Defining the corresponding Linux GPIO designators

FPGA configuration for SPI flash memory programming

source [find cpld/xilinx-xc7.cfg] # Selecting the Xilinx 7 family configuration file located
 # into the OpenOCD root directory “cpld” folder

set _CHIPNAME xc7 # Setting the FPGA name identificator into the JTAG TAP

set _USER1 0x02 # Setting the USER name identificator into the JTAG TAP

if {[info exists JTAGSPI_IR]} {
 set _JTAGSPI_IR $JTAGSPI_IR
} else {
 set _JTAGSPI_IR $_USER1
}

if {[info exists TARGETNAME]} {
 set _TARGETNAME $TARGETNAME
} else {
 set _TARGETNAME $_CHIPNAME.proxy
}

if {[info exists FLASHNAME]} {
 set _FLASHNAME $FLASHNAME
} else {
 set _FLASHNAME $_CHIPNAME.spi
}

target create $_TARGETNAME testee -chain-position $_CHIPNAME.tap
flash bank $_FLASHNAME jtagspi 0 0 0 0 $_TARGETNAME $_JTAGSPI_IR

proc jtagspi_init {chain_id proxy_bit} {
 # load proxy bitstream $proxy_bit and probe spi flash
 global _FLASHNAME
 pld load $chain_id $proxy_bit
 reset halt
 flash probe $_FLASHNAME
}

proc jtagspi_program {bin addr} {

APPENDIX 2 - OpenOCD configuration files description

136

 # write and verify binary file $bin at offset $addr
 global _FLASHNAME
 flash write_image erase $bin $addr
 flash verify_bank $_FLASHNAME $bin $addr
}

OpenOCD commands to programming the SPI flash memory and the FPGA logic

Init # Initializing the OpenOCD interface

pld load 0 /home/pi/Documents/bscan_spi_bitstreams/bscan_spi_xc7k160t.bit
Loading the SPI bscan configuration file for programing the flash memory via the Kintex 7 FPGA

reset halt # Resetting the FPGA after bscan configuration file programming

flash probe xc7.spi # Starting to programming the SPI flash memory trough the FPGA

jtagspi_program bpsk.bin 0 # Programming the BPSK modulator via the JTAG interface

shutdown # Shutdown the OpenOCD interface

Raspberry Pi Zero and Spartan 6 configuration file example

This file is a modification of the original configuration file located in the OpenOCD root
directory /interface/raspberrypi-native.cfg

Config for using RaspberryPi's expansion header

This is best used with a fast-enough buffer but also
is suitable for direct connection if the target voltage
matches RPi's 3.3V

Do not forget the GND connection, pin 6 of the expansion header.

Raspberry Pi JTAG GPIO interface configurations and definitions

interface bcm2835gpio # Define the interface (bcm2835) to control the R-Pi GPIOs

transport select jtag # Select the JTAG mode into the OpenOCD

bcm2835gpio_peripheral_base 0x20000000 # GPIO peripheral base value for Raspberry Pi ZERO

Transition delay calculation: SPEED_COEFF/khz - SPEED_OFFSET
These depend on system clock, calibrated for stock 700MHz
bcm2835gpio_speed SPEED_COEFF SPEED_OFFSET
bcm2835gpio_speed_coeffs 113714 28 # GPIO speed coefficients for Raspberry Pi ZERO

Each of the JTAG lines need a gpio number set: TCK TMS TDI TDO
Header pin numbers: 23 22 19 21 # Corresponding pins designators into the R-Pi header
bcm2835gpio_jtag_nums 11 25 10 9 # Defining the corresponding Linux GPIO designators

adapter_khz 200 # JTAG adapter frequency for Raspberry Pi ZERO

FPGA configuration for SPI flash memory programming

source [find cpld/xilinx-xc6s.cfg] # Selecting the Xilinx Spartan 6 family configuration file
 # located into the OpenOCD root directory “cpld” folder

set _CHIPNAME xc6s # Setting the FPGA name identificator into the JTAG TAP

set _USER1 0x02 # Setting the USER name identificator into the JTAG TAP

APPENDIX 2 - OpenOCD configuration files description

137

if {[info exists JTAGSPI_IR]} {
 set _JTAGSPI_IR $JTAGSPI_IR
} else {
 set _JTAGSPI_IR $_USER1
}

if {[info exists TARGETNAME]} {
 set _TARGETNAME $TARGETNAME
} else {
 set _TARGETNAME $_CHIPNAME.proxy
}

if {[info exists FLASHNAME]} {
 set _FLASHNAME $FLASHNAME
} else {
 set _FLASHNAME $_CHIPNAME.spi
}

target create $_TARGETNAME testee -chain-position $_CHIPNAME.tap
flash bank $_FLASHNAME jtagspi 0 0 0 0 $_TARGETNAME $_JTAGSPI_IR

proc jtagspi_init {chain_id proxy_bit} {
 # load proxy bitstream $proxy_bit and probe spi flash
 global _FLASHNAME
 pld load $chain_id $proxy_bit
 reset halt
 flash probe $_FLASHNAME
}

proc jtagspi_program {bin addr} {
 # write and verify binary file $bin at offset $addr
 global _FLASHNAME
 flash write_image erase $bin $addr
 flash verify_bank $_FLASHNAME $bin $addr
}

OpenOCD commands to programming the SPI flash memory and the FPGA logic

Init # Initializing the OpenOCD interface

pld load 0 /home/pi/Documents/bscan_spi_bitstreams/ bscan_spi_xc6slx75.bit
Loading the SPI bscan configuration file for programing the flash memory via the Spartan 6
FPGA

reset halt # Resetting the FPGA after bscan configuration file programming

flash probe xc6s.spi # Starting to programming the SPI flash memory trough the FPGA

jtagspi_program qpsk.bin 0 # Programming the QPSK modulator via the JTAG interface

shutdown # Shutdown the OpenOCD interface

138

REFERENCES

[1] SatNOGS.org, "SatNOGS WIKI," 2019. [Online]. Available:

https://wiki.satnogs.org/Main. [Accessed 14 May 2019].

[2] G. Quintana-Díaz and R. Birkeland, "Software-Defined Radios In Satellite

Communications," in The 4S Symposium, Sorrento - Italy, 2018.

[3] J. Mitola, "The Software Radio Architecture," IEEE Communications

Magazine, vol. 33, no. 5, pp. 26-38, 1995.

[4] M. R. Maheshwarappa and C. P. Bridges, "Software defined radios for small

satellites," in 2014 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), Leicester, 2014.

[5] R. C. Reinhart, T. J. Kacpura, S. K. Johnson and J. P. Lux, "NASA's space

communications and navigation test bed aboard the international space

station," IEEE Aerospace and Electronic Systems Magazine, vol. 28, pp. 4-15,

2013.

[6] E. Kulu, "Nanosats Database," 06 January 2020. [Online]. Available:

https://www.nanosats.eu/img/fig/Nanosats_years_2020-01-06_large.png.

[Accessed 20 January 2020].

[7] B. Corrado, W. Ebel and S. Jayaram, "Cubesat software defined radio

project," in 26th AIAA International Communications Satellite Systems

Conference (ICSSC), San Diego, 2008.

[8] S. J. Olivieri, J. Aarestad, L. H. Pollard, A. M. Wyglinski, C. Kief and R. S.

Erwin, "Modular FPGA-based software defined radio for CubeSats," in 2012

IEEE International Conference on Communications (ICC), Ottawa, 2012.

[9] O. Ceylan, A. Caglar, H. B. Tugrel, H. O. Cakar, A. O. Kislal, K. Kula and H.

B. Yagci, "Small Satellites Rock A Software-Defined Radio Modem and

Ground Station Design for Cube Satellite Communication," IEEE Microwave

magazine, vol. 17, no. 3, pp. 26-33, 2016.

[10] GomSpace, "GomSpace Software Defined Radio," 2018. [Online]. Available:

https://gomspace.com/UserFiles/Subsystems/datasheet/gs-ds-nanocom-sdr-

10.pdf. [Accessed 15 January 2020].

[11] Vulcan Wireless INC., "Products," [Online]. Available:

http://www.vulcanwireless.com/products/mbt. [Accessed 15 January 2020].

[12] Tethers Unlimited INC., "About SWIFT Radios," [Online]. Available:

http://www.tethers.com/SWIFT-RADIOS/. [Accessed 15 January 2020].

[13] Allen Space, "Hardware for nanosatellites," [Online]. Available:

https://alen.space/hardware-for-nanosatellites/. [Accessed 15 January 2020].

139

[14] R. Dewitt, D. Duston and A. K. Hyder, "PHYSICS OF ENERGETIC

PARTICLE INTERACTIONS," in The Behavior of Systems in the Space

Environment, Netherlands, Springer Netherlands, 1993, pp. 353-381.

[15] European Cooperation for Space Standardization (ECSS), "ECSS-E-HB-10-12A

– Calculation of Radiation and Its Effects and Margin Policy Handbook," 17

December 2010. [Online]. Available:

http://ecss.nl/get_attachment.php?file=handbooks/ecss-e-hb/ECSS-E-HB-10-

12A17December2010.pdf. [Accessed 28 June 2019].

[16] T. Dachev, B. Tomov, P. Dimitrov, Y. Matviichuk, K. Fujitaka, Y. Uchihori

and H. Kitamura, "Calibration of LIULIN-4 type system at HIMAC with

heavy ions (11P-084)," 2001.

[17] F. Kuroiwa, K. Okuyama, M. Nishio, H. Morita, B. Szasz, S. Bendoukha, P.

Saganti and D. Holland, "A Design Method of an Autonomous Control System

for a Deep-Space Probe," of the Japan Society for Aeronautical and Space

Sciences, Aerospace Technology, vol. 14, pp. 105-112, 2016.

[18] F. Kuroiwa, S. Bendoukha, K. Okuyama, H. Morita and M. Nishio, "A

Redundancy and Operation of Power Control System for a Deep-space Small

Probe," Journal of Automation and Control Engineering, pp. 353-359, 2016.

[19] R. Funase, Y. Nakamura, M. Nagai, T. Eishima, K. Nakada, A. Enokuchi, C.

Yuliang, E. Takei and S. Nakasuka, "University of Tokyo's Student Nano-

Satellite Project CubeSat-XI and Its On-Orbit Experiment Results," in IFAC

Proceedings, Saint Petersburg, 2004.

[20] H. Kawakubo, "Hardware Development of a Microcontroller Board for a Small

Satellite," in Proceedings of the 16th AIAA/USU Conference on Small

Satellites, Utah, 2002.

[21] Microchip Technology Inc., "28/40-Pin 8-Bit CMOS FLASH Microcontrollers,"

2013. [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/30292D.pdf. [Accessed 14

May 2019].

[22] T. Pann, "The South Atlantic Anomaly," 2007. [Online]. Available:

https://www.bibliotecapleyades.net/ciencia/ciencia_earthchanges49.htm.

[Accessed 15 April 2019].

[23] T. Dachev, B. Tomov, Y. Matviichuk, P. Dimitrov, S. Vadawale, J. Goswami,

G. De Angelis and V. Girish, "An overview of RADOM results for earth and

moon radiation environment on Chandrayaan-1 satellite," Advances in Space

Research, vol. 48, no. 5, pp. 779-791, 2011.

[24] T. Dachev, J. Semkova, B. Tomov, Y. Matviichuk, P. Dimitrov, R. Koleva, S.

Malchev, N. Bankov, V. Shurshakov, V. Benghin, E. Yarmanova, O. Ivanova,

D. Häder, M. Lebert, M. Schuster, G. Reitz, G. Horneck, Y. Uchihori, H.

Kitamura, O. Ploc, J. Cubancak and I. Nikolaev, "Overview of the Liulin type

instruments for space radiation measurement and their scientific results," Life

Sciences in Space Research, vol. 4, pp. 92-114, 2015.

140

[25] Nishimusen CO., "TXE430MFMCW-302A," 2016. [Online]. Available:

http://www.nishimusen.co.jp/eisei2016/eisei2016.htm. [Accessed 14 May 2019].

[26] GNU Radio.org, "GNU Radio Manual and C++ API Reference," 2019.

[Online]. Available: https://www.gnuradio.org/doc/doxygen/build_guide.html.

[Accessed 14 May 2019].

[27] SatNOGS.org, "SatNOGS GNU Radio Out-Of-Tree module," 2019. [Online].

Available: https://gitlab.com/librespacefoundation/satnogs/gr-satnogs.

[Accessed 14 May 2019].

[28] D. Estevez, "GNU Radio decoders for several Amateur satellites," 2019.

[Online]. Available: https://github.com/daniestevez/gr-satellites. [Accessed 14

May 2019].

[29] T. Kuester, "gr-bruninga GNU Radio Out-Of-Tree module," 2017. [Online].

Available: https://github.com/tkuester/gr-bruninga. [Accessed 14 May 2019].

[30] D. Smith, "Digital Modulation Techniques," in Digital Transmission Systems,

Boston, Springer, 2004, p. 378.

[31] IEEE Standard Association, "1149.1-2013 - IEEE Standard for Test Access

Port and Boundary-Scan Architecture," [Online]. Available:

https://standards.ieee.org/standard/1149_1-2013.html. [Accessed 23 February

2020].

[32] Lauterbach GmbH, "Training JTAG Interface," 06 November 2019. [Online].

Available: https://www2.lauterbach.com/pdf/training_jtag.pdf. [Accessed 23

February 2020].

[33] Xilinx Inc., "Platform Cable USB II," 6 August 2018. [Online]. Available:

https://www.xilinx.com/support/documentation/data_sheets/ds593.pdf.

[Accessed 23 February 2020].

[34] Xilinx Inc, "Xilinx In-System Programming Using an Embedded

Microcontroller (ISE Tools)," 18 May 2017. [Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp058.p

df. [Accessed 23 February 2020].

[35] UrJTAG.org, "UrJTAG - Universal JTAG library, server and tools," [Online].

Available: http://urjtag.org/. [Accessed 23 February 2020].

[36] The OpenOCD Project, "Open On-Chip Debugger," [Online]. Available:

http://openocd.org/. [Accessed 23 February 2020].

[37] HuMANDATA LTD., "XCM-110 シリーズ," [Online]. Available:

https://www.hdl.co.jp/XCM-110/. [Accessed 23 February 2020].

[38] HuMANDATA LTD, "XCM-112 シリーズ," [Online]. Available:

https://www.hdl.co.jp/XCM-112/. [Accessed 23 February 2020].

[39] Xilinx Inc., "Using SPI Flash with 7 Series FPGAs," 18 October 2016.

[Online]. Available:

https://www.xilinx.com/support/documentation/application_notes/xapp586-

spi-flash.pdf. [Accessed 23 February 2020].

141

[40] The OpenOCD Project, "OpenOCD - Open On-Chip Debugger Repository,"

[Online]. Available: https://sourceforge.net/p/openocd/code/ci/master/tree/.

[Accessed 24 February 2020].

[41] Ardafruit Industries, "Compiling OpenOCD," 16 March 2016. [Online].

Available: https://learn.adafruit.com/programming-microcontrollers-using-

openocd-on-raspberry-pi/compiling-openocd. [Accessed 23 February 2020].

[42] The OpenOCD Project, "Open On-Chip Debugger: OpenOCD User’s Guide,"

20 April 2020. [Online]. Available: http://openocd.org/doc/pdf/openocd.pdf.

[Accessed 22 April 2020].

[43] eLinux.org, "RPi GPIO Code Samples," 8 April 2019. [Online]. Available:

https://elinux.org/RPi_GPIO_Code_Samples. [Accessed 23 February 2020].

[44] A. “. Huang, "netv2mvp-scripts - Various scripts for NeTV2MVP," 6 October

2018. [Online]. Available: https://github.com/bunnie/netv2mvp-scripts.

[Accessed 24 February 2020].

[45] QUARTIQ, "bscan_spi_bitstreams repository," 18 December 2019. [Online].

Available: https://github.com/quartiq/bscan_spi_bitstreams. [Accessed 24

February 2020].

[46] M. Rupprecht – DK3WN, "Amateur Radio – PEØSAT," 2019. [Online].

Available: https://www.pe0sat.vgnet.nl/decoding/tlm-decoding-

software/dk3wn/. [Accessed 14 May 2019].

[47] ISIS – Innovative Solutions In Space, "VHF/UHF duplex transceiver," 2016.

[Online]. Available: https://www.isispace.nl/wp-

content/uploads/2016/02/VHF-UHF-Full-Duplex-Transceiver-Brochure-

web.pdf. [Accessed 14 May 2019].

[48] A. I. Perez-Neira and M. R. Campalans, "Chapter 2 - Different views of

spectral efficiency," in Cross-Layer Resource Allocation in Wireless

Communications, Academic Press, 2008, pp. 13-33.

[49] R. Patidar, S. Roy and T. R. Henderson, "Technical report on validation of

error models for 802.11n," University of Washington Seattle, Seattle, 2017.

[50] The Wakasawan Energy Research Center, "Multipurpose Synchrotron Tandem

Accelerator W-MAST," [Online]. Available:

http://www.werc.or.jp/outline/shisetsu/gaiyo/sinkuro.html. [Accessed 24

November 2019].

[51] The Wakasa Wan Energy Research Center, "About WERC," July 2011.

[Online]. Available:

http://www.werc.or.jp/enenews/pdf/pamphlet_english.pdf. [Accessed 21

November 2019].

[52] BNL - NASA Space Radiation Laboratory, "NSRL User Guide," [Online].

Available: https://www.bnl.gov/nsrl/userguide/let-range-plots.php#silicon.

[Accessed 26 November 2019].

142

[53] European Space Components Coordination (ESCC), "ESCC BasicSpecification

25100: Single Event Effects Test Method and Guidelines," October 2014.

[Online]. Available: https://escies.org/download/webDocumentFile?id=62690.

[Accessed 1 July 2019].

[54] G. Toumbas, "Raspberry Pi - Radiation Experiment," B.S. Thesis, University

of Surrey, May 2018. [Online]. Available:

http://personal.ee.surrey.ac.uk/Personal/C.Bridges/AAReST/Files/2018,%20G

eorge%20Toumbas,%20BSc%20Thesis.pdf. [Accessed 15 December 2019].

[55] D. Honess and O. Quinlan, "Astro Pi: Running your code aboard the

International Space Station," Acta Astronautica, vol. 138, pp. 43-52, 2017.

[56] The Space Environment Information System - SPENVIS, "Single Event Upsets

(SEUs)," 12 March 2018. [Online]. Available:

https://www.spenvis.oma.be/help/background/creme/creme.html#SEU.

[Accessed 20 December 2019].

[57] S. Buchner, P. Marshall, S. Kniffin and K. LaBel, "Proton Test Guideline

Development - Lessons Learned," 8 August 2002. [Online]. Available:

https://radhome.gsfc.nasa.gov/radhome/papers/Proton_testing_guidelines_2

002.pdf. [Accessed 20 January 2020].

[58] TRAD Tests & Radiations, "Our Radiation Software - OMERE," [Online].

Available: https://www.trad.fr/en/space/omere-software/. [Accessed 20

January 2020].

[59] Texas Instruments Incorporated, "Debugging Embedded Linux Systems:

Understand Kernel Oops Logs," 2017. [Online]. Available:

https://training.ti.com/sites/default/files/docs/Kernel-Debug-Series-Part6-

understand-kernel-oops.pdf. [Accessed 15 September 2019].

[60] European Cooperation for Space Standardization (ECSS), "Radiation

Standards and Guidelines," October 2014. [Online]. Available:

https://escies.org/download/webDocumentFile?id=62690. [Accessed 20

January 2020].

