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Abstract

Introduction and purpose: During the radiation therapy of tumoral breast, the contralateral
breast (CB) will receive scattered doses. In the present study, the photon and thermal neutron
dose values received by CB surface during breast cancer radiation therapy were measured.
Materials andmethods:The right breast region of RANDO phantomwas considered as CB, and
the measurements of photon and thermal neutron dose values were carried out on this region
surface. The phantomwas irradiated with 18MV photon beams, and the dose values were mea-
sured with thermoluminescent dosimeter (TLD-600 and TLD-700) chips for 11 × 13, 11 × 17
and 11 × 21 cm2 field sizes in the presence of physical and dynamic wedges.
Results: The total dose values (photonþ thermal neutron) received by the CB surface in the
presence of physical wedge were 12·06%, 15·75% and 33·40% of the prescribed dose, respec-
tively, for 11 × 13, 11 × 17 and 11 × 21 cm2 field sizes. The corresponding dose values for
dynamic wedge were 9·18%, 12·92% and 29·26% of the prescribed dose, respectively.
Moreover, the results showed that treatment field size andwedge type affect the received photon
and thermal neutron doses at CB surface.
Conclusion: According to our results, the total dose values received at CB surface during breast
cancer radiotherapy with high-energy photon beams are remarkable. In addition, the dose val-
ues received at CB surface when using a physical wedge were greater than when using a dynamic
wedge, especially for medial tangential fields.

Introduction

Breast cancer is the most frequent malignancy among women worldwide.1,2 Although this cancer
has a higher incidence in developed countries, an estimated 60% of breast cancer deaths occur in
developing countries.3 Nowadays, due to effective screening and a combination of different treat-
ment modalities such as surgery, radiation therapy and hormone therapy, the mortality of breast
cancer has decreased in developed countries.4 Radiation therapy plays a vital role in the multi-
modal treatment of breast cancer, as it has been reported in several literatures that this modality
improves survival and reduces locoregional recurrence.5–8 In some cases, high-energy beams
(e.g., 18 MV) were used to treat patients with breast cancer.9,10 Nevertheless, the interaction of
high-energy beams (>8 MV) with various high-atomic-number (Z) nuclei of the materials in
the components of the linear accelerator (linac) head would produce unavoidable neutrons.11–13

The areas away from the treatment field receive scatter radiation from different sources (such
as the linac head, internal patient scatter radiation and unavoidable neutrons).14,15 Compared to
the inside-field dose, the out-of-field region would receive low dose values. However, these low
doses can induce secondary malignancies with a long latency period, and the incidence of these
cancers depends on several factors, including the size of irradiated volume, delivered dose, dose
distribution, dose rate and patient-specific factors.16,17

During breast cancer radiation therapy, the contralateral breast (CB) surface will receive
scattered doses.18 Several studies have demonstrated the dependence of radiation with basal cell
carcinoma andmelanoma.19,20Nevertheless, there is little evidence for the dependence of radiation
with squamous cell carcinoma atmoderate doses.20 Several studies have evaluated skin cancer risk
as a second malignancy in cancer radiation therapy. In a study, Ghavami and Ghiasi estimated
secondary skin cancer risk resulting from electron contamination in prostate radiation therapy.
Their findings show that non-negligible doses (from contaminant electrons) are absorbed by the
skin, which is associated with an excess risk of malignancy induction.21 In another study, Goggins
et al. reported a 42% increased risk of cutaneous melanoma among breast cancer patients who
underwent radiation therapy. This increased risk of cutaneous melanoma was consistent with
a large institutional case series of 1,884 patients who had undergone early-stage breast cancer
radiation therapy.19
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Therefore, the skin dose associated with radiation therapy may
be of interest for clinically assessing or evaluating the risk of late
effects. Although the received photon dose to CB surface of
patients undergoing breast cancer radiation therapy has been
investigated,22–24 to the best of our knowledge, there is nomeasure-
ment of received neutron dose to CB surface in the presence of
physical and dynamic wedges and different field sizes. Hence, a
study was conducted to measure the received photon and thermal
neutron doses to CB surface in breast cancer radiation therapy for
different treatment field sizes in the presence of dynamic and
physical wedges.

Methods and Materials

In the current research, for the measurement of photon and ther-
mal neutron dose values at CB surface, the right breast region of
RANDO phantom was irradiated with 18-MV photon beams.
Then, dose values were measured with thermoluminescent dosim-
eter (TLD) chips for different field sizes in the presence of physical
and dynamic wedges.

TLD Dosimetry

The use of TLD chips in radiation dose measurement has been well
established.23 Due to the small size and appropriate spatial resolu-
tion, TLD chips have widespread application for point dosimetry
in radiation therapy, especially in high-dose gradient regions.
There are several literatures on how to use the TLD chips for
the measurement the photon and neutron doses.25–27

In the current study, dose measurements were carried out with
600TLD and 700TLD chips. These TLD chips are produced by
Harshaw Company and made of LiF, Mg and Ti with a thickness
of 0·9 mm and size of 3 × 3 mm2. Readout and analysis of TLD
chips was performed at the National Medical Physics Research
Center using a special protocol. More details on the calibration
of 600TLD and 700TLD chips are available in our previous study.12

Furthermore, a pair of TLD chips was applied to measure back-
ground dose.

The relative biological effect of radiation depends on energy
radiation, type radiation, etc. So, a radiation weighting factor
was considered for each radiation beam, and these factors for neu-
tron rays were 5–20 (depending on neutron energy).28 In this
study, the radiation weighting factor of 5 was applied for the con-
version of physical dose to equivalent dose, because the absorbed
dose by TLDs are thermal neutrons (<10 keV). Consequently, to
obtain equivalent dose (Sv), the absorbed doses by TLDs were
multiplied by the radiation weighting factor.

Finally, to increase the precision of dosimetry data, each mea-
surement was repeated three times.

Treatment Planning and Phantom Irradiation

The RANDO phantom (Phantom Laboratory, NY, USA) was
scanned with a computed tomography scanner and then the
images were transferred to a radiotherapy treatment planning sys-
tem (COREPLAN; Seoul C and J, South Korea). The left breast of
the RANDO phantom was considered the target volume (tumoral
breast), and the right breast was selected for the measurement of
surface dose originating from the photons and thermal neutrons.
Two tangential fields (medial and lateral) were planned. A 15°
wedge angle (for both physical and dynamic wedges) was used
to create a uniform dose distribution, and treatment field sizes were

11 × 13, 11 × 17 and 11 × 21 cm2. Finally, a source axis distance
technique was used to deliver 200 cGy based on the International
Commission on Radiation Units and Measurements.29 For a pos-
sible comparison of the results of the current study (doses received
at CB surface) with that of our previous study (doses received to
CB),12 treatment planning in this study was similar to our previous
study. Figure 1 shows the anterior view relating to the tangential
fields of left breast region of the RANDO phantom.

Tomeasure CB surface dose in each of the field sizes, one pair of
TLD chips (one 600TLD and one 700TLD) was located on the surface
of right breast region of the RANDO phantom (Figure 1). In other
words, for dose measurements, three pairs of TLD chips were
applied in the presence dynamic wedge and three pairs in the pres-
ence physical wedge. Irradiations on the RANDO phantom were
done based on the treatment plan with 18-MV Varian 2100 C/D
Linac (Varian Medical Systems, Palo Alto, CA, USA).

Finally, the CB surface dose was obtained from the average of
three-time readings of TLD chips at each point for different field
sizes in the presence of physical and dynamic wedges.

Results

Findings relating to the received photon and thermal neutron
doses at CB surface in the presence of dynamic and physical
wedges for different field sizes are summarised in Table 1. The
received photon doses at CB surface ranged from 92·94 to
335·47mSv, and also the received thermal neutron doses at CB sur-
face ranged from 90·62 to 332·56 mSv. The maximum and mini-
mum CB surface doses (both of photons and thermal neutrons)
were related to using the physical wedge with 11 × 21 cm2 field size
(668·03 mSv) and the dynamic wedge with 11 × 13 cm2 field size
(183·56 mSv), respectively. The mean received dose at CB surface
with physical wedge was 197·09 mSv higher than that with the
dynamic wedge in the three field sizes.

Figure 2 illustrates variations in photon and thermal neutron
dose values received at CB surface, as a function of treatment field
size, for physical (a) and dynamic (b) wedges.

Figure 3 shows the effect of wedge type (dynamic and physical)
on photon (a) and thermal neutron (b) dose values received at CB
surface in different treatment field sizes.

Figure 1. Tangential fields of breast radiation therapy and placement of TLD chips on
the RANDO phantom.
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Figure 4 demonstrates the effect of wedge type and treatment
field size on photon and thermal neutron dose values received
at CB surface.

Discussion

In the current study, the received photon and thermal neutron
doses at CB surface in breast radiation therapy were measured

in the presence of dynamic and physical wedges. Moreover, the
effects of treatment field size and wedge type on photon and ther-
mal neutron dose values received at CB surface were investigated.

Leakage and scattered radiation from linac head, treatment
accessories and patient body were responsible for the received dose
values at CB surface.22 Skin is a radiosensitive structure and also
dose values received at CB surface could lead to a secondary skin
cancer during breast cancer radiation therapy. So, it is important to

Table 1. Photon and thermal neutron dose values received at contralateral breast (CB) surface relating to wedge types and
different treatment field sizes

Field size (cm2)

Received dose at CB surface
(physical wedge)

Received dose at CB surface
(dynamic wedge)

Photon dose (mSv) Neutron dose (mSv) Photon dose (mSv) Neutron dose (mSv)

11 × 13 122·13 ± 12·31 119·03 ± 11·98 92·94 ± 9·31 90·62 ± 9·10

11 × 17 157·52 ± 15·76 157·50 ± 15·75 130·25 ± 13·10 128·09 ± 12·93

11 × 21 335·47 ± 33·57 332·56 ± 33·30 296·49 ± 29·65 288·73 ± 28·92

Figure 2. Photon and neutron dose values received at contralateral breast (CB)
surface for different treatment field sizes with physical (a) and dynamic (b) wedges.

Figure 3. Effect of wedge types on the received photon (a) and neutron (b) dose val-
ues at contralateral breast (CB) surface for different field sizes.
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measure and evaluate the superficial dose of CB and the parameters
affecting this dose, including field size and wedge type. Recently,
several studies have evaluated the effect of wedge filter on photo-
neutron contamination of photon beams and its spatial distribu-
tion around a linac head.30–32 It was highlighted that using the
high Z wedge in the pathway of high-energy photons would lead
to an increase in the number of photoneutrons.33 When using a
wedge filter, photon fluence reaching the maximum dose depth
(dmax) decreased by a rate which equals to the wedge factor. So,
to compensate the attenuation effect of the wedge filter, the
required monitor units may be increased to produce the same dose
at dmax and this will increase photoneutron production for wedged
beams.30 Another effect could be an increase in backscattered pho-
tons and their interactions with linac head components, which
might lead to further leakage of photon and neutron beams.32

In the current study, the total dose values (photonþ thermal
neutron) received at CB surface in the presence of physical wedge
for 11 × 13, 11 × 17 and 11 × 21 cm2 treatment filed sizes were
12·06%, 15·75% and 33·40% of the prescribed dose, respectively.
The corresponding dose values for the dynamic wedge were
9·18%, 12·92% and 29·26% of the prescribed dose, respectively. In
a previous study,12 we measured photon and thermal neutron dose
values received by CB in breast cancer radiation therapy. Table 2
compares the total dose values received at CB surface and CB12 in
the presence of physical and dynamic wedge for 11 × 13, 11 × 17
and 11 × 21 cm2 filed sizes. By comparing the results of both studies
(Table 2), it is evident that the received dose at CB surface was more
than that of CB, especially for larger field sizes. Given that the total
dose values received at CB surface during breast cancer radiotherapy
with high-energy photon beams are remarkable, an attempt should
bemade to reduce the dose received at CB surface to the lowest value
possible during breast cancer radiation therapy. There are several
techniques to minimise the received radiation dose at CB surface/
CB during breast cancer radiation therapy34–42: (1) the half beam
technique with a wedge and block on the medial side should not
be applied, unless breast shields are used,34,35 (2) the use of
intensity-modulated radiation therapy, in comparison with 3D con-
formal radiotherapy, can reduce the incidence of acute radiation
dermatitis,36,37 (3) the field-in-field technique, in comparison with
conventional wedged fields, improves dose homogeneity and
reduces the received dose to surrounding tissues,39,42 (4) the use
of proton therapy with a scanning method would generate lower
photoneutron doses, compared with high-energy X-ray techniques,
because it avoids the need for a scattering foil, flattening filter or
compensating equipment, and in this technique, a pencil beam is
magnetically scanned on the target volume.43

In addition, photon dose values received at CB surface in the
presence of physical wedge for 11 × 13, 11 × 17 and 11 × 21 cm2

filed sizes were 6·11%, 7·88% and 16·77% of the prescribed dose,
respectively. The corresponding dose values for dynamicwedgewere
4·65%, 6·51% and 14·82% of the prescribed dose, respectively.
Prabhakar et al.22 measured CB surface doses for different tangential
field techniques. They stated that the skin dose measured at the
nipple was 2·1–10·9% of the isocentre dose. Their results are consis-
tent with the present study. In another study, Alzoubi et al. measured
CB surface doses in chest wall and breast irradiations. Their results
demonstrated that CB surface dose was 2·1–4·1% of the prescribed
dose.23 These dose values were lower than that reported by the
present study, possibly due to differences in beam energies and
treatment techniques.

Figure 4. Effect of treatment field size and wedge type on photon and neutron dose
values received at the contralateral breast (CB). (a), (b) and (c) relate to 11× 13, 11× 17
and 11 × 21 cm2 treatment filed sizes, respectively.
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As shown in Figure 2, photon and thermal neutron dose values
received at CB surface increase with increasing treatment field
sizes. It is expected that with increasing treatment field sizes, scat-
tered photons – and consequently interactions of these photon
beams with various high-Z nuclei of the materials inside the beams –
also increase. Furthermore, our findings suggest that photon dose
received at CB surface was a little more than thermal neutron dose
across all field sizes. These findings are consistent with the study of
Bagheri et al.12

Other results (Figure 3) demonstrate that photon and thermal
neutron dose values received at CB surface were less in the presence
of a dynamic wedge than a physical wedge. The physical wedge is
made of metallic materials and insertedmanually in the pathway of
the beam, which might generate more scattering photons due to
the interaction of primary photon beams with its materials.
Several literatures have also stated that the use of a physical wedge
can lead to a significantly higher dose at CB surface compared to an
open field, especially for the medial tangential field.22,24,44

Figure 4 shows that the contribution of dose values received at
CB surface in the presence of a dynamic wedge is approximately
same as with a physical wedge for different treatment field sizes.
These results are consistent with the study of Bagheri et al.12

Figure 5 illustrates variations in dose values received at CB
surface and CB12, as a function of treatment field size, for physical
(a) and dynamic (b)wedges. As shown in this figure,with an increase
in treatment field size, dose difference between CB surface and CB
increases. For example, dose difference between CB surface and CB
in the presence of a physical wedge was 34·15% for 11 × 13 cm2 field
size, while it was 66·29% for 11 × 21 cm2 field size.

The effect of wedge type on dose values received at CB
surface and CB12 is shown in Figure 6 for 11 × 13 (a), 11 × 17 (b)
and 11× 21 cm2 (c) field sizes. The figure shows that dose difference
betweenCB surface andCB for a dynamic wedge wasmore than that
for a physical wedge. For example, the dose difference between CB
surface and CB was 34·15% in the presence of a physical
wedge and 51·67% in the presence of a dynamic wedge for
11 × 13 cm2 field size.

Conclusion

With skin cancer risk as a second malignancy in breast cancer
radiation therapy, the measurement of dose received at CB surface
is essential. Our findings show that total dose values received at CB
surface during breast cancer radiotherapy with high-energy
photon beams were remarkable, especially for large treatment field
sizes (33·40% of the prescribed dose); hence, it is important to
reduce the dose received at CB surface to the least possible.
Furthermore, the dose values received at CB surface when using
a physical wedge were greater than when using a dynamic wedge,
especially for medial tangential fields.

From a practical point of view, it is suggested to use a dynamic
wedge or other techniques that can help reduce the dose to the CB
during breast cancer radiation therapy.
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Table 2. Comparison of dose values received at contralateral breast (CB) surface and CB relating to wedge types and different
treatment filed sizes

Field size (cm2)

Received dose at CB surface(mSv)
(current study)

Received dose at CB (mSv)
(Bagheri et al.12)

Physical wedge Dynamic wedge Physical wedge Dynamic wedge

11 × 13 241·16 183·56 118·38 58·49

11 × 17 315·02 258·34 127·23 92·51

11 × 21 668·03 585·22 135·40 111·94

Figure 5. Comparison of dose values received at contralateral breast (CB) surface
and CB in the presence of physical (a) and dynamic (b) wedges for different treatment
field sizes.
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