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Bayesian Nonparametric Learning of Cloth Models
for Real-time State Estimation

Nishanth Koganti1,2, Tomoya Tamei1, Kazushi Ikeda1 and Tomohiro Shibata2

Abstract—Robotic solutions to clothing assistance can signif-
icantly improve the quality-of-life for the elderly and disabled.
Real-time estimation of human-cloth relationship is crucial for
efficient learning of motor-skills for robotic clothing assistance.
The major challenge involved is cloth state estimation due to
inherent non-rigidity and occlusion. In this study, we present
a novel framework for real-time estimation of cloth state using
a low-cost depth sensor making it suitable for a feasible social
implementation. The framework relies on the hypothesis that
clothing articles are constrained to a low-dimensional latent
manifold during clothing tasks. We propose the use of Manifold
Relevance Determination (MRD) to learn an offline cloth model
which can be used to perform informed cloth state estimation
in real-time. The cloth model is trained using observations from
motion capture system and depth sensor. MRD provides a princi-
pled probabilistic framework for inferring the accurate motion-
capture state when only the noisy depth sensor feature state
is available in real-time. The experimental results demonstrate
that our framework is capable of learning consistent task-specific
latent features using few data samples and has the ability to
generalize to unseen environmental settings. We further present
several factors that affect the predictive performance of the
learned cloth state model.

Index Terms—Personal Robots, Robotic Clothing Assistance,
Visual Tracking, Learning and Adaptive Systems, Cloth State
Estimation

I. INTRODUCTION

ASSISTIVE robots are playing an increasing role in im-
proving the living standards and independence of the

elderly and disabled population. Recent demographic trends
including the tremendous increase of elderly population has
caused a severe shortage of trained professionals for care-
giving. The long term goal for the robotics community is
the realization of care-giving robots that not only provide
companionship but also physical assistance with everyday
activities. The major requirements for such a care-giving
robot includes safe and reliable human interaction and the
ability to manipulate a wide array of household items. There
has been significant research on rigid object manipulation,
however, handling of non-rigid objects such as clothes remains
a challenging task with active ongoing research.

Clothing assistance is a basic assistive activity in the daily
life of the elderly and disabled. However, robotic clothing
assistance is considered an open problem as it involves a
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Fig. 1. Clothing assistance performed by dual-arm robot with cloth state
estimation performed using depth sensor.

tightly coupled interaction among the human subject, non-rigid
clothing articles and the robot. Real-time estimation of human-
cloth relationship enables detection and adaptation to failure
scenarios while performing clothing tasks, which is required
for a practical implementation of a robotic framework. The
challenge in this problem mostly lies with cloth state estima-
tion due to their inherent non-rigidity, occlusion by the human
subject and self-occlusion as seen in the experimental setup
shown in Fig. 1.

Clothing articles inherently lie in a high dimensional con-
figuration space and can undergo large deformations. The
deformations occurring during a cloth folding task can be
significantly different when compared to wearing the same
clothing article. This makes general-purpose modeling and
state estimation of clothing articles not only difficult but
also impractical. However, clothing articles follow consistent
deformations for a particular task thereby constrained to a
low-dimensional manifold which is task-specific. A possible
approach for reliable cloth state estimation is to constrain the
search space within task-specific latent cloth models.

In this study, we propose the use of Bayesian nonparametric
latent variable models to learn an offline cloth model to
perform informed cloth state estimation in real-time as shown
in Fig. 2. Our framework is applied for the real-time tracking
of human-cloth relationship using a depth sensor. A depth
sensor is a low-cost solution to capture 3D shape information
without requiring any elaborate setup or calibration of the
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sensor. These features are crucial to develop a real-world
implementation of clothing assistance wherein end-users and
caregivers can easily setup the system. However, depth sensors
provide noisy information and there is also the problem of
cloth occlusion in our task setting. We tackle these problems
by assuming that clothing articles are constrained to a low-
dimensional latent manifold specific to clothing assistance
tasks forming a task-specific cloth model. This model is
learned using the non-linear dimensionality reduction tech-
nique Manifold Relevance Determination (MRD) [7] to handle
the non-rigidity of clothing articles and learn the cloth latent
features in a Bayesian manner avoiding the problem of over-
fitting.

MRD is used to learn an offline low-dimensional latent
manifold for data from simultaneous observation of clothing
article using a motion capture system and a depth sensor.
Both sensory systems have complimentary capabilities, when
combined provide the most informative observation of clothing
articles. The motion capture system can provide accurate
location information of discrete markers in the environment,
however, it is an expensive and complex system that requires
precise calibration and can not be used in real-time. On the
other hand, depth sensors are low-cost and calibration free,
however, they provide noisy point cloud information of the
whole environment. MRD provides a principled probabilistic
framework for inferring the accurate motion capture state when
only the noisy depth sensor state is available in real-time. In
this study, we further investigate the effect of factors such as
feature representations on the predictive performance of the
trained cloth state model.

The rest of the paper is organized as follows. Section II,
introduces some of the related works for robotic cloth han-
dling. In Section III, we describe our proposed framework
for learning cloth models. Section IV shows the experimental
results. Finally we conclude in Section V with some future
directions.

II. RELATED WORK

In the recent years, there has been a lot of attention on devel-
oping frameworks for robotic cloth manipulation. The studies
tackle different aspects of the problem and are presented here
in broadly three categories: Cloth State Estimation, Motor-
skills Learning, Robotic Clothing Assistance. The first cate-
gory has studies on reliable cloth state estimation. The second
category includes motor-skills learning for non-rigid clothing
articles. The third category presents studies that tackled robotic
clothing assistance. This section further includes a literature
survey on the use of latent manifold learning in the domain
of robotics and computer vision.

Cloth State Estimation: One of the approaches to robotic
cloth handling is to rely on efficient cloth state estimation
along with static planning of the robot. Ramisa et al. [26],
[27] proposed feature descriptors for detection and parts
segmentation of clothing articles from RGB-D data. Willimon
et al. [28], [29] used interactive perception with a robot to
classify non-rigid objects in a cluttered environment. Kita
et al. [30], [31] used multiple observations of a cloth to fit

a mesh-model through optimization used for informed cloth
manipulation. These studies have several limitations in the
context of robotic clothing assistance. The frameworks rely on
the use of high-dimensional cloth state models and sometimes
optimization based-techniques. Usually, planar assumption
is taken for clothing articles to constrain state estimation.
These assumptions are invalid for clothing assistance tasks
and computationally efficient representations are required to
ensure real-time state estimation. These studies also do not
specifically handle the interaction between clothing articles
and human-subjects required for clothing assistance.

Motor-skills Learning: Several studies have proposed motor-
skills learning frameworks for cloth handling. Doumanoglou
et al. [32] formulated a Partially Observable Markov Decision
Process (POMDP) framework for cloth unfolding along with
random forests for cloth classification. Huang at al. [33] gen-
erated trajectories through a warp function to bring clothes to a
desired configuration. Lakshmanan et al. [34] used movement
primitives to parametrize motion planning for performing a
given sequence of folds. Miller et al. [24], [25] performed
robust robotic cloth folding by generating motion trajectories
for a 2D polygon approximation of the clothing article. The
motor-skill learning frameworks presented here mainly handle
tasks that require point-to-point planning based on one-shot
cloth state estimation decisions. There are also studies that
handle high-dynamics tasks, but the clothing articles do not
undergo severe occlusions and the cloth state was represented
by tracking specific positions of clothing articles such as
the corners. However clothing assistance tasks are highly
dynamical requiring efficient cloth state estimation to handle
cloth occlusions and constraints due to coupling with the
human.

Robotic Clothing Assistance: There are few studies that
tackle the problem of clothing assistance. Klee et al. [35]
proposed a clothing assistance framework to coordinate with
a human to complete various clothing tasks. They emphasized
on human motion tracking and performed tasks such as putting
a cap on a human subject. Colome et al. [36] performed cloth-
ing of a mannequin with a scarf using reinforcement learning.
They relied on an accurate inverse dynamics model for reliable
motion planning. Gao et al. [37] tackled the problem through
user-specific body constraints calibration to perform reliable
motion planning for clothing assistance. Yamazaki et al. [38],
[39] have proposed a framework for clothing of subjects with
pants. In their framework, they relied on the use of optical
flow and an offline database of image streams to detect the
current state of clothing task. These studies presented here
do not specifically handle reliable cloth state estimation and
address other aspects of clothing assistance such as human-
pose modeling and robot dynamics handling. The tasks in
these studies also do not have much interaction between the
clothing article and the human.

Manifold Learning in Robotics: Robotics applications re-
quire learning motor-skills with high-dimensional observations
obtained using noisy sensors. Usually the inherent dimension-
ality of the task is much lower and is non-linearly related to
the observation space. There have been several studies that use
Gaussian Process (GP) based latent variable models (LVM) for
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Fig. 2. Proposed framework for cloth state modeling using MRD. Observations are obtained from a depth sensor represented by cloth point cloud and from
the motion capture system represented by topology coordinates. The learned latent manifold is used in real-time to infer human-cloth relationship information
given noisy depth sensor input.

data-efficient learning. Shon et al. [40] formulated a shared
GP latent variable model for multiple observation spaces and
applied it to robotic imitation of human poses through a shared
latent space. Ko et al. [42] formulated a generic framework
for GP-Bayes filters in settings with incomplete ground truth
data where a state sequence is generated using GPLVM.
Dimensionality reduction has also been used in reinforcement
learning frameworks for robotics where the policy learning
is done using a low-dimensional latent space that captures
task space constraints [41], [44]. Wang et al. [43] proposed a
GPLVM based dynamics model that can infer the intention of
a human subject given task demonstrations in a human-robot
interaction setting. These studies rely on the use of GP based
latent variable models in complex settings to perform data-
efficient learning thereby validating its applicability to robotic
clothing assistance.

In this study, we address the challenge where there is
significant coupling between the clothing article and the
human such as the clothing with a T-shirt involving severe
cloth deformation and occlusion by the mannequin. Our study
builds upon the clothing assistance framework proposed by
Tamei et al. [3], wherein a dual-arm robot clothes a soft
mannequin with a T-shirt. Topology coordinates were used
as a low-dimensional state representation for efficient motor-
skills learning. The proposed framework is an extension to our
preliminary studies [1], [2] wherein we tackled the problem of
reliable cloth state estimation using a depth sensor for clothing
assistance tasks. In this study, we propose the offline fusion of
a depth sensor and a motion capture system for reliable online
tracking using a depth sensor. We further rely on the use of
Gaussian process based non-linear dimensionality reduction

technique to handle the non-rigid dynamics of clothing articles.
We also perform data-efficient learning through Bayesian
nonparametric latent variable models so that the cloth state
model can generalize to unseen environmental settings.

III. METHODS

In this section, we present our proposed method for the
modeling of cloth state and its application to robotic clothing
assistance tasks. First, the formulation of the cloth state
model and its motivation is presented. We then describe the
representations used for the depth sensor data (feature space)
and motion capture data (pose space) in the cloth state model.
Finally the different strategies implemented for the inference
of pose state given test feature state is explained.

A. Non-linear Latent Manifold Learning

In this study, we assume that clothing articles undergo
similar deformations during a specific type of task thereby
constrained to a low-dimensional configuration space. We
propose the use of Gaussian Process (GP) [4] based non-
linear latent variable models [5], [7] to learn the underlying
low-dimensional manifold from high dimensional cloth state
observations. In this section, we provide the mathematical
formulation of the models and discuss the applicability of these
models for cloth state modeling.

Bayesian Gaussian Process Latent Variable Model (BG-
PLVM) is a non-linear dimensionality reduction technique
proposed by Titsias et al. [5]. It is derived from the gen-
erative model shown in Fig. 3a where the observations,
Y = {y1,y2, · · · ,yN}, yn ∈ RD, are assumed to be
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Fig. 3. Graphical models of latent variable models: a) Bayesian Gaussian
Process Latent Variable Model (BGPLVM) [5], b) Manifold Relevance
Determination (MRD) [7], c) Inference for MRD [7]

generated through a noisy process from latent variables X =
{x1,x2, · · · ,xN}, xn ∈ RL,

yn = f(xn) + εn, εn ∼ N (0, β−1I),

p(yn|xn, f, β) = N (f(xn), β−1I)
(1)

where β denotes the inverse variance for the noise random
variable ε and the conditional distribution for an observation
sample can be derived as a Gaussian distribution. In this
model, a prior on the mapping function f is placed using a
Gaussian Process [4] f(x) ∼ GP(0, k(x,x′)), where k(x,x′)
is the covariance function. For performing automatic model
selection of the latent space dimensionality, the Automatic
Relevance Detection (ARD) kernel [4] can be used,

kARD(xi,xj) = σ2
ARD exp

(
−1

2

L∑
l=1

αl(xi,l − xj,l)2

)
(2)

The ARD weights {αl}Ll=1 describe the relevance of each
dimension and σARD describes the scale of the GP mapping
function. The relevance is usually determined using a heuris-
tic threshold such that dimensions with weights below the
threshold have insignificant contribution to reconstructing the
observations [5], [7].

The objective is to infer the unknown latent variables X
and the model parameters Φ = {β, σ2

ARD, {αl}Ll=1} of the
mapping function. The conditional likelihood is derived by
assuming D independent GP mappings evaluated on the latent
variables X,

p(Y:,d|X,Φ) = N (Y:,d|0,K),

p(Y|X,Φ) =

D∏
d=1

p(Y:,d|X,Φ),

=
1

(2π)
DN
2 |K|D2

exp
(
−1

2
tr((K)−1YYT )

) (3)

where K is the N ×N covariance matrix obtained from the
covariance function kARD(x,x′) and observation noise β, Y:,d

represent columns of the observation samples. A prior can be
placed on the latent variables X and marginalization w.r.t X
leads to a full Bayesian treatment,

p(X) =

N∏
n=1

N (xn|0, I),

p(Y|Φ) =

∫
p(Y|X,Φ)p(X)dX

(4)

However, the integral for marginalization becomes intractable
as X appears non-linearly in the inverse of the kernel co-
variance matrix K as shown in Eqn. (2),(3). To make the
marginalization tractable, approximate variational inference
can be applied wherein a variational distribution q(X) is used
to approximate the true posterior distribution p(X|Y) given
by,

q(X) =
N∏
n=1

N (xn|µn, Sn) (5)

where {µn, Sn}Nn=1 are the variational parameters. A Jensen’s
lower bound on the log marginal likelihood log p(Y) can be
derived as follows:

F (q) =

∫
q(X)log

p(Y|X)p(X)

q(X)
dX (6)

The hyper parameters Φ are dropped for notational simplicity.
The lower bound still remains intractable as the latent variables
appear non-linearly in the conditional likelihood term p(Y|X).

Titsias et al. [5] resolved this problem by introducing
data augmentation which is commonly used in sparse GP
regression. Data augmentation involves adding M extra ob-
servations U = {u1,u2, · · · ,uM}, um ∈ RD known as
inducing variables. These are evaluated at a set of pseudo
inputs X̂ ∈ RM×L through the same GP Prior as the latent
variables, X. The joint probability density and the variational
distribution under this augmentation are modified as follows,

p(Y,U,X, X̂) = p(Y|U,X)p(U|X̂)p(X),

q(Θ) = p(Y|U,X)q(U)q(X)
(7)

where q(X) takes the form of Eqn. (5), q(U) is a variational
distribution on the inducing variables whose form needs to be
optimized and p(Y|U,X) is the GP likelihood constrained
by the latent variables as well as the inducing variables. This
augmented probability model leads to a tractable Jensen’s
lower bound F̂ (q) through the removal of the non-linear factor
p(Y|X) thereby making the approximation tractable. Detailed
derivations of the model are further presented in [5].

The prediction of unseen test data y∗ is performed by
evaluating p(y∗|Y),

p(y∗|Y) =

∫
p(y∗,Y|x∗,X)p(x∗,X)dXdx∗∫

p(Y|X)p(X)dX
(8)

The predictive distribution is given by the ratio of
two marginal likelihoods, both of which can be ap-
proximated using the augmented probability model i.e.
exp(F̂ (q,X,x∗)), exp(F̂ (q,X)). Efficient computations to
handle test data are further described in [5].
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Damianou et al. [7] proposed an extension to BGPLVM
for learning a shared latent space among multiple observation
spaces called Manifold Relevance Determination (MRD). Here
we present MRD formulation for two observation spaces as
shown in Fig. 3b i.e. Y ∈ RN×DY , Z ∈ RN×DZ assumed to
be generated from a single latent variable X ∈ RN×L through
the GP mappings fY : X → Y , fZ : X → Z,

yn = fY (xn) + εYn , ε
Y
n ∈ N (0, β−1

Y I),

zn = fZ(xn) + εZn , ε
Z
n ∈ N (0, β−1

Z I)
(9)

where εYn , ε
Z
n are the noise random variables parametrized by

the inverse variance parameters βY , βZ . The GP mappings
for the Y observation space can be modeled using the ARD
kernel,

kY (xi,xj) = σ2
Y exp

(
−1

2

L∑
l=1

αYk (xi,l − xj,l)2

)
(10)

and similarly for the Z observation space. Learning the ARD
weights {αYl , αZi } results in not only inferring the latent space
dimensionality but also partitioning of the latent space into
shared (XS) and private spaces (XY ,XZ). This is done using
a heuristically set threshold δ on the normalized ARD weights
to determine a latent dimension’s relevance to each observation
space,

XS = {xl}Ll=1 : xl ∈ X, αY > δ, αZ > δ,

XY = {xl}Ll=1 : xl ∈ X, αY > δ, αZ < δ,

XZ = {xl}Ll=1 : xl ∈ X, αY < δ, αZ > δ

(11)

The objective is to evaluate the shared latent variables as
well as the GP mapping hyper parameters for each observation
space Φ{Y,Z}. The joint conditional likelihood is obtained by
factorizing each observation space as follows,

p(Y,Z|X,ΦY ,ΦZ) =
∏

Γ={Y,Z}

p(Γ|X,ΦΓ) (12)

Marginalization of the latent variables, similar to BGPLVM,
is intractable due to its non-linear appearance in the kernel
covariance matrix. Damianou et. al. [7] proposed an approx-
imate variational inference formulation that relies on the use
of an augmented probability model similar to BGPLVM (Eqn.
(7)),

q(Θ) = q(X)
∏

Γ={Y,Z}

q(UΓ)p(fΓ|UΓ,X), (13)

where U{Y,Z} are the inducing variables for each observation
space similar to the BGPLVM formulation. The Bayesian
formulation further enables test inference in the form of
p(z∗|y∗) i.e. inference of test sample in Z observation space
(z∗) given the Y observation space y∗. This inference is done
by first estimating the latent sample x∗ similar to test inference
given in Eqn. (8) and using this estimate through the GP
mapping fZ .

The inference for a test sample follows a sequence as shown
in Fig. 3c. Firstly, the latent state x∗Y , x

∗
S corresponding to

test sample y∗. The shared latent state x∗S is then used to find
nearest neighbors among the latent points corresponding to the

training data and obtain the private dimensions information
for Z i.e. xNNZ . Finally, the full latent state x∗S , x

NN
Z is

used to infer the test pose state i.e. z∗. In this sequence, the
computationally expensive operation is inference of x∗Y , x

∗
S as

it involves optimization of marginal likelihoods similar to the
MRD model training. This makes real-time inference difficult
and so we explored alternative strategies for the test inference
presented in Section III-E.

The latent variable models presented in this section are a
powerful class of models that can be used in a wide range
of settings. The use of GP mappings leads to data-efficient
learning of complex mappings. Approximate Bayesian infer-
ence along with ARD kernels avoids overfitting and enables
automatic dimensionality reduction.

B. Cloth State modeling

Clothing articles inherently lie in a high dimensional con-
figuration space and feature extraction becomes a challenging
task as the clothing article could have large shape variations
and occlusions. Poor feature extraction could also lead to
model inaccuracies for motor-skills learning thereby restricting
the learning rate for robotic applications to cloth handling. To
address this problem, we propose the use of Bayesian non-
parametric latent variable models described in Section III-A.
This leads to task-specific feature extraction in a purely data
driven manner.

In this study, we consider clothing assistance tasks for
demonstrating our proposed method. A mannequin was used
as the subject and the clothing task is to cloth the mannequin
with a T-shirt that is initially lying on its hands. We are
interested in real-time estimation of the relationship between
the assisted subject and cloth using a low-cost depth sensor
for the implementation of a practical and efficient robotic
clothing assistance framework. However, this is a challenging
task as there are significant changes in the cloth state during
clothing tasks along with self-occlusions and occlusion by the
mannequin. To address this problem, we propose the learning
of an offline cloth state model using information from both
the depth sensor and motion capture system.

The purpose of the cloth model is to learn a latent repre-
sentation X = [x1, . . . ,xN ]T corresponding to an aligned data
set of clothing article observations from the depth sensor Y =
[y1, . . . ,yN ]T and motion capture system Z = [z1, . . . , zN ]T .
The motivation behind this modeling approach as described in
Section I is that the motion capture system can provide precise
location information of markers placed on the cloth where as
the depth sensor can provide a generalized shape description.
By learning a shared latent structure, we are indirectly learning
a mapping from the generic depth sensor information to the
more detailed motion capture information, which can be used
for constrained cloth state estimation in real-time using noisy
depth sensor observations. The predictive performance of the
learned latent structure further depends on several factors such
as the representations used for the observation spaces and
the inference technique used. In the following subsections we
describe the approach used in handling these factors.
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C. Motion Capture Representations

The purpose of using motion capture system is to capture
precise cloth state information which is required for efficient
motor-skills learning. We consider the clothing task where the
robot has to cloth a mannequin with a T-shirt which is initially
on the mannequin’s hands. We assume that the details of
clothes such as wrinkles are not important to achieve clothing
assistance tasks and hence used low-dimensional topology
coordinates [8] to capture the relationship between human
subject and clothing article. Furthermore, we have previously
demonstrated that topology coordinates are robust to noise in
the motion capture observations and can efficiently capture the
human-cloth interaction in a practical setting [1].

Topology coordinates [8] were formulated for synthesizing
human-like motions that involve close interactions. Topology
coordinates compactly define the relationship between two
curves in the Cartesian space using three different attributes,
i.e. writhe w, center of twist c = [c1 c2] and density d.
Writhe w measures the total twisting between two curves
γ1, γ2 by using an approximation of the Gauss Linking Integral
(GLI) [9]:

GLI(γ1, γ2) =
1

4π

∫
γ1

∫
γ2

(γ1 − γ2) · (dγ1 × dγ2)

‖γ1 − γ2‖3
(14)

The center of twist c, composed of two scalars explains
the relative position of twist with respect to each of these
lines. The density d represents the relative twisting between
the two lines, i.e. which line is twisting around the other.
These parameters can be analytically computed by dividing
the given curves into chains of small line segments. The
details for analytical computation of these parameters along
with examples are presented in Appendix A.

The motor-skills required for the robot to complete the
clothing task are 1) to pull the T-shirt collar over the man-
nequin’s head and onto the mannequin’s body, 2) to pull
the T-shirt sleeves along the mannequin’s arm towards its
shoulder. To achieve these motor-skills, the following needs
to be estimated and tracked by the depth sensor: T-shirt
collar, T-shirt sleeves and the mannequin’s posture. In this

study, the focus is on the cloth state estimation and therefore
the mannequin’s posture remains fixed during the task. The
human-cloth relationship is given by considering the writhe
and center of twist of the T-shirt w.r.t the mannequin for 4
different topologies as shown in Fig. 4: 1) T-shirt Collar -
Mannequin’s Head Topology, 2) Collar - Body, 3) Left Sleeve
- Left Arm, 4) Right Sleeve - Right Arm thereby forming a
8 dimensional representation Z ∈ R8. The density parameter
is not considered as the T-shirt will always twist around the
mannequin and this topology is never reversed for clothing
assistance tasks.

The topology coordinate values were computed using the
observations from motion capture system. The setup had eight
infrared (IR) cameras placed carefully around the experimental
setting to maximally avoid occlusion of markers. Six IR
markers were attached on the T-shirt collar, three markers
on each T-shirt sleeve and five markers on the mannequin
respectively to estimate the human-cloth topological relation-
ship. These markers were used to obtain approximate curves
of the T-shirt collar and sleeves which were used in the
computation of topology coordinates. The computation of
topology coordinates for the T-shirt clothing task are presented
in the Appendix A.

D. Depth Sensor Representations

A depth sensor is capable of capturing shape information
of clothing articles. The purpose of the feature space repre-
sentation is to capture the global cloth shape. For this, we
consider the point cloud representation of the clothing article.
The point cloud data can be used in real-time along with the
proposed cloth modeling approach to infer precise human-
cloth relationship information. In this section we present the
method used to preprocess the RGB-D data and obtain the
point cloud corresponding to the clothing article.

For the real-time estimation of human-cloth relationship,
we need to track the overall cloth shape during the clothing
task. There have been several studies that can reliably locate
clothing articles within a cluttered environment [45], [46]. We
assume that it is possible to obtain a seed bounding box for
clothing articles through the existing methods. In this study,
to simplify the process, we have used clothing articles that are
of a single color to reliably localize the clothing article in an
input frame.

The depth sensor provides a pair of RGB and depth images
as each observation. The RGB image is used to locate the
clothing article and the depth image is used to construct the
cloth point cloud. Prior to the tracking, we perform a hue-
saturation based color calibration where in a histogram of hue
and saturation values is constructed from a region of interest
(ROI) that corresponds to the T-shirt. This histogram can be
used to find pixels corresponding to the T-shirt in an input
image. For tracking of clothing article, we use the following
approach as illustrated in Fig. 5:
• T-shirt hue-saturation histogram is applied to the input

frame to obtain a back projection image. The back
projection image is computed using the T-shirt histogram
where the intensity of each pixel in the back-projection
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Fig. 5. Overview of the algorithm used to extract the point cloud correspond-
ing to the T-shirt from raw RGB-D data from depth sensor.

image corresponds to the probability of belonging to the
T-shirt.

• Back-projection image along with a seed T-shirt bounding
box is provided as input to the standard CAMshift algo-
rithm [10] where the shift and scaling of the bounding
box between frames is estimated.

• To ensure feature consistency across multiple demonstra-
tions, a bounding box of fixed size (250×250 in this case)
is computed with a center corresponding to the bounding
box obtained from the CAMshift algorithm.

• Back projection image within the bounding box repre-
sents the probability of belonging to the T-shirt and is
applied as a mask to both the RGB and depth images
and obtain the region corresponding to the T-shirt.

• Point cloud from the T-shirt depth image pixels is con-
structed using the intrinsic parameters of the sensor. This
point cloud is further processed by applying statistical
outliers removal techniques.

The image processing functions were implemented using the
OpenCV library [11] and the point cloud processing was
done using the Point Cloud Library (PCL) [12]. The point
cloud constructed through preprocessing is down sampled to
50× 50 forming a 7500 dimensional space with a triplet of 3
dimensions capturing the Cartesian position of a point in the
T-shirt point cloud. Ydepth ∈ R7500

E. Real-time Implementation

The latent manifold learned by the MRD model includes
two sets of ARD kernel weight parameters. These parameters
describe the relevance of each latent dimension with respect
to the corresponding observation space as described in Sec-
tion III-A. The latent space is partitioned into three subspaces
XS ,XY ,XZ where XS are the shared latent dimensions and
XY ,XZ are the private latent dimensions. The partitioning is
done by placing manually set thresholds on the ARD weights
as shown in Eqn. 11.

The objective of trained cloth models is to infer accurate
pose state (motion capture space) given an unseen feature state
(depth sensor space) in real-time. The inference of pose state
z∗ for an unseen feature state y∗ involves a sequence of several
steps as presented in Section III-A. As this inference approach

is not suitable for real-time implementation, we considered two
alternate strategies with improved computational efficiency.

Optimization Approach: This is the standard strategy where
optimization is performed for each test sample y∗ to obtain
the test latent state x∗Y , x

∗
S . This is the most computationally

expensive approach and is expected to have the best predictive
performance. Nearest Neighbor Regression: This is a naive
strategy where we obtain the nearest neighbors yNN to the
test data y∗ in the training set and approximate x∗Y , x

∗
S with

mean of nearest neighbor latent points xNNY , xNNS . This is the
most computationally efficient approach and is expected to
have the least predictive performance.

Hybrid Approach: This strategy can be considered as a
trade-off between the two strategies presented above. The
latent states obtained using the optimization approach were
found to have strong temporal correlation. This insight was
used to propose a hybrid inference strategy where an Un-
scented Kalman Filter (UKF) [14] is applied to latent states
predicted using the nearest neighbor strategy. Furthermore,
for every fixed number of observations, the internal state of
UKF is updated using the optimization inference technique.
This approach provides more reliable estimates compared to
the nearest neighbor approach with similar computational effi-
ciency and can be considered as a trade-off between accuracy
and time complexity.

IV. EVALUATION

In this section, we describe the experiments conducted
to evaluate the performance of our proposed framework.
Section IV-A describes the experimental setup used and the
dataset collected for evaluation. Section IV-B demonstrates
the effectivity of using Bayesian nonparametrics in handling
the non-rigidity of clothing articles. Section IV-C shows the
predictive performance of the trained cloth models for various
environmental settings. The computational complexity for the
algorithm along with real-time implementation for test infer-
ence is demonstrated in Section IV-D.

A. Experimental Setup

Experimental setup includes the clothing assistance frame-
work with Kinect V2 depth sensor and MAC3D motion
capture system for cloth state estimation. We designed a frame-
work using Robot Operating System (ROS) [15] and socket
programming to integrate both devices and for synchronous
data recording. Each sensor device has a program or node
running on the control PC to perform data collection. We
collected clothing trials with simultaneous observation of the
T-shirt state using both the depth sensor and motion capture
system. The node for motion capture system is designated
as the master and other node as slave. Synchronization for
data collection was performed by the master node which
sends messages to the slave nodes for starting and stopping
data collection. The observations were also temporally aligned
ensuring point-to-point correspondences in the training phase.
Cloth state is observed using both the sensors at a rate of
30 frames per second (FPS) during the clothing assistance
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(a) (b)

(c) (d)

Fig. 6. Four T-shirts were used for collecting clothing trials: a) T-shirt 1:
Polyester and V-neck, b) T-shirt 2: Polyester and round neck, c) T-shirt 3:
Cotton and V-neck, d) T-shirt 4: Cotton and round neck

tasks. The observations were also spatially aligned by per-
forming an absolute orientation calibration between the motion
capture system and the depth sensor. The method proposed
by Umeyama [17] was used to compute the transformation
between the two reference frames. The source code for this
framework is published online as a ROS package for further
reference [16].

The efficiency of MRD to learn cloth state models was
evaluated for clothing assistance tasks. Ideally, the learned
cloth state model needs to be task specific such as for clothing
tasks and should generalize to various environmental settings.
For the case of robotic clothing assistance, the model needs
to generalize to unseen postures of mannequin and different
clothing materials. To evaluate the generalization capability,
we used four T-shirts with different features as shown in
Fig. 6. For each T-shirt, we collected clothing trials for
six different postures of the mannequin obtained by varying
the head inclination ({30o, 45o}) and the shoulder elevation
({100o, 105o, 110o}) angles. The head inclination and shoulder
elevation angles were measured with respect to the positive
and negative Z-axis normal to the ground plane as shown
in Fig. 7. A clothing demonstration along with the extracted
feature representations and test inference for MRD is shown
in the video demonstration (framework.mp4) included in the
supplementary material.

The clothing trials in the dataset were collected through
human demonstrations to ensure subtle variations which can
not be induced by a robot in the demonstrations so that the
dataset includes observations for different shapes of clothing
articles. The motivation behind creating such a dataset was that
the force applied by the robot changes largely for different
T-shirts and different postures thereby imparting significant
variations in the observed cloth state transitions across the
clothing trials. The performance of using BGPLVM and MRD
were evaluated using three metrics in all the experiments i.e.
the Pearson correlation coefficient, root mean square error
(RMSE) and normalized root mean square error (NRMSE).

  

Head 
Inclination

Shoulder
Elevation

Fig. 7. Clothing trials were collected by varying the head inclination and
shoulder elevation angles of the mannequin.

Given two univariate random variables x, y with samples
xn, yn : n ∈ {1, · · · , N} having means x̄, ȳ, the metrics can
be evaluated as follows:

RMSE =

√∑N
n=1(xn − yn)2

N

NRMSE =
RMSE

max({xn})−min({xn})

Corr =

∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − yn)
√∑N

n=1(xn − yn)

(15)

Statistical significance was evaluated for all the experiments
by using the one-sided Wilcoxon signed rank sum test [23].

The training of an MRD model is a computationally ex-
pensive task which scales with the size of the training dataset
as it is a kernel-based method. The computational complexity
of the model scales as O(NM2) where N is the size of the
training dataset and M are the number of inducing points used
for the variational approximation. For all our experiments we
have set the number of inducing points M = 100. We have
conducted our experiments on a desktop machine with an
Intel i7 3.5 GHz processor. The training time for an MRD
model with 1275 observations took 3 hrs and 25 minutes
for the model to converge. The BGPLVM and MRD models
were trained using the GPy python library [20] along with
the implementations for real-time inference. The source code
to generate all the presented results are published online for
further reference [21].

B. Latent Features Learned

In this section, we investigate the effectivity of using
Bayesian nonparametrics and non-linear modeling for cloth
state estimation. We evaluated the effectivity by only consider-
ing the depth sensor observation and by comparing the perfor-
mance of BGPLVM with a linear latent variable model, Princi-
pal Component Analysis (PCA). We performed dimensionality
reduction using both BGPLVM and PCA on the point cloud
observation space and inspected the learned latent structures
for both models. The BGPLVM model was optimized until
there was negligible increments in the likelihood function and
the variational distribution for the latent space was initialized
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Fig. 8. Comparison of Latent Dimension relevance learned by PCA and
BGPLVM: a) PCA relevance given by Eigen values, b) BGPLVM relevance
given by ARD kernel weights

using the positions of training data in the latent space obtained
from PCA.

For the observed data, we considered the point cloud
representation from depth sensor as presented in Section III-D
which is a 7500 dimensional observation space. The training
data for the models was obtained from 5 clothing trials
performed over 5 different postures with T-shirt 1 from Fig. 6.
The test data for the model was given by 1 clothing trial
for an unseen posture with T-shirt 1 and 3 clothing trials
each using T-shirt 2,3 forming a total of 7 test clothing trials.
Each clothing trajectory has about 100 samples measured at a
frequency of 8 FPS, leading to 638 observations in the training
data and 803 observations in the test data.

Fig. 8 demonstrate the relevance of each dimension in the
latent space after training. The relevance for PCA is given by
Eigen values and by the ARD kernel weight parameters for
BGPLVM (Eqn. 2). The relevance parameters for both models
are normalized such that the most significant dimension has a
weight of 1.0 to demonstrate the relative importance between
the dimensions. The relevance weights indicate that PCA takes
all 15 dimensions to capture cloth transitions through the linear
mapping, where as BGPLVM captures the underlying features
within 2 dimensions using the non-linear GP mapping.

Fig. 9 shows the latent spaces for two most significant
dimensions. The latent space learned by BGPLVM is con-
strained to a task-specific manifold in comparison to PCA. For
BGPLVM, the samples from each clothing trial seem to follow
a two dimensional latent trajectory which is consistent across
the clothing trials with various environmental settings. The
latent features explained by each dimension were inspected
by reconstructing the high dimensional data for latent point
variations only along that corresponding dimension. These
dimensions explain the horizontal motion of the T-shirt collar
and sleeves along the mannequin’s hands and the vertical
motion on the T-shirt collar onto the mannequin’s head. An
inspection of the latent space is included as a video demon-
stration (bgplvm.mp4) in the supplementary material wherein
BGPLVM was applied to motion capture marker data and
the latent feature represented by each dimension is evaluated
by generating the high-dimensional marker space for changes
along a single latent dimension.

To evaluate generalization capability, we compared recon-
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Fig. 9. Comparison of latent spaces learned by a) PCA and b) BGPLVM for
the 1st, 2nd significant latent dimensions. Blue dots indicate training data,
red dots indicate test data. Gray scale gradient for BGPLVM indicates the
predictive variance obtained from the GP mapping.

struction error between PCA and BGPLVM as shown in
Table I. Reconstruction error is given by comparing the input
data point and the reconstructed data point from the latent
point corresponding to the input,

Err = ‖yorg − ypred‖,
ypred = fmodel(f

−1
model(yorg))

(16)

where yorg is an input sample from dataset, ypred is the
predicted value after reconstruction and fmodel is the forward
mapping from latent space to observation space. We evaluated
Root Mean Square Error (RMSE) and Pearson correlation as
the metrics. The Wilcoxon signed rank sum test [23] was
used to evaluate statistical significance and the p-value was
evaluated for a one-sided test. We used an exact distribution
over the W-statistic as the number of clothing trajectories
were few (5 for training and 7 for test). For the training
data, BGPLVM has much better performance as it is a kernel
method and stores the complete training data unlike PCA.
However, BGPLVM also has significantly better performance
(p-value: 0.01) for the test data demonstrating its superior
generalization capability for high dimensional and noisy point
cloud data.

TABLE I
RECONSTRUCTION ERROR FOR PCA AND BGPLVM MODELS

Data RMSE Correlation
PCA BGPLVM p-Val PCA BGPLVM p-Val

Train 0.016 0.012 0.05 0.646 0.800 0.05
Test 0.024 0.023 0.01 0.559 0.593 0.01

C. Predictive Performance of Cloth Models

Reliable cloth state estimation is a challenging problem
due to the inherent ambiguity when observing from a single
view point along with occlusion. We propose the learning
of a shared latent manifold using Bayesian nonparametrics
to disambiguate and solve the problem. In this section, we
demonstrate the effectivity of using MRD for modeling cloth
state. An MRD model is trained over observations from a
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Fig. 10. MRD model trained for Point Cloud (R7500) and Topology Coordinate (R8) representations: a) ARD Kernel weights learned for each observation
space, b) Latent manifold for two most significant dimensions with blue dots indicating training data and red indicating test data, c)-f) Inference of topology
coordinates for unseen clothing trial.
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Fig. 11. Comparison of predictive performance between MRD and standard regression techniques. Evaluation on two metrics, a) Pearson correlation and b)
Normalized RMS error. ∗ ∗ ∗ indicates p < 0.001 for one-sided Wilcoxon signed rank sum test [23].

depth sensor (feature space) and motion capture system (pose
space). The trained model is then used to infer the human-
cloth relationship information given a test cloth point cloud.
Firstly, we present the latent features learned and the predictive
performance of an example cloth model. We further present
comparison of MRD with standard regression techniques to
investigate the advantage of using a shared latent manifold for
inferring cloth state.

Fig. 10 illustrates an MRD model between the topology
coordinate and point cloud representations trained over 5
clothing trials for 5 different postures with T-shirt 1 of Fig. 6.

A clothing trial on an unseen posture is used as the test
data. Fig. 10a shows the sets of ARD kernel weights that
are learned. The threshold on ARD weights was set to 0.05
as shown by the red line leading to two shared dimensions
between the observation spaces and no private dimensions for
either observation space. However, this structure of the latent
space, especially the private space dimensionality, was found
to vary depending on the training data used. Fig. 10b shows the
latent manifold for the two most significant dimensions. It can
be seen that the model captures the dynamics of performing
clothing tasks through the well-formed trajectories in the
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Fig. 12. a) Estimates for shared latent dimensions of MRD model evaluated
for three inference strategies. b) Topology coordinate estimates from MRD
model evaluated for three different inference strategies compared with the
ground truth values

latent space. Fig. 10c-10f show the prediction of topology
coordinate values for the test data where each figure indicates
a particular topology presented in Section III-C demonstrating
the predictive performance of MRD.

To validate the effectivity of using a shared latent manifold,
we further compared the predictive performance of MRD with
standard regression techniques. We considered four regression
candidates i.e. linear regression, K nearest neighbor regression,
multi-layer perceptron and Gaussian process regression. For
nearest neighbor regression, we used 5 nearest neighbors for
predictions. For neural networks, we used a single hidden
layer with 200 hidden nodes and Rectified Linear Unit (ReLU)
activation function in the network. GP regression was per-
formed using the Radial Basis Function (RBF) kernel. All the
models were trained until there were insignificant changes in
the objective function for optimization.

The models were evaluated over a dataset of 24 clothing
trials collected for 6 different postures of the mannequin using
4 T-shirts as described in Section IV-A. A set of 6 cloth
models were trained for each T-shirt (total of 24 models)
using leave-one-out cross validation wherein one clothing
trial was used as test data and remaining 5 were used as
training data. Fig. 11 shows the comparison of MRD with
regression techniques. Normalized RMS error (Fig. 11b) and
Pearson correlation (Fig. 11a) were used as the metrics for
evaluation. Statistical significance was evaluated using the one-
sided Wilcoxon signed rank sum test [23]. An approximate
distribution over the W-statistic was used as the number of
trials was relatively large (N = 24). It can be seen that MRD
has the best predictive performance being significantly better
(p < 0.001) over other regression techniques.

D. Comparison of Inference Methods

The inference for test data is a computationally expensive
task that involves the optimization of a ratio of two marginal
likelihoods similar to the training of the MRD model. To
ensure real-time estimation of the human-cloth relationship,
we considered two alternative strategies as presented in Sec-
tion III-E. In this section, we present the relative predictive
performance and computational complexity for these strate-
gies. Our experimental setup was implemented such that, we
could obtain raw T-shirt point cloud from the depth sensor and

Pos Shr
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

P
ea

rs
on

 C
or

re
la

tio
n ***

*** **
**

n.s n.s

NNSearch
Hybrid
Optimize

(a)

Pos Shr
0.05

0.10

0.15

0.20

0.25

N
R

M
S

E

***
* **

**
n.s *

(b)

Fig. 13. Comparison of different inference strategies with MRD. Evaluation
on two metrics, a) Pearson correlation and b) Normalized RMS error. n.s:
not significant, ∗: p < 0.05, ∗∗: p < 0.01, ∗ ∗ ∗: p < 0.001 for one-sided
Wilcoxon signed rank sum test [23].

broadcast at a rate of 30 frames per second (fps) using the ROS
framework. A separate program subscribes to the point cloud
streams and infers the human-cloth relationship using one of
the presented inference strategies.

The implementation details for each inference strategy is
as follows. For the nearest neighbor search, the number of
neighbors was set to 5 and a KD-tree [22] was used to search
through the high dimensional training dataset. The optimiza-
tion strategy was implemented as described in Section III-A
with the initialization for latent point given by the nearest
neighbor search. The hybrid strategy was applied by using an
unscented Kalman filter to handle the non-linear transitions in
the latent points obtained using the nearest neighbor strategy.
The filter was only applied to the shared latent dimensions
which vary from 2 to 4 depending on the latent manifold
learned for different datasets. The state transition function was
given by a constant velocity model with only the position
used as observation variables. The internal state of UKF was
updated every 15 observations which ensures a considerably
good computational complexity. The parameters for the filter
such as the process and measurement noise covariances were
manually tuned minimizing the predictive error of the model.

We considered the performance of inference strategies for
two different scenarios i.e. an unseen mannequin posture and
for an unseen T-shirt. The MRD models were trained between
the point cloud (feature space) and topology coordinate (pose
space) representations. The evaluation dataset had 24 clothing
trials as described in Section IV-C. For the unseen posture
scenario, we performed leave one out cross-validation for each
T-shirt with one posture as test data and the remaining five
postures used for training. For the unseen T-shirt scenario, we
used six clothing trials from 3 T-shirts as the training data
and clothing trials for the unseen T-shirt as the test data. The
state estimated for the shared latent dimensions along with
the inferred topology coordinate values for an unseen T-shirt
clothing trial is presented for the three inference strategies in
Fig. 12a, 12b.

The performance of the inference strategies was evalu-
ated using three metrics, i.e. normalized RMS error, Pearson
correlation and the computational complexity as presented
in Fig. 13. The nearest neighbor strategy has an average
time complexity of processing 30 frames per second (fps),
the hybrid method with a complexity of 10 fps and the
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optimization method with about 1 fps. The results averaged
over the test clothing trials have an intuitive trend, with nearest
neighbor search having the least predictive performance and
best computational complexity and the optimization based
approach having the opposite trends. The hybrid approach is
a good trade-off as it has a computational complexity suitable
for a practical setting but with considerable improvements in
the predictive performance. However, for the unseen T-shirt
setting, the problem becomes quite difficult and there is no
longer a significant improvement for the hybrid approach. This
indicates the requirement for stronger temporal constraints
such as placing a dynamics prior on the latent space as
presented by Damianou et al. [6].

V. CONCLUSION

Assistance with clothing can greatly improve the quality
of life as well as independence of the elderly and disabled.
However, robotic assistance is still considered an open prob-
lem with several challenges involved. One of the challenge
is the reliable estimation of human-cloth relationship which
is crucial to ensure efficient learning of motor-skills and for
the robot to reliably performing clothing tasks. In this study,
we proposed the use of MRD to learn task-specific cloth state
models that can be used for informed cloth state estimation.
We implemented our framework to perform real-time esti-
mation of human-cloth relationship using a low-cost depth
sensor making it suitable for a feasible social implementation
of robotic clothing assistance.

Clothing articles are non-rigid and inherently lie in a high-
dimensional configuration space. We hypothesize that clothing
articles undergo consistent deformations which vary from task
to task and thereby lie in much lower task-specific latent space.
We exploit these constraints and used Bayesian nonparametric
latent variable models to learn the underlying latent features
from high dimensional observation spaces. We used a low-cost
depth sensor and the motion capture system to learn a shared
latent manifold that captures complementary latent features
from both systems in an offline manner and incorporated this
shared model to reliably infer cloth state in real-time given
high-dimensional and noisy depth sensor observations.

MRD is used to learn shared latent features between global
cloth description given by depth sensor to precise human-cloth
relationship parameters obtained using the motion capture
system and infer the human-cloth relationship in real-time
using this task-specific cloth model. We presented experi-
mental results that demonstrate that BGPLVM is capable of
learning consistent and meaningful latent features given noisy
and high-dimensional observations of clothing articles. We
further demonstrated the predictive performance and gener-
alization capability of MRD for estimating the human-cloth
relationship from noisy depth sensor readings. The effect of
various factors such as observation space representations and
inferences techniques was also shown.

The advantage of using MRD is that a corresponding latent
space manifold can be learned for any observation space of
the same underlying phenomenon. Based on this flexibility,
our future work will be to learn models that incorporates T-
shirt state as well as the assisted subject’s posture and mainly
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Fig. 14. Example showing the computation of topology coordinates for two
configurations of Cartesian curves shown in Fig. 14a, 14b: (Left) Curves in
Euclidean Space (Center) Writhe Matrix computed for both cases (Right)
Topology coordinates computed from writhe matrix.

the proprioceptive information of the robot. This is based
on the insight that while humans are performing clothing
tasks they rely more on the forces experienced from the
clothing article rather than the visual appearance of clothing
articles. The reliable estimation of human-cloth relationship
also enables the design of reinforcement-learning based motor-
skills learning frameworks to ensure reliable performance of
clothing tasks, where the robot can adapt to various types of
failures faced during clothing trials.

APPENDIX A
COMPUTATION OF TOPOLOGY COORDINATES

This appendix summarizes the computation of topology
coordinates, as presented in [8]. Given two continuous curves
γ1 and γ2 in the euclidean space, the topology coordinates
are computed by approximating the Gaussian Linking In-
tegral(GLI). Firstly the curves need to be divided into a
number of small line-segments. These segments are used for
constructing a writhe matrix T ∈ RN1×N2 where N1, N2 are
the number of line segments in the curves.

Let rab, rcd be two segments (one from each curve), where
a, b, c, d ∈ R3 are the end points of the segments. Firstly the
following vectors are calculated:

na =
rac × rad
‖rac × rad‖

, nb =
rad × rbd
‖rad × rbd‖

nc =
rbd × rbc
‖rbd × rbc‖

, nd =
rbc × rac
‖rbc × rac‖

(17)

Using these vectors, the writhe between the line segments is
given by:

Ti,j = arcsin(nTa nb)+arcsin(nTb nc)+arcsin(nTc nd)+arcsin(nTd na)
(18)

where Ti,j is the (i, j)th element in the writhe matrix. Now
the
• Writhe w of the two curves is given by summation over

the writhe matrix as a measure of the total amount of
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twisting between the curves: topology coordinates are
computed from the writhe matrix as follows:

w = GLI(γ1, γ2) =

N1∑
i=1

N2∑
j=1

Ti,j (19)

where N1,N2 are the number of segments for curves γ1

and γ2 respectively.
• The center of twist c is given by two scalar values which

indicate the center of twist for each curve about the other
curve. These values are given by weighted summations
of the writhe matrix:

c = (xg, yg)

=

(∑N1

i

∑N2

j iTi,j

w
− N2

2
,

∑N1

i

∑n2

j jTi,j

w
− N1

2

)
(20)

• The density d is given by computing the angle between
the principal axis of the writhe matrix and the diagonal
line of the matrix.

An example of computing the topology coordinates is shown
in Fig. 14. The pane on the left shows two examples of curves
in the euclidean space, the pane in the center shows the writhe
matrix computed for each case and the pane on the right shows
the computation of topology coordinates from the writhe
matrix thereby forming the topology space. It can be seen
from this example that the parameters change based on the
topological relationship between the curves thereby capturing
the complex relationship using few scalar parameters.

For clothing assistance tasks, the motion capture system
was used to obtain the Cartesian position of markers placed
on the mannequin and T-shirt. The markers placed on the
mannequin were used to approximate its posture using a
stick figure. For example, the left arm of the mannequin was
approximated by a line segment joining two markers placed
on its wrist and shoulder joint. Each line segment for the
mannequin were divided into 20 segments Nmannequin = 20.
The markers placed on the T-shirt were used to obtain circle
approximations of its collar and sleeve shapes. The T-shirt
collar curve was approximated using 40 segments and each of
the sleeves were approximated with 20 segments i.e. Ncollar =
40, Nsleeves = 20. This data was then used to compute the
topology coordinates given by the equations presented above.

APPENDIX B
COMPARISON OF FEATURE REPRESENTATIONS

The latent features and predictive performance of MRD
depends on the feature representations used for the observation
spaces. In this appendix, we consider several representations
for each observation space that are relevant to the clothing
assistance framework and evaluate their relative performance.
The appendix is divided into three sub sections. Firstly, we
define alternate representations for the motion capture space
and then for the depth sensor space. Finally we present
experimental results to evaluate performance of these repre-
sentations.
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Fig. 15. Comparison of different feature representations for depth sensor
observation space. Evaluation on two metrics, a) Pearson correlation and b)
Normalized RMS error. n.s: not significant, ∗: p = 0.025 for one-sided
Wilcoxon signed rank sum test [23].
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Fig. 16. Comparison of different feature representations for motion capture
observation space. Evaluation on two metrics, a) Pearson correlation and b)
Normalized RMS error. n.s: not significant, ∗: p = 0.025 for one-sided
Wilcoxon signed rank sum test [23].

A. Motion Capture Representations

To evaluate the effect of pose space representation on the
predictive performance of the cloth model, we considered two
alternative representations along with topology coordinates:
• Marker Representation: given by the Cartesian position

of each of the 12 markers placed on the collar and sleeves
of the T-shirt forming a 36 dimensional space.

• Circle Approximation: given by the parameters of a
circle approximation to the T-shirt collar and the sleeves
obtained from the marker positions. Each circle is
parametrized by [C r ~n] ∈ R7 i.e. its center (C ∈ R3),
radius (r ∈ R) and normal (~n ∈ R3) thereby forming a
21 dimensional feature representation.

B. Depth Sensor Representations

We also considered two alternate representations for the
RGB-D data to evaluate the effect of feature space repre-
sentation. Each representation for the feature space captures
different physical aspect of shape information.
• Color Pixel Data: The color pixel data from the bounding

box of the T-shirt is evenly down sampled to 50×50 and
converted to single channel thereby forming a 2500 di-
mensional space with dimension being the color intensity
of each pixel. Ycolor ∈ R2500

• Ensemble of Shape Functions: ESF is a global feature de-
scriptor proposed by Wohlkinger et al. [13] that is primar-
ily used to represent the underlying shape of a 3D point
cloud. ESF is a fixed 640 dimensional feature histogram,
consisting of a concatenation of 10 histograms with 64
bins each in them. These histograms are generated by
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repeated random sampling of pairs or triplets of points
from the point cloud and computing various parameters
of the resultant triangles and lines. YESF ∈ R640

C. Evaluation

The feature representations used for an observation space
capture different information about clothing articles thereby
leading to different latent features on training. For this purpose,
we used several representations for each observation space as
presented in Section III-D, III-C. We compared the predictive
performance for each of the representation to evaluate the best
representation in each observation space for clothing assistance
tasks. The representations for the feature space were trained
along with topology coordinate representation for comparison
and the pose space representations were trained along with the
point cloud representation. Observations from 6 clothing trials
for 6 different postures of the mannequin with T-shirt 1 were
used as the evaluation dataset. We performed 6-fold cross-
validation on the dataset with a single clothing trial taken as
test data and the remaining 5 trials used as training data.

The results for comparison between the representations is
shown in Fig. 15, 16 given by the mean values of nor-
malized RMS error and Pearson correlation across the 6-
folds. Fig. 15 indicates that the point cloud representation
and the color representations have almost similar performance
and are significantly better than the ESF representation. This
indicates that both color or point cloud representations are
suitable for the task of clothing assistance. However, the ESF
representation being a feature histogram seems to drop some
crucial shape information that is necessary for reliable cloth
state estimation. Fig. 16 indicates that the topology coordinate
representation has the best predictive performance. The marker
and circle approximation representations have significantly
lower performance (p = 0.025) as the variation between
clothing trials for specific marker positions is significantly
higher in comparison to topology coordinates which mainly
captures the relationship between human and cloth rather than
specific cloth state.

APPENDIX C
GENERALIZABILITY OF CLOTH MODELS

In this appendix, we evaluate the generalizability of cloth
models trained using MRD for various environmental settings.
Ideally, we would want the cloth model to learn clothing task
specific latent features and generalize to unseen postures of the
mannequin and unseen clothing articles. To evaluate the gener-
alization capability, we conducted two sets of experiments. In
the first experiment, we evaluated the generalization to unseen
postures. For this we considered 4 sets of 6 clothing trials from
4 T-shirts and 6 postures each. We performed 6-fold cross
validation across postures for each T-shirt and evaluated the
predictive performance as shown in Fig. 17. The results show
that the trained cloth models can generalize well to unseen
mannequin postures with mean normalized RMSE 0.134 and
mean Pearson correlation 0.925.

In the second experiment, we evaluated generalization to
unseen T-shirts. We considered a similar dataset as the posture
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Fig. 17. Generalization capability of cloth model to unseen postures evaluated
through 6-fold cross validation given by a) Normalized RMSE and b) Pearson
Correlation values
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Fig. 18. Generalization to clothing trials for seen and unseen T-shirts given
by a) Normalized RMSE and b) Pearson Correlation values. Horizontal dotted
lines indicate the mean values across the T-shirts.

experiment, however we performed 4-fold cross validation
across the T-shirts and evaluated the predictive performance to
unseen T-shirts as shown in Fig. 18. For each cross-validation,
we included 6 clothing trials from 3 T-shirts and trained an
MRD model. The predictive performance was evaluated for
unseen clothing trials of both seen and unseen T-shirts. The
results indicate that the performance is slightly better for seen
T-shirts however the performance is also good for unseen T-
shirts.
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