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ABSTRACT 

 

In nano-satellite missions, Software Defined Radios (SDR) have been widely 

used in the implementation of communication subsystems in order to increase the 

flexibilization both in the space segment and on the ground stations. Also, 

Commercial Off-The-Shelf components (COTS) are widely used to develop 

subsystems for nano-satellite missions in order to reduce development costs and 

because those are relatively easy to purchase especially for developing countries. 

However, COTS components are not space-certified and it becomes a problem 

when satellites are wanted to be used in high reliability missions. An example of 

that is Ten-Koh, a Low Earth Orbit (LEO) environment observation satellite 

developed in the Kyushu Institute of Technology in Japan, in which one of the 

top-level mission requirements was to re-use as much as possible the components 

utilized on a previous successful mission (Shinen-2) in order to mitigate the failure 

risks by using non-certified/non-space heritage components and to decrease the 

development time following the lean satellite design methodology. 

 In this research, an SDR implementation for the space segment is proposed 

in order to optimize the communication system designed for Ten-Koh satellite. 

The proposed implementation consists of the integration of two COTS modules 

(a single-board computer with a radio frequency module) using embedded Linux, 

Python and GNU radio developing tools. The purpose is to demonstrate that the 

proposed system can be used safely in future satellite missions overcoming the 

design constraints, limitations and issues experimented during the Ten-Koh 

design and operation phases showing the improvements in terms of performance, 

flexibility, cost and development time. 

In addition to above, this research shows the on-orbit issues presented in the 

Ten-Koh mission due to the radiation effects and describes the facilities, 

equipment, methodology and results of a radiation test performed for the main 

processor used in the Ten-Koh mission and for the single-board computer used in 



the proposed SDR system in order to find the possible causes of the failures 

presented on-orbit and to compare the results for verifying if the proposed system 

can be used safely in the radiation environment on LEO orbit. 
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CHAPTER 1 - INTRODUCTION 

1.1. Software Defined Radio (SDR) 

A Software Defined Radio (SDR) is a communication system in which several 

of its components (typically filters, modulators, demodulators, tuners, etc.) can 

be implemented by software merely, instead than using a fixed hardware. It offers 

to the developers a very flexible wireless communication platform in comparison 

with the typical communication systems implemented entirely by hardware. In 

satellite communications, SDR systems have been used for minimizing the costs 

and give flexibilization in the ground station implementations. An example of it 

is the SatNOGS project, which is a complete satellite ground station network 

platform. This project offers the possibility to build a Do It Yourself (DIY) / 

fully capable ground station for receiving satellite data and for joining in a global 

ground station network [1]. Currently, it is possible to build a basic functional 

ground station using an ODROID U3 module or a Raspberry Pi 3 module in 

conjunction with some open libraries implemented in Python and GNU Radio 

platform. SDR systems has been also used to develop communication subsystems 

in the space segment. Also, it is possible to find several SDR platforms available 

in the market e.g. GomSpace SDR, URSP, LimeSDR and FunCube among others 

[2].  

The key parameters that can be configurable via software are: 

 Modulation schemes 

 Transmitter and receiver frequency 

 Transmitter power output gain 

 Tunable Filters 

 Tunable codification/packet processing 

 Tunable sample rates
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Figure 1 – General SDR architecture block diagram. 
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The SDR block diagram architecture is shown in the Figure 1. It is possible to 

observe that the SDR is divided in two main parts, the software part and the 

hardware part.  

The software part usually consists in a processor, FPGA (Field-programmable 

gate array) or DSP (Digital Signal Processor) in charge of the following functions: 

 

 Controls of the data flow between all SDR block components. 

 Performing the data packet encoding/decoding. 

 Performing the digital modulation/demodulation of the encoded/decoded 

data. 

 Filtering the data transmitted and received from the hardware part. 

 Controls the RF front-end module parameters (e.g. the frequency of the 

transmitter and the receiver, the power output of the transmitter and the 

sensitivity of the receiver). 

 Processing the instructions that come from the user application and configure 

the respective SDR components according the received parameters. 

 

The hardware part consists in the Digital to Analog/Analog to Digital 

converters (DAC/ADC) and the RF front-end module which is in charge to 

receive the FM signal (in MHz or GHz), demodulate it to the baseband frequency 

(in kHz) and vice versa. 

1.2. SDR in the space 

In [3] the author provides a wide overview, a detailed characteristics and 

advantages of using a software radio architecture in communications systems 

since its conception in 1995. As shown in [4], the grow of the terrestrial 

applications of SDRs has been exponential as shown in the Figure 2 which has 

resulted in an evolution on the hardware and software capabilities as well as the 

reduction of the size, mass and power consumption in comparison with the 
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traditional radio architectures. It became the SDRs a great option to be used in 

satellite applications. As a result of that, SDR systems started to be included as 

payload missions for bigger satellites as the Mars Reconnaissance Orbiter (MRO) 

and the NASA Space Communications and Navigation (SCAN) Testbed [5] in 

2010 and 2013 respectively.  

 

 

Figure 2. Evolution of terrestrial and space software defined radios [3]. 

 

However, the current trend of the small satellite missions (nanosatellite) has 

been increasing slightly as shown in [6] reaching until 236 nanosatellite launches 

in 2019 and it becomes a challenge to develop SDR platforms capable to overcome 

the constraints presented in this type of missions like the reduced size, mass and 

especially low power consumption, aspects that in terrestrial applications are not 

so relevant and that is why terrestrial SDR solutions do not provide currently. 

Also, most of these nano-satellite missions must to be developed in a very limited 

cost which force to the developers to use Commercial off-the-shelf (COTS) 

components on their implementations, aspect that commercial SDR systems 

available in the market lacks. 

In the Table 1 based on [4], it is possible to observe clearly the key differences 

between the traditional radio and SDR architectures. As shown, the challenges 

to face in the development of an SDR architecture are to reduce the power 

consumption, to develop a reliable software and the use of adequate processing 
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units (e.g. FPGA, DSP or microcontroller). 

 

 

Figure 3. Nano-satellite launches by year [6]. 

 
 
 

Table 1. Traditional radios vs. SDR architectures [4]. 

 Traditional radios SDRs 

Pros 

 Limited processing and the 

selection of processor / 

controller / ADC is less critical. 

 Cheap and readily available 

 Flexible design: Multi-band / 

multi-mode. 

 Software based reconfigurable 

platform 

 Upgradable during mission lifetime 

Cons 

 Fixed design: Single-band / 

single-mode. 

 Complexity in hardware 

 More analogue components 

 Cross talk between the narrow 

bands due to aging 

 Complexity in software 

 Vulnerable to software threats 

 Faster FPGAs and DSPs and 

larger bandwidth ADCs are 

required 

 Power Consumption 

 

1.3. SDR platforms available in the market 

Currently, there are several SDR platforms available in the market as 
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presented in [2]. In the Figure 4, it is possible to observe the relation between the 

cost and the mass of the available hardware systems. Platforms as the GomSpace 

SDR are very expensive because they offer space-proven products, also, platforms 

like the USRP or the EPIQ are not suitable for this research purposes due to the 

mass and cost constraints. However, platforms like the LimeSDR or FunCube are 

more suitable for low cost and mass constraint missions. 

On the other hand, in the Figure 5, the channel bandwidth and frequency 

characteristics are shown. In this case, the FunCube and the RTL-SDR platforms 

have limited characteristics in comparison with the LimeSDR options. 

Taking into account the mentioned above, the LimeSDR options are the more 

balanced options for the SDR implementation and for that reason the LimeSDR 

mini is the option chosen for the implementation of the SDR architecture 

proposed in this research. 

 

 

Figure 4 - SDR platform overview (cost vs mass) [2]. 
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Figure 5 - Maximum channel bandwidth vs. Frequency bands in SDR platforms [2]. 

1.4. COTS based SDR in satellite applications 

In this section a survey of the SDR systems currently available on the market 

or already developed for nanosatellite missions in the last years is presented. The 

idea is to analyze the key characteristics, performance parameters and software/ 

hardware platforms used for their development in order to get a clear idea about 

the current state of the art about SDR systems for nanosatellite applications. 

1.4.1. Previous studies/publications 

Searching in the existing literature, the following studies and implementations 

about SDR in nano-satellite applications are presented due to their relevancy in 

this research and similarity. At the end in the Table 2, a summary of the key 

parameters and characteristics are presented in order make a comparison. 

The first relevant study is an SDR implementation for CubeSat presented in 

[7]. The hardware platform consists in a single board that includes an Analog 

Devices ADSP-BF537 Blackfin DSP as processing unit. The RF module is divided 
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in two parts, the former which consist in a baseband Signal Front-End chip 

(Analog Devices AD9863) with digital to analog converters (DAC) and analog to 

digital converters (ADC) included, the latter is an RF daughter board which is 

not specified (just the author mentions that it could operate in VHF, UHF and 

S bands). Regarding the software, the author mentions that National Instruments 

LabView is used to create the software for the DSP module using the Blackfin 

embedded module. The study was published in 2008. 

In [8] an SDR implementation for CubeSat based on an FPGA device is 

presented. The hardware platform consists of a single board designed from scratch 

which includes the processing unit, a Xilinx Spartan3A-1400 and the RF circuits. 

There are not details about what chip or device was used for the RF circuits, 

however, the author mentions that the hardware is largely similar to an USRP 

XCVR 2450 transceiver. Regarding the software, the author mentions that is 

developed using VHDL (Very High-Speed Integrated Circuits Hardware 

Description Language) to implement an embedded MicroBlaze processor used for 

controlling all the SDR modules and to modify the URSP libraries developed and 

provided by Ettus Research for their RF boards with the purpose to make them 

compatible with Xilinx devices. The system requires an external processor 

running Linux and GNU Radio tools in order to be controlled and operated. The 

study was published in 2012. 

In [4], the results of two SDR implementations proposed as a communication 

system for a CubeSat constellation are shown. Regarding the hardware platform, 

the first testbed includes a SmartFusion2 board acting as a processing unit which 

include an ARM Cortex M3 with an FPGA fabric included in the same device 

and a FunCube Dongle as an RF module. The second testbed includes a ZedBoard 

which includes a Xilinx Zynq 7020 SoC (System on a Chip) acting as processing 

unit and a Lime Microsystem’s Zipper + MyriadRF boards as RF modules. In 

the case of software platform, the first testbed was configured and controlled 

using a Linux operating system running the FunCube dongle utilities (FCD 
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Control). The second testbed was configured using Linux operative system 

running GNU Radio and the modules implemented in the FPGA fabric were 

generated using the Xilinx Processing System (XPS). As conclusion, the author 

mentions that the second testbed is the most suitable option for their application 

because the first testbed lacks of a direct interface to the received IQ signal, the 

USB interface creates a speed limit to 480 Mbps and it lacks of transmission 

functionality. The study was published in 2014. 

The last relevant publication is [9] in which an SDR implementation of the 

satellite and ground segments are described. The hardware platform consists in 

an FPGA board which includes an Altera EP3C25E144I7N FPGA as processing 

unit and two independent boards for the receiver and receiver working in half-

duplex mode. Those RF modules were developed completely from scratch (there 

are not details about which RF chips they used in the design). The software 

platform was designed in VHDL using the Quartus development tool provided 

by Altera and it does not run any operative system. The study was published in 

2016. 

Finally, in the Table 2, a summarize of the key performance parameters 

reported in the mentioned research studies are shown.  

 

Table 2. Noncommercial SDR key performance parameters summary. 

Study 

Reference 
Key Parameters 

[4] 

Modulation schemes: BPSK, QPSK, 16 and 32 QPSK 

Processor: Xilinx Zynq 7020, RF Front End: LMS6002D 

Frequency: 914 MHz (1st Generation), 26.1 GHz (2nd Generation) - Fixed 

Power Consumption: RX=1.2W, TX= 2.5W, Total = 3.7W 

Power Output: 30dBm (1W) 

Software: Linux + GNU Radio 

[9] 

Modulation schemes: FSK 

Processor: Altera EP3C25E144I7N, RF Front End: Not specified 

Frequency: 433.92 MHz - Fixed 

Power Consumption: RX = 0.7W, TX = 2W, Total = 2.7W 

Power Output: Not specified. 

Software: VHDL + Quartus development tools 

[7] 
Modulation schemes: Not specified 

Processor: Analog Devices ADSP-BF537, RF Front End: Not specified 
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Frequency: VHF - UHF 

Power Consumption: 165mW (only the processor unit) 

Power Output: Not specified 

Software: LabView 

[8] 

Modulation schemes: Not specified 

Processor: Xilinx Spartan3A-1400, RF Front End: USRP XCVR 2450 

Frequency: 2.4 - 2.5GHz, 4.9 - 5.9GHz 

Power Consumption: Not specified 

Power Output: Not specified. 

Software: Modified USRP libraries and Linux + GNU Radio for 

controlling. 

1.4.2. Commercial SDR available on market 

At the time of this survey, the commercial SDR platforms available in the 

market are: 

GomSpace NanoCOM SDR [10]: GomSpace is a manufacturer and 

supplier of nanosatellite parts and buses located in Denmark with experience since 

2007. Their SDR is a PC-104 form factor, space-proven platform that includes as 

a processor unit one Xilinx Zynq 7030 programmable SoC which includes a dual 

ARM Cortex A) running at 800MHz plus an FPGA logic in a single chip. The 

device is on-orbit programmable and runs Linux operative system plus a 

proprietary software developed for themselves. The RF hardware is not detailed 

since it is a proprietary design. 

Vulcan Wireless INC. SDR [11]: Vulcan Wireless INC. Is a provider of 

digital communication solutions for terrestrial and space applications, located in 

the USA. They offer two options of SDR, one for S-Band and the other for UHF 

frequencies. Both of them have a CubeSat form factor with space heritage and 

compatible with NASA Near Earth Network (NEN). Unfortunately, in their web 

page there is not a datasheet available (probably can be obtained through a 

quotation), then, there are not details about the hardware they utilized in their 

devices. 

Tethers Unlimited, Inc. – SWIFT SDRs [12]: Thethers Unlimited INC. 

is a company that provides space services including satellite parts. They offer 
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SDR platforms in L, S, X, K and UHF frequency bands with configurable 

BPSK/QPSK/OQPSK/8PSK and 16PSK modulations. The form factor of the 

radios is 0.25U (a quarter of CubeSat standard). In their datasheets is not possible 

to find information about the hardware used in their devices. 

Allen Space TOTEM [13]: Allen Space is a spin-off company from the 

University of Vigo’s Xatcobeo satellite, the first Spanish satellite. TOTEM is a 

PC-104 form factor SDR based in the Xilinx Zynq 7000 SoC running embedded 

Linux with a GNU Radio support. The frequency is configurable from 70MHz to 

6GHz with up to 56MHz of bandwidth. It offers safe in-orbit software updates, 

flight heritage and the front-end RF module is provided as an additional 

piggyback board. 

In the Table 3, a summary of the relevant features of the mentioned 

commercial SDR platforms available in the market is presented. 

 

Table 3. Commercial SDR key performance parameters summary. 

SDR Key Parameters 

GomSpace - 

NanoCOM 

Modulation: TDD (Time Division Duplex), FDD (Frequency 

Division Duplex) 

Processor: Xilinx Zynq 7030, RF Front End: Non-specified 

Frequency: 70MHz – 6GHz,  

Power Consumption: TX = 3W. 

Software: Linux and proprietary software 

Tethers -

SWIFT 

Modulation schemes: Non-specified 

Processor: Altera EP3C25E144I7N, RF Front End: Non-

specified 

Frequency: L, S, X, K and UHF bands 

Power Consumption: 15W total 

Power Output: Non-specified. 

Software: Non-specified 

Allen Space - 

TOTEM 

Modulation schemes: Depends of piggyback RF front end 

daughterboard. 

Processor: Xilinx Zynq 7000, RF Front End: Non-specified 

Frequency: 70MHz to 6GHz 

Power Consumption: 4W total 

Power Output: Not specified 

Software: Linux and GNU Radio support. 
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1.5. Processing Modules Description 

1.5.1. Raspberry Pi 

The Raspberry Pi is a family of devices created in the United Kingdom by the 

Raspberry Pi foundation in order to promote the teaching of basic computer 

sciences in schools, universities and developing countries. The hardware of those 

modules is open for everyone, but the firmware is closed source. 

The first Raspberry Pi generation (Pi 1) was released in 2012 in two models, 

the model A and the model B, the difference between them is that the second 

one has higher performance specifications. Since that time, four families have 

been released with higher performance changes but keeping the same size and 

price. 

The Raspberry Pi is one of the most popular single-board computers nowadays, 

it has been used in several educational, academic and scientific projects. It has a 

huge community that develops modules and open source code to handle several 

kinds of devices, sensors, screens and other peripherals. Also, the community is 

very enthusiastic to develop several kinds of applications with many functions to 

be used easily on the device. 

In the hardware part, the community and some companies have developed 

several compatible modules that can be connected easily to the board, for 

example, the camera module is one of the most famous compatible hardware 

peripherals, it is easy to integrate to the main module and it is possible to find a 

variety of open source image processing software to be used with it.  

In the Table 4, a comparison between the most popular Raspberry Pi modules 

is presented where it is possible to check the main features of each module in 

order to compare the pros and cons between the existing modules in the market. 

For this research purposes, the Zero and the 3B+ models were chosen and the 

idea is to compare the benefits and disadvantages to use the high performance 

and a budget options available currently in the market. 
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Table 4 - Raspberry Pi modules main performance parameters. 
 R-Pi 2B v1.2 R-Pi 3B+ R-Pi ZERO 

CPU 
64 bits Quad-core 

ARM Cortex-A7 

64 bits Quad-core 

ARM Cortex-A53 

32 bits Single-core 

ARM1176JZF-S 

FREQ (MHz) 900 1400 1000 

RAM (MB) 1024 1024 512 

STORAGE (GB) Up to 32 microSD Up to 32 microSD Up to 32 microSD 

PERIPHERALS 

17×GPIO, 2×I²C, 

2×UART, 1×SPI, 

1xEthernet, 

4xUSB-B and 

Camera 

17×GPIO, 2×I²C, 

2×UART, 1×SPI, 

1xEthernet, 

4xUSB-B and 

Camera 

17×GPIO, 2×I²C, 

1×SPI, 2×UART, 

PCM and PWM 

SIZE (mm) 85.6 × 56.5 85.6 × 56.5 65 × 30 

PRICE (USD) $35 $35 $5 

1.5.2. FPGA (Field-programmable gate array) module 

An FPGA is a programmable device designed to be configured by the end-user 

after its manufacturing. It differs with the microprocessors in the fact that the 

hardware in the device can be modified as the application needs, making these 

devices a very flexible option used especially for parallel processing and digital 

signal processing. Xilinx, Inc. is a very well-known manufacturer of FPGA devices 

which includes a wide portfolio of several families divided by its application 

purpose and performance. 

The Spartan is a well-known family of FPGAs for applications where the low 

cost, low power and high volume are the important targets. It is the most basic 

Xilinx FPGA and for that reason is most typically used. Those are built using 

the 45nm, nine metal layers, dual oxide process technology. The most common 

applications for that family is automotive, wireless communications and video 

surveillance. 

Another set of families is the 7 series consisting of the Artix, Kintex and Virtex 

devices. Those families have better performance than the 6 family, however its 

cost is higher. The Artix family has 50% lower power consumption in comparison 

with the Spartan family and it can deliver the performance required to address 

cost-sensitive, high-volume markets previously served by ASICs (Application-

Specific Integrated Circuits), and low-cost FPGAs. However, its price is still 
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higher than the Spartan families. Because of the low-power consumption 

improvements, the target applications for the Artix family are for portable 

equipment, military and avionics communications. 

 

Table 5 - Xilinx FPGAs performance comparison. 
 SPARTAN 6 ARTIX-7 KINTEX-7 VIRTEX-7 

Logic cells 147K 215K 478K 1,955K 

Block Ram 4.5Mb 13 Mb 34 Mb 68 Mb 

DSP slices 180 740 1,920 3,600 

Peak DSP 

performance 
930 GMAC/s 929 GMAC/s 2,845 GMAC/s 5,335 GMAC/s 

Transceivers 4 16 32 96 

Peak 

Transceiver 

speed 

3.2 Gb/s 6.6 Gb/s 12.5 Gb/s 28.05 Gb/s 

Peak Serial 

Bandwidth 
51 Gb/s 211 Gb/s  800 Gb/s 2,784 Gb/s 

PCIe Interface X2 Gen1 x4 Gen2  x8 Gen2 x8 Gen3 

Memory 

Interface 
800 Mb/s 1,066 Mb/s  1,866 Mb/s 1,866 Mb/s 

I/O pins 500 500 500 1200 

I/O voltage 

1.2V, 1.35V, 

1.5V, 1.8V, 

2.5V, 3.3V 

1.2V, 1.35V, 

1.5V, 1.8V, 2.5V, 

3.3V 

1.2V, 1.35V, 1.5V, 

1.8V, 2.5V, 3.3V 

1.2V, 1.35V, 1.5V, 

1.8V, 2.5V, 3.3V 

Supports 

partial 

reconfiguration 

Not natively Yes Yes Yes 

Price $400 USD $880 USD $980 USD $7000 USD 

 

The Kintex family is the mid-range FPGAs from Xilinx, It has 50% lower 

power consumption than the Virtex 6 family with similar performance. It can be 

used to cover applications that needs 12.6 Gbit/s or 6.5 Gbit/s serial 

communication, enough memory and logic performance needed in optical 

communications. It can provide a good balance between processing performance, 

power consumption and costs. 

Finally, the Virtex which is the Xilinx high-end family, typically this family 

integrates FIFO (First Input First Output) logic, DSP, Ethernet blocks and high-

speed transmitters additionally to the normal FPGA logic. Additionally, it can 

include embedded hardware functions like multipliers, memories, serial 

transceivers and processor cores in order to facilitate the application development. 
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The Virtex family usually is used for wired and wireless communication 

measuring instruments, medical equipment and defense systems.  

In Table 5, a performance and features comparison table is shown. For this 

research purpose, the Spartan 6 and the Kintex 7 devices are the chosen options 

in order to compare the performance of two different generations of Xilinx 

FPGAs. 

1.6. Single Event Effects (SEEs) 

When charged particles such as electrons, protons or heavy ions pass through 

semiconductor material like silicon, they lose energy in two ways: electronic loss 

and nuclear interactions. As the particle travels along the sensitive volume in the 

device, the energy loss appears as a cloud of electron-hole pairs [14]. In the case 

of heavy ions, different failures in semiconductor devices occur as a consequence 

of the direct ionization created in the device (the charge deposited by a single 

particle in the sensitive volume of the device being irradiated).  

Other sources of energetic particles that can produce SEEs are protons and 

neutrons. These particles can produce SEEs by nuclear reactions when the direct 

impact of the incident particle energy to a recoil atom transfer in the form of an 

elastic/inelastic collision or spatial mechanism. Depending on the orbit designated 

for a spacecraft, protons can be the main source of SEEs: “the probability of such 

reactions are low (approximately 10�� for most devices of interest), however, 

fluxes of protons can be very high in the inner proton belt or during solar particle 

events and this mechanism can dominate the SEEs rates in many situations for 

modern devices that have a low Linear Energy Transfer (LET) threshold” [15]. 

Protons and neutrons generate secondary products that bring additional energy 

and charge deposition in the sensitive volume.  

The injection of charge occurs in a very short time scale (in the order of 

picoseconds), and in small amounts (10��� �� 10��� coulombs), however, these 

magnitudes are enough to disrupt temporarily or permanently the operation of 
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electronic devices [14].  

Depending on the resulting effect on the device, temporal or permanent, the 

SEEs are divided into two main groups:  

 

 Non-destructive SEEs: The resulting effect disables temporarily the 

device and its operation can be recovered after some time. Examples of 

those effects are Single event transient (SET), single event disturbs 

(SED), single event upset (SEU), multiple-cell upset (MCU), single-

word multiple-bit upset (SMU), single event functional interrupt (SEFI) 

and single event hard error (SEHE). 

 Destructive SEEs: The resulting effect on the device disables it 

definitively from operating. Examples of those effects are Single event 

latch-up (SEL), single event snapback (SESB), single event dielectric 

rupture (SEDR), single event gate rupture (SEGR) and single event 

breakdown (SEB). 

 

 

Figure 6 - SEE produced by heavy ions (electrons) and nucleons (protons and 

neutrons) in a semiconductor device. 

 

For the most common digital devices such as processors, microcontrollers and 

solid-state memories used for space applications, extended tests for SEE (SEU 

and SEL) are required. Depending on the complexity, technology and 
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manufacturing process of the device, a particular test can be designated for 

performing an evaluation through ground testing. Figure 6 shows the SEE 

produced by heavy ions and protons. 

1.6.1. Single Event Upset (SEU) 

Single event upsets are non-destructive SEEs that affect mainly digital devices 

such as memories, registers, latch devices and solid-state recorders (e.g. SRAM, 

EEPROMs and FLASH devices). Those events are registered as a bit-flip leading 

to the change in the stored information or state in the device.  

Similar to SEUs, Multiple-Cell Upsets (MCUs) or Multiple-Bit Upsets (MBUs) 

occurs in memories, registers and latch devices when a single particle impacts 

them affecting several adjacent bits due to the large particle ranges [15]. 

1.6.2. Single Event Latch-up (SEL) 

Single event latch-up affect semiconductor devices by creating a path of low 

impedance between the power supply rails of a device due to the creation of an 

ionized path along the particle trace in the device. In CMOS devices, an SEL 

makes the transistors to enter conduction due to a forward biased state from the 

ionization created by heavy ions or protons. This increases the current 

consumption of the device to a level that can destroy it due to a current avalanche 

effect. A power reset is required to remove the SEL condition, however, if the 

system is not able to detect and provide a power reset after the SEL occurred, 

the device may end with a permanent damage. 

1.6.3. Linear Energy Transfer (LET) 

The linear energy transfer refers to the deposited energy per unit path length. 

For SEE analysis, the units of the LET are [��� ∙ ���/�] or [��� ∙ ���/��]. 

The LET is also related to the stopping power, which is the energy loss per unit 

path length by a particle in a medium. The LET is can be described by the 
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Equation 1 [15]: 

���(�) =
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0,        ��ℎ������

 

Equation 1 - Linear Energy Transfer (LET). 

   

Where � is the energy of the particle, � is the range of the particle, and ρ the 

density of the target material. For silicon, the value of ρ is [2.32 �/���]. From 

the values of the LET, the deposited energy over a distance � can be computed 

by Equation 2 [15] if the LET remains constant over the distance: 

 

���� = ��� · � · � 

Equation 2 - Deposited energy over a distance. 

 

The LET concept is important for the testing and evaluation of SEEs due to 

heavy ions. Depending on the ion source and energy, different LET values can be 

achieved in a target device, which for most of devices of interest is silicon (Si). 

1.6.4. Device cross-section 

The cross-section of a device refers to the probability of SEEs to occur. It is 

measured as the number of events recorded per unit of particle fluence. The 

fluence Φ (Equation 4 [15]) for a specific type of particle is the integral of the 

flux (unidirectional integral intensity flux represented j in Equation 3 [15]) over 

a given interval (e.g. one minute, one hour, one day): 

 

��� = � �
�

�

�� 

Equation 3 - Unidirectional integral intensity flux. 
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Equation 4 - Particle fluence. 

 

The fluence has units of [���������/���] , while the flux has units of 

[���������/���/�]. 

The SEE cross-section for ions is expressed as a function of LET and in energy 

for protons and neutrons as shown in Equation 5 and Equation 6 [15], 

respectively: 

 

����(���) =
������ �� ������

��� �������
 

Equation 5 - SEE cross-section for ions. 

 
 

�������(�) =
������ �� ������

������ �� ������� �������
 

Equation 6 - SEE cross-section for protons. 

 

In the case of ions, the evaluation of the cross-section is straightforward, it 

measures the sensitiveness of the device as a function of the LET. In the case of 

protons and neutrons, where the SEE is produced by nuclear interactions, the 

cross-section interpretation becomes more complex since it incorporates the 

probability of a nucleon-nuclear interaction and the probability that the nuclear 

recoil and other nuclear fragments results in charge deposition along the sensitive 

volume of the device that produces an event [15]. 

The cross-section is expressed in units of [���/������] for SEEs in general and 

in the specific case of SEUs, MCUs, and SMUs in [���/����] �� [���/����] . The 

typical cross-section curve obtained for a particular device for heavy ions is shown 

in the Figure 7 and for protons is shown in the Figure 8. 
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Figure 7 - SEE cross-section as a function of LET produced by heavy ion irradiation 

[15]. 

 
 

 

Figure 8 - SEE cross-section as a function of energy for proton irradiation [15]. 

 

The most important values to obtain from the cross-section curves are the ���� 

which is the cross-section of saturation where the device starts to experiment the 

same and stable probability of errors and the ����� which is the Linear Energy 

Transfer threshold value where the device starts to experiment errors (��� proton 

energy threshold in the case of protons). 

When a device has a sensitive volume with a larger horizontal dimension 

compared to the vertical one, the deposited effective LET (������) is expressed 
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in Equation 7 [15], where θ is the angle of the flux beam hitting the normal 

surface of the DUT. 

 

������(�)  =  
���(� = 0)

����
 

Equation 7 - Effective LET. 

 

If the incident angle is varied, then the effective fluence will vary too, so, the 

cross-section has to be computed according to Equation 8 [15]: 

 

����(�)  =  
������ �� ������

������� · ����
 

Equation 8 - Effective SEE cross-section. 

 

1.7. Research objectives and outline 

The main purpose of this research is to develop an SDR system architecture 

for improving the Ten-Koh communication system performance and flexibility 

overcoming the constraints and limitations found in the design, implementation 

and on-flight operation phases.  

 

The objectives of this research are: 

 To demonstrate the feasibility of using a Raspberry Pi module integrated 

with a COTS RF front-end module for designing a suitable SDR platform 

for the space segment application. 

 To evaluate the performance of the proposed SDR implementation by 

comparing it with the implemented Ten-Koh communication system. 

 To perform a radiation test to verify the possible causes of the issues 

presented in the microcontroller used in the Ten-Koh mission subsystems 

and to obtain the radiation tolerances of the Raspberry Pi module in the 
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space environment on LEO. 

 

The dissertation is divided in 7 chapters as follows: In the chapter 1, the 

background, motivation, objectives and goals of the research are described. 

The chapter 2 describes the Ten-Koh satellite mission overview, the payload 

data requirements, the system architecture, the constraints, limitations and on-

orbit issues found during the satellite design and operation. 

The chapter 3 describes in detail the communication system included on-board 

of Ten-Koh satellite. It includes the design methodology and the detailed 

description of the hardware and software architectures, analyzing the constraints, 

limitations and issues experimented with the design and operation phases.  

The chapter 4 describes the proposed SDR implementation for optimizing the 

Ten-Koh communication system in which the design strategy, developing tools 

and the hardware/software architectures are described in detail showing the 

advantages and improvements obtained in the mission design phases in 

comparison with the used in Ten-Koh. 

The chapter 5 presents the results of the simulations and test performed for 

the proposed SDR system and for the Ten-Koh implemented system in order to 

verify and compare the performance between the two systems. 

The chapter 6 describes the radiation test performed for the PIC16F877 

microcontroller used in the Ten-Koh subsystems in order to verify if the failures 

presented in the chapter 2 were produced due to radiation phenomena and for 

the single-board processor modules used for the implementation of the proposed 

SDR system in order to define with more clarity if the system can be used safely 

in future LEO satellite missions. 

Finally, the chapter 7 summarizes the main results and conclusions obtained 

in this research and describes some recommendations for possible future works in 

related areas. 
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CHAPTER 2 - TEN-KOH MISSION OVERVIEW 

Ten-Koh mission is a 23.5 kg satellite developed by Kyushu Institute of 

Technology, Japan, in conjunction with the Radiation Institute for Science and 

Engineering of Prairie View A&M University, Holland-Space LLC and the Space 

Research and Technology Institute of the Bulgarian Academy of Sciences. Ten-

Koh was launched on October 2018 on-board the HII-A rocket as a piggyback 

payload of the JAXA’s Greenhouse gas Observing Satellite (GOSAT-2). The 

main mission objective is the observation of the LEO environment measuring the 

radiation effects on the satellite. In order to achieve that, the main payloads are: 

 

 A Charged Particle Detector (CPD), developed by the Radiation Institute 

for Science and Engineering Prairie View A&M University, TX, USA and 

the Space Research and Technology Institute - Bulgarian Academy of 

Sciences. The system includes 8 CMOS (Complementary Metal Oxide 

Semiconductor) detectors mounted in a cube form factor and one Liulin 

type detector [16] mounted on the top of the assembly. The CPD allows the 

measurement of the radiation environment inside the satellite, the detection 

of the MeV-range electrons and protons in LEO and the investigation of the 

space environment in the presence of a low solar activity.  

 A Double Langmuir Probe (DLP) which is in charge of the characterization 

of the plasma environment around the spinning spacecraft. 

 

Also, the mission includes the following secondary payloads: 

 

 A material mission device which is in charge of measuring the degradation 

and thermal expansion of a Carbon Fibber Reinforced Thermoplastic 

(CFRTP) material covered with three different coatings exposed directly to 

the space environment. 
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 An ultra-capacitor system to test a high-density energy storage device for 

space applications. 

 A thermal switch assembly, developed by The University of New South 

Wales, Canberra (UNSW Canberra). This payload includes one device for 

demonstrating a thermal control technique in nano-satellites. 

 

Ten-Koh was designed with the lean satellite philosophy (low cost and reduced 

development time), for that reason, one of the top-level requirements was to use 

as much as possible the components and architectures used for the previous 

mission Shinen-2 [17], [18] due to it worked successfully in the presence of a high 

radiation space environment using COTS components. It was achieved at a high 

rate; however, it was necessary to change some components because some of them 

were obsolete, others were not able to purchase in the market and due to Ten-

Koh mission complexity was higher than the Shinen-2 mission, it was necessary 

to change some components in order to meet the additional mission requirements. 

The main reason to do that was to reduce the risk to have failures generated by 

the hazardous space environment, using components already used successfully in 

previous missions, also to reduce the development time re-using some of the 

previous designs and architectures. 

2.1. Ten-Koh system architecture 

Ten-Koh system architecture is shown in the Figure 9. It consists in the bus 

section and the payload section. The bus section includes the Electronic Power 

System (EPS), the On-Board Computer (OBC), the Communication system 

(COMM) and the Attitude Determination (ADS). The payload section includes 

the Experiment Control unit (ECU), the Ultra-Capacitor Experiment Control 

Unit (UECU) and the Material Mission Experiment Unit (MMECU). All 

subsystems are interconnected using a single-master multi-slave serial 

communication bus I2C in which the OBC acts as a master who controls all the 
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writing and reading transactions, the rest of subsystems are acting as slave units. 

It means that the Ten-Koh architecture is a star shape architecture due to 

subsystems are not allowed to communicate each other’s directly, all data 

transactions must pass through by the OBC who is in charge to manage and 

deliver the data property. 

 

 

Figure 9 - Ten-Koh system architecture. 

 

  Due to the FLASH and RAM memory limitations, the system architecture 

includes a microcontroller in every single subsystem which basically is in charge 

to manage and process all local data (e.g. sensor measurements, calculation 

algorithms, etc.), pack it in a proper way and deliver it when OBC requests. The 

only direct communication between subsystems is between the COMM and EPS 

thru a General-Purpose-Input-Output (GPIO) connection in order to provide the 

possibility to reset the OBC if it fails or hangs sending a direct command from 

the ground station. 

Depending the Ten-Koh operational mode, some subsystems are turned on or 

off by the EPS subsystem in order to optimize the power consumption and the 

processing resources of the OBC due to the processor limitations, as was 

mentioned before, the OBC is in charge to manage and deliver the data to every 

subsystem and additionally it has to change the operational mode of the satellite 
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depending of the received command from the ground station or depending the 

critical housekeeping parameters (e.g. battery voltage, battery temperature, etc.). 

2.1.1. Main microcontroller 

The microprocessor used in Ten-Koh mission was the Microchip PIC16F877 

which was used in several successful missions (e.g. CubeSat-XI-IV and CubeSat-

XI-V from Tokyo university [19], Shinen-2 from Kyushu Institute of Technology 

[17] - [18], and AlcatelSat [20]). The main parameters of this microprocessor are 

shown in Table 6. The data memory (RAM) of this microcontroller is divided 

into banks of 96 bytes which it is the maximum buffer allowed to use. 

 

Table 6 - PIC16F877 parameters [21] 

Name Value 

Program Memory (FLASH) 14 Kbytes 

Data Memory (RAM) 368 bytes 

Data memory (EEPROM) 256 bytes 

Max Clock Frequency 20 MHz 

Digital communication peripherals 1-UART, 1-MSSP(SPI/I2C) 

Operating Voltage Range 2 to 5.5 V 

Operating Temperature Range -40 to 85 °C 

 

2.1.2. Data flow architecture 

The data into the satellite flows in two ways (uplink and downlink). In the 

case of uplink, the data is a command which is a data packet with all required 

information to perform different events in the satellite (e.g. start a payload 

mission, turn on/off any subsystem, reset satellite, request specific data 

parameters etc.) In the case of downlink, the data are formed as a 

telemetry/payload data which is a packet that contains all information about 

housekeeping and scientific data coming from the satellite. The uplink will be 

initiated always by the ground station and the data will flow as shown in the 
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Figure 10. The downlink will be initiated by the OBC due to a requested 

command from a ground station (complete telemetry request, for example 

complete sensor report or payload data) via FM link. Of course, a command 

should be received first, then, the data will follow the same flow as shown before 

in the uplink case. After that, data will flow as shown in the Figure 11. 

 

Figure 10 - Ten-Koh uplink data flow. 

 
 

 

Figure 11 - Ten-Koh downlink data flow. 

 

  As is shown in the Figure 10 and Figure 11, every payload subsystem has a 

MicroSD card in which the measured data performed by any mission are stored 

in order to be sent when a ground station data download request command is 



CHAPTER 2 - TEN-KOH MISSION OVERVIEW  

28 
 

received by the OBC. All SD card parameters (last writing address, the read 

pointer address and counters) are stored into the local microprocessor EEPROM 

memory in order to be used lately even if the power supply is turned off by the 

EPS. The only two subsystems into the satellite, which do not include SD card 

are the OBC and the COMM subsystems.  

  Additionally, the OBC and the ECU subsystems store in the microcontroller 

EEPROM critical mission parameters. In the case of OBC, the satellite log which 

stores any event occurred into the satellite and the backup of the Real Time 

Clock (RTC) time. In the case of the ECU, the CPD threshold parameters are 

stored and can be updated via ground station command. 

2.1.3. OBC EEPROM data management 

One of the purposes of this research is to report the failures presented in four 

months of satellite operation due to the radiation environment. One of the 

presented failures was the OBC microcontroller EEPROM data corruption, but 

before to discuss the results in the next section is pertinent to revise the OBC 

EEPROM memory data usage. Into the OBC, the entire EEPROM memory (256 

bytes in total) is used to store three types of data, the OBC reset counter, the 

minute byte of Real Time Clock (RTC) and the satellite log. The memory 

assignation for each part is shown in the Table 7. 

 

Table 7 - OBC EEPROM memory usage. 

Data Type EEPROM Memory Address (Decimal) 

Reset Counter 0 to 1 

RTC 2 to 95 

Satellite Log 96 to 255 

 

  The reset counter increases every time the OBC experiment a reset and 

consist in two bytes which allows to store up to 65,535 reset events. In the case 

of the RTC, the minute, hour and day bytes are stored every minute in the 
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EEPROM memory region in order to have a partial backup of the satellite time. 

Finally, in the satellite log region, the OBC stores every event that occurs into 

the satellite with the corresponding time taken from the RTC; it consists in four 

bytes in total, three for the RTC time (day, hour and minutes) and one for the 

command ID, wherewith, a total of 40 events can be stored. The reason for using 

a region into the EEPROM memory for the RTC time backup is to avoid to 

overwrite several times the same memory address constantly and produces a 

damage into the entire memory due to the excess of writing cycles given by the 

microcontroller datasheet [21]. 

2.1.4. OBC resets management 

Finally, is important to show how the resets are managed into the satellite. 

The only subsystem allowed to reset other subsystems is the EPS. The resets can 

be of two types, soft resets in which the EPS sends a digital reset signal directly 

to the Master Clear Pin External Reset (MCLR) to the respective PIC 

microcontroller and hard resets in which the EPS turns off for a short time the 

respective power line in order to reset all the entire components into the 

subsystem. The EPS resets the OBC in two specific cases, the first is when the 

OBC does not send any I2C data request to the EPS during more than 15 minutes 

and the second is when the COMM subsystem receives a satellite reset command 

from the ground station; in this case, the COMM subsystem sends a direct digital 

signal to the EPS without any OBC intervention via GPIO and then, the EPS 

resets all the subsystems into the satellite. Based on the above, in the satellite 

log, it is possible to differentiate two types of OBC resets, a satellite reset which 

came from the ground station and unknown resets generated due to an OBC 

hang. 



CHAPTER 2 - TEN-KOH MISSION OVERVIEW  

30 
 

2.2. Ten-Koh On-orbit issues 

2.2.1. OBC resets events 

The operation of satellite was divided into two stages, the first one called 

Launch and early phase (LEOP) stage in which the operations were limited to 

test the correct functionality of every subsystem into the satellite and whose 

duration was one month, the second called mission stage in which the satellite 

started to perform payload missions in normal mode. Since LEOP operations, the 

OBC has started to show in the satellite log several resets due to OBC hangs or 

unexpected resets and that resets continued appearing during the mission stage. 

Those resets can be divided into two types, normal resets and unknown resets. 

As was explained in the previous section, the satellite log stores the events 

occurred into the satellite including the time in which those occurs taken from 

the RTC. In the case when the time of the reset event is correct and corresponds 

or is similar to the real time, then that event is a normal reset and the 

approximate position of the satellite in the orbit can be estimated. Otherwise, in 

the case when the time of the reset event is incorrect, then, that event is 

designated as unknown reset due to the value was corrupted in the EEPROM 

memory probably because a radiation effect and therefore, is not possible to know 

the exact point on the orbit where the event occurred.  In view of above, the 

number of resets events occurred on the satellite since the launching day is shown 

in the Figure 12. The summary of the data obtained by the Figure 12 is shown 

in the Table 8. 

Table 8 - OBC reset events summary. 

Name Value 

Days of operation 123 

Total reset events 132 

Number of normal resets 102 

Number of unknown resets 30 

Average reset events by day 1.073 
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Figure 12. Number of OBC reset events during 123 days of Ten-Koh operations. 
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It is possible to estimate the location of the satellite when the normal reset 

events occurred using the time that appears in the satellite log and using a 

software for orbit calculation (e.g. Orbitron or STK). In the Figure 13, every red 

point represents the locations of the satellite where the normal resets occurred. 

In the case of the unknown resets, is difficult to estimate the position of the 

satellite where those resets occurred because the time stored in the satellite log 

is incorrect, however, comparing the satellite log with the ground station log, it 

is possible to estimate the correct value of the time when some resets occurred if 

the next event is a command sent from the ground station and the time between 

the two events is not big. Following that methodology, it was possible to recover 

the time of five unknown resets and therefore, it was possible to estimate their 

respective location in the orbit. In the Figure 14, the red points represent the 

position of the satellite when those unknown events occurred. 

 

 

Figure 13 - OBC normal reset events occurrences. The red and green regions 

illustrate the count rate of electrons and protons greater than 0.5 MeV [22]. 
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Figure 14 - OBC unknown reset events occurrences. The red and green regions 

illustrate the count rate of electrons and protons greater than 0.5 MeV [22]. 

 

 In order to analyze if the reset events were presented in the zones of the orbit 

where the amount of radiation is high, the resets occurrence location points are 

shown over a count rate of proton and electrons greater than 0.5 MeV in LEO 

plot measured by the NASA/SAMPLEX satellite [22]. The summarize of the 

results for the normal and unknown reset events are shown in the Table 9. 

In the case of normal resets, the 62.06% of those events occurred in the region 

with presence of proton and electron flux greater than 0.5 MeV while the 37.94% 

of those events occurred outside the radiation region. Regarding the unknown 

events, only five of those events could be recovered from the satellite log of which 

all of them occurred in the region with radiation fluxes greater than 0.5 MeV. 
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Table 9 - Reset events results summary. 

Name Value 

Total number of normal resets plotted 87 

Normal resets into the region > 0.5 MeV 54 

Normal resets outside the region > 0.5% MeV 33 

Total number of unknown resets plotted 5 

Unknown resets into the region > 0.5 MeV 5 

Unknown resets outside the region > 0.5% MeV 0 

 

2.2.2. EEPROM failures into other subsystems 

As mentioned previously, every subsystem except the OBC and the COMM 

use an SD card memory to store the measured data and all those subsystems 

store the SD card parameters (addresses and counters) into the EEPROM 

memory of each PIC microcontroller in order to be able to use it after a power 

off performed by the EPS. Same as the OBC, several subsystems also 

experimented data corruption into the EEPROM memories, probably for the 

same reasons as OBC. 

 

Table 10 - Ten-Koh subsystems EEPROM failures summary. 

Subsystem Always 
turned on? Failures? 

OBC Yes Yes, EEPROM (satellite log, reset counter and 
RTC backup) 

COMM Yes No, EEPROM not used 

ADS Yes Yes, SD card does not respond 

EPS Yes Yes, EEPROM (SD card address pointer) 

ECU No No, SD card parameters and payload thresholds 
stored in EEPROM works well 

UECU No No, SD card has not been used 

MMECU No No, SD card has not been used 
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In the Table 10, a summary of all satellite subsystem failures is shown, also 

the table shows if the subsystem is always turned on in order to analyze if that 

can be another reason that facilitate the EEPROM failures into the PIC 

microprocessor. 

It is possible to see based on the data shown in the Table 10 that only the 

subsystems that are permanently turned on (bus subsystems) are those that had 

been presented failures, especially with the EEPROM memory, the payload 

subsystems are turned on only in the mission mode that generally do not take 

more than one orbit, then those are not exposed to the radiation environment in 

operation for a long time. Regarding the EPS EEPROM failure, it also consists 

in a data corruption, similar to the OBC case. In this scenario, it is possible to 

know that the value was corrupted because the EPS stores the housekeeping 

values every minute and it stores the corresponding value in the successive SD 

card address, however, after OBC unknown resets also the EPS started to save 

the housekeeping data in a different memory address and in some cases even the 

previous values were overwritten due  to the address pointer data corruption. 

The ECU uses the same methodology for saving the mission data into the SD 

card but because it is not turned on for a long time then the subsystem has not 

experimented failures as yet. 

 

2.3. Reset events analysis 

In the previous section, Ten-Koh on-orbit issues were presented and discussed. 

The results show that the EEPROM memory into the PIC16F877 microprocessor 

experiments failures when is working continuously and several writing and 

reading transactions are performed. However, it is not possible to conclude that 

the failures are generated only due to the radiation environment because it was 

not possible to know the position of the satellite in all resets events where the 

data into the EEPROM was corrupted. It was possible to estimate just 5 of 30 
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of those events and the location matches with the zones in which the proton and 

electron flux is greater than 0.5 MeV (matches with the south and north radiation 

belts and the South Atlantic anomaly), also the 62.06% of the normal resets 

occurred inside that region which it is possible to formulate the hypothesis that 

probably these failures are mostly presented due to radiation phenomena. 

However, previous missions like Shinnen-2 used the same processor and no 

malfunctions was reported, even some radiation test was performed and the 

results shown that the PIC16F877 is suitable for space applications as mentioned 

in [18]. Also, as mentioned previously, the Ten-Koh CPD includes a Liulin 

spectrometer detector which can measure the total absorbed dose rate and the 

flux surrounding energetic particles in the space. This instrument has been used 

in several missions (included the International Space Station and deep space 

missions). It includes two PIC microprocessors (PIC16C74) and they have not 

reported any malfunction. The Liulin instrument was used in the Indian 

Chandrayaan-1 satellite performing experiments crossing the SAA directly at 

about 3000 km altitude, the maximum dose per channel reaches  1800 ���/ℎ��� 

( ~100000 ���/ℎ���  in total) [23]. Is important to mention that the PIC 

microcontroller used in the Liulin instrument belongs to the same family used in 

the Ten-Koh mission, but is not the same reference, also is not mentioned if the 

EEPROM memory into the microcontrollers has been used and additionally, the 

Liulin instrument is mounted into an aluminum cover plate plus some additional 

shielding which provide more protection against radiation issues [24]. 

In order to get more relevant information and to conclude the causes of the 

malfunctions discussed in this chapter, a radiation test was performed to the PIC 

microcontroller and the results will be presented in the chapter 6. 
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CHAPTER 3 - TEN-KOH COMMUNICATION SYSTEM 

ARCHITECTURE 

 

3.1. Hardware architecture 

The communication subsystem consists of two lines of communications, both 

were designated to work in the Ultra-High-Frequency (UHF) band. The downlink 

line includes a transmitter at 437.3 MHz and the uplink line includes a receiver 

at 435.2 MHz for downlink. The main purpose of the communication system is 

to receive uplink commands from the ground station and downlink data from 

satellite to ground station using the specified frequencies. The block diagram is 

illustrated in the Figure 15. The system consists in a Communication Control 

Unit (CCU) which is an 8-bit Microchip PIC16F877 microcontroller, it is in 

charge of managing the data received and to be sent to the On-Board Computer 

(OBC) using the Inter-Integrated Circuit (I2C) bus. For the transmitter part, 

the CCU is in charge to receive the data coming from the OBC, in order to do 

that, it has a software module which encodes the data using the AX.25 G3RUH 

protocol and send the encoded data to the Nishimusen TXE430MFMCW-302A 

module. Also, the CCU needs to configure the operation mode of the transmitter 

module using a digital interface. A level converter between the CCU and the 

transmitter module is needed in order to convert the voltage levels from 5V to 

3.3V. For the receiver part, the CCU is in charge of processing the command 

data received from the ground station through the Nishimusen RXE430M-301A 

by generating a General-Purpose-Input-Output (GPIO) signal. It interrupts the 

OBC and send the data using the I2C bus. In addition, the CCU has an AX.25 

Bell 202 decoder implemented by software and also, it has the duty to configure 

the receiver module frequency using a special digital interface similar to Serial 

Peripheral Interface (SPI). Two additional components are present between the 
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receiver module and the CCU, the first is a low pass filter at the input of the 

AFSK modem in order to reduce the noise in the audio output generated by the 

Nishimusen module and the second is the AFSK modem itself (MX-614) which 

is in charge to demodulate the AFSK analogue signal into a digital one. The final 

Printed Circuit Board (PCB) implementation is shown in the Figure 16. 

 

 

 
Figure 15 - Ten-Koh communication system block diagram. 

 

 

 

 
 

Figure 16 - Final Ten-Koh communication system PCB with RF modules. 
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Ten-Koh communication subsystem utilizes two UHF amateur frequency 

bands in full duplex mode. The data transmission is a packet based using the 

AX.25 protocol with baud rates of 1,200bps using a Frequency Shift Keying 

(FSK) modulation for uplink and 9,600bps using a Gaussian Minimum Shift 

Keying (GMSK) modulation for downlink. Also, as a system requirement, it 

includes a hot redundancy reception module and a cold redundancy transmitter 

module. The ground station is located in the Kyushu Institute of Technology 

(Tobata Campus) and includes an ICOM9100 transceiver, a Kantronics 

KPC9100+ Terminal Node Controller (TNC), a Yaesu G-5500 rotator, a Low 

Noise Amplifier and a dual Yagi antenna array. 

3.2. Software architecture 

The software architecture of the communication system is shown in the Figure 

17. It consists of two hardware driver modules, the first one performs the I2C 

slave communication with the OBC for receiving the control commands e.g. CW 

mode, transmission mode and receiving mode. The second hardware driver is for 

controls the GPIO interfaces necessary to interrupt the OBC when a valid 

command is received from the ground station and to control and configure the 

Nishimusen transmitter and receiver modules. The receiver software module 

consists of two blocks, the Bell 202 AX.25 1,200bps modem and the configuration 

blocks, the first is in charge to decode the packets received by the Nishimusen 

receiver module and store those locally in the microcontroller buffer in order to 

be read by the OBC lately, the second is in charge to generate the digital interface 

needed to tune the Nishimusen receiver to the correct frequency values at boot 

up. 

The transmitter software module also includes two blocks, the configuration 

block in charge to generate the GPIO signals needed to change the Nishimusen 

transmitter mode (CW or 9,600bps data) regarding the corresponding state 

machine state and the G3RUH AX.25 9,600bps modem block in charge to encode 
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the data received from the OBC to be sent to the ground station. Finally, the 

software is controlled entirely by a state machine which is constantly waiting for 

interruptions coming from the OBC thru the I2C bus. 

 
Figure 17 - Ten-Koh software architecture. 

  

Regarding the development tools for the software development, the Microchip 

MPLAB IDE and the XC8 compiler were used and the programming language 

for writing the code was C. 

3.3. System constraints and limitations 

After four months of on-orbit operations and during the system development 

phase, some constraints were found that made the design and the satellite 

operations complex. The first and the most important was the microcontroller, 

the Microchip PIC16F877 which was used in several successful missions. The 

major limitation using this microcontroller was that it has a 368 Bytes of SRAM 

and those are divided into four parts of 96 bytes in total [21], then, the system 
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has two major buffers, one for reception (35 bytes) and the other for transmission 

(65 bytes). For that reason, the system was limited to sending packets of just 65 

bytes when the AX.25 protocol allows to send packets until 255 bytes of data. Of 

course, it decreased the capabilities of the entire system and it took more time 

and processing resources when a large amount of data is needed to be sent, 

especially the data coming from the payloads. In the Table 11, the amount of 

data generated by the Ten-Koh payloads and the number of AX.25 packets 

needed to download a single measurement experiment using the 65 bytes packet 

size in comparison with the full AX.25 available packet size is shown. It is possible 

to observe that due to the microcontroller memory limitation in the system, the 

number of packets needed to download a single payload experiment is four times 

higher than using the full AX.25 packet size. According to the above, this 

constraint affects directly the number of passes required to download a single 

payload experiment. 

 

Table 11. Data generation for the Ten-Koh payloads. 

Payload 

Amount of 

data 

generated 

per single 

measurement 

by channel 

[Bytes/ch] 

Maximum 

time 

duration of 

the 

experiment 

[minutes] 

Total data 

generated 

for one 

experiment 

by 2 

channels 

[Bytes] 

Number of 

packets 

needed to 

download 1 

experiment 

(Ten-Koh 

system – 

65 bytes) 

Number of 

packets 

needed to 

download 1 

experiment 

(AX.25 – 

255 bytes) 

DLP (Hi-

Resolution) 
3,000 15 900,000 13,847 3,530 

DLP (Mid-

Resolution) 
1,500 15 672,000 10,339 2,636 

DLP (Low-

Resolution) 
600 15 180,000 2,770 706 

CPD 2,528 15 75,840 1,668 298 

ADS 64 15 57,600 887 226 

Material 

Mission 
60 15 18,000 277 71 

 

The Ten-Koh orbit is Sun Synchronous at 613 km altitude and 97.8 degrees of 

inclination, then, in one day, the satellite passes over the ground station in Japan 
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four times, however, typically only two of those passes have a good elevation for 

data downlink. In the real practice, in a good elevation pass, it was possible to 

download around 300 valid packets on average. Therefore, for example, to 

download a single DLP in high-resolution measurement with the mentioned 

limitation, the system requires 46 passes (23 days) which is a considerable 

operation time. On the other hand, using the full AX.25 packets, the operation 

time needed is 12 passes (6 days).  

Other constraints regarding the microcontroller are the limitation to use only 

one level of priority in the interruptions, the low clock speed (20 MHz maximum) 

[21] and the size of the SRAM memory (for the final software implementation it 

occupied the 97% of the entire available memory). 

The second major constraint is regarding the Nishimusen transmitter and 

receiver modules. These modules have been used successfully in several Japanese 

satellite missions e.g. Shinen-2 and Horyu-IV, but those devices are only limited 

to operate in VHF and UHF bands using AFSK (AX.25 Bell 202 at 1200 bps) 

and GMSK (AX.25 G3RUH at 9600 bps) modulations respectively which is not 

quite enough to meet the amount of data generated by the main payloads.  

Other constraints regarding those modules are that is not possible to modify 

the modulation schemes by software and in the case of the transmitter, even is 

not possible to modify the transmission frequency by software. The only way to 

do it is reprogramming the corresponding values in a specific EEPROM memory 

allocation using a PICKit programmer [25]. 
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CHAPTER 4 - PROPOSED SDR IMPLEMENTATION 

 

4.1. Methodology and Raspberry Pi prerequisites 

In order to be able to use the Raspberry Pi as the main processor for the SDR 

proposed architecture, some software tools are necessary. The first requirement 

is to prepare the operating system into the MicroSD card in order to be loaded 

at boot up. The operative system used for the proposed designs, simulation and 

testing is the Raspbian Stretch Linux distribution, it is based on Debian and is 

the official distribution provided by the Raspberry Pi foundation, it includes the 

required libraries that allows to use a graphical desktop environment (required 

for the GNU Radio Companion environment).  

The second and the principal tool is the GNU Radio suite, which is a free and 

open source software toolkit that provides signal processing blocks in order to 

implement and simulate software defined radios. It includes a graphical 

environment called GNU Radio Companion in which it is possible to create, 

configure and connect the corresponding blocks required to build the design. 

Moreover, the graphical environment allows to execute and simulate the design 

in real time using the adequate blocks (QT GUI blocks), however, that blocks 

must be removed completely at the moment of the final implementation. Before 

installing the GNU Radio package, it is recommendable to check whether the 

system has the required dependencies and libraries to build various signal 

processing blocks [26], after that, the installation process can be completed by 

executing the command “sudo apt-get install gnuradio gnuradio-dev” on a terminal 

window. 

By default, GNU Radio offers several signal processing blocks and modules for 

SDR development. However, the installation of additional open-source libraries 

is needed in order to implement the proposed architectures presented in this paper. 

That libraries are: The SatNOGS GNU Radio Out-Of-Tree module [27], the gr-
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satellites library which includes several decoders for several radio amateur 

satellites [28] and the gr-bruninga library which includes some tools to encode 

and decode Audio Frequency-Shift Keying (AFSK) signals [29]. The libraries 

mentioned above were installed into the Raspberry Pi following the instructions 

that appear on their respective web sites. 

Another advantage to using the Raspberry Pi in conjunction with Raspbian is 

that there are available native drivers for managing the I2C, SPI, UART and 

GPIO interfaces. It facilitates the development because if any of that interfaces 

are needed in the design, from the software standpoint, just importing and calling 

the corresponding drivers is enough to use them. 

The methodology used to develop all the components into the SDR 

architecture is shown in the Figure 18. The creation, configuration and connection 

of the corresponding signal processing blocks are made in the GNU Radio 

Companion graphical interface in order to perform the corresponding testing, 

tuning and simulations to verify the design performance.  

 
 

 
 

Figure 18 - SDR design methodology flow chart using GNU Radio. 
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Figure 19 - GNU Radio Companion basic exemplar diagram. 

 
 

Finally, the functional scheme is exported in a Python code script that can be 

used by the main program (state machine) to exchange input/output data and 

configuration parameters. To explain the above in a better way, the most basic 

exemplar diagram in the GNU Radio Companion is shown in the Figure 19, which 

is a Cosine Signal Generator. Here the Signal Source block is configured to output 

a 1 kHz cosine signal with amplitude equals to 1, without offset and the output 

signal is connected to the Audio Sink block which controls the audio output into 

the Raspberry Pi to generate the analog signal. In the Figure 20, a part of the 

generated python code is shown in which it is possible to observe how the 

variables are declared, how the blocks are defined and how the configuration 

values are included as function inputs into the blocks. For example, in the case 

of the Signal Generator block, it is declared calling the function 

“analog.sig_source_f” in which the input parameters are the sample rate, the 

waveform, the frequency in Hz, the amplitude and the offset. Those parameters 

can be reconfigured externally using another script or high-level application. 

Finally, the physical connection declaration between the two blocks is shown.  

In the next section, the proposed SDR implementations will be shown. The 

GNU Radio companion diagrams that will appear corresponds to those that were 

used for testing the parameters and performance of the system. 
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Figure 20 - Generated phyton code script from basic exemplar diagram. 

 

4.2. Partial SDR implementation 

The partial SDR proposed implementation consists in replacing the Ten-Koh 

communication PCB by only a Raspberry Pi module, a USB external audio card 

and keeping the same Nishimusen RF modules. In this case, it is not possible to 

implement an entire SDR architecture property because the constraints 

previously discussed and still present in the transmitter and receiver modules. 

However, the major constraints due to the microcontroller can be solved and the 

hardware implementation is significantly improved because basically the PIC 

microcontroller is upgraded by the Broadcom BCM2837B0, with Cortex-A53 

(ARMv8) 64-bit SoC included into the Raspberry Pi.  

The block diagram of the hardware architecture is shown and explained in the 

Figure 21. To be able to receive the AFSK audio signal generated by the receiver 

RF module, an available audio input is needed, but unfortunately the Raspberry 

Pi has only an available audio output. To solve it, a simple USB sound card is 

connected and configured as the main audio card into the Raspbian operative 

system. Another advantage that this implementation brings is the option to add 

easily and without additional hardware an AX.25 Bell 202 1,200bps encoder using 

the same audio interface and just connecting it to the audio input in the 

Nishimusen transmitter module as is shown in the Figure 21.  
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Figure 21 - Partial SDR implementation architecture. 

 

 

In the case of the software, the architecture is similar as the Ten-Koh case, 

there is one part in charge to handle with the transmitter at 9,600bps and the 

other in charge to handle the receiver at 1,200bps. For the receiver, the GNU 

Radio platform is used to implement the AFSK decoder replacing the passive 

input filter and the FX614 AFSK modem into the Ten-Koh system. As shown in 

the Figure 22, the Audio Source block is used to receive the audio signal provided 

by the receiver RF module, after, the signal is connected to the FSK Demodulator 

block from the gr-bruninga library which decodes the AFSK signal into digital 

data (the same function that the FX614 does in the Ten-Koh system). Finally, 

the signal is connected to the input of the HDLC Deframer block from the gr-

satellites library which is in charge to decode the AX.25 into raw data. To verify 

if the correct data is received, the HDLC to AX.25 block is used to print out in 

the terminal the decoded data. The GNU Radio Companion diagram of the 

receiver AFSK decoder is shown in the Figure 22.  

In the case of the transmitter, the 9,600bps encoder and the control interfaces 

to configure the RF module cannot be implemented by using the GNU Radio 

platform because everything is controlled digitally by GPIO interfaces, a function 



CHAPTER 4 - PROPOSED SDR IMPLEMENTATION  

48 
 

which the platform does not support. The same situation happens with the digital 

interface for configuring the receiver RF module. In this case, the proposed 

solution is modifying the Python code generated previously by GNU Radio, 

adding the GPIO driver support to handle the digital interfaces for controlling 

the Nishimusen modules and for implementing the AX.25 G3RUH encoder at 

similar way as implemented in the PIC microcontroller. 

Additionally, as mentioned previously, due to the inclusion of the USB audio 

card that can provide an audio output to the transmitter RF module, it is possible 

to implement an AFSK Encoder using the GNU Radio platform. The diagram is 

shown in the Figure 23, on it is possible to observe three blocks that take the 

data coming from a text or hex file and convert it into strings, that strings are 

input to the AX.25 encoder and FSK modulator that consist in two blocks, the 

String to APRS block in charge to add the AX.25 headers (call sign source and 

destination) and the AX.25 AFSK Modulator block in charge to include the flags, 

preamble and postamble required to the AX.25 encoding, same as the value of 

the frequency of the two tones required for the FSK modulator. The two 

mentioned blocks are part of the gr-bruninga library. Finally, the encoded AFSK 

data is connected to the input to the Audio Sink block which will generate the 

analog signal in the USB audio card output in order to be sent to the Nishimusen 

transmitter input. 

 

 

 

 

 
Figure 22 - AFSK decoder block diagram implemented on GNU Radio. 

AFSK MODEM 
DECODER 
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Figure 23 - AFSK encoder block diagram implemented on GNU Radio. 

 

4.3. Complete SDR implementation 

The complete SDR implementation consists in the previously shown 

improvement contributed by the replacement of the Ten-Koh CCU PIC by the 

Raspberry Pi module plus the replacement of the Nishimusen modules by a single 

LimeSDR-mini module. In this case, the complete SDR architecture is shown in 

the Figure 25 in which the two typical parts of an SDR architecture are present, 

the software part that is controlled entirely by the Raspbian operative system 

and the hardware part that consist in the Raspberry Pi module and the 

LimeSDR-mini RF module connected by one USB port. The hardware part is 

shown in the Figure 24.  

The software part is divided into four modules, two of them consists of a 

transmitter and a receiver in AFSK Bell 202 1,200bps and the other two consist 

in a transmitter and a receiver in GMSK G3RUH 9,600, all of them were 

designed, simulated and tested using the GNU Radio Companion suite. 

 

 
Figure 24 - Complete SDR hardware implementation. 
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Figure 25. Complete SDR architecture block diagram. 

 

 

 



CHAPTER 4 - PROPOSED SDR IMPLEMENTATION  

51 
 

The AFSK transmitter block diagram implemented in GNU Radio is shown in 

the Figure 26. It consists if a Socket PDU block which establishes a Protocol 

Data Unit (PDU) session in order to receive the data to be transmitted, an AFSK 

modulator that includes a block to generate the AX.25 headers (source and 

destination call signs) and the FSK modulator block itself in charge to generate 

the Bell 202 audio tone, same as the AFSK encoder in the partial SDR 

implementation. Also, it includes a Frequency Modulator (FM) block which is in 

charge to modulate the audio tone into the carrier frequency (437.3 MHz) and 

finally, the LimeSuite Sink transmitter block that configures all the parameters 

needed for the LimeSDR-mini module, e.g. frequency, internal filters, power 

output gain and frequency channel. 

The AFSK receiver implemented in GNU radio is shown in the Figure 27. It 

consists in the LimeSuite Source receiver block that tune the RF frequency at 

435.2 MHz, the internal filters, the channel band and the receiver Low Noise 

Amplifier (LNA) power level. It includes also a low pass filter block for removing 

the undesirable frequencies, an FM demodulator in order to recover the audio 

tone from the radio frequency carrier, an amplifier block to adequate the correct 

level value for the audio tone, an FSK demodulator which decodes the digital 

data from the audio tone and finally, a High-Level Data Link Control (HDLC) 

deframer that decode the AX.25 packets and outputs the row received data. 

Joining the AFSK transmitter and receiver, we have a complete SDR solution for 

the AX.25 BELL 202 at 1,200bps used in Ten-Koh and typically used in satellite 

communications using the radio amateur frequency band.  

Regarding the GMSK G3RUH 9,600bps transmitter, the proposed solution 

implemented in the GNU Radio Companion is shown in the Figure 28. It includes 

a User Datagram Protocol (UDP) Message Source block which establishes a UDP 

session in order to receive the data to be transmitted, an AX.25 encoder (which 

is part of the SatNOGS library) for encode the data in AX.25 G3RUH which 

include the flags, headers and one additional scrambler required for 9,600bps baud 
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rate. Also, a GMSK modulator block is used to modulate the encoded data in a 

carrier wave. The resulting signal needs to be resampled depending the value of 

the samples per symbol used in the modulator block and the baud rate (10 

samples per symbol and 9,600bps respectively). For that duty, the Rational 

Resampler block calculates the resampler rate adequate for the input of the 

LimeSuite transmitter block. The resampler rate is calculated as shown in the 

Equation 9. The �������������_���� is the sample rate which is configured 

into the LimeSuite sink (TX) block, the baud rate is 9,600bps, the 

 �������������  are the number of samples to represent one GMSK 

constellation point (in this case is 10) and the interpolation and decimation 

values are the parameters needed by the resampler block in order to 

perform the sample rate escalation. 

 

�������������_���� =
(�������� ×  �������������) ×  �������������

����������
  

Equation 9 - LimeSDR resample rate calculation. 

 

Finally, the resulting signal is connected to the input of the LimeSuite Sink 

(TX) block that configures the frequency value at 437 MHz, the sample rate at 

500 kHz, the internal filters, the power output and the channel band. The power 

output has to be modified depending how far is the receiver in order to avoid the 

saturation. 

For the GMSK G3RUH receiver, the GNU Radio Companion implementation 

is shown in the Figure 29. At first, the LimeSuite source (RX) block is used to 

configure the parameters of the receiver at the same way used in the AFSK 

implementation. 

Then, the received signal has to be resampled properly to the 9,600bps baud 

rate using the Rational Resampler block, the interpolation and decimation values 

are chosen in adequate way using the Equation 10. 
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��������_���� = �
�������������_����  ∙  �������������

����������
� 

Equation 10 - Resample rate for GNU radio rational resampler block. 

 

The above changes the sample rate from 500 kHz used by the LimeSuite block 

to 96 kHz needed in the Low Pass Filter block which is in charge to remove the 

undesired frequency component of the received signal. After the GMSK 

demodulator block is used to demodulate the signal and to divide the sample rate 

by the modulation samples per symbol to recover the original G3RUH baud rate 

(9,600 bps). Finally, to decode the data packets, the G3RUH AX.25 decoder is 

implemented using an NRZI decoder block, a descrambler block and one HDLC 

deframer block (part of the gr-satellites library). The decoded data packets are 

printed out and stored using the HDLC to AX.25 block which is part of the 

SatNOGS library which includes different utilities and tools in GNU Radio to 

develop ground station software for radio amateur satellites [27].
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Figure 26 - AFSK BELL 202 transmitter implemented in GNU Radio. 

 

 

Figure 27 - AFSK BELL 202 receiver implemented in GNU Radio. 
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Figure 28 - GMSK G3RUH transmitter implemented in GNU Radio. 

 

 

 

 
Figure 29 - GMSK G3RUH receiver implemented in GNU Radio. 
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4.4. SDR transmitter improvement 

The proposed SDR transmitter has previously covered the Ten-Koh mission 

requirements and overcome the main limitations, however there are still two 

considerable constraints. The first one is the transmission data rate limitation 

due to the USB interface used in the LimeSDR mini module, it allows data 

transmission rate up to 19.2 MSPS (Mega Samples Per Second) which can be a 

limitation for satellite missions with more payload data generation. The second 

one is that there is not a possibility to reprogram the microcontroller on-flight, 

feature which would be very important for maintenance purposes and for 

correcting possible data corruptions due to radiation effects. 

For the above reasons, a transmitter improvement is proposed and described 

hereunder in this numeral. It consists in the inclusion of an FPGA device in which 

the transmitter modulators are implemented. The FPGA device can be 

reprogrammed via the Raspberry Pi using a JTAG interface. The proposed 

hardware architecture is shown in the Figure 30.  

On it is possible to observe the data interface connections which consist of a 

data line that provide the raw data from the Raspberry Pi to the FPGA and two 

selection lines that will be used to select the desired modulation scheme depending 

the application requirements. The modulated output is provided by eight-bit 

digital data which can be connected directly to any RF front end module for its 

transmission.  

 

 

 

Figure 30 - SDR transmitter improvement hardware architecture 
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Regarding the software architecture, it is divided in two parts. The former is 

the implementation of the transmitter modulators into the FPGA and the latter 

is the implementation of the JTAG interface to reprogram the FPGA logic into 

the Raspberry Pi. 

In the Figure 31, the transmitter improvement software architecture is 

presented. In the FPGA, four modulators (BPSK, FSK, QPSK and MSK) are 

implemented, those can all be programmed at the same time and also can be 

selected via GPIO selection pins data interface. Additionally, only one of the 

modulators can be programmed depending the mission requirements and to use 

the remaining free FPGA logic for other applications. Into the Raspberry Pi, the 

FPGA configuration files (bit files) are stored locally, those can be selected and 

reprogrammed into the FPGA logic via the JTAG controller depending the 

definitions and requirement defined in the user app. The advantage of the above 

is that it is possible to change the modulation schemes of the transmitter 

depending the mission requirements and also if there is a malfunction detected 

on the transmitter, the respective modulator scheme can be reprogrammed in 

order to recover the system due to a failure produced by a single event upset. 

Another advantage is that this architecture allows reprogramming the system in-

flight due to the FPGA configuration files can be received from the ground station 

via uplink and stored locally into the Raspberry Pi for performing on-flight 

upgrades to the transmitter system. 

 

 

Figure 31 - SDR transmitter improvement software architecture 
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4.4.1. FPGA modulators design methodology 

For the implementation of the respective transmitter modulators, the Xilinx 

Vivado IDE suite is used in conjunction with a MATLAB suite via the System 

Generator tool. This tool allows to design and simulate the modulators using the 

MATLAB Simulink environment to verify the correct functionality. After that, 

the design can be exported into a Xilinx Vivado project in which the design can 

be synthesized, implemented, programmed and simulated on the real FPGA 

environment. 

In the Figure 32, a very basic example of the used methodology is shown. It is 

a sinusoidal signal generator which consists in the following blocks: 

 A System Generator block used to configure all the parameters of the 

design like the FPGA model, the system clock settings, the hardware 

description language and the synthesis and implementation strategies.  

 A DDS Compiler block used to configure all the parameters to generate a 

sinusoidal wave with a frequency of 1MHz. 

 An FPGA output port used to assign a real FPGA pin in which the signal 

will be generated. 

After configuring and connecting the respective blocks, a simulation can be 

executed to verify the correct functionality of the design. 

The next step of the design methodology process is to generate the respective 

Xilinx Vivado Project. It can be possible pressing the “Generate” button into the 

System Generator block. This action will generate a complete project with all the 

required configurations that can be opened into the Vivado IDE suite. In the 

Figure 33 a screenshot of the generated project is shown, on it is possible to 

observe the exported VHDL code simulated, synthetized and implemented into 

the FPGA. 

Finally, the project can be programmed into the FPGA and it is possible to 

debug and make real time simulations using the real hardware to finishing to 

verify the correct functionality of the design.
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Figure 32 - FPGA design methodology example using Xilinx System Generator and MATLAB Simulink 
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Figure 33 – Generated Xilinx Vivado IDE suite from the System Generator design methodology example
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4.4.2. FPGA modulators implementation 

In this section, the design of four modulators is presented. The respective 

System Generator block diagram generated in MATLAB Simulink and the 

simulation results is presented for a BPSK, FSK, QPSK and MSK modulators. 

 

 Binary Phase-Shift Keying (BPSK) 

The BPSK is a phase-based modulation where the phase of the carrier wave 

is shifted by π (180 degrees) to represent a “1” or “0” binary values [30]. The 

signal waveform output of the modulator is given as: 

 

��(�)＝

⎩
⎪
⎨

⎪
⎧

�
2��

��
sin(2����)     ,   �������� = 0

−�
2��

��
sin(2����)  ,   �������� = 1

 

Equation 11 - BPSK modulation waveform output 

 

Where �� is the bit period and �� = ∫ ��
�(�)��   0 ≤ � < ��

��

�
 is the energy per 

bit. 

 

 

Figure 34 - BPSK modulator implementation 
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Figure 35 - BPSK modulator simulation results 
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The implementation of the BPSK modulator in the System Generator is shown 

in the Figure 34. On it is possible to observe a DDS compiler generator that is 

configured to generate a sinusoidal signal with a frequency of 1MHz, that signal 

is connected to the first input of a multiplexer (d0) and represents the carrier 

wave when the data input bit is “0”. The same sinusoidal signal is inverted using 

the logical “not” block and it is connected to the second input of the multiplexer 

(d1). The data input is connected to the selector input of the multiplexer, then, 

depending of its binary value, the signal is commuted at the output. 

In the Figure 35, the simulation results of the modulator are shown. The data 

input bits, the sinusoidal wave and the modulation output signals are plotted. 

Here, it is possible to see how the phase is shifted π (180 degrees) when the input 

bits change which is the expected behavior of the BPSK modulator. Also, the 

FPGA logic utilization and the estimated on-chip power consumption is shown. 

 

 Binary Frequency Shift Keying (FSK) 

The FSK is a frequency-based modulation where the frequency of the 

carrier signal varies with the value of the binary data input in which “0” 

corresponds to one frequency value and “1” corresponds to another frequency 

value. The modulated signal output is given by: 

 

⎩
⎪
⎨

⎪
⎧

��(�) = �
2��

��
cos(2����) ,   �������� = 0

��(�) = �
2��

��
cos(2����) ,   �������� = 1

 

Equation 12 - FSK modulation waveform output 

 
 

Where �� is the bit period (0 ≤ � <  ��) and �� = ∫ ��(�)��(�)�� = 0
��

�
 is the 

energy per bit. 
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The implementation of the FSK modulator in the System Generator is 

presented in the Figure 36. The implementation is based on a multiplexer as same 

as the BPSK implementation with the difference that in this case, there are two 

DDS Compiler generator blocks in charge of generating the sine carrier waves at 

1MHz and 2MHz respectively which are connected in the inputs (d0 and d1). The 

modulator output will change between the different frequency carrier waveforms 

depending of the binary value of the data input connected with the selector port 

of the multiplexer. 

 

 

Figure 36 - FSK modulator implementation 

 
In the Figure 37, the simulation results of the FSK modulator are shown. The 

data input bits, the two sinusoidal waveforms and the modulation output signals 

are plotted. Here, it is possible to observe how the carrier wave signals are 

commuted when the binary value of the input changes, which is the expected 

behavior of the FSK modulator. Also, the FPGA logic utilization and the 

estimated on-chip power consumption is presented. 

 

.
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 Figure 37 - FSK modulator simulation results 
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 Quadrature Phase-Shift Keying (QPSK) 

As explained previously, a BPSK modulator is defined by two carrier 

signals with a phase shifting of π (180 degrees) which represents the binary 

data input (“0” or “1”). In the case of the QPSK modulator, it is defined by 

four carrier signals with a phase shifting of π/2 (90 degrees) in which each 

signal represents a pair of binary data input (“00”, “01”, “10” and “11”). It 

means that two data bits are transmitted per carrier signal duplicating the 

data transmitted by the BPSK modulator. The QPSK modulator output is 

defined by: 

 

�(�) = �
2��

��

[cos�(�) cos(2����) − sin�(�) cos(2����)],

�(�) = � �

      0 →   00
�/2  →   01

−�/2 →   10
       � →   00

    

Equation 13 - QPSK modulator waveform output 

 

Where �� is the bit period (0 ≤ � <  ��) which is the double than in the BPSK 

case. 

 

Figure 38 - QPSK modulator implementation 
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The implementation of the QPSK modulator in the System Generator is 

presented in the Figure 38. It consists basically in two BPSK modulators 

implementation, same as previously explained. The DDS Compiler generator 

block is in charge of generating the sine and cosine waves. Each signal is inverted 

using an inverter “not” block and the resulting two signals are connected to the 

inputs (d0 and d1) of a different multiplexer (1 and 2). For dividing the data 

input bit stream into the even and odd components, a Time Division 

Demultiplexer (TDD) block is used, it acts as a serial to parallel (2 bit) converter 

which provides the selector outputs to control the output of the multiplexers that 

represent the I and Q components of the modulator signals. Finally, for obtaining 

the QPSK modulated signal, the I and Q components are added using an addition 

block. 

In the Figure 39, the simulation results of the QPSK modulator are shown. In 

the first place, the data input bit stream and the I and Q components resulting 

in the output of the TDD block are plotted for verifying the correct 2-bit parallel 

conversion. Here, it is possible to observe clearly that the period of the I and Q 

signals are two times the period of a single bit from the data stream. Finally, it 

is possible to see how the carrier wave phase varies correctly depending on the I 

and Q combinations as explained on the Equation 13. 

 In addition, on the Figure 39, the FPGA logic utilization and the estimated 

on-chip power consumption is presented. 

 

 Minimum-Shift Keying (MSK) 

The QPSK modulation presented previously is one of the most used in satellite 

communications due to the better spectral efficiency that offers the possibility to 

send two bits trough one carrier signal. However, in a satellite communications 

system, RF amplifiers are typically used to increase the power output of the 

transmitted signals.  
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 Figure 39 - QPSK modulator simulation results 
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When those amplifiers operate near to the saturation, those generally exhibits 

a nonlinear output causing distortion to non-continuous modulated signals [30]. 

That is the case of the BPSK and QPSK modulators due to the carrier wave 

phase changes. To overcome the above, continuous or near-continuous phase 

modulated signals are desired like the OQPSK (Offset QPSK) or MSK 

modulators. 

The OQPSK (Offset QPSK) modulator is a variation of the QPSK modulator 

where the I and Q bitstreams are offset in time by one time period ��. It results 

in a phase change of only 0 and ±π/2 which means that the modulation signal is 

nearly continuous. [30]. Additionally, if the I and Q signals of the OQPSK 

modulator are shaped with a sinusoidal pulse, then the phase changes became 

completely continuous and it is the principle of the MSK modulator. 

Taking into account the above, the MSK modulated signal can be represented 

as same as the QPSK modulator (Equation 13) whit the addition of the sinusoidal 

shaped pulses to the I and Q components which result in the following expression: 

  

�(�) = �
2��

��
�cos�(�) cos �

��

2��
� cos(2����) − sin�(�) sin �

��

2��
� cos(2����)� 

Equation 14 - MSK modulation waveform output 

 

Where cos(��/2��)  is the sinusoidal shape of the I component and 

sin(��/2��) is the sinusoidal shape of the Q component. 

The implementation of the MSK modulator in the System Generator is 

presented in the Figure 40. It consists in a TDD block that takes the binary data 

input to generate the binary I and Q signals with bit period 2�� ; after, a 

combination of a DDS Compiler and an inverter “not” blocks which are used 

to generate two 0.25MHz sinusoidal signals with a phase difference of π (180 

degrees). Those sinusoidal signals are connected to the inputs of two 

multiplexers which are controlled by the binary I and Q signals generated by 

the TDD block. Doing the above, the sinusoidal shaped I and Q signals are 
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generated as the MSK modulator requires. Next, the resulting signals are 

multiplied with a 1MHz sine and cosine signals generated by another DDS 

Compiler block respectively. Finally, the two resulting signals are added using 

an addition block generating the MSK modulated signal. 

 

Figure 40 - MSK modulator implementation 

 

In the Figure 41, the simulation results of the MSK modulator are presented. 

In the first place, the data input bit stream and the I and Q components resulting 

in the output of the TDD block are plotted for verifying the correct 2-bit parallel 

conversion, same as in the QPSK modulator simulation. Next, the sinusoidal 

shape I and Q signals are plotted; here, it is possible to observe the �� offset of 

the Q component to comply with the OQPSK modulator property as explained 

before. Finally, we can notice how the resulting MSK modulated signal varies the 

phase changes are completely continuous as expected. In addition, on the Figure 

41, the FPGA logic utilization and the estimated on-chip power consumption is 

presented. 

The presented implementations until here can be implemented individually 

into the FPGA logic. Then, the configuration files generated can be used by the 

Raspberry Pi application to reprogram the FPGA logic depending the mission 

needs. 
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Figure 41 - MSK modulator simulation results 
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Next, an integrated implementation where the four presented modulators are 

included in the case that the Raspberry Pi application can change the modulation 

scheme via GPIO selection pins. 

 

 Integrated modulators implementation 

In the Figure 42, a complete integration of the previous modulators 

implementations is presented. As we can see, the DDS Compiler block that 

generates the 1MHz sine and cosine signals is shared for all modulators as same 

as the TDD block is shared for the generation of the I and Q signals required for 

the QPSK and MSK modulators. Each modulator block consists in the same 

implementations presented and explained previously, however, to be more 

specific, the internal block diagrams that conforms each modulator are detailed 

in the appendix 1. Finally, to be able to select the desired modulation output, a 

multiplexer is added to the implementation. All the outputs of the modulators 

are connected to the multiplexer inputs and a modulator selection is performed 

via a selection port that consist of two lines which are controlled externally; 

depending the input combinations of that port, each modulator can be selected.   

 

Figure 42 - Integrated modulators implementation 



CHAPTER 4 - PROPOSED SDR IMPLEMENTATION  

73 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 43 - Integrated modulators simulation results 
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The result of the above implementation is presented in the Figure 43. In 

the plot the following signals are shown: 

 The decimal value of the selection port, if the value is “0” (00) the 

BPSK modulator is selected, if the value is “1” (01) the FSK modulator 

is selected, if the value is “2” (10) the QPSK modulator is selected and 

finally, if the value is “3” (11) the MSK modulator is selected. 

 The data input serial stream 

 The binary I and Q components generated by the TDD block 

 The modulated output in which it is possible to observe the BPSK 

output from 0 to 1,600ns when the value of the selector input is “0”, 

the FSK output from 1,600 to 3,200ns when the value of the selector is 

“1”, the QPSK output from 3,200 to 6,400ns when the value of the 

selector is “2” and finally, the MSK output from 6,400 to 9,600ns when 

the value of the selector is “3”  

As it is possible to observe, the simulation of the complete integration of the 

four modulators works according to the explained previously. Additionally, on the 

Figure 43, the total FPGA logic utilization and the estimated on-chip power 

consumption is presented. 

4.4.3. FPGA reprogramming system  

As shown in the Figure 30 and the Figure 31, the complete SDR transmitter 

optimization consists into the FPGA part in which the modulators can be 

programmed and executed and the Raspberry Pi part in which the 

reprogramming module is implemented via a JTAG interface and can be 

controlled by the application app. The implementation of the modulators into the 

FPGA part was already described, now, the FPGA reprogramming system 

implemented into the Raspberry Pi is explained. 

The base of the system is a JTAG controller which is in charge to control and 

execute the reprogramming process using the JTAG protocol. JTAG (Join Test 
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Action Group) is the name of the group that developed the IEEE 1149.1 standard 

used for verifying, testing and debugging printed circuit boards via Test Access 

Ports (TAP), the complete description of the standard can be consulted on [31]. 

A good summary of the JTAG standard is presented in [32] in which the most 

relevant features and characteristics are explained as well as the flow charts about 

the TAP controller state machine. 

The JTAG standard is used for Xilinx FPGAs also for programming, debug 

and readback their devices, usually using their Platform Cable USB II device [33]. 

However, on [34] there are a clear explanation about the Xilinx In-System 

Programming for their devices using bit configuration files, Serial Vector Format 

(SVF) and Xilinx SVF (XSVF) files. 

Due to the Raspberry Pi is a device capable to run under Linux distribution, 

there are some tools that allows to use it as a JTAG standard controller using 

the GPIO drivers as TAP controller, for example, UrJTAG [35] and OpenOCD 

[36]. Both have the capability of executing SVF files conforming to the JTAG 

standard in order to program or debug Xilinx FPGAs, however, not all SVF 

commands are compatible and it generates some errors executing the SVF files 

generated by Xilinx IDEs (Vivado and ISE). Another limitation using SVF files 

is the size which, depending the logic utilization, can be in the order of MB which 

is a problem if we want to send the file via uplink to the satellite for maintenance 

purposes. 

After testing the both options, the tool used for this implementation was 

OpenOCD because additionally to the SVF player feature, it has the possibility 

of programming the configuration bit file directly to the FPGA which decrease 

the time needed for the FPGA programming for flashing the device and also 

allows to send the configuration file easily via uplink to the satellite due to the 

typical size of the bit files is in the order of hundreds of kB. 

The block diagram of the FPGA reprogramming system is shown in the Figure 

44. The system was tested for two Xilinx FPGA families, the Spartan 6 (included 
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in the HumanData XCM-110-LX75 module [37]) and the Kintex 7 (included in 

the HumanData XCM-112-160T module [38]). According with the Xilinx 

application note “Using SPI Flash with 7 Series FPGAs” [39], an SPI flash 

memory is recommended to store the configuration bit file of the FPGA in order 

to reprogramming the logic every time the power is shut down. Also, a typical 

connection between the FPGA and the flash memory is shown and it explains 

how that memory can be programmed via JTAG standard. Both tested modules 

already include the flash SPI memory with their respective connections as shown 

in detail in the mentioned application note. 

 

 
 

Figure 44 - FPGA programmer block diagram 

 

In the Raspberry Pi side, the bit configuration files of the implemented 

modulators for the FPGA are stored into the SD card, then, the JTAG controller 

is in charge to program that files only into the FPGA logic or into the FPGA 

logic plus the SPI flash memory depending the user application needs. As 

mentioned previously, the selected tool for the implementation is the OpenOCD, 

then, the first step is to compile and install it into the Raspberry PI. To do that, 

the followed procedure was based the official repository [40] and the tutorial 

created by Ardafruit for ARM microcontrollers [41].  
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In [42], an extensive user manual about all the OpenOCD functions and 

commands is presented. The tool needs two configuration (.cfg) files, the first is 

the interface file which includes the details and definitions about the hardware 

used as a JTAG interface (e.g. a JTAG adapter or specifically in this 

implementation, the Raspberry Pi GPIOs); the second is the target file which 

includes the definition of the JTAG TAPs of the device that OpenOCD should 

control/debug/program (e.g. ARM CPU or specifically in this implementation 

the Xilinx FPGAs).  

Regarding the interface configuration file, by default, the OpenOCD repository 

includes three files to use a Raspberry Pi as a JTAG interface in the “interface” 

folder, one of them uses the sysfs driver to access to the GPIOs which is 

compatible with all Pi versions and the other two files use the bcm2835 driver, 

one of them is compatible only with the Pi version one or the Pi Zero and the 

other is compatible with the Pi version two only. After test the two available 

options with the Pi Zero and the Pi 3B+, in the case of the Pi Zero, the most 

reliable and fastest driver was the bcm2835 and in the case of the Pi 3B+, the 

most suitable and fastest driver was the sysfs. The details and differences of the 

both drivers are presented in [43]. 

Regarding the target files, by default, the OpenOCD repository includes the 

target files for the Xilinx Spartan 6 and 7 family FPGAs in the “cpld” folder. For 

this implementation the default files worked successfully without any 

modification. 

Until now, OpenOCD with the default configuration allows the possibility to 

debug and reprogram the FPGA logic, however, it is not possible to reprogram 

the SPI flash memory attached to the FPGA device. In order to achieve that, a 

custom interface configuration file should be created, including the TAP 

instructions to program the SPI flash memory through the FPGA itself, 

programing in the logic a bscan-SPI bitstream controller to manage the flash 

memory programing via the SPI protocol. The custom configuration file used in 
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this implementation was created on the base of the configuration files included in 

the netv2mvp-scripts repository [44], and the final version used for all the 

implementation and test are shown in the appendix 2 with respective comments 

explaining the functionalities. The bscan-SPI bitstream files used to program the 

FPGA logic temporarily for performing the SPI flash memory programing task 

can be found in the Quartiq repository [45] (“bscan_spi_xc7k160t.bit” for the 

Kintex 7 FPGA and the “bscan_spi_xc6slx75.bit” for the Spartan 6 FPGA). 

The test and results of the FPGA reprogramming system are shown in the 

next chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 - RESULTS AND DISCUSSION  

79 
 

CHAPTER 5 - RESULTS AND DISCUSSION 

In order to test and characterize the Ten-Koh system and the proposed SDR 

architecture, some key parameters were chosen to be measured and compared. 

 The parameters are: for the receiver part, the performance for different signal 

strengths in order to obtain the practical sensitivity values and the maximum 

number of received bytes per AX.25 packet; for the transmitter part, the power 

output and the maximum number of bytes allowed to send per AX.25 packet. 

A power consumption test was performed on the two systems executing the 

receiving and transmitting functions at the same time and in the specific case of 

the proposed SDR implementation, it was implemented in a different Raspberry 

Pi model in order to compare the different power consumptions depending the 

used model. 

On the other hand, some simulations were performed in order to have an idea 

about the performance of the proposed SDR implementation for the signal-to-

noise ratio (SNR) and the Packet Error Rate (PER) modeling an Additive White 

Gaussian Noise (AWGN) channel between the transmitter and the receiver using 

the GNU Radio Companion graphical interface and the signal processing blocks 

available to perform that kind of simulations. Also, it is possible to observe the 

modulated and demodulated signals in the presence of controlled noise level in 

the channel and how it affects the constellation diagram and the entire system 

performance. 

Finally, for the FPGA reprogramming system implemented on the Raspberry 

Pi using OpenOCD, a test was performed in order to verify the required time for 

programing the different modulators implemented for the Kintex 7 and Spartan 

6 FPGAs, to compare the results for the Zero and the 3B+ models and define if 

the system can be suitable for using on-board in a nanosatellite mission. 
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5.1. Receiver sensitivity test 

In the receiver part, one of the most important parameters for characterization 

is the sensitivity. This value, usually varies depending the modulation scheme, 

power supply quality, component tolerances, etc. In order to perform this test, 

the configuration shown in the Figure 45 was used. In this case, a base band 

signal was generated using the same TNC used in the Ten-Koh ground station, 

the Kantronics KPC9100+, in the case of the 1,200bps AFSK signal, it is obtained 

from the port 1 and in the case of the 9,600bps GMSK signal, it is obtained from 

the port 2. That signal is connected to the modulation input port into the RF 

signal generator (Hewlett Packard 8656B) which is in charge to put the base 

band signal in the desired RF carrier wave. The frequency value was fixed at 

435.2 MHz and the power of the carrier wave varies from -100 dBm to -120 dBm. 

Finally, the RF output signal is connected directly to the input of the receiver 

module using a coaxial cable and the received data packets can be observed in 

the GNU Radio companion in the case of the proposed SDR system and in the 

HyperTerminal in the case of the Ten-Koh system via UART serial 

communication port. The test consists in send 250 AX.25 packets from the TNC 

to the receiver at different power level steps and monitoring how many packets 

were successfully decoded into the receiver. At the power level when no packets 

are received, it is the sensitivity value of the receiver module. 

 
Figure 45 - Receiver sensitivity test configuration. 

 

The results of this test are shown in the Figure 46 and Figure 47, in the first 

one, it is possible to observe the number of receiving packets in function of the 
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power input strength into the receiver and in which it is possible to determine 

the sensitivity threshold which is the RF power level where the receiver start to 

receive valid packets. Those values are -119.5 dBm for the Ten-Koh AFSK 

receiver, -112 dBm and -110 dBm for the proposed SDR AFSK and GMSK 

receivers respectively. However, for defining a practical receiver sensitivity value 

usable for link budget calculations and for determining the receiver performance, 

is better to calculate the Packet Error Rate (PER) in percentage which is 

calculated using the Equation 15.  

���% = �
������_�������

������_�������
� ∙ 100 

Equation 15 - Packet Error Rate calculation. 

 
The PER performance for Ten-Koh and SDR proposed systems are shown in 

the Figure 47. For optimal packet communication performance in a nano-satellite 

mission like Ten-Koh, the practical receiver sensitivity threshold value can be 

chosen when the PER is 1%. Then, in the case of the Ten-Koh AFSK receiver, 

the measured value is -115.5 dBm and in the case of the proposed SDR AFSK 

and GMSK receivers the values are -108.5 dBm and -106 dBm respectively. 

The testing was performed using the ground station already implemented and 

in operation with the Ten-Koh satellite. The software used to send and receive 

the data is exactly the same used to do the same duty in the daily satellite 

operations. For receiving the data at the ground station, the AGW Online KISS 

decoder [46] was used and for sending data, the control software development for 

the Ten-Koh team was used. 

5.2. Receiver Signal-to-noise ratio (SNR) simulation 

The signal-to-noise ratio (SNR) is the relation between the received RF signal 

strength and the noise signal strength presented at the input of the 

communication receiver. 
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Figure 46 - Number of received packets in function of the received RF power. 

 

 
Figure 47 - Packet Error Rate (PER) in function of the received RF power.  

 

When the noise signal strength becomes comparable with the received signal 

strength, the system performance starts to decrease which means that the 

probability to lose data packets starts to increase. In a satellite communication 
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link, the noise is produced by different sources, e.g. by the atmosphere that 

generates thermal noise and by interfering signals generated from other 

communication systems working in near frequency bands. For that reason, it is 

difficult to measure the SNR and the performance of the communication system 

due to this effect. However, GNU radio includes a special signal blocks to generate 

Gaussian noise which makes possible the simulation of the effects of an Additive 

white Gaussian noise (AGWN) channel in the system. For this simulation, the 

implemented diagrams in GNU radio are shown in the Figure 48 (for the GMSK 

transceiver) and in the Figure 49 (for the AFSK transceiver). The methodology 

is to create a loopback between the transmitter and the receiver, excluding the 

LimeSuite RF blocks to avoid undesirable/uncontrollable noise sources and 

including the respective signal blocks to add the AGWN channel effects. In the 

real case, the noise is introduced to the system via the RF signal and the 

expression for the SNR is given by the Equation 16. 

 

���(��) = 10 ∙ log�� �
�������

������
� 

Equation 16 - Signal-to-Noise Ratio calculation. 

 

However, in the simulation, the RF modules cannot be included because the 

GNU radio blocks can introduce random Gaussian noise only for baseband 

signals, then, the method for simulating the same effects in the system is to add 

the noise to the baseband modulated signals. In the case of the GMSK system, 

the modulator output signal is complex type; then, it is possible to use the 

Channel Model block to include the noise effects in the system as showed in the 

Figure 48. On the other hand, in the AFSK system case, the modulator output 

signal is float type and it is necessary to use a Noise Source block to add the 

AGWN channel effects to the system as shown in the Figure 49 since the Channel 

Model block only works for complex signals. 
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Figure 48 - GMSK SNR simulation diagram. 
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Figure 49 - AFSK SNR simulation diagram. 
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The expression to calculate the noise voltage amplitude parameter depending 

of the desirable SNR is given by the following formula: 

 

������ = ��2 ∙ ��������� ∙ 10
�

���(��)
��

�
�

��

 

Equation 17 - Noise voltage calculation. 

 

Were ��������� is the number of bits transmitted by one modulation symbol 

(1 for AFSK and 2 for GMSK). 

In the plot is clear to observe how the constellation points are distorted and 

displaced as the SNR value is decreasing. In the case of the AFSK transceiver, a 

QT time sink block is connected at the output of the AFSK modulator block and 

after the addition of the Gaussian Noise to observe how the noise interferes with 

the modulated signal. In the Figure 52, it is possible to observe how the AFSK 

modulated signal is affected when the SNR value decreases.  Additionally, in both 

systems, a Throttle block is used between the transmitter and receiver in order 

to establish the sample rate used by the LimeSuite RF blocks and to avoid 

consuming the entire CPU resources since there are not hardware included in the 

simulation. 

 

Figure 50. Noise effects in GSMK transceiver constellation diagram I. 
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Figure 51. Noise effects in GSMK transceiver constellation diagram II. 

 

 
 
 

 
Figure 52 - Noise effects on AFSK modulated signal. 
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After verifying that the noise effects are included with the system correctly, it 

is possible to run the simulations to obtain the PER vs SNR performance of the 

system. In order to do that, a simulation in which 10,000 packets were sent from 

the transmitter to the receiver for every SNR variation step (from -5 to 4 dB in 

steps of 0.5 dB) were performed. For every step, the HDLC Deframer block in 

the receiver part decodes the AX.25 packets and decides which packets are correct 

or not. With this information, it is possible to calculate the PER using the 

Equation 15 used previously in the numeral 5.1. The time interval used to send 

the packets were 0.25ms for the GSMK transceiver and 1s for the AFSK 

transceiver. The results are shown in the Figure 53, Figure 54 and summarized 

in the Table 12. Here, it is possible to observe the SNR performance for the both 

transceivers are similar and it is possible to deduct that for values of SNR greater 

than 3.5 dB, the packet error rate is less than 10�� (0.01%) which is a typical 

value used for ensuring correct communication in nano-satellite link budgets. 

 

 
Figure 53 - Number of received packets in function of the Signal-to-noise ratio SNR. 
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Figure 54 - Packet Error Rate (PER) in function of the Signal-to-noise ratio SNR. 

 

 

Table 12 - Signal-to-noise ratio performance for AFSK and GMSK modulations. 

 

5.3. Transmitter RF output power test 

For the transmitter part, the maximum RF output power was measured using 

a spectrum analyzer. In the case of the Ten-Koh Nishimusen transmitter, it only 

operates in the UHF band, the power output is factory fixed and cannot be 

modified by software. In the case of the proposed SDR system, the maximum 

power output allowed by the LimeSuite Source (TX) block was configured (Gain 

dB = 60) and it was measured in the VHF, UHF and S bands since those are 

PER (%) AFSK SNR (dB) GMSK SNR (dB) 

0.01 3.50 3.50 

0.10 3.10 3.10 

1.00 1.90 2.10 

10.00 0.20 0.60 

50.00 -1.16 -1.05 
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typically assigned for satellite radio amateur communications. The test set-up is 

shown in the Figure 55, the transmitter (LimeSDR mini and Nishimusen) is 

connected to the spectrum analyzer through an attenuator in order to decrease 

the power level for protection. The power output level is measured when valid 

AX.25 packets are sent. The results of the test are shown in the Table 13. 

 

 

Figure 55 - Transmitter RF power output set-up 

 

Table 13 - Maximum transmitter RF power output measurements for both systems 

transmitters. 

 

5.4. Power consumption test 

In a nano-satellite mission, the power consumption is one of the biggest 

constraints in the bus subsystem design, for that reason is important to measure 

the power performance of the proposed SDR architecture for comparing it with 

the existing ones. In this test, the power consumption was measured for the Ten-

Koh and proposed architecture monitoring the current when the systems were 

operating in different modes and at the same time the processor usage. In the 

case of the SDR, it was implemented in three different Raspberry Pi model 

variations. The results of the test are shown in the Table 14. Here, it is possible 

Module Power (dBm) Power (mW) 

Ten-Koh @ 437.385 MHz 29.0 794.00 

SDR @ 437.385 MHz 2.0 1.58 

SDR @ 145.980 MHz 3.5 2.23 

SDR @ 2.4 GHz -4.5 0.35 

TRANSMITTER SPECTRUM ANALIZER ATTENUATOR 
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to observe that the Ten-Koh system has the less power consumption both in the 

idle mode as in the transmission mode. 

Regarding the SDR, the implementation in the Raspberry Pi Zero model has 

the less power consumption in all modes followed by the Pi 3B and the Pi 3B+ 

model respectively, which was expected since the Zero model includes a single 

core processor ARMv6 running at 1GHz and the 3B and 3B+ models include a 

quad core processor ARMv8 running at 1.2 and 1.4 GHz respectively. On the 

other hand, regarding the processor usage, it is possible to note the advantage to 

use a quad core processor in the 3B and 3B+ modules, running the corresponding 

python scripts, the maximum usage was just 25% in comparison with the 100% 

usage presented in the Pi Zero model running the applications in a single core. 

 

Table 14 - Power consumption of Ten-Koh system and SDR implementations on 

different Raspberry Pi modules. 

 

5.5. FPGA reprogramming system test 

The purpose of this test is to verify the correct functionality of the 

reprogramming system implemented into the Raspberry Pi module for the FPGA 

logic and the SPI flash memory attached to the device and also to establish the 

required time to perform the reprogramming task for the Kintex 7 family as well 

as for the Spartan 6. As explained in the numeral 4.4.3, the JTAG controller uses 

PARAMETTER 

R-PI ZERO 

W 
R-PI3 B R-PI3 B+ Ten-Koh 

I 

(mA) 

Power 

(W) 

I 

(mA) 

Power 

(W) 

I 

(mA) 

Power 

(W) 

I 

(mA) 

Power 

(W) 

IDDLE 110 0.550 280 1.400 490 2.450 30 0.150 

100% CPU USAGE 195 0.975 770 3.850 685 3.425 -- -- 

IDDLE + 

LIMESDR 
475 2.375 655 3.275 885 4.425 -- -- 

FSK 

TRANSMITTER 
650 3.250 775 3.875 1050 5.250 -- -- 

GMSK 

TRANSMITTER 
580 2.900 875 4.375 985 4.925 550 2.750 

PROCESSOR 

USAGE 
100% 25% 25% -- 
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the GPIOs on the Raspberry Pi to create a TAP to be connected directly to the 

JTAG port into the FPGA device. The JTAG port consists in four connections 

defined as follow: TDI (Test Data In), TDO (Test Data Out), TCK (Test Clock) 

and TMS (Test Mode Select). 

The connections between the Raspberry Pi and the FPGA JTAG port used in 

the test are shown in the Figure 56 and described in the Table 15. The GPIO 

port number into the Raspberry Pi can be chosen in a different way changing 

those into the configuration file presented in the appendix 2. 

The test was performed using the Raspberry Pi Zero and the 3B+ models to 

define if there is a representative difference in performance between the both 

models. The configuration bit files used for performing the FPGA programming 

where the files resulting of every modulator implementation described in the 

numeral 4.4.2 (BPSK, FSK, QPSK, MSK and the integration of those 

modulators).

 

 

       Figure 56 - JTAG Connections 

 

Table 15 - JTAG Connections 

Raspberry Pi FPGA 
Header 

Pin 

GPIO 

Driver 

JTAG 

Port 

19 10 TDI 

21 9 TDO 

22 25 TMS 

23 11 TCK 

VCC VCC VCC 

GND GND GND 

The results of the test are shown in the Table 16 and Table 17, the required time 

for programming the different modulators into the SPI flash memory and the FPGA 

logic for the Spartan 6 and Kintex 7 families. It is possible to observe that the difference 

in time between the simplest modulator (BPSK) and the integration of all modulators 

has been just 3 seconds, then, for that reason for the Raspberry Pi Zero the test were 

performed only for the modulator implementations mentioned above. To program the 

Kintex 7 FPGA logic takes 10 seconds less than the Spartan 6 case. 
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Table 16 – R-Pi 3B+ FPGA system reprogramming time (sysfsgpio driver) 

 

Table 17 – R-Pi Zero FPGA system reprogramming time (bmc2835gpio driver) 

 

For the SPI flash memories, the Kintex 7 takes 50 seconds less than the Spartan 6 

case which shown that the Kintex architecture can be programmed faster using this 

reprogramming system implementation. 

Comparing the results between the two Raspberry Pi modules, we can observe that 

the required reprogramming time in every case is almost the same which shows that 

the programming speed does not depend on the processor used in the Raspberry Pi 

module. 

5.6. Discussion 

As mentioned in the introduction section, this research intends to show an 

optimization of the Ten-Koh communication system, though an SDR 

implementation using a Raspberry Pi module in conjunction with Linux, Python 

and GNU Radio tools. The above sections showed the Ten-Koh system 

architecture, the SDR design procedures, testing and simulations performed for 

the both systems. In this section we will discuss and analyze the obtained results. 

As shown in the chapter 4CHAPTER 4 -, the proposed SDR implementation 

offers the possibility to send and receive data in AFSK (1,200bps) and GMSK 

(9,600bps) modulations at a tunable frequency (VHF, UHF and S bands) by 

MODULATOR 

SPARTAN 6 KINTEX 7 

SPI 

MEMORY 

FPGA 

LOGIC 

SPI 

MEMORY 

FPGA 

LOGIC 

BPSK 02:04.7 00:25.3 01:15.2 00:15.5 

FSK 02:04.7 00:25.5 01:15.8 00:15.3 

QPSK 02:09.9 00:25.9 01:16.6 00:15.7 

MSK 02:10.6 00:26.5 01:21.1 00:16.3 

ALL MODULATORS 02:14.8 00:28.0 01:21.9 00:16.6 

MODULATOR 

SPARTAN 6 KINTEX 7 

SPI 

MEMORY 

FPGA 

LOGIC 

SPI 

MEMORY 

FPGA 

LOGIC 

BPSK 02:05.3 00:32.7 01:16.5 00:19.3 

ALL MODULATORS 02:14.8 00:36.0 01:22.0 00:21.2 
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software. The transmitter output power and the receiver sensitivity can be also 

modified by software and additionally, it is possible to implement other kind of 

modulation schemes using the available library blocks in GNU radio without the 

need to modify the hardware. Comparing the above with the characteristics of 

the Ten-Koh architecture mentioned in the chapter 3; clearly, it is possible to 

conclude that the proposed SDR architecture offers more flexibility and 

reusability which is very desirable for future nano-satellite missions. 

Regarding the transmitter performance, about the maximum number of data 

bytes allowed per packet, is clear to observe that the proposed SDR system 

improves the value almost 3 times since it is possible to send the complete 255 

bytes allowed by the AX.25 protocol in comparison with the 65 bytes allowed by 

the Ten-Koh transmitter due to the PIC microcontroller RAM memory 

limitations mentioned in the section 3.3. Regarding the maximum RF power 

available in the both systems, it is possible to observe that the proposed SDR has 

a disadvantage due to the value is 27 dBm lower than the Ten-Koh system for 

the same frequency band as showed in the table 2. However, it can be improved, 

including and RF power amplifier or choosing another RF module which can 

provide the required RF power output level.  

In the case of the receiver performance, in the numeral 5.1, the packet error 

rate for different signal strengths were analyzed. Here, it is possible to observe 

that the Ten-Koh system has slightly better sensitivity performance (-115.5 dBm 

against -108.5 dBm for a packet error rate of 1%), however, the system offers a 

good performance comparing it with commercial/space heritage systems available 

in the market e.g. ISIS VHF/UHF Duplex Transceiver (-104 dBm) [47]. Also, the 

maximum amount of data allowed by received AX.25 packets was increased by 

almost 8 times, since the proposed SDR is able to receive up to 255 bytes while 

the Ten-Koh receiver can only receive up to 32 bytes transmitter due to the PIC 

microcontroller RAM memory limitations mentioned in the numeral 3.3. 

Regarding the power consumption of the systems, the proposed system is more 
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power hungry as expected since we are making an upgrade in the processor side, 

we can observe that using a powerful Raspberry Pi module increases the 

processing performance while the power consumption also increases up to 2 times 

more comparing it with the Ten-Koh system. It is clear to observe that the 

implementation using the Zero model can be more convenient for nanosatellite 

missions since the power consumption is not significantly higher compared with 

the Ten-Koh system. However, having the possibility to use different Raspberry 

Pi models offers flexibility and it is possible to make a trade-off between the 

processing capabilities versus the power consumption depending the mission 

constraints without need to modify the implemented software modules. 

We can observe how using Linux and GNU Radio Companion as development 

tool offer the possibility to simulate and monitoring several signals into the design 

to analyze the performance of the system without needing external equipment. A 

good example of that is the simulations preformed in the numeral 5.2 to estimate 

the SNR performance, adding the noise effects into the system and measuring the 

packet error rate. We obtained reasonable results in comparison with other 

simulation cases like shown in [48] or [49] for similar modulation schemes. Also, 

it is possible to make changes to the design only modifying the parameters into 

the signal processing blocks and observe the changes immediately, which is a big 

advantage to using an SDR platform over hardware fixed systems like Ten-Koh 

implementation. 

Finally, the FPGA reprogramming system implemented into the Raspberry Pi 

was tested, we could verify that the time required to perform an FPGA 

programming is not high in comparison with the typical time required to program 

the device using a normal JTAG interface, then the system could be used in a 

nanosatellite mission in order to allow maintenance and error correction due to 

SEEs generated by radiation effects or if the system hangs unselectively. 
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CHAPTER 6 - RADIATION TEST 

This chapter describes the procedures and details of a Single Event Effects 

(SEE) testing by using a beam of energetic protons in a synchrotron facility. The 

key definitions, test facility description, procedure steps, materials, methods and 

instrumentation needed for performing the test are included. Finally, the analysis 

of the obtained results is discussed. 

6.1. Purpose of the test 

The main objectives of the SEE testing are:  

 To verify if the Ten-Koh on-flight failures discussed in the CHAPTER 2 - 

2 (numeral 2.2) are produced by the radiation environment effects or 

perhaps by other causes. 

 To verify the behavior and operation of the Raspberry Pi devices used in 

the proposed SDR platform described in the chapter 4 in a high-energy 

radiation environment such as the scenarios encountered in space. From 

the results of the tests, it will be possible to conclude if the Raspberry Pi 

could be selected as a processor candidate for future missions and in such 

a case, mitigation strategies can be deducted as well as operation margins. 

 To estimate and compare the SEE sensitivity of the processor used in the 

Ten-Koh subsystem (PIC16F877) with on-ground testing versus in-orbit 

testing. 

6.2. Test facility description: WERC Synchrotron 

accelerator 

The facility used for this testing is the synchrotron located at the Wakasa Wan 

Energy Research Center in Fukui prefecture, Japan. The synchrotron can produce 

protons, helium and carbon ions with the characteristics presented in Table 18. 
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Table 18 - Synchrotron protons and ion characteristics [50]. 

Incident energy 
H+(protons): 10 MeV (B = 0.46 Tm) 

He2+, C6+: 2.08 MeV (B = 0.42 Tm) 

Outgoing energy 
H+(protons): 10 to 200 MeV/u (B = 2.15 Tm) 

He2+, C6+: 2.08 to 55 MeV/u (B = 2.15 Tm) 

Operation repetition frequency 0.5 Hz 

Format Function separation time. 

Beam injection method Multiple rotation injection method. 

High frequency acceleration 

cavity 
Multi-Feed Untuned Accelerating Cavity.  

Beam extraction method 

Resonance extraction method (diffuse resonance 

method) that applies high frequency with 

constant electromagnet strength. 

 

The Figure 57 shows a diagram of the synchrotron facility used for the SEE 

testing. Here, the particles (ions or protons) are generated by the ion source and 

are injected into the Tandem accelerator which is in charge to accelerate the 

particles at an energy of around 5 MeV; then, the pre-accelerated particles can 

be provided in the irradiation rooms 1 and 2 or can be used to feed the 

synchrotron accelerator. The synchrotron is a ring that consist in 8 synchronized 

coils (red blocks) that are in charge of accelerate the particle beam at an energy 

of around 200 MeV. Afterwards, the accelerated beam is ready to be provided to 

the irradiation rooms 3 and 4 through the high energy transport system. In the 

case of this experiment, the irradiation room 4 was used in which all the test 

equipment for data acquisition set-up was configured. The synchrotron facilities 

are located underground for avoiding external interferences and for avoiding 

undesirable particle radiation to the external environment. For obvious security 

reasons, when the synchrotron is in operation, there should be no people inside 

of any irradiation room. 
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Figure 57 - Synchrotron accelerator facility diagram from [51]. 

6.2.1. Ion beam conditions 

The objective of this test is to obtain the SEE cross-section for the PIC16F877 

and for the Raspberry Pi module processor. As mentioned in the numeral 6.4.1, 

depending on the particles used to radiate the device. In the Figure 7, it is possible 

to see that the typical LET range to obtain the SEE cross-section using ions is 

from about 10 �� 100 ��� ∙ ���/��. As shown in Table 18, the beam energy 

range that the synchrotron can supply is from 10 �� 100 ���. By using helium 

and carbon ions, different levels of LET can be estimated in the selected energy 

range using the information provided by the NASA Space Radiation Laboratory 

shown in the Figure 58. The LET values are shown in the Table 19. From that 

values, it is possible to observe that the LET range available for this synchrotron 

is in the order from 0.014 �� 1.1 ��� ∙ ���/�� which is not enough to obtain the 

desired SEE cross-section from the devices. 
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From the Figure 58, it is possible to observe that to be able to achieve the 

required LET using ions in silicon, heavy ions as Xenon (Xe), Tantalum (Ta), 

Gold (Au) and Thorium (Th) are needed, however, this type of heavy ions are 

not available in the WERC synchrotron. 

 

Figure 58 - LET in silicon for different ions [52]. 

 

Table 19 - LET in silicon for He and C ions for WERC synchrotron beam energy 

range. 

Beam energy [MeV] 
He2+ LET in Si 

[MeV·cm2/mg] 

C6+ LET in Si 

[MeV·cm2/mg] 

10 0.12 1.10 

50 0.04 0.31 

100 0.011 0.21 

150 0.019 0.17 

200 0.014 0.13 

 

6.2.2. Proton beam conditions 

Because the LET of the recoil nucleus is unknown when using protons for SEE, 
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the characterization of the device cross-section is performed with the primary 

incident proton beam energy as shown in the Figure 8. According to [53], the 

delivered energy by the accelerator shall be in the range from 20 to 200 MeV 

with a variable flux ranging from 10� to 10� ������/���/� on the device under 

test.  

It is also important for considering the total ionizing dose (TID) damage. Some 

devices can show an increase in SEU susceptibility of up to two orders of 

magnitude as a result of TID effects from proton irradiation [2]. In this regard, 

the TID received by the device shall be accounted by adjusting the irradiation 

time of each device to the lowest possible that allows the SEE cross-section 

characterization. The total dose received by a device from a high-energy proton 

beam can be estimated from Equation 18: 

 

�[��] = � · �(1 × 10��)(1/�)��/�� 

Equation 18 - Total dose received from a proton beam. 

 
Where �  is the dose in gray (Gy) units, Φ is the proton fluence in 

�������/���, � is a constant to convert MeV into J (joule) with a value of 

1.602 × 10���, ρ is the target material density in �/��3, ��/�� is the deposited 

energy in the material of thickness in ���/��. The value of 1 × 10�� converts g 

into kg. � can be converted from Gy to rad by multiplying the result of Equation 

18 by a factor of 100. 

The deposited energy can be replaced by the energy loss per unit path length, 

also known as the stopping power, which is approximately true if the energy along 

the particle path remains constant (i.e. long-range protons). 

The proton beam provided for the WERC synchrotron consists of protons 

(H+) with the following characteristics: 

 

1. The beam energy starts at the level of 20 MeV, the following is desired 

to be set at 50 MeV and then increasing in steps of 50 MeV until getting the 



CHAPTER 6 - RADIATION TEST  

101 
 

maximum beam energy of 200 MeV (20, 50, 100, 150, 200). 

2. The flux of protons is in the order of  10� �� 10� ������/���/� so enough 

protons produced recoil atoms. The exact flux has to be confirmed during the 

test at the facility. The upper value (10� ������/���/�) is preferable, however, 

for very sensitive devices, the flux can be adjusted to the lower 

value (10� ������/���/�). 

 

In base of the discussed above and in the numeral 6.2.1, the proton beam 

conditions are the most suitable to perform the test using the WERC synchrotron 

and where the conditions chosen for testing the devices. 

6.3. Device Under Test (DUT) preparation 

The devices chosen for the radiation test are the following: 

 PIC16F877 which was used for all the subsystems included on-board 

of Ten-Koh satellite. 

 Raspberry Pi Zero and Raspberry Pi 3B+ used in the proposed SDR 

architecture. 

6.3.1. PIC16F877 

As discussed in the CHAPTER 2 - 2, some failures were present on-board during 

the Ten-Koh operation phase. It included several reset events in the OBC system 

and several failures into the EEPROM/RAM memories. For that reason, the 

microcontroller was programmed with a specific software which permits 

monitoring the mentioned parameters during the irradiation time. The flow chart 

that describes the software implemented for the microcontroller is shown in the 

Figure 59. The idea is to configure the entire EEPROM and RAM memories 

with a known default value; afterwards, the program enters in a loop that read 

and send the entire memory data via UART protocol every second in order to 

detect if the values are modified due to the proton irradiation beam. 
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Additionally, for the EEPROM memory, some specific positions are written with 

another known value (15 bytes in specific) in every loop iteration in order to 

check if the radiation beam affects the writing operation. It is not necessary for 

the RAM memory to perform a specific writing operation because of the data 

UART transmission, a buffer (57 bytes) is used which is constantly written whit 

the values read from the memory positions. 

 

 

Figure 59 - PIC16F877 radiation test software flow chart. 

 

The format of the data received from the DUT via the UART protocol is 

divided in two parts, the EEPROM memory data and the RAM memory data. 

The EEPROM memory data format is shown in the Figure 60. It consists of 4 

packets of 57 bytes and 1 packet of 28 bytes to complete a total of 256 bytes 

which is the entire size available on the device. For every packet, the first three 

Programing EEPROM initial values 

Programing RAM initial values 

Writing specific memory positions in 

EEPROM (15 bytes) 

Reading entire EEPROM memory positions 

(256 bytes) and send it via UART. 

4 packets = 57 bytes + 1 packet = 28 bytes 

Reading RAM memory positions (274 bytes) and send it via UART. 

3 packets = 57 bytes + 2 packet = 39 bytes + 1 packet = 25 bytes 

Wait for 1 second 
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bytes “F” are the packet header values that are written in every loop iteration, 

the next 53 bytes are the default memory values “A” which are the values 

programmed permanently in the EEPROM memory and the software does not 

modify it in the entire execution and the last byte “X” which is the packet ending 

value and acts as same as the previous default values. 

 

 

Figure 60 - EEPROM memory data format. 

 
The RAM memory data format is shown in the Figure 61. The RAM memory 

in divided in 3 regions identified by the default values “1”, “2” and “3” respectively. 

The regions 1 and 2 are divided in 1 packet of 57 bytes plus 1 packet of 39 bytes 

and the region 3 is divided of 1 packet of 57 bytes plus 1 packet of 25 bytes. The 

other identifiers into the packet work as same as mentioned in the EEPROM 

packets with the difference that no values are written during any loop iteration. 

The total amount of RAM data received via UART is 274 bytes. 

 

 

Figure 61 - RAM memory data format. 

 
As mentioned before, in the case of the RAM memory, it is not necessary to 

write data in every loop iteration because the UART transmission buffer is part 

of the RAM memory and it is written automatically in every UART data 
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transaction; then, if the data corruption due to the radiation effect is in the buffer 

memory region, the data received will be corrupted temporary and will be 

recovered in the next loop iteration. On the other hand, if the data corruption is 

in the other memory positions, the data received will be corrupted permanently 

due to the other positions on the RAM are not modified in any part of the loop 

iteration. 

6.3.2. Raspberry Pi 3B+ and Zero 

As discussed in the previous chapters, the Raspberry Pi seems to be a good 

candidate to be used in the design of subsystems for nano-satellite applications. 

However, this single-board computer still has not enough space-heritage to 

become a widely used device for space applications as discussed in the CHAPTER 

1 - 1. 

One of the most important characteristics to define if the device can be used 

or not safely in space applications is its performance in the presence of radiation 

environment. For that reason, it is very useful to be able to perform a radiation 

test in the ground in order to characterize the radiation performance of the 

Raspberry Pi; however, there are not too much information regarding it. The 

most relevant test found in the literature is the case of the radiation experiment 

performed by the University of Surrey [54] in which a Raspberry Pi Compute 

Module 3 was tested for TID conditions, the result of the test is the evidence that 

the module can work without failure under beta ray irradiation of up to 130 krad. 

On the other hand, there are not so much information about the radiation 

performance of the Raspberry PI in satellite missions. The most relevant is Astro 

Pi, a mission which allows to run a code aboard the International Space Station 

(ISS) [55]. They included a CCD sensor in order to measure random ionizing 

radiation events and also a reset counter to detect if the module experiments 

unexpected resets due to ionizing radiation; however, the initial conclusion was 

that the radiation sensor experiment was not successful and no unexpected resets 
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were counted because the experiment was inside of an aluminum case and 

probably the thickness keep out much the radiation levels. 

Due to the Raspberry Pi is a module that runs an operative system which runs 

over an SD card memory (used as a FLASH/ROM memory) and includes an 

external dedicated RAM memory, it will not be possible to detect errors at 

memory/byte level. In this case, the idea is to monitoring the correct functionality 

of the operating system at kernel level using the UART interface activating the 

kernel serial log functionality. At his way, the operating system will notify any 

error presented at the system/kernel level (e.g. CPU execution error, memory 

error, etc.) and error/device events can be monitored instead of error/byte events 

monitored in the PIC microcontroller case. 

The preparation and prerequisites of the Raspberry Pi in this case are the same 

as mentioned in the CHAPTER 3 - and additionally a python script executing 

an algorithm following the flow chart shown in the Figure 59 as for the PIC test, 

reading and transmitting memory data in the same format as explained in the 

Figure 61 via UART interface. In this case, it is not necessary to write/read 

EEPROM memory because the SD card is treated as a ROM memory and it will 

not be radiated in the test.  

 

6.4. Radiation test set-up 

Before starting the test, the synchrotron proton beam has to be calibrated in 

order to measure the precise energy and fluence values for every desired energy 

step as well as the radiation field dimensions and characteristics. After, the DUT 

has to be located in the irradiation room, correctly aligned to the beam according 

the radiation field characteristics obtained during the calibration process and 

finally, connect the DUT to the control and data acquisition system providing 

the controlled power supply line and data interfaces. 
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In the following numerals, the process to perform the beam calibration, the 

DTU alignment and the test set-up conditions are presented. 

6.4.1. Proton beam calibration 

The proton bean always works at a desired maximum energy and nominal 

fluence values; however, a different energy values are needed for this test. The 

way to achieve that is locating a degrader material between the beam output and 

the DUT as shown in the Figure 62. The material used is called “Solid Water” 

which is a solid block that attenuates electrons and protons same as the normal 

water. Different lower beam energies can be obtained increasing the thickness of 

the solid water blocks, then, for every energy step that need to be attenuated, a 

different thickness of a solid water material should be located between the DUT 

and the proton beam output. 

Before the test operation, the proton beam must be calibrated for every desired 

energy step level. The calibration procedure was performed with the support of 

the WERC staff and it includes the following steps: 

 

 The WERC staff set-up the maximum bean energy level and the nominal 

fluence. 

 In the DUT position, a dummy target is aligned to the beam at the same 

desired distance from the beam output. 

 The beam is activated in order to measure the following parameters: 

 The beam energy (in MeV). 

 The degrader thickness if it is present (in mm). 

 The beam flux (in  ������/���/�). 

 The beam radiation field (beam spot size in cm). 

 The beam efficiency. 

 

To reduce the energy to the next step, it is necessary to enter into the 

irradiation room and locate the adequate solid water material thickness between 
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the dummy DUT and the output of the proton beam as shown in the Figure 62. 

After that, the same procedure should be performed for every energy level step 

(150, 100, 50 and 20 MeV) obtaining the corresponding beam characteristics. 

 

 

Figure 62 - Proton beam attenuation process. 

6.4.2. Alignment of the DUT in the proton beam 

The spot or irradiation field of the beam was provided by the facility team 

after performing the calibration procedure providing the exact dimensions of the 

radiation field; then, the DUT can be aligned before starting the tests. It must 

to be located orthogonal and perfectly centered in the beam as shown in the 

Figure 64. In order to do that accurately, a laser source provides the guide for 

the vertical and horizontal axis and indicates the exact center point of the target 

where the beam will be irradiated. The final alignment for the PIC 

microcontroller and for the Raspberry Pi Zero is shown in the Figure 63. 

6.4.3. Facility set-up 

As shown in the Wakasa Wan Research Center facility description in the 

numeral 6.2. The test was performed in the irradiation room 4 which is located 

underground where there is no possibility to control the acquisition equipment 
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inside the room and it was necessary to control everything remotely. The 

irradiation room final set-up is shown in the Figure 65 in which the DUT is 

located in front of the proton beam and aligned using the laser source guides. 

 

 

Figure 63 - Final beam alignment for Raspberry Pi Zero and PIC microcontroller. 

 
 
 

 

Figure 64 - Sketch of the DUT alignment with the proton beam. 

 
The Figure 66 shows the experiment diagram at radiation facility. In the 

control room, the equipment to control the irradiation beam is located which is 

completely controlled by the WERC staff. Also, a computer executing a remote 

desktop software is used to control remotely the data acquisition desktop located 

in the irradiation room via the Local Access Network (LAN) available in the 
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radiation facilities. 

 

 

Figure 65 - Synchrotron irradiation room DUT set up. 

 
 

 

Figure 66 - Radiation facility set-up 
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Figure 67 - Arduino-based power control relay circuit schematic. 

 

 

Figure 68 – Radiation test data acquisition set up. 

 
In the irradiation room, the DUT is connected to the desktop via USB to 

UART converter transmitting the test data continuously every second. The 

power line to the DUT is controlled by the control laptop using an Arduino board 

which is in charge of controlling a power relay board in order to connect or 

disconnect the power supply remotely, the Arduino board is controlled by the 

control laptop via USB interface. The complete power relay control circuit is 

shown in the Figure 67. The current on the DUT is monitored via an in-series 

Power relay circuit 

In-series resistor for 

current measurement 

Oscilloscope used 

for current 

Control PC for data 

acquisition & power 

relay 
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resistor and one oscilloscope which is connected to the control laptop via USB 

interface, the control desktop executes a proprietary acquisition software in 

charge of receiving and store the current consumption. The data acquisition set-

up is shown in the Figure 68. 

6.5. DUT irradiation procedure 

Once the proton beam has been calibrated, the DUT has been aligned correctly 

and the control & data acquisition system set-up is done, then everything is ready 

to start the test. The obtained calibration values provided from the WERC staff 

and used to conduct the test are summarized in the Table 20.  

 

Table 20 - Proton beam calibration values. 

Beam Energy 

(MeV) 

Beam Flux 

( ������/���/�) 

Degrader 

Thickness 

(mm) 

Beam Spot Size 

(mm) 

Beam 

Efficiency 

200 10� 0 20 x 20 0.0946 

150 10� 96 20 x 20 0.0946 

100 10� 172 20 x 20 0.0946 

50 10� 224 20 x 20 0.0946 

20 10� 240 20 x 20 0.0946 

 

The test process steps followed for all the DUT were: 

 

1. Inside the irradiation room, turn on the DUT board and data acquisition 

system, perform a device initialization and functional test to confirm all 

systems are operating as expected. 

2. From the control room, turn on the DUT power supply and initialize the 

software that control and store the current consumption data verifying the 

nominal values and correct functionality. 

3. Start to store the data received via UART interface verifying the correct 

functionality. 

4. Start the beam irradiation with the desired fluence, the synchrotron system 

will calculate the irradiation time and will automatically stop the beam 
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when the time is elapsed. 

5. During the beam irradiation time, collect the data and make annotations 

about relevant and unexpected events and the beam irradiation time. 

6. If necessary, change the desire fluence and start again the process from the 

step 2. 

7. When finish the test, inform to the WERC staff in order to turn off 

completely the beam and to be able to enter into the irradiation room to 

include the degrader material to attenuate to the next energy level. 

8. Repeat the steps from 1 to 7 for every energy level. 

9. Repeat the procedure for every DUT. 

6.6. Test results 

6.6.1. PIC16F877 Results 

The PIC microcontroller was subjected to two irradiation time conditions, in 

the first experiment the device was radiated during 30 seconds and in the second 

one it was radiated during 60 seconds. 

The irradiation parameters for the first experiment are presented in the Table 

21 and for the second experiment are presented in the Table 23. As discussed 

previously, the proton beam energy is varying (1st column) whit a constant flux 

(2nd column). The desired fluence (4th column) is calculated multiplying the flux 

by the desired irradiation time (3rd column).  

In order to set the beam at that value, it is necessary to preset the synchrotron 

with the fluence value expressed in dose unit values (5th column) which were 

obtained previously as a result of the calibration process. The preset value 

configured in the synchrotron (6th column) is calculated dividing the fluence value 

by the dose unit value. 

During the irradiating time, a real time measurement of the fluence (7th 

column) expressed in dose units is provided by the synchrotron and is the value 

used to calculate the real fluence irradiated to the device (8th column).  
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Table 21 - PIC16F877 proton irradiation parameters (1st experiment). 

 

Beam energy 

[MeV] 

Flux 

[ ������/���/�] 

Irradiation 

time 

preset [s] 

Desired 

Fluence  

[ ������/���] 

Dose  

(1-unit value) 

Dose 

Preset 

[Gy] 

Measured 

Dose [Gy] 

Real applied 

fluence  

[ ������/���] 

20 1.00E+08 30 3.00E+09 1.62E+04 185185.19 185350.00 3.00E+09 

50 1.00E+08 30 3.00E+09 1.96E+04 153061.22 153584.00 3.01E+09 

100 1.00E+08 30 3.00E+09 2.38E+04 126050.42 126830.00 3.02E+09 

150 1.00E+08 30 3.00E+09 2.74E+04 109489.05 109987.00 3.01E+09 

200 1.00E+08 30 3.00E+09 4.25E+04 70588.24 70691.00 3.00E+09 

 

 

Table 22 - PIC16F877 cross-section calculation (1st experiment). 
 

Beam energy 

[MeV] 

No errors in 

EEPROM 

bytes 

No errors in 

FLASH/RAM 

bytes 

Cross-section of 

(EEPROM + 

FLASH/RAM 

 [���/����] 

Cross-section of 

EEPROM 

[���/����] 

Cross-section of 

FLASH/RAM 

[���/����] 

20 0 0 0.00E+00 0.00E+00 0.00E+00 

50 0 1 3.32E-10 0.00E+00 3.32E-10 

100 1 0 3.31E-10 3.31E-10 0.00E+00 

150 0 5 1.66E-09 0.00E+00 1.66E-09 

200 0 7 2.33E-09 0.00E+00 2.33E-09 
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Table 23 - PIC16F877 proton irradiation parameters (2nd experiment). 

Beam 

energy 

[MeV] 

Flux 

[ ������/���/�] 

Dose Monitor 

(1-unit value) 

Irradiation 

time preset 

[s] 

Desired 

Fluence  

[ ������/���/�] 

Dose 

Monitor 

Preset [Gy] 

Measured 

Dose [Gy] 

Real applied 

fluence  

[ ������/���/�] 

20 1.00E+08 1.62E+04 60 6.00E+09 370370.37 370908.00 6.01E+09 

50 1.00E+08 1.96E+04 60 6.00E+09 306122.45 306787.00 6.01E+09 

100 1.00E+08 2.38E+04 60 6.00E+09 252100.84 252793.00 6.02E+09 

150 1.00E+08 2.74E+04 60 6.00E+09 218978.10 219321.00 6.01E+09 

200 1.00E+08 4.25E+04 60 6.00E+09 141176.47 141176.00 6.00E+09 

 

 

Table 24 - PIC16F877 cross-section calculation (2nd experiment). 

Beam 

energy 

[MeV] 

No errors in 

EEPROM 

bytes 

No errors in 

FLASH/RAM 

bytes 

Cross-section of 

(EEPROM + 

FLASH/RAM 

 [���/����] 

Cross-section of 

EEPROM 

[���/����] 

Cross-section of 

FLASH/RAM 

[���/����] 

20 0 1 1.66E-10 0.00E+00 1.66E-10 

50 2 1 4.99E-10 3.33E-10 1.66E-10 

100 0 9 1.50E-09 0.00E+00 1.50E-09 

150 25 12 6.16E-09 4.16E-09 2.00E-09 

200 0 13 2.17E-09 0.00E+00 2.17E-09 

 

 



CHAPTER 6 - RADIATION TEST  

115 
 

It is possible to observe that the measured values are close to the calculated 

ones which indicate that the beam is giving the desired fluence correctly. The 

results of the both experiments are presented in the Table 22 and Table 24. 

The number of byte error events presented in the EEPROM and in the 

FLASH/RAM memory of the microcontroller are counted in the 2nd and 3rd 

column respectively. With those values, it is possible to calculate the SEE cross- 

section values using the Equation 6 presented in the numeral 1.6.4. 

As the calculation of the SEE cross-section is a result from nuclear reactions 

caused by protons as in this case, the experimental values obtained in the test 

can be fitted in order to obtain more accurate results and to be able to estimate 

the threshold kinetic energy ��� and the saturation cross-section ���� values as 

presented in the Figure 8 in the numeral 1.6.4. As mentioned in the Space 

Environment Information System (SPENVIS) help on single events upsets section 

[56], the experimental values can be fitted using a 2-parameter function or a 4-

parameter Weibull function. The former is a good approximation when a few 

experimental data are obtained and when there are a few close to the threshold 

kinetic energy and the latter provides a better approximation when there are 

several experimental data, especially near to the threshold kinetic energy point, 

however it cannot be used when the experimental data available is obtained from 

four or less beam energy levels [57]. 

For performing the data fit, the OMERE 5.3.2 radiation software developed 

by Test & Radiations (TRAD) [58] was used. On its SEE rate estimation module, 

it is possible to introduce the proton cross-section experimental data and the 

software calculates the parameters of the Bendel or the Weibull function that 

best fit to the given data. 

In the case of the RAM memory results, errors occurred both in the writing 

and reading operations. In the Figure 69, the SEE cross-section experimental 

values and the fitted curves using 2-parameters Bendel and 4-parameters Weibull 

functions for the FLASH/RAM memory are shown for the second experiment. 
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Here, it is possible to see how the probability of errors is growing as the proton 

kinetic energy also grows as expected. Comparing the data fit curves obtained by 

Bendel and Weibull functions, we can observe that both fit well the data; 

however, the Weibull fit assumes that the threshold kinetic energy point is the 

minimum beam energy level used which may not be correct because we got errors 

at that energy point. In the case of the Bendel fit, it is possible to see how the 

function estimates the threshold kinetic energy point which seems to be more 

adjusted to the expected behavior of the cross-section curve.   

 

 

Figure 69 - PIC16F877 FLASH/RAM cross-section. 

 
Finally, in accordance with the recommendations on the numeral 1.6 of the 

“Single Event Test Method And Guidelines” European Space Components 

Coordination (ESCC) basic specification No 25100 [53], when a few experimental 

cross-section data is obtained, error bars must be plotted with the experimental 

data for showing the uncertainly of the cross-section values. Following the 

procedure showed in the guideline, we calculated the uncertainly of our 

experimental data and the error bars are shown in red color on the Figure 69. 
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The parameters of the Bendel function obtained in OMERE 5.2 are � =

14.00 ���, � = 24.72 ��� and the cross-section representative values are: 

 Proton Kinetic Energy Threshold ��� = 14.00 ���. 

 Saturation cross-section ���� = 2.83 × 10�����/������. 

 

On the other hand, in the case of the EEPROM memory, errors only occurred 

in the memory positions where the data were written in every loop iteration. In 

the first experiment, errors only occurred at 100 MeV proton kinetic energy which 

proves that the EEPROM memory is more radiation tolerant than the RAM 

memory. However, in the second experiment when the beam energy was 150 MeV, 

the mentioned memory positions were written with an unknown value. After that 

event, the programmed software were not able to write the correct value “F” in 

those memory positions anymore, which could mean that those memory positions 

could be damaged permanently. However, we tested the DUT after the radiation 

experiment and we found that the EEPROM values were changed to unknown 

value “F” due to the program memory was corrupted. We tested that connecting 

a PICKit programmer in order to verify the integrity of the FLASH program 

memory values comparing the values that was read from the DUT and the values 

of the programing file used to program the device before the radiation test. 

Afterwards, we proceeded to reprogramming the device in order to verify if 

the EEPROM memory or the FLASH memory were completely damaged by the 

proton beam; however, the device were successfully reprogrammed and the 

application worked normally as expected which indicates that the device can be 

recovered of the failures generated by SEEs reprogramming completely the 

device. 

In the Figure 70, the SEE cross-section for the EEPROM memory is presented. 

For the second experiment, errors were only detected at 50 and 150 MeV beam 

energies; then, for that reason, the data can be fitted only using the Bendel 

distribution because the 4-parameter Weibull fit requires at least the cross-section 
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value for 4 energy levels. The parameters of the Bendel function obtained in 

OMERE 5.2 are � = 20.00 ��� , � = 36.27 ���  and the cross-section 

representative values are: 

 Proton Kinetic Energy Threshold ��� = 20.00 ���. 

 Saturation cross-section ���� = 4.09 × 10�����/������. 

 

 

Figure 70 - PIC16F877 EEPROM cross-section. 

 
The summary of the PIC radiation test results is: 

 The EEPROM is less sensitive than the flash-based SRAM for reading 

operations. 

 The EEPROM is more sensitive than the flash-based SRAM for writing 

operations. 

 The flash-based SRAM got corrupted values after radiation with beam 

energy of 150 MeV. However, it could be recovered only after a full re-

programming process via PICKit programmer. 
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6.6.2. Raspberry Pi Results 

The purpose of this test is to perform the experiment with the same parameters 

and characteristics performed in the PIC microcontroller in order to compare 

their performance. However, at the end the device was tested in a different 

condition due to when it was tested at the same fluence value 

 (3 × 10� ������/���/�), the device stopped completely to work. It happened 

because the Raspberry Pi uses an operative system that constantly is monitoring 

the CPU and memory regarding errors and if a critical error is detected in the 

execution, the system notifies it via UART interface and try to fix it 

automatically. However, if the system is not able to recover from the error, it 

stops the functionality until a power reset is executed. It is good for the reliability 

standpoint since the operative system automatically protects the device about 

errors produced by radiation upsets. Nevertheless, it indicates that the Raspberry 

Pi is more sensitive to radiation events when is executing its own operative 

system. Then, in order to perform the test in a meaningful way, the fluence was 

decreased until the system could continue working without losing its complete 

functionality. After finding that fluence level, then, the test was performed in the 

same way followed for the PIC microcontroller. The irradiation parameters for 

the R-Pi Zero experiment are presented in the Table 25 as well as the 

corresponding ones for the R-Pi 3B+ in the Table 26. The parameters in the 

table are calculated as the same way as in the case of the PIC microcontroller 

case in the numeral 6.6.1, the difference is that in order to change the fluence 

level, the beam flux is changed (note the differences in the values of the second 

column in the Table 21, Table 25 and Table 26). The experimental data results 

with their respective uncertainly error bars are plotted in the Figure 71 and 

Figure 72; here, it is possible to appreciate how the R-Pi Zero cross-section grows 

as the proton kinetic energy is increasing following the trend of the expected 

cross-section curve; however, in the case of the R-Pi 3B+, the errors seem to be 

more random for every proton energy steps.
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Table 25 - Raspberry Pi Zero proton irradiation parameters. 

Beam 

energy 

[MeV] 

Flux 

[ ������/���/�] 

Irradiation 

time 

[s] 

Desired 

Fluence  

[ ������/���] 

Dose  

(1-unit value) 

Dose Preset 

[Gy] 

Measured 

Dose [Gy] 

Real applied 

fluence  

[ ������/���] 

20 1.00E+08 30 3.000E+09 1.62E+04 185185.19 185185.00 3.000E+09 

50 1.00E+07 30 3.000E+08 1.96E+04 15306.12 15760.00 3.089E+08 

100 5.00E+06 30 1.500E+08 2.38E+04 6302.52 6324.00 1.505E+08 

150 7.00E+06 30 2.100E+08 2.74E+04 7664.23 7784.00 2.133E+08 

200 5.00E+06 50 2.500E+08 4.25E+04 5882.35 5942.00 2.525E+08 

 

 

Table 26 - Raspberry Pi 3B+ proton irradiation parameters. 

Beam 

energy 

[MeV] 

Flux 

[ ������/���/�] 

Irradiation 

time 

[s] 

Desired 

Fluence  

[ ������/���] 

Dose  

(1-unit value) 

Dose Preset 

[Gy] 

Measured 

Dose [Gy] 

Real applied 

fluence  

[ ������/���] 

20 1.00E+06 30 3.000E+07 1.62E+04 1851.85 1921.00 3.112E+07 

50 1.00E+06 30 3.000E+07 1.96E+04 1530.61 1607.00 3.150E+07 

100 1.00E+06 30 3.000E+07 2.38E+04 1260.50 1298.00 3.089E+07 

150 1.00E+06 30 3.000E+07 2.74E+04 1094.89 1141.00 3.126E+07 

200 1.00E+06 30 3.000E+07 4.25E+04 705.88 771.00 3.277E+07 
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Probably, it is due to the Raspberry Pi 3B+ is a quad-core processor and the 

operating system monitors every core as a different CPU; then, there is a more 

probability to get a system error than in the case of the Raspberry Pi Zero which 

is a single-core processor only. 

Same as in the case of the PIC, the cross-section experimental values can be 

fitted using the OMERE 5.2 radiation software with a 2-parameter Bendel and 

4-parameter Weibull functions. As shown in the Figure 71 and Figure 72 the 

Bendel fit provides more accuracy in the estimation of the threshold kinetic 

energy point than the Weibull fit, even more than the observed in the PIC case. 

For that reason, the relevant parameters of the cross-section will be obtained 

from the Bendel fit. For the Raspberry PI Zero, the Bendel fit parameters are: 

� = 8.00 ��� and � = 16.14 ���. The result is shown in the Figure 71 and the 

cross-section parameters are:  

 

 Proton Kinetic Energy Threshold ��� = 8.00 ���. 

 Saturation cross-section ���� = 1.831 × 10�����/������ 

 

 

Figure 71 - Raspberry Pi Zero device cross-section. 
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Figure 72- Raspberry Pi 3B+ device cross-section. 

 
For the Raspberry PI 3B+, the Bendel fit parameters are: � = 8.00 ��� and 

� = 19.47 ��� . The result is shown in the Figure 72 and the cross-section 

parameters are:   

 

 Proton Kinetic Energy Threshold ��� = 8.00 ���. 

 Saturation cross-section ���� = 2.54 × 10�����/������ 

 

The above shows that the probability of errors in the Raspberry Pi 3B+ is a 

one-order of magnitude greater than in the case of the Raspberry Pi Zero which 

indicates that the R-Pi Zero is more tolerant to the radiation effects. It is 

compressible since the R-Pi Zero worked without a system failure for fluences 

below  1.5 × 10� ������/���  while the Pi 3B+ worked for fluences below 

 3 × 10� ������/���. 

To summarize the obtained results and for comparing them for all the tested 

devices, in the Figure 73, the obtained cross-section for every device is shown and 
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in the Table 27. Cross-section parameters for all tested devices., the relevant cross-

section parameters are presented. 

 

 

Figure 73. Cross-section data comparison for all tested devices. 

 
 

Table 27. Cross-section parameters for all tested devices. 

 PIC R-PI ZERO R-PI 3B+ 

��� (���) 14 8 8 

���� �
���

������
� 2.83E-09 1.83E-08 2.54E-07 

Fluence 3.00E+09 2.00E+08 3.0E+07 

 
 

Finally, the cross-section parameters can be used to estimate the Single Event 

Upset (SEU) rate on a specific satellite orbit. In order to make that estimation 

the SPENVIS environment is used. With the software, the first step is to create 

a project with the mission orbital parameters (for this case, the Ten-Koh orbital 

parameters) as shown in the Figure 74. Afterwards, the trapped proton flux, the 
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solar particle mission fluxes and the galactic cosmic ray fluxes should be chosen 

and executed. For this calculation in particular the selected models were: 

 

 AP-8 MIN trapped proton model 

 CREME96 (peak 5min) solar particles model (H - U) 

 CREME96 Galactic Cosmic Rays (GCR) particles model (H - U) 

 

Finally, the Short-term SEU rates and LET spectra module should be selected 

for performing the SEU rate calculation. The module was configured with the 

parameters shown in the Figure 75 used for the calculation on the Raspberry Pi 

Zero as an example. As a result, running the module, the SEU rate 

upsets/device/day can be obtained. 

The results of the SEU rate for the three tested devices are shown in the Table 

28 with the respective sensitive area used for assumed for each device. Here, it is 

possible to see that the PIC is the device which has the less SEU rate and the 

Raspberry Pi 3B+ is the device which has the major value. It was expected since 

the cross-section values shown that the PIC is less sensitive than the R-Pi Zero 

and the R-Pi 3B+ in four and five orders of magnitude respectively.  

 

 

Figure 74. Ten-Koh orbital parameters configured on SPENVIS 
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Figure 75. SEU rate calculation parameters configured in SPENVIS 

 
 

Table 28. SEU rate estimation results. 

 PIC R-PI ZERO R-PI 3B+ 

Sensitive Area (���) 0.5 1 1 

������� �������
���� � 5.84E-1 5.6E+00 7.8E+01 

6.7. Discussion 

In this numeral, an analysis of the obtained results will be discussed in the 

base of the test objectives presented in the numeral 6.1. 

In the first place, regarding the results presented in the numeral 6.6.1, it is 

possible to observe that the EEPROM memory in the PIC16F877 microcontroller 

used in the Ten-Koh subsystems are sensitive to the proton radiation events when 

write operations are performed. The results show that no SEE were presented in 

the memory allocations were only reading operations were performed. Also, in 

the proton energy of 150 MeV, the allocations where writing operations were 

presented a complete corruption and those were not corrected even after a hard 

reset of the microcontroller. It means that the EEPROM memory can be 
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corrupted due to proton radiation events which proves that the issues presented 

in the numeral 2.2.2 possibly were caused by the LEO radiation environment. 

We verified the functionality of the DUTs after the test and we found that the 

corrupted EEPROM memory positions could be reprogrammed successfully 

which means that the EEPROM were just corrupted temporarily due to the 

proton radiation effects. 

On the other hand, no soft resets were presented during the entire test; 

however, taking into account that the RAM memory presented several errors 

during the test and considering that the OBC reset management is commanded 

by the EPS microcontroller via I2C communication time-out (which is a counter 

stored temporarily in the RAM memory), if the counter bytes are changed to a 

random value that exceed the defined time-out, then the EPS will reset the OBC 

unexpectedly which can explain the resets events analyzed in the numeral 2.2.1. 

Regarding the Raspberry Pi modules, the first aspect to take into account is 

that the test could not be performed whit the same parameters used for the PIC 

test because using the same amount of proton fluence, the Raspberry Pi modules 

stopped the operation due to the operating system kernel error protection which 

indicates that the Raspberry Pi modules running the official operative system 

(Raspbian) are more sensitive than the PIC microcontroller due to radiation 

events. Due the above fact, the calculation of the cross-section was more difficult 

since to for evaluating the error events occurred in the system, it was necessary 

to analyzing the kernel logs provided by the system via UART interface as shown 

in this document provided by Texas Instruments [59] which is a difficult task 

that may produce inaccurate counting of the real error events. However, for this 

research purposes that is acceptable since the idea was to evaluate the 

performance of the Raspberry Pi modules running the official Linux distribution 

and open source tools for nano-satellites applications. 

In contrast with the above, the Raspberry Pi modules always recovered the 

nominal functionality after a power reset due to the kernel error management 
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mentioned previously, it is beneficial because it reduces the risk to have 

permanent damage as presented in the EEPROM in the PIC microcontroller. It 

makes the Raspberry Pi modules a suitable candidate for use in applications that 

operated during a reduced time like payloads. 

Finally, the results also shown that the Raspberry Pi Zero module is less 

sensitive than the 3B+ for radiation events, aspect to make the Zero module 

more reliable to be a candidate for future designs. 
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CHAPTER 7 - CONCLUSION 

7.1. Conclusion 

In this research an improvement of a Ten-Koh satellite communication system 

using an SDR architecture is presented. Using the Raspberry Pi module in 

conjunction with the LimeSDR mini RF module, we achieve more flexibility and 

less limitations comparing with the Ten-Koh presented system. The possibility 

to use a Linux distribution in conjunction with Python and GNU radio suite, 

gives to developers several tools to develop flexible communications systems 

reducing the prototyping and software development time. GNU radio offers a 

bunch of precompiled signal processing blocks and even it is possible to find blocks 

developed for enthusiasms and specialists (e.g. SatNOGS) that can be used to 

facilitate the SDR design for satellite applications. In addition, several SDR 

hardware manufacturers offer precompiled blocks on the GNU radio to configure 

their modules easily, for example, the LimeSDR mini module used in the proposed 

architecture.  

Additionally, the research proved that it is possible to develop a significantly 

low-cost, functional SDR system with the trade-off of compromising parameters 

like the receiver sensitivity and the power consumption mainly. It became an 

interesting option for missions, which the budget is very limited and that are able 

to overcome with the presented limitations, especially for non-developed 

countries. 

On the other hand, there are some aspects to keep in mind which merits more 

researching. For example, the Raspberry Pi is a module created for general 

purpose projects and the Linux Raspbian distribution is a good operating system, 

but it does not focus on real time applications and can be not suitable enough for 

satellite applications. Also, the Raspberry Pi power consumption can be high for 

small satellite applications (specially CubeSats), even in the Zero model is slightly 
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high in comparison with typical low power consumption microcontrollers used in 

small satellite applications.  

As experimented in Ten-Koh mission, satellite systems are becoming more 

complex because of the diversification of the missions and payloads. For that 

reason, new satellite communication systems have to be flexible, reconfigurable 

and adopt functionalities in higher frequency bands e.g. S and K bands that 

enable large capacity communications. Although old PICs are good 

microcomputers with space heritage, they cannot cope with these requirements 

very well. That is why in the future, we will be forced to use new microcomputers 

such as a Raspberry Pi that can supply satisfactorily the requirements discussed. 

Also, mitigation techniques against radiation effects and reduction of power 

consumption are challenges to be faced. 

Regarding the performed radiation test for the PIC16F877 used in the Ten-

Koh subsystems, it is possible to conclude that some of the EEPROM memory 

failures and the reset events presented in some of the subsystems were caused 

due to radiation events. The PIC microcontroller results shown that the RAM 

memory is more sensitive to the radiation effects than the EEPROM and the 

FLASH memory was permanently corrupted using fluences under 

 6.00 x 10�� proton/cm�/s  but recovered after a full chip re-programming 

externally. It explains why in the Ten-Koh mission, the subsystems started to 

present undesired functionalities that could not be recovered even after 

performing a hard reset in the system. 

Regarding the Raspberry Pi radiation performance, it is possible to conclude 

that the obtained tolerances are lower than the obtained from the PIC which 

means that probably is not a recommended device for a critical satellite mission 

application e.g. bus subsystems. However, the device always recovered the normal 

functionality after a power reset which indicates that the use of the native 

operating system ensure a reliable protection against permanent damage as 

presented in the PIC microcontroller EEPROM. It makes the Raspberry Pi a 
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good candidate for developing satellite systems which do not have to work 

continuously during a long time such as payloads. 

Finally, regarding the FPGA reprogramming system implemented for the SDR 

transmitter optimization, we probed the correct functionality for the Spartan 6 

and Kintex 7 Xilinx families and we tested that the reprogramming times are 

suitable to be considered in using for future nanosatellite missions. The system 

can be considered for using in another subsystem or payload for maintenance and 

fault recovery purpose.  

7.2. Future perspectives 

In this research, we described a methodology to develop an SDR for 

nanosatellite applications using a Raspberry Pi and a LimeSDR mini modules 

optimizing the hardware development, demonstrating that the use of the GNU 

Radio tools in conjunction with Linux and Python facilitating the complexity 

that the developing of software requires in this type of systems and performing 

functional and radiation testing in order to prove that the proposed system 

performance can meet with Ten-Koh requirements. However, the system can be 

improved taking into account the following issues found in this research: 

 

 Creating a library with different transceiver modulation combinations in 

order to be used for the nanosatellite community interested in it. 

 

 Following the proposed methodology using GNU Radio plus python in 

another specialized operating system for embedded systems applications for 

improving the overall performance. The Raspberry Pi is compatible with 

several Linux distributions and real time operating systems and probably will 

be possible to overcome the issues presented using the stock Linux 

distribution (Raspbian) used in this research disabling or not including 

unnecessary modules into the system. It could improve the processing 
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performance, the real time response and even the power consumption. 

 

 Implementing the proposed SDR architecture in another single processor 

board, e.g. Zynqberry, beagleboard, etc. There are several options that even 

include ARM processors and FPGA logic in a single chip which can optimize 

the power consumption, the processing performance and the software 

development due the easy integration between the processor part and the 

FPGA part that this kind of modules offer. 

 

 Developing a safe protocol system to upload the required files for the FPGA 

reprogramming functionalities, in this research the possibility of 

reprogramming the transmitter was tested locally, but the protocol used to 

upload the file is an important aspect that have to be improved in future 

applications. 

 

 Regarding the radiation test, performing the test using a low-level software 

in the Raspberry Pi in order to be able to obtain the cross-section in 

���/���  or ���/���� same as performed for the PIC microcontroller. We 

tested the Raspberry Pi running the test software under the operating 

system and due to the kernel execution protection, we could find only errors 

at the system level. 

 

 Another possibility for improving the obtained cross-section results on the 

Raspberry Pi is to test only the microcontroller externally because we tested 

the device in the board as is shipped from factory and there are several 

components near to the processor that received radiation and it could 

generate undesired system errors. Another recommendation is to 

isolate/protect the components situated near to the processor using a proper 

proton degrader e.g. aluminum or solid water with the proper thickness. 
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 If there is a special requirement of using the PIC16F77 or similar in future 

missions even knowing the presented limitations in this research. A 

recommendation for using it is to implement a self-reprogramming system 

in order to recover the FLASH memory due corruptions produced by 

radiation effects. We proved that reprogramming externally the device, it 

recovers the normal functionality after a radiation issue. 
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APPENDIX 1  -  Integrated modulators internal block diagrams 

 

 
Figure 76 - BPSK Modulator 

 
 

 
Figure 77 - FSK Modulator 

 
 

 
Figure 78 - QPSK Modulator 
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Figure 79 - MSK Modulator 
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APPENDIX 2  -  OpenOCD configuration files description 

Raspberry Pi 3B+ and Kintex 7 configuration file example 

############################################################################################## 
# This file is a modification of the original configuration file located in the OpenOCD root  
# directory /interface/sysfsgpio-raspberrypi.cfg 
############################################################################################## 
 
# Config for using RaspberryPi's expansion header 
# 
# This is best used with a fast-enough buffer but also 
# is suitable for direct connection if the target voltage 
# matches RPi's 3.3V 
# 
# Do not forget the GND connection, pin 6 of the expansion header. 
# 
 
############################################################################################## 
# Raspberry Pi JTAG GPIO interface configurations and definitions 
############################################################################################## 
 
interface sysfsgpio  # Define the interface (sysfs) to control the R-Pi GPIOs 
 
transport select jtag  # Select the JTAG mode into the OpenOCD  
 
# Each of the JTAG lines need a gpio number set: TCK TMS TDI TDO 
# Header pin numbers: 23 22 19 21 # Corresponding pins designators into the R-Pi header 
sysfsgpio_jtag_nums 11 25 10 9 # Defining the corresponding Linux GPIO designators 
 
############################################################################################## 
# FPGA configuration for SPI flash memory programming 
############################################################################################## 
 
source [find cpld/xilinx-xc7.cfg] # Selecting the Xilinx 7 family configuration file located  
      # into the OpenOCD root directory “cpld” folder 
 
set _CHIPNAME xc7 # Setting the FPGA name identificator into the JTAG TAP 
 
set _USER1 0x02  # Setting the USER name identificator into the JTAG TAP 
 
if {[info exists JTAGSPI_IR]} { 
 set _JTAGSPI_IR $JTAGSPI_IR 
} else { 
 set _JTAGSPI_IR $_USER1 
} 
 
if {[info exists TARGETNAME]} { 
 set _TARGETNAME $TARGETNAME 
} else { 
 set _TARGETNAME $_CHIPNAME.proxy 
} 
 
if {[info exists FLASHNAME]} { 
 set _FLASHNAME $FLASHNAME 
} else { 
 set _FLASHNAME $_CHIPNAME.spi 
} 
 
target create $_TARGETNAME testee -chain-position $_CHIPNAME.tap 
flash bank $_FLASHNAME jtagspi 0 0 0 0 $_TARGETNAME $_JTAGSPI_IR 
 
proc jtagspi_init {chain_id proxy_bit} { 
 # load proxy bitstream $proxy_bit and probe spi flash 
 global _FLASHNAME 
 pld load $chain_id $proxy_bit 
 reset halt 
 flash probe $_FLASHNAME 
} 
 
proc jtagspi_program {bin addr} { 



APPENDIX 2  -  OpenOCD configuration files description  

136 
 

 # write and verify binary file $bin at offset $addr 
 global _FLASHNAME 
 flash write_image erase $bin $addr 
 flash verify_bank $_FLASHNAME $bin $addr 
} 
 
############################################################################################## 
# OpenOCD commands to programming the SPI flash memory and the FPGA logic 
############################################################################################## 
Init # Initializing the OpenOCD interface 
 
pld load 0 /home/pi/Documents/bscan_spi_bitstreams/bscan_spi_xc7k160t.bit  
# Loading the SPI bscan configuration file for programing the flash memory via the Kintex 7 FPGA  
 
reset halt   # Resetting the FPGA after bscan configuration file programming 
 
flash probe xc7.spi  # Starting to programming the SPI flash memory trough the FPGA 
 
jtagspi_program bpsk.bin 0   # Programming the BPSK modulator via the JTAG interface 
 
shutdown    # Shutdown the OpenOCD interface  
 

Raspberry Pi Zero and Spartan 6 configuration file example 

############################################################################################## 
# This file is a modification of the original configuration file located in the OpenOCD root  
# directory /interface/raspberrypi-native.cfg 
############################################################################################## 
 
# Config for using RaspberryPi's expansion header 
# 
# This is best used with a fast-enough buffer but also 
# is suitable for direct connection if the target voltage 
# matches RPi's 3.3V 
# 
# Do not forget the GND connection, pin 6 of the expansion header. 
# 
 
############################################################################################## 
# Raspberry Pi JTAG GPIO interface configurations and definitions 
############################################################################################## 
 
interface bcm2835gpio  # Define the interface (bcm2835) to control the R-Pi GPIOs 
 
transport select jtag  # Select the JTAG mode into the OpenOCD  
 
bcm2835gpio_peripheral_base 0x20000000 # GPIO peripheral base value for Raspberry Pi ZERO 
 
 
# Transition delay calculation: SPEED_COEFF/khz - SPEED_OFFSET 
# These depend on system clock, calibrated for stock 700MHz 
# bcm2835gpio_speed SPEED_COEFF SPEED_OFFSET 
bcm2835gpio_speed_coeffs 113714 28  # GPIO speed coefficients for Raspberry Pi ZERO 
 
# Each of the JTAG lines need a gpio number set: TCK TMS TDI TDO 
# Header pin numbers: 23 22 19 21 # Corresponding pins designators into the R-Pi header 
bcm2835gpio_jtag_nums 11 25 10 9 # Defining the corresponding Linux GPIO designators 
 
adapter_khz 200  # JTAG adapter frequency for Raspberry Pi ZERO 
 
############################################################################################## 
# FPGA configuration for SPI flash memory programming 
############################################################################################## 
 
source [find cpld/xilinx-xc6s.cfg] # Selecting the Xilinx Spartan 6 family configuration file 
  # located into the OpenOCD root directory “cpld” folder 
 
set _CHIPNAME xc6s # Setting the FPGA name identificator into the JTAG TAP 
 
set _USER1 0x02  # Setting the USER name identificator into the JTAG TAP 
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if {[info exists JTAGSPI_IR]} { 
 set _JTAGSPI_IR $JTAGSPI_IR 
} else { 
 set _JTAGSPI_IR $_USER1 
} 
 
if {[info exists TARGETNAME]} { 
 set _TARGETNAME $TARGETNAME 
} else { 
 set _TARGETNAME $_CHIPNAME.proxy 
} 
 
if {[info exists FLASHNAME]} { 
 set _FLASHNAME $FLASHNAME 
} else { 
 set _FLASHNAME $_CHIPNAME.spi 
} 
 
target create $_TARGETNAME testee -chain-position $_CHIPNAME.tap 
flash bank $_FLASHNAME jtagspi 0 0 0 0 $_TARGETNAME $_JTAGSPI_IR 
 
proc jtagspi_init {chain_id proxy_bit} { 
 # load proxy bitstream $proxy_bit and probe spi flash 
 global _FLASHNAME 
 pld load $chain_id $proxy_bit 
 reset halt 
 flash probe $_FLASHNAME 
} 
 
proc jtagspi_program {bin addr} { 
 # write and verify binary file $bin at offset $addr 
 global _FLASHNAME 
 flash write_image erase $bin $addr 
 flash verify_bank $_FLASHNAME $bin $addr 
} 
 
############################################################################################## 
# OpenOCD commands to programming the SPI flash memory and the FPGA logic 
############################################################################################## 
Init # Initializing the OpenOCD interface 
 
pld load 0 /home/pi/Documents/bscan_spi_bitstreams/ bscan_spi_xc6slx75.bit 
# Loading the SPI bscan configuration file for programing the flash memory via the Spartan 6  
# FPGA  
 
reset halt   # Resetting the FPGA after bscan configuration file programming 
 
flash probe xc6s.spi  # Starting to programming the SPI flash memory trough the FPGA 
 
jtagspi_program qpsk.bin 0   # Programming the QPSK modulator via the JTAG interface 
 
shutdown    # Shutdown the OpenOCD interface  
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