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Abstract—Objective: Proportional and simultaneous estimation
of finger kinematics from surface EMG based on the assumption
that there exists a correlation between muscle activations and
finger kinematics in low dimensional space. Methods: We employ
Manifold Relevance Determination (MRD), a multi-view learning
model with a nonparametric Bayesian approach, to extract the
nonlinear muscle and kinematics synergies and the relationship
between them by studying muscle activations (input-space) to-
gether with the finger kinematics (output-space). Results: This
study finds that there exist muscle synergies which are associated
with kinematic synergies. The acquired nonlinear synergies and
the association between them has further been utilized for the
estimation of finger kinematics from muscle activation inputs,
and the proposed approach has outperformed other commonly
used linear and nonlinear regression approaches with an average
correlation coefficient of 0.91±0.03. Conclusion: There exists an
association between muscle and kinematic synergies which can be
used for the proportional and simultaneous estimation of finger
kinematics from the muscle activation inputs. Significance: The
findings of this study not only presents a viable approach for
accurate and intuitive myoelectric control but also provides a
new perspective on the muscle synergies in the motor control
community.

Index Terms—Muscle synergies, kinematic synergies, manifold
relevance determination (MRD), proportional and simultaneous
myoelectric control.

I. INTRODUCTION

W ITH the number of active controllable joints in robotic
hands and powered prostheses substantially increasing

every year, the capability to perform complex movements
involving simultaneous control of a large degree-of-freedom
(DOF) available in the hand is possible [1]. This makes it
possible for the robot devices to generate human-like dexter-
ous manipulation and replicate biomechanically realistic hand
movement. Among many potential options, muscle interfacing
using surface electromyographic (sEMG) signals is still cur-
rently the only viable noninvasive biological signal that can
be used to control assistive devices for neurorehabilitation [2],
such as active prostheses, or accomplish seamless myoelectric
control of many applications.

There are many dexterous robotic hands and hand-
prostheses but the difficulty in controlling all available degree-
of-freedom (DOF) via myoelectric control has motivated
many researchers to focus on more limited control mecha-
nisms. Clinically available EMG-based controllers are only
able to control a few DOF at a time [1]. Multiple di-
mensions have to be controlled sequentially, requiring slow
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mode-switching mechanisms initiated by different muscle co-
contraction. As a result, significant research has been done
on pattern recognition-based techniques to output multiple
classes of movements, with many studies reaching decoding
accuracies of above 95% and classifying up to more than six
different hand gestures [3], [4]. Although in these approaches,
the number of output movements is still limited and do not
provide control of multiple correlated DOFs available in the
hand. Current proportional myoelectric control strategies fall
short in only being able to control a few number of DOFs [5],
[6], among other existing limitations listed in [2]. Deployment
of proportional and simultaneous control for multiple DOFs
remains one of the major challenges in improving the next-
generation myoelectric prostheses and interfaces [7].

Mapping of fine finger kinematic information from sEMG
inputs has been done by numerous studies. However, dexterous
hand manipulation remains to be one of the most complex
biological movements to replicate [8], [9]. This is because the
human hand not only has a highly articulated system, with
possibly more than 20 kinematic DOF, but also has a complex
muscular system involved in the motor control. Indeed a large
part of the brain is shown to be devoted to controlling the
hand’s complex musculo-tendon network [8].

In neurophysiology, it has been argued that synergies control
the coordination of muscle recruitment for posture control
[10]. The muscle synergy hypothesis claims that the motor
system directly initiates movement through flexible combi-
nations of control modules recruited by the central nervous
system to simplify control. Similarly, the concept of synergies
has also been widely used in the field of robotics, where
robot control laws are expressed in low-dimensional space to
drive forces applied to the higher dimensional robot space.
In motion planning, for example, synergies can often reduce
complexity, where searching for an adequate kinematic con-
figuration can increase exponentially with the dimensionality
of the structure [11]. Thus, synergies can provide a natu-
ral modeling paradigm where muscle activation inputs and
high-dimensional joint kinematics can be represented in low-
dimensional space, where common latent features are shared.
Estimating finger kinematics from sEMG input signals usually
involves highly correlated patterns and high dimensionality in
both the input and output domains. Nevertheless, few studies
have given attention in considering such correlations in doing
proportional and simultaneous control of the high dimensional
finger kinematics from sEMG signals.

The present study aims at proportional and simultaneous
estimation of finger kinematics from surface EMG by learning
the nonlinear muscle and kinematic synergies and the asso-
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ciation between them. The main contributions of this study
are as follows: 1) we propose a new strategy to extract the
relationship between the muscle activations and the corre-
sponding finger kinematics, using the Manifold Relevance
Determination (MRD) [12], a generative, multi-view learning
model coupled with a nonlinear dimension reduction method.
2) We present the thorough analysis of the nonlinear muscle
and kinematic synergies (the shared latent space) extracted
using the MRD model from the combined study of muscle
activations (input-space) together with the finger kinematics
(output-space). 3) Finally, we present the use of the acquired
nonlinear synergies and their association (the shared latent
space) to estimate the finger kinematics of a full 23-joint
skeletal hand model. We provide an experimental evaluation
that shows how the proposed method outperforms commonly
used linear and nonlinear regression approaches, in terms of
estimating finger kinematics using muscle activation inputs.

The rest of the paper is organized as follows. Section II
introduces work related to muscle and kinematic synergies
and their applications in myoelectric control. In Section III,
the proposed framework for extracting the nonlinear muscle
and kinematic synergies is discussed. Section IV and Section
V describe the data set and the results obtained from the MRD
model. Section VI discusses the advantages and limitation of
this work. Finally, we conclude in Section VII with some
future directions.

II. RELATED WORK

This study is inspired by studies in the motor control com-
munity that claims that synergistic patterns can be observed
in the muscle coordination and posture space. Grinyagin et
al. [13] presented different types of synergies. First, static
postural synergies, that refer to correlated models between
single kinematic poses. Second, kinematic synergies, that
consider time-dependent correlation during a motor action
task [14]. Lastly, muscle synergies that uses recruited muscle
coordination patterns from electromyographic (sEMG) activity
to address low-level representations of motor control [15]–
[17]. While only the third type of synergy has been largely
used in the motor control community, the first two types have
inspired a lot of work in robotics [11].

The use of muscle synergy model together with regression-
based methods for robust myoelectric control has inspired a lot
of work [5], [18]–[23]. Studies have shown that muscle syn-
ergy features are inherently robust to single channel electrode
shift and amplitude cancellation [6], [24].

For better understanding of muscle synergies and their
functional role, input spaces such as sEMG or EEG should be
studied simultaneously with output spaces such as Kinematics
or Force, etc. [25] and studies [26] [27] in the past have
also focused in this direction by extracting the components
using Nonnegative Matrix Factorization (NMF) from a dataset
containing sEMG and task-related variables. However, the use
of NMF to study a dataset obtained from the concatenation
of muscle activations and task related variables, is not well
justified due to the following three reasons.

First, NMF is a linear decomposition algorithm that may not
be able to handle the nonlinearity that exists in sEMG and the

corresponding task-related variables. Romero et al. [11] have
shown that the postural synergies extracted using linear models
failed to represent nonlinear motions even in a simple hand
reaching and grasping tasks. Martin et al. [28] have shown that
how synergies extracted using linear models failed to extract
the agonist-antagonist relationships while synergies extracted
using nonlinear models like auto-encoders can represent such
information, successfully.

Second, non-negative constraint in the NMF is suitable for
extracting positive coefficients from the muscle activations
and giving a physiological interpretation to the extracted
components and coefficients but not an appropriate choice
for studying the task related variables which may also have
negative values [25].

Third, the number of synergy components chosen are based
on the reconstruction accuracy, in terms of the Variance
Accounted For (VAF) or the Pearson Correlation Coefficient
(ρ), which are only valid to a certain extent due to the noisy
fluctuation in the biological data, instead of capturing task-
specific variations in the muscle activity [29].

A study by Tagliabue et. al. [17] have shown that kinematic
synergies have their origin in muscle synergy at least par-
tially, first by extracting kinematic and muscle synergies, by
applying PCA on each data separately, and then comparing
the synergy vectors of same importance from two different
spaces. However, just by using similarities, it is still premature
to conclude that kinematic synergies have indeed their origins
from muscle synergies, or is it the other way around. One can
also hypothesize that muscle synergies have their origins from
kinematic synergies instead, where it is assumed that the first-
hand synergy, the ’palmar grasp reflex’ is found at birth and
later new muscle synergies are developed with growth [30].

Muscle activations and the generated movements are highly
related and cannot be ignored, and to understand the relation-
ship between these two (sEMG and finger kinematics) related
but different observation spaces, a multi-view, nonlinear algo-
rithm is better suited to handle this problem setting. In this
direction, Ngeo. et al. [31] have shown the use of standard
shared Gaussian Process Latent Variable Model (GPLVM) to
study sEMG and finger kinematics together, however, GPLVM
itself and all of its extensions, rely on a maximum a posteriori
(MAP) training procedure which does not allow the Automatic
Relevance Determination (ARD) procedure to take place to
find the optimal number of latent dimension and makes the
GPLVM models sensitive to overfitting [32].

In this study, we propose to use the MRD model to find the
relationship between sEMG and finger kinematics. The MRD
model is the extension of Bayesian Gaussian Process Latent
Variable Model (BGPLVM) which allows for the automatic
estimation of dimensionality of the latent space, and provides
an approximation to the full posterior of the latent points given
the data, making it robust to overfitting and data efficient
approach [32].

III. METHODS

In this section, we present the MRD model [12] and its for-
mulation, used for finding the nonlinear muscle and kinematic



3

EMG(Y) 
Kinematics(Z)

Finger Kinematics (Z)
EMG (Y) 

The MRD Model

Shared Latent  Space(X)

Estimated 

Fig. 1: Schematic overview of the proposed method for extracting the nonlinear muscle and kinematic synergies and their
relationship, using the MRD model. Two different but related observation spaces, namely sEMG (Y), recorded from eight
muscles in the forearm and the corresponding 3D coordinates of 23 joint marker positions in the hand (Z), which include
three set of tasks, namely: (1) individual finger flexion-extension (IFFE), (2) all finger flexion-extension (AFFE), and (3)
random flexion-extension of one or more fingers (RFFE), are given to the MRD model as input. The learned shared latent
space (X) is comprised of three subspaces. First subspace (Xy) represents the independent muscle synergies, second subspace
(Xyz) represents the association of muscle and kinematic synergies while the third subspace (Xz) which would represent the
independent kinematic synergies, is rarely observed, in this study.

synergies and the interaction between them (shared latent
space). First, the MRD model and its formulation is presented.
The inference algorithm is then described, which is used to
estimate finger kinematics from sEMG using the obtained
shared latent space. Finally, the implementation details of the
linear regression and artificial neural network are presented,
which are later used in the study to compare the estimation
performance of the MRD model.

A. Manifold Relevance Determination(MRD)

The problem is formulated as follows: Given that we have
two observation data Y ∈RN×DY and Z ∈RN×DZ , the goal
of the model is to find a factorized latent variable parameter-
ization in a space X∈RN×Q that relates corresponding pairs
of observations from different spaces Y and Z. It is assumed
that the two datasets are generated from a low dimensional
manifold mapped from smooth functions {fYd }

DY

d=1 : X→Y
and {fZd }

DZ

d=1 : X→Z (Q<<D), corrupted by noise:

yid = fYd (xi) + εYid (1)

zid = fZd (xi) + εZid, (2)

where {y, z}id represents dimension d of sample point i and
εYid, ε

Z
id are sampled from a zero mean Gaussian distribution.

This leads to the likelihood under the model, P (Y,Z|X, θ),
where where θ = {θY , θZ} contains the parameters of the
mapping functions and noise variances. Finding the latent
representation X and mapping functions fY and fZ is an ill-
constrained problem. Lawrence provided a solution by placing
GP priors over the mapping and the resulting model is the

Gaussian Process Latent Variable Model (GPLVM) framework
[33]. In this framework, each generative mapping is modeled
as a product of independent GP’s parametrized by the kernel
or covariance function K = {KY ,KZ} evaluated over the
latent variable X , so that

P (FY |X, θY ) =
DY∏
d=1

N (fYd |0,KY ), (3)

where FY = {fYd }
DY

d=1 with fYid = fYd (xi), and similarly for
FZ . This allows the general nonlinear mapping function F
to be marginalized out leading to a likelihood function in the
form of a product of Gaussian densities:

P (Y, Z|X, θ) =
∏
K={Y,Z}

∫ p(K|FK)p(FK|X, θK)dFK

(4)

Integration over (4) is then done by variationally marginal-
izing out X by using variational approximation techniques
used for standard GPLVMs. A non-standard but analytical
solution through variational learning techniques and using
induced variables is described in [12], [34], [35]. The shared
latent space (X) is composed of three subspaces, representing
the shared and private variance for each observation data,
X = {XY , XY Z , XZ}. Bayesian training automatically al-
locates the dimension of this shared latent space (X) using
automatic relevance determination (ARD) priors [12]. In the
automatic allocation of the dimensionality, the dimensions DY

and DZ of the latent functions fY and fZ , respectively, are
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Fig. 2: Graphical model of the MRD model. A distribution
for shared latent space X is learned and the hyperparameters
wY,Z and θY,Z are the ARD weights that determine the di-
mensionality and the function model parameters, respectively.

selected to be independent draws of a zero-mean GP with an
ARD kernel or covariance function with the following form:

k{Y,Z}(xi,xj) = (σ
{Y,Z}
ard )2e−

1
2

∑Q
q=1 w{Y,Z}

q (xi,q−xj,q)
2

. (5)

where w{Y,Z}q = α(l
{Y,Z}
q )−2, with α a constant positive scale

value and length scales l. Although a common distribution for
X is learned, two sets of ARD weights W = {wY ,wZ}
are obtained to automatically infer the relevance of each
latent dimension for generating points in the Y and Z spaces
respectively. The latent shared subspace XY Z ∈ RN×QS is
then defined by the set of dimensions q∈ [1, · · · , Q] for which
wY

q , w
Z
q > δ, with δ close to zero and QS ≤ Q. As for

the two private spaces, XY and XZ , these are also inferred
automatically along with their corresponding dimensionalities,
QY and QZ , respectively. More specifically:

XY = {xq}QY

q=1 : xq ∈ X,wY
q > δ,wZ

q < δ. (6)

and analogously for XZ . This model is summarized in the
graphical model shown in Fig. 2. The Bayesian GPLVM
Matlab toolbox [36] was used to implement the model training
and dimensionality relevance determination in this study.

1) Inference Algorithm: To predict finger kinematics from
sEMG, the nearest neighbor approach (NN) to search for a
similar point in the training data for the given sEMG was
used, details of which explained in algorithm 1.

Algorithm 1 Inference of Finger Kinematics Z, given sEMG
Y

1: Given : MRD model trained on two views (Y, Z)
2: Given : A test point y∗
3: Find ytrain = NN(Ytrain, y∗)
4: Select x∗(x

y
∗, x

yz
∗ , x

z
∗) from X(Xy, Xyz, Xz) correspond-

ing to the index of ytrain
5: Find xss∗ = NN(Xyz, xyz∗ )
6: Predict z∗ = P (Z|xss∗ )

xss∗ denotes a latent point closest to the x∗ in the coupled latent dimensions.

B. Linear Regression (LR)
A simple linear regression has been performed between

muscle activations and finger kinematics using the MATLAB

“\” operator. Simple linear regression in the MATLAB con-
siders only one independent variable (x) as :

y = mx+ c+ ε (7)

where y is the response variable, c is the y-intercept, m is the
slope (or regression coefficient), and ε is the error term.

C. Artificial Neural Network (ANN)

ANN has been implemented using the fitnet function
of MATLAB with default training algorithm Levenberg-
Marquardt ( ’trainlm’ ) from the Netlab toolbox. The network
is made of an input layer, a hidden layer with a tan-sigmoidal
activation function, and a single linear output layer. The
number of neurons in the hidden layer is set to be the 2/3 of the
sum of the neurons in the input and output layer. Parameters
of the network were obtained by minimizing a mean square
error function. A single network is used to simultaneously and
continuously estimate the finger kinematics from the muscle
activations.

D. Statistical Significance Test

A repeated measure one-way ANOVA is conducted sepa-
rately for each of the three evaluation metrics, namely Cor-
relation Coefficient, R-square and Root Mean Square Error
(RMSE), respectively, to determine if the accuracy of esti-
mated finger kinematics were significantly improved using
MRD model when compared with other commonly used
regression approaches. Lilliefors test has been used to ensure
that the dependent variables follow the normal distribution.
The level of significance is set to p < 0.05 for the main test,
while post-hoc comparisons are performed using pair-wise t-
test, and the p-value is corrected using the Bonferroni method.

IV. DATASETS

A. Data Collection

Surface EMG signals were extracted from eight extrinsic
muscles of the hand that known to contribute to the wrist
and finger movements (Fig. 3). Bipolar active-type Ag-AgCl
electrodes, with an inter-electrode distance of 20 mm, were
placed on the extrinsic muscles of the forearm. The target
muscles and the related finger movements are listed in Table
I. A single electrode was also placed on the subject’s olecranon
to serve as ground and reference electrode.

The sEMG signals were measured using a compact BA1104
pre-amplifier and a TU-4 telemetry unit (Digitex Lab. Co. Ltd).
The obtained sEMG signals from the hardware were in the
frequency range from 1 Hz to 1 kHz. The sEMG signals were
sampled at 2 kHz, and were digitized by an A/D converter
with 12-bit precision. The sEMG signals were displayed on a
real-time monitor and visually inspected to check its quality.
Along with the sEMG signals, unconstrained and continuous
wrist and finger movements were also simultaneously recorded
using a MAC3D motion capture system (Motion Analysis
Corp.). Twenty-three passive reflective markers were attached
on the subject’s hand (see Fig. 3), one on each joint and tip
of the finger, three in the wrist area and one in the forearm
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for reference. The Cortex software from Motion Analysis was
used to concurrently record and synchronize the sEMG and
motion data. The marker positions were recorded at 200 Hz
sampling rate with measurement units in millimeters (mm).
The full hand kinematic dimension is given by the 23-marker
hand skeleton model 3D information in the motion capture
space. Later on, the metacarpophalangeal (MCP), the proximal
interphalangeal (PIP) and the distal interphalangeal (DIP) joint
angles were also calculated from the recorded marker positions
following the procedure described in [38]. Because the thumb
does not have a DIP joint, the carpometacarpal (CMC) joint
was considered. These joint angle values are used in EMG-to-
Muscle activation model.

The total data used included those of 10 healthy and intact
participants (9 Male, 1 Female, aged 26-31 years old). An
informed consent has been taken from every subject before the
experiment following the principles of declaration of Helsinki.
The subject, seated with their dominant hand and elbow
comfortably positioned on a flat surface table, were asked to do
different flexion and extension finger movement tasks which
includes the following:

1) Individual finger flexion-extension (IFFE)
2) All finger flexion-extension (AFFE)
3) Random flexion-extension of one or more fingers

(RFFE)
In the first task, the subject was asked to move one finger at a
time, in the flexion-extension plane of each finger. The second
task involved the subject moving all fingers simultaneously,
in the same flexion-extension plane. This motion resembled
the opening and semi-closing of the hand. Full closing of
the hand was not possible as some markers at the tip of the
fingers would not be seen by the motion capture system. In
these first two tasks, the subjects mainly did MCP flexion and
extension, in which the PIP and DIP followed the movements
of the MCP joint. Finally, for the third and last part of the
experiment, the subject was asked to move any finger freely
in any direction within the motion capture volume space while
still maintaining a fixed neutral position for the arm and elbow.
Irregular movements and different finger combinations for
flexion and extension movement were encouraged from the
subject in this last part of the experiment. However, in this
task fingers barely reached to maximum flexion or extension.

The first task consisted of 5 sets of movement, one for each
finger. While the remaining tasks consisted of 1 set each. Each
set consisted of 5 trials with each trial lasting 20 seconds. All
the movements were limited to finger flexion and extension
movements while the rest of the arm (e.g. wrist, elbow, etc.)

TABLE I: Selected sEMG Channels and the target muscles
C Target Muscle Hand/Finger
1 Abductor pollicis longus(APL) Thumb abduction,extension
2 Flexor carpi radialis(FCR) Wrist, hand flexion
3 Flexor digitorum superficialis(FDS) 2-5th finger PIP flexion
4 Flexor digitorum profundus(FDP) 2-5th finger DIP flexion
5 Extensor digitorium(ED) 2-5th finger extension
6 Extensor indices(EI) Index finger
7 Extensor carpi ulnaris(ECU) Wrist extension and abduction
8 Extensor carpi radialis(ECR) Wrist and thumb

Source: Anatomy and Kinesiology of the Hand [37].

Channel 1

Channel 5
Channel 6

Channel 7

Channel 8

Fig. 3: Shows the placement of electrodes in the target muscles
of the forearm as shown in the Table I and position of 23
markers in the hand.

maintained a fixed position upon instruction. Markers on
the wrist joint were also recorded to ensure that the wrist
maintained a fixed position, or at least minimal ulnar/radial
angle deviation. A ringing sound, from the motion capture
device, signaled the start and end of a trial in the experiment.
All the trials were sequentially done and the participants
were allowed to rest anytime throughout the experiment. The
subjects could make as many movements but were instructed
to move in their own perceived normal velocity (≤ 2 cycles
of movement per second) and to maintain the least amount of
wrist ulnar/radial angle deviation. The subjects were tasked to
reach maximum flexion and extension for each finger at least
once at any point in any of the trials. The overall measured
and normal range of finger joints has been shown in the Table
II. There was no obstacle or object to impede/induce force in
the experiment. A video demonstration (Recorded Kine.mp4)
of the recorded finger kinematics corresponding to all three
tasks are provided in the supplementary material.

B. Data Preprocessing

1) EMG-to-Muscle activation model: The raw sEMG sig-
nals were first preprocessed into a form, that after further
manipulation, can be used to estimate muscle activation [39],
[40]. An EMG-to-Muscle Activation model is used to consider
the effects of electromechanical delay (EMD) and activation
dynamics in place of sEMG delay lines. It has been shown
in previous studies, that using this feature works very well
in estimating muscle force [41], finger kinematics [42], and
finger force in an online myocontrol system [9].

The raw sEMG signals were digitally band-pass filtered
in the range of [10, 500] Hz using a 4th-order Butterworth
filter. The sEMG signals were then rectified, normalized by
the overall peak rectified sEMG obtained, low-pass filtered (4
Hz cut-off frequency, zero-phase, 4th-order Butterworth filter)
and downsampled to match the frequency of the motion data.

Buchanan et al. proposed a second-order model filter that
works more efficiently to model the relationship between
sEMG and muscle activation [39], [40]. In this study, we
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TABLE II: Finger joints normal and measured range of motion.
Finger Joint DOF Type of Motion Theoretical Range Measured Range
Thumb CMC 1 Hyperextension/Flexion −10/55 deg 9.86± 21.17/50.06± 11.39 deg
Thumb MCP 2 Hyperextension/Flexion −10/55 deg −3.05± 4.94/56.51± 8.34 deg
Thumb IP 3 Hyperextension/Flexion −15/80 deg −4.52± 8.40/57.27± 18.01 deg
Index MCP 4 Extension/Flexion −45/90 deg −39.97± 15.00/62.29± 14.27 deg
Index PIP 5 Extension/Flexion 0/100 deg −14.95± 12.42/72.55± 16.87 deg
Index DIP 6 Extension/Flexion 0/80 deg −16.96± 13.97/45.51± 22.25 deg
Middle MCP 7 Extension/Flexion −45/90 deg −34.07± 10.29/69.39± 11.61 deg
Middle PIP 8 Extension/Flexion 0/100 deg −16.87± 12.88/80.07± 16.52 deg
Middle DIP 9 Extension/Flexion 0/80 deg −15.15± 11.77/57.07± 22.42 deg
Ring MCP 10 Extension/Flexion −45/90 deg −26.35± 10.71/62.51± 11.04 deg
Ring PIP 11 Extension/Flexion 0/100 deg −15.34± 11.44/88.58± 14.21 deg
Ring DIP 12 Extension/Flexion 0/80 deg −14.52± 11.36/58.94± 19.99 deg
Little MCP 13 Extension/Flexion −45/90 deg −14.31± 12.59/69.27± 6.07 deg
Little PIP 14 Extension/Flexion 0/100 deg −14.66± 12.59/72.94± 14.27 deg
Little DIP 15 Extension/Flexion 0/80 deg −10.09± 8.45/84.54± 12.60 deg

employed such a filter to obtain muscle activation vj(t) given
by:

uj(t) = αej(t− d)− β1uj(t− 1)− β2uj(t− 2) (8)

vj =
eAjuj(t) − 1

eAj − 1
(9)

where ej(t) is the rectified, normalized and filtered sEMG of
muscle j at time t. In this model, α, β1, β2 are recursive
coefficients of the filter, d is the EMD parameter and A
handles the nonlinearity parameter of the activation feature.
Filter stability is guaranteed by subjecting α, β1, and β2 to
the following constraints:

β1 = γ1 + γ2 (10)
β2 = γ1 · γ2 (11)

|γ1| <1, |γ2| < 1 (12)
α− β1 − β2 = 1 (13)

The muscle activation model parameters are obtained using
a linear regressor and optimized through constrained nonlin-
ear programming using the Matlab Optimization Toolbox by
minimizing the following cost function:

1

N

∑
t

(ZANGLE EST − ZANGLE TARGET)
2 (14)

where N is the total number of training samples, ZANGLE TARGET

are calculated from the measured joint marker positions [38]
and, ZANGLE EST are obtained by linear regression of muscle
activation values as following:

ZANGLE EST(t) = w0 +

15∑
i=1

8∑
j=1

wij · vj(t) (15)

The variable i refers to the 15 finger joint angles and j
refers to the eight muscles in the expression (15). To convert
processed sEMG (ej) in to the muscle activations (vj), the
muscle activation parameters are first initialized manually (i.e.
γ1 = −0.9782, γ2 = −0.9782, d = 0.045 and A = −3)
following the recommendation given in [39] and satisfying the
constraints (12) and (13), while linear regression parameters
(i.e w0, wij) are initialized by performing linear regression
from processed sEMG (ej) to ZANGLE TARGET.

Next, the constrained nonlinear programming (MATLAB
function - 'fmincon’ with 'active-set’ algorithm ) is used to find
the best possible value of parameters (i.e w0, wij , γ1, γ2, d and
A) by minimizing the cost function (14).

2) Finger Kinematics: The motion data, on the other hand,
were also low-pass filtered (4 Hz cut-off frequency) to remove
any jitters. In this study, a factorized latent representation X
is extracted from the 8-channel muscle activation input Y ∈
RN×8 and from the 23-marker finger posture Z ∈ RN×69.
We considered all the 3D information on each marker which
summed up to a total of 69 dimensions in the hand kinematic
space.

C. Training Data to the Models

All the models are separately trained for each subject
and for a subject there are in total 140, 000 sample data
points ( R140,000×8 and R140,000×69 for muscle activations
and finger kinematics, respectively ) from three sets of tasks
corresponding to all five trials.

1) MRD Model:
a) For Synergistic Analysis: Data points from all five

trials of task 1 (IFFE) and task 2 (AFFE) combined together,
shuffled and then further downsampled by a factor of 30.
Downsampling is done because training the MRD model is
computationally expensive for large datasets, but handles data
with large dimensions very well. 70% of the downsampled
dataset (around 2800 data points) is used as training data.

For Synergistic Analysis, task 3 (RFFE) have not been
included in the model training as the motions were random
across the trials and subjects, and may pose difficulties in
the interpretation and comparison of the obtained synergy
components in and across the subjects.

b) For Finger Kinematics Estimation: To check and
compare the estimation capability of the nonlinear synergistic
features obtained from the MRD model with other commonly
used linear and nonlinear approaches, new sets of MRD
models were trained for each subject, but now including the
data from all three tasks, keeping rest of the training procedure
same as used for synergistic analysis. Estimation performance
is evaluated over the full dataset (around 136,000 data points)
without down-sampling except for the data points which were
used for training the MRD models.
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2) Artificial Neural Network (ANN) and Linear Regression
(LR) :

a) ANN and LR using Full Dimensions (ANN-FULL, LR-
FULL) : Data points from all the five trials and three set of
tasks were combined together, shuffled and then further down-
sampled by a factor of 30. Similar to the MRD model, 70% of
the down-sampled dataset is used as training data, while the
full dataset (around 136,000 data points) excluding the training
data points are used as the test data.

b) ANN and LR using Reduced Dimensions (ANN-
RD, LR-RD) : As the MRD model makes use of reduced
dimensions (shared latent space) to map data from one view
into another, ANN and LR were also trained on reduced
dimensions, extracted by applying Principle Component Anal-
ysis (PCA), separately, on each of the full datasets (All
five trials, three sets of tasks) corresponding to the muscle
activation and the finger kinematics, respectively. The number
of reduced dimensions or principal components was selected
based on 90% total accumulated data variance. Five and nine
principal components were needed to explain 90% of the data
variance in the sEMG and finger kinematics data, respectively.
Following the similar training and test procedure, datasets of
reduced dimensions were shuffled and down-sampled by a
factor of 30, 70% of which is used as training data, while
the full dataset (around 136,000 data points) excluding the
training data points are used as the test data. Predicted data
points were recovered back to the original space to evaluate
the performance metrics.

For ANN and LR, the down-sampling of the dataset has
been done to keep the number of training data points similar
to that of the MRD model. Increasing the training samples
[42], using the deep neural network architecture Or creating
a dedicated MLP for each DOF [43] may lead to better
estimation performance, but how large the training data is
required or how deep the network architecture should be or
to what extent retraining the model is needed, has not been
investigated in this study.

As the focus of the study is to provide a data efficient
approach to extract and interpret the nonlinear synergy com-
ponents by studying sEMG (input space) together with the
task-related variables (output space) and their application in
estimating finger kinematics.

D. Performance Evaluation Metrics
The quality of estimated finger kinematics is evaluated using

the three metrics namely root-mean-square error (RMSE),
Correlation Coefficient (ρ) and R-square.

RMSEi =

√∑N
t=1(ZMEASURED − ZEST)2

N
(15)

where ZMEASURED and ZEST are the measured and estimated x, y
and z coordinates of the 23 marker positions, respectively. The
value of N would be 69. The RMSE performance index gives
the square root of the mean of the square of all of the error.
Compared to other error metrics, RMSE amplifies and severely
punishes large errors. The other two performance metrics,
correlation Coefficient (ρ) and R-square are also calculated
between ZMEASURED and ZEST.

V. RESULTS

A. Shared latent space obtained using the MRD model

To find the shared latent space (X) between the sEMG
and the finger Kinematics, eight muscles activations and the
corresponding 3D coordinates of the 23 joint marker positions,
are given as inputs to the MRD model. To ensure that the
model finds the correspondence between the two spaces if and
only if it exists, the dimensionality of the latent space (X) is
set to the sum of the dimensionality of the original spaces, i.e.
8+23 = 31, in spite of the fact that the dimensionality of the
latent space (X) could be much lower because of the inherent
correlation that exists in the dataset. The model automatically
finds the relevance of every dimension in latent space (X)
using the ARD procedure by assigning higher ARD weights
to relevant dimensions, and making it close to zero when there
is little relevance, as such high dimensionality of the latent
space, in the beginning, will not be a problem either.

Fig. 4a shows the scaled ARD weights for all 31 dimensions
of the latent space (X) obtained using the MRD model. The
threshold (δ) is set to 0.04 as shown by the dotted black line,
leads to six significant dimensions {1,2,9,10,11,12,13 and 14}
which are considered for further investigations. The value of
this threshold (δ) is specific for each subject, mostly near to
zero, and decided in such a way that a latent dimension which
contributes to the reconstruction of higher dimensional spaces
should not be left out of the further analysis. Dimensions
{1 and 2} represents the subspace (Xy), which is private
to sEMG space and dimensions {9,10,11,12,13 and 14} rep-
resents the shared subspace (Xyz) between sEMG and the
finger kinematics, while dimensions representing the subspace
private to finger kinematics (Xz), can rarely be seen, which
is a consistent trend across all subjects.

A dimension in latent space (X) represents either only a
muscle synergy, or only a kinematic synergy, or a coupling
of both synergies. Encoded information in a latent dimension
related to sEMG or finger kinematics can be understood by
sampling new latent points (Xsamp) along a dimension, and
mapping them to the related higher dimensional spaces by
calculating the likelihood P (Y |Xsamp) or P (Z|Xsamp).

1) Muscle Synergies Independent of Kinematic synergies:
Latent dimensions {1 and 2} represent the muscle synergies
that are independent of finger kinematics. Fig. 4b shows the
projection of the latent space into dimension {1, and 2}. The
red dots in Fig. 4b corresponds to the posterior mean of
each training data points projected onto a 2D space, while
the gradient of the background corresponds to the posterior
variance (white for low variance and black for high variance).

Encoded muscle activation values in the dimension {1}
are obtained by sampling the latent points along with it (the
dotted blue line), while keeping the values fixed corresponding
to other latent dimensions. Visualization of muscle activation
values corresponding to three latent points, indicated by the
blue arrow in Fig. 4b, are shown in Fig. 4c. Blue bars shows
the minimum activation values while yellow bars on the top of
blue bars indicate the amount of modulation in the activation
values when moving from left to right in Fig. 4b. Similarly,
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Fig. 4: The shared latent space (X) obtained using the MRD model and the sample investigation process to find encoded
information in the latent dimensions, (a) shows the scaled ARD weights corresponding to every latent dimension in X .
Dimensions {1, 2} represents the subspace, private to sEMG (Xy), while dimensions {9, 10, 11, 12, 13 and 14} represents the
shared subspace (Xyz) between sEMG and the finger kinematics, (b) shows the projection of latent space into dimensions {1
and 2}, and a sample process to find the encoded information in a latent dimension. Muscle activation values corresponding
to dimension {1} can be obtained by sampling the latent points along it as shown by the dotted blue line, while keeping
the points fixed on the other dimensions. Visualization of muscle activation values corresponding to the three latent points,
indicated by the blue arrow, are shown in (c). Blue bars shows the minimum activation values while yellow bars on the top of
blue bars indicate the amount of modulation in the activation values when moving from left to right in (b).
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Fig. 5: Exploration of couped latent dimension in the shared latent space (X), (b) shows the projection of latent space (X) into
dimensions {9, 10}. When sampling the latent points along the dimension {9} as shown by the dotted blue line, proportional
and simultaneous estimation of flexion and extension of all fingers along with related muscle activations is achieved. The
visualization of muscle activations and finger kinematics corresponding to the six latent points, indicated by the blue arrow,
are shown in (a) and (c), respectively. Blue bars shows the minimum activation values while yellow bars on the top of blue
bars indicate the amount of modulation in the activation values when moving along the latent dimension {9}.



9

the activation values corresponding to the latent dimension {2}
can also achieved.

However, the presence of second latent dimension private
to sEMG space was not consistent across the subject and
have not been considered for further analysis. When moving
along these independent latent dimensions from left to right
as shown in Fig. 4c, muscle activations, corresponding to all
the muscles, increase continuously. Monotonically increasing
activation values for all the muscles indicate that these latent
dimensions capture the overall variance of the sEMG data,
instead of any task-specific variability. A video demonstration
( Independent LD.mp4 ) of change in activation values when
moving along the independent latent dimension is provided in
the supplementary material.

2) Muscle Synergies associated with Kinematic Synergies:
Dimensions {9,10,11,12,13 and 14} represent the muscle
synergies which are associated with kinematic synergies and
referred as coupled latent dimensions, in this study. This
association can be understood by the same procedure of
sampling the latent points along one of the coupled latent
dimension at a time and correlating it with both, the muscle
activations and finger kinematics as shown in Fig. 5.

Fig. 5b shows the projection of latent space into dimensions
{9 and 10}. The dotted blue line in Fig. 5b represents that
the latent points are being sampled along the dimension
{9}. The sampled latent points Xsamp are mapped back to
both the observational spaces by calculating the likelihoods
P (Y |Xsamp) and P (Z|Xsamp). Reconstructed finger kine-
matics motion resemble with the all finger flexion-extension
task. Visualization of the reconstructed muscle activation val-
ues and the corresponding finger kinematics at those six latent
points which are indicated by the blue arrow in Fig. 5b are
shown in Fig. 5a and 5c, respectively. Again the Blue bars in
5a indicate the minimum activation values while yellow bars
on the top of blue bars indicate the amount of modulation in
the activation values when moving from left to right in Fig.
5b . Recovered finger motions corresponding to these coupled
latent dimensions for all the subjects is presented in Table III
while the muscle activation values for subject 1 (S1) are shown
in Fig. 6.

Muscle activation values represented by coupled latent
dimensions do not follow the trend of those represented by in-
dependent latent dimensions. In fact, moving along a coupled
latent dimension, when resulting in the increase of activation
values for some muscles, it results in the increase or decrease
or no change in the activation values corresponding to other
muscles, and these variations are specific to a coupled latent
dimension. This gives a notion that a coupled latent dimension
encodes those activation values which are desired to achieve
the finger kinematics represented by it. A video demonstration
(Coupled LD.mp4) of the generated muscle activations and
related finger kinematics, when moving along the coupled
latent dimensions are provided in the supplementary material.

It could be argued that the muscle synergy represented by a
coupled latent dimension could be capturing the task-specific
variability for a subject in contrast to the independent muscle
synergy (dim. {1}) which is capturing the overall variance
of the sEMG data. As coupled synergies are responsible for

generating only a subset of values rather than large range of
activation values (overall variance of the input sEMG), justifies
the lower values of the ARD weights for the coupled muscle
synergies (comparatively smaller blue bars for the dimensions
9,10,11,12,13, and 14 ) when compared with the higher ARD
weight of an independent muscle synergy (blue bar for the
dimension -1). A similar trend has also been observed in the
remaining subjects.

B. Kinematic Estimation

The MRD model facilitates a way to interpret how different
but related observation spaces interact with each other, by find-
ing a shared latent space (X). In this study, the coupled latent
dimensions represent the association of muscle activation with
finger kinematics in the low dimensional space. The shared
latent space provides us with a platform to visualize in the
kinematic space, from what can be seen in the sEMG space
within a fully probabilistic framework. Hence, the predicted
point in the kinematic space gives a distribution instead of
a point estimation, which makes the entire prediction process
robust [44]. The finger kinematics is estimated from the shared
latent space (X) by following the procedure presented in
Algorithm 1.

Quality of the estimated finger kinematics using the pro-
posed and other commonly used regression approaches have
been evaluated on three metrics namely RMSE, R-square, and
the Correlation Coefficient (ρ) as shown in Table IV. The
estimated marker positions follow the measured values with an
average correlation of 0.91±0.03, R-square of 0.84±0.05 and
the RMSE of 3.44 ± 0.87, respectively, which show the best
results when compared with other regression methods. Subject
wise RMSE corresponding to all the five methods have been
shown in Fig. 7.

Fig. 8 shows that the proposed method has significantly out-
performed (p≤0.0001) other traditional regression approaches,
evaluated using pair-wise t-tests following the result of re-
peated measure one-way ANOVA.

VI. DISCUSSION

This paper showed that there exists an association between
finger kinematics and muscle activations, manifested in the
coupled latent dimensions, by jointly studying the two related
spaces through multi-view learning. This study also demon-
strated how the proportional and simultaneous estimation of
finger kinematics can be achieved by making use of the shared
variance between the Muscle Activation space (Y) and the
Kinematic space (Z) in a probabilistic framework.

A. Nonlinear Kinematic Synergies

Table III shows the reconstructed finger kinematics when
the dimensions representing kinematic synergies in the shared
latent space (X) were explored. Dimension 9 consistently
encodes the kinematic information of the All Finger Flexion-
Extension (AFFE) task even across different subjects. This
can be attributed that dimension 9 captures a larger variance
of kinematic data from this task, nearly 20 markers’ positions
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TABLE III: Encoded finger kinematics in latent dimensions for 10 subjects
9 10 11 12 13 14 15

Subject 1 AFFE Middle Ring Index Thumb Thumb —-
Subject 2 AFFE Ring+Little Thumb Middle+Ring+Thumb Index —- —-
Subject 3 AFFE Ring+Little Middle Thumb+Index Middle+Ring —- Thumb
Subject 4 AFFE Middle+Ring Ring+Little+Thumb Thumb Thumb+Index —- –
Subject 5 AFFE —- Middle Ring Thumb,Index —- Thumb
Subject 6 AFFE Thumb Middle+Ring+Little+Thumb Little —- Ring —-
Subject 7 AFFE Ring+Little Middle Index —- —- —-
Subject 8 AFFE Ring+Little Thumb Middle —- —- —-
Subject 9 AFFE Thumb+Little Index+Middle+Ring+Little Thumb+Index Thumb+Index Index+Ring —-
Subject 10 AFFE Thumb Index Middle Little —— —-
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Fig. 6: Shows the muscle activation values encoded in the shared latent dimensions {9,10,11,12,13, and 14} . Muscle activation
values are obtained by following the same procedure of sampling latent points along a dimension. Blue bars shows the minimum
activation values while yellow bars on the top of the blue bars indicate the amount of modulation in the activation values when
moving along the dimension.

varying as compared to only 5 to 6 markers’ position changing
at a time in the Individual Finger Flexion-Extension (IFFE)
task.

The kinematics of the thumb, on the other hand, is encoded
in a separate dimension. This highly independent motion of
the thumb is captured in most of the subjects (8 out of 10).
While, coupled motion of the thumb with other fingers is
captured in the other dimensions. From the kinematics point
of view, this is likely due to the opposite direction of the
thumb as compared with motions of the other fingers. The
thumb also has more degrees-of-freedom (DOFs) and has more
independent movements compared to the rest of the other
fingers.

The kinematics of the individual finger's movement are

inconsistently encoded in different dimensions 10-13 across
subjects. Some dimensions contain only the data variance of
individual finger exclusively, while others contain the variance
of individual finger movements coupled with other finger's
movements. This natural coupling of finger movements is also
summarized in Table III, which describes the anatomical and
kinesiological similarities of the targeted muscles to control
similar fingers. The synergies obtained by our method captures
these anatomical couplings quite well, with couplings that
occur between adjacent fingers, for example Index-Middle-
Ring, rather than with distant fingers Index-Little. These result
consistently showed that the extracted muscle synergies are
congruent with the hand physiology.

The finger kinematics and the sEMG signals are highly non-
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TABLE IV: The mean RMSE, Correlation Coefficient (ρ) and R-Square calculated between the estimated and original finger
kinematics along with time required to predict a sample point.

Regression Methods RMSE Correlation coefficient(ρ) R-Square Time (in milliseconds)
LR using Reduced Dimension (LR-RD) 8.08± 1.28 0.50±0.08 0.31±0.13 0.000,09±0.000,1
LR using Full Dimension (LR-Full) 7.66±1.22 0.57±0.07 0.38±0.12 0.000,43±0.000,10
ANN using Reduced Dimension (ANN-RD) 6.64±1.19 0.68±0.04 0.46±0.10 0.06±0.002
ANN using Full Dimension (ANN-Full) 5.07 ± 0.90 0.82 ±0.04 0.68±0.07 0.09±0.010
Proposed Method 3.4±0.89 0.91 ± 0.03 0.84± 0.05 2.6 ± 0.79

LR- Linear Regression, ANN - Artificial Neural Network.

Fig. 7: Root Mean Square Error (RMSE) calculated between the measured and estimated 3D coordinate corresponding to 23
marker positions in the hand for all 10 subjects corresponding to all the five methods
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Fig. 8: Comparison of estimation performance between MRD and other commonly used regression approaches. Evaluation on
three metrics: (a) Correlation (b) R-square and (c) Root Mean Square Error (RMSE). *** indicates p ≤ 0.0001

linear in nature, and therefore an algorithm that can cope with
nonlinearities is better suited for their analysis. Thus extracting
nonlinear muscle and kinematic synergies, using the MRD
model, and its effectiveness in reconstructing the related higher
dimensional spaces and accurately predicting finger kinematics
justifies its use. From the best of our knowledge, this is the
first sEMG study to introduce a factorized latent model to
nonlinearly extract the muscle and kinematic synergies with
relevant weights associated with each synergy, which explains
its importance in the related spaces.

B. Estimation of Finger Kinematics

The experimental results in the previous section show that
the MRD model with the automatic dimensionality determi-
nation of the latent spaces is an effective model for learning
the correlations that exist between the muscle activations and

the finger kinematics. Although the dimensions are highly
redundant in the kinematic space, the proposed model is able
to reconstruct back as large as 69 dimensions (23 × 3 = 69)
on the hand skeleton model.

The choice of operating in the output joint marker space was
to induce high dimensionality in the output space and to show
that the model is capable of dealing with high dimensional
data very well. One other advantage of the proposed method
is that it can learn corresponding latent space manifolds from
any data representation or output spaces, such as joint velocity
or joint torque and stiffness space [45]. Operating in these
spaces is particularly useful since these can be explicitly used
as direct control signals for robotic devices.

One advantage of using the proposed shared synergistic
model is its ability to consider nonlinear mappings using GPs
with an ARD covariance function shown in (5). This gives a
data-driven approach to address the compact representation of
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both the sEMG and high-DOF finger kinematics.

C. Implementation and limitations

This study is limited to offline analysis with data from
healthy and able-bodied subjects to test the feasibility of
our approach. Also, in this study, the optimization of the
parameters of the muscle activation model ( Section IV-B ) was
pre-trained using all the data available per subject, although
the model parameters acquired on the training data only are
to be investigated for the validation dataset. Though this can
be used as an initial benchmark, for future implementations,
further verification and validation of the proposed approach
has to be done for the online applicability by training different
models using data from amputees and testing them in real-life
situations [20].

In practice, it is desirable for the controller to use as little
calibration data as possible and should generalize to move-
ments for which exhaustive training data is not available [1].
Most of the computational time (99%) is due to the training of
the MRD model. The typical computational complexity of a
sparse implementation of the MRD model is O(Nm2), where
N is the number of data sample used, and m is the number
of inducing points. This can be quite prohibitive with many
sEMG applications where re-calibration is done to adapt to
the time-varying nature of sEMG.

VII. CONCLUSION AND FUTURE WORK

Toward intuitive control of multi-fingered prosthesis, this
paper has introduced and evaluated the use of Manifold
Relevance Determination (MRD), a multi-view learning model
with a nonparametric Bayesian approach.

We have found that there exist an association between the
nonlinear muscle and kinematic synergies, and the finger-
kinematics estimation from muscle activations using the ac-
quired synergies outperformed other commonly used linear
and nonlinear regression approaches. As a conclusion, the
findings of this study not only presents a viable solution
for accurate and intuitive myoelectric control for handling
high DOFs in robotic hand prosthesis but also provides a
new perspective on the muscle synergies in the motor control
community.

For future work, the same approach can be used to un-
derstand the neural implementation of muscle synergies by
simultaneously recording neural and muscle activities when
performing different motor tasks [46]. The existence of the
shared part in the latent space supports the muscle synergy hy-
pothesis and the method for extracting muscle synergies from
sEMG signals. This work can be further extended by including
task-related variables for understanding the relationship among
these three different but related observational spaces. Along
with this, the online application of our framework to a real
multi-fingered hand is also our essential future work.
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