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Abstract
Both heroin abuse and early life stress (ELS) affect the im-
mune system and the hypothalamic-pituitary-adrenal (HPA) 
axis. Additionally, accelerated aging due to mild inflamma-
tion has been indicated in these conditions. The present 
study aims to compare plasma levels of apoptosis markers, 
inflammatory markers, and stress hormones during early 
heroin abstinence period. Thirty-one individuals with hero-
in/opioid use disorder who had heroin-ELS and 26 of their 
siblings who were not abusing substances (ELS), and 32 in-
dividuals with heroin/opioid use disorder without a history 
of ELS (heroin-no ELS) were included in the study. The levels 
of interleukin-6, C-reactive protein, erythrocyte sedimenta-
tion rate, albumin, alanine transaminase, aspartate transam-
inase, and white blood cell count were assessed as the in-
flammatory and biochemistry markers. Also, apoptosis 
markers including tumor necrosis factor (TNF)-related weak 
inducer of apoptosis, TNF-related apoptosis-inducing li-

gand, soluble tumor necrosis factor receptor type I as apop-
tosis markers were detected by enzyme-linked immunosor-
bent assay. ELS was simultaneously evaluated using the 
Childhood Trauma Questionnaire, Minnesota Multiphasic 
Personality Inventory, and beck depression inventory scales. 
Besides, heroin craving was assessed by Daily Drinking/Drug 
Questionnaire score in individuals with heroin use disorder. 
This is the first study to evaluate the inflammatory, stress, 
and apoptosis markers during heroin abstinence, support-
ing the association between ELS and peripheral pro-inflam-
matory markers’ levels and HPA axis. © 2019 S. Karger AG, Basel

Introduction

Heroin abuse (drug addiction) is still one of the main 
problems in today’s world. Morphine is a refined extract 
of the opium plant. Harmful effects of long-term heroin 
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inhalation or injection on cell morphology and function 
have been indicated in many studies [1–3]. It is well known 
that substance dependence is accompanied by abnormal 
hypothalamic-pituitary-adrenal (HPA) axis function [4, 
5]. Additionally, accelerated aging and apoptosis are some 
of the side effects of drug addiction which can cause cel-
lular damage [6–8]. Studies have indicated drugs such as 
cocaine, opiates, and alcohol induce oxidative stress, 
which contributes to cytotoxicity in different organs [9–
11]. In this state, mitochondrial dysfunction and elevated 
mitochondrial reactive oxygen species accelerate cell 
death [12, 13]. Oxidative stress and increase of inflamma-
tory cytokines in addicted subjects cause accumulation of 
toxic agents in the body, which has negative effects on the 
vascular, pulmonary, and nervous systems [14, 15].

On the other side, risky health behaviors such as un-
protected sex and intravenous drug use increase exposure 
to infections, activate the immune system and inflamma-
tory responses, and accelerate vasculature aging and neu-
ronal toxicity. Also, low socioeconomic status, restricted 
access to health and follow-up care, lack of sleep, inade-
quate exercise, and poor nutrition may aggravate age-re-
lated changes in individuals with substance use disorder 
[16]. Along with addiction, these factors may also medi-
ate disturbances in the homeostatic regulation of the neu-
roendocrine and immune systems, and be associated with 
the production of pro-inflammatory cytokines including 
interleukin (IL)-6, tumor necrosis factor alpha (TNF-α), 
cytokine antagonists, and acute-phase proteins such as 
C-reactive protein (CRP) [17, 18].

The role of environmental factors and genetics in the 
etiology of substance use disorders has been indicated. In 
humans, childhood maltreatment has been shown to be 
associated with a range of adverse outcomes, including 
major depression, anxiety disorders, onset of alcohol use 
disorder, and substance use disorders [19, 20]. Addition-
ally, alterations in the HPA axis is implicated as an out-
come of early life stress (ELS) [21–23]. Several hormones, 
including cortisol, an adrenal steroid, are released by 
HPA-axis activation. Cortisol is one of the main hormon-
al end products of the HPA axis that helps to mobilize 
resources to aid the body filter and increase salient sig-
nals, such as stressful stimuli, from the environment [24]. 
Simultaneously, with cortisol, dehydroepiandrosterone 
(DHEA) and its sulfated form (DHEA sulfate [DHEAS]), 
endogenous hormones primarily derived from the HPA 
axis, are released. These hormones demonstrate a daily 
rhythm and, as part of the physiological stress response, 
increase alongside cortisol [25]. Inflammatory immune 
response and production of pro-inflammatory cytokines 

such as TNF-α have been indicated in many psychiatric 
disorders and as a result of adverse experiences during 
childhood [26, 27]. 

On the other hand, HPA axis has the pivotal role for 
homeostasis of the immune system, and its excessive ac-
tivation has been correlated with several immune-medi-
ated diseases including increased susceptibility to infec-
tions and reduced wound healing [28–30]. Conversely, 
several age-related pathologies have been indicated fol-
lowing excessive glucocorticoid exposure, including hy-
perglycemia/hyperlipidemia, atherosclerosis, and major 
depression [31, 32]. Therefore, the interactions between 
immune mediators and monoamine metabolism, neu-
roendocrine functions, synaptic plasticity, and neural 
circuits, play important roles in pathogenesis in the in-
dividuals with a history of ELS and also in individuals 
with substance use disorder. TNF-α is a pro-inflamma-
tory cytokine with an important role in the innate host 
response to infection and injury. Alterations in the 
TNF-α system have been indicated in a number of psy-
chiatric disorders such as schizophrenia and depression 
as well as in individuals with cocaine use disorder [33–
37]. 

Production of TNF-α in inflammatory immune re-
sponse recruits and activates immune cells and induces 
the production of other pro- and anti-inflammatory cy-
tokines, such as IL-1, IL-6, IL-8, and IL-10 [38]. This cy-
tokine is implicated as a regulating factor in a broad spec-
trum of biological conditions, including cell prolifera-
tion, differentiation, apoptosis, and coagulation [39]. 
TNF-α acts by 2 different receptors with different func-
tional endpoints, which can be cleaved from the surface 
of different types of cells and are detectable in serum in 
soluble forms [39]. TNF receptor type I (TNFR I) is en-
gaged in the recruitment of associated death domain pro-
tein-mediated apoptosis and activation of nuclear factor-
kappa B (NF-kB) signaling pathway. While TNFR I is 
only associated with NF-kB activation, it plays the main 
role in regulating TNF-mediated inflammatory responses 
and sheds soluble TNFR I (sTNFR I) from the cell surface 
in different conditions such as apoptosis and inflamma-
tion [40, 41]. 

TNF-related weak inducer of apoptosis (TWEAK), an-
other TNF superfamily ligand, mediates immune re-
sponses against tissue injury. Serum TWEAK levels in 
previous studies in psychiatric disorders, including 
schizophrenia, bipolar disorder, and ELS, have been as-
sessed as possible pathophysiological factors in inflam-
matory and immune response changes [42–44]. Addi-
tionally, TNF-related apoptosis-inducing ligand (TRAIL) 
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is another TNF superfamily ligand which causes apopto-
sis by binding to specific death receptors, TRAIL recep-
tors 1 and 2 [45–47].

Despite the recent evidence of chronic pro-inflamma-
tory state in both stress and substance use as well as in-
dications of changes in the peripheral levels of TNF 
superfamily members in ELS and crack cocaine with-
drawal, to our knowledge, neuro-immuno-endocrine 
processes have never been investigated in individuals 
with heroin use disorder. Accordingly, the history of 
anxiety, depression, and addiction status in all the sub-
jects was assessed using different tests. Also, the levels of 
usual markers of inflammation such as CRP, erythrocyte 
sedimentation rate (ESR), white blood cell (WBC) 
counts, IL-6, cortisol, DHEAS, and cell death markers 
such as sTNFR I, TRAIL, and TWEAK in individuals 
with heroin use disorder with a history of ELS (heroin-
ELS) were compared with the corresponding values in 
their siblings who did not abuse substances (ELS), and 
individuals with heroin use disorder without a history of 
ELS (heroin-no ELS).

Materials and Methods

Participants
The study participants (89 men and women), selected by trained 

staff using simple selection methods in Isfahan, Iran, included 31 
heroin-dependents with ELS (heroin-ELS group from Shahid Kha-
bushani camp), 26 of their siblings who were not addicted (ELS 
group), and 32 heroin-dependents without a history of ELS (hero-
in-no ELS; heroin group from an abstinence addiction therapy cen-
ter). During a leading period (a minimum of 6–18 days), subjects 
were asked to abstain from using any narcotics including illicit 
drugs and medications. Drug use, medical, and psychiatric assess-
ments were conducted, and drug urine tests were carried out to 
ensure subjects remained drug-free during the leading and study 
periods. To be eligible to participate, individuals had to have 20–60 
years of age and meet Diagnostic and Statistical Manual of Mental 
disorders, also known as DSM-IV criteria for individuals with her-
oin use disorder. Exclusion criteria included other current sub-
stance abuse or dependence, the presence of a current major Axis 
I disorder, use of any psychoactive medication or any medication 
known to alter HPA axis function, and presence of current infec-
tious diseases or history of autoimmune, endocrine or coronary 
heart disease, rheumatoid arthritis, and neurological disorders.

Study Design
The procedure was fully explained to each subject before the 

start of the project, and a written informed consent was obtained. 
The Structured Clinical Interview, which was previously designed 
in the Iranian National Center for Addiction Studies, was used to 
assess psychiatric exclusions, history of drug abuse, social status, 
and medical information. Subjects were also instructed to abstain 
from heroin and other drug use during the sample collection.

Clinical Assessment
ELS was assessed through validated Iranian version of Child-

hood Trauma Questionnaire (CTQ) [48] which assesses the his-
tory of sexual, physical, and emotional abuse, as well as physical 
and emotional neglect during childhood. Beck Depression Inven-
tory (BDI) score [49], Minnesota Multiphasic Personality Inven-
tory test [50], and Hamilton Rating Scale for Depression [51] were 
evaluated in all subjects. Also, heroin craving was assessed by Dai-
ly Drinking/Drug Questionnaire (DDQ) [52] in individuals with 
heroin use disorder.

Laboratory Analyses
Blood Withdrawal
An indwelling cannula was inserted at least 3 h before sam-

pling. Whole blood was collected between 11: 00 and 11: 30 a.m., 
after 3 h of fasting, in order to minimize differences due to bio-
logical variations. Ten milliliters of blood was drawn from each 
participant for assessment of complete blood count, ESR, serum 
levels of albumin (Alb), and liver enzymes (aspartate transaminase 
[AST] and alanine transaminase [ALT]). In order to separate se-
rum from blood, blood was immediately centrifuged at 1,800 g and 
4  ° C for 10 min. Serum was collected and stored at –80  ° C until 
assayed.

Detection of Routine Indicators
Complete blood count was carried out using automated 

blood cell analyzer. The output included leukocyte count, neu-
trophils and lymphocytes percentages, and hemoglobin. Liver 
function tests, including ALT and AST, were carried out by col-
orimetry using an automated analyzer. CRP was tested by turbi-
dimetric inhibition immunoassay, and ESR was detected by 
the Westergren method. IL-6 was measured by electrochemilu-
minescent immunoassay using an automated analyzer. Corti-
sol  and DHEAS blood sample were collected at 9 a.m., and 
baselines for DDQ, Clinical Opiate Withdrawal Scale [53], VAS 
[54], and Hamilton Check list were established. Basal corti-
sol  and DHEAS levels were assessed using a competitive im-
mune analysis method on the COBAS E 411 device. Reference 
intervals for morning cortisol were 4.82–19.5 µg/dL and for 
DHEAS 148–407 µg/dL. Albumin level was measured using a 
nephlometer.

Enzyme-Linked Immunosorbent Assay Analysis
Serum concentrations of sTNFR I (Abcam, UK), TWEAK 

(Hoelzel, Germany), and TRAIL (Ebioscience, USA) were deter-
mined in duplicate using commercially available enzyme-linked 
immunosorbent assay kits according to the procedures sup-
plied by the manufacturer for the respective receptors. Detection 
limits were defined at < 1 pg/mL for sTNFR I, 5 pg/mL for 
TWEAK, and 10 pg/mL for TRAIL. Concentrations were ex-
pressed in pg/mL.

Statistical Analyses
Statistical analyses were performed using GraphPad Prism 6 

(GraphPad Software Inc., USA) statistical package. Data normal-
ity and homogeneity were checked by Shapiro-Wilk and Levene 
tests, respectively. As the data were normally distributed, a com-
parison of the results between heroin-ELS group, ELS group, and 
heroin group was performed using ANOVA and ANCOVA mod-
els using the Tukey-Kramer adjustment for multiple comparisons. 
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The interrelationship between the 2 parameters was tested by Pear-
son correlation analysis. The level of statistical significance was p ≤ 
0.05, and the data is reported as mean ± SD.

Results

Sociodemographic and Clinical Data
There were significant differences between groups in 

marital status (p < 0.0001), while we did not find significant 
differences in the ages of participants (Table 1). ELS was as-
sessed through CTQ score, and we found significant differ-
ences between groups (F2, 86 = 18.29, p < 0.0001) in CTQ 
scores. Post hoc analyses showed CTQ score to be signifi-
cantly higher in ELS (p < 0.0001) and heroin-ELS compared 
to heroin-no ELS group (Fig. 1a). Also, assessment of BDI 
score in groups revealed significant differences between 
groups (F2, 86 = 11.3, p < 0.0001) and post hoc analyses indi-
cated higher BDI score in heroin-ELS group compared to 
ELS (p < 0.0001) and heroin-no ELS (p < 0.05) groups 
(Fig.  1b). Body mass index (BMI) analysis in 3 groups 
showed significant differences (F2, 86 = 18.59, p < 0.0001) 
and post hoc analysis showed BMI to be significantly high-
er in ELS group compared to heroin-ELS (p < 0.0001) and 
heroin-no ELS groups (p < 0.0001; Fig. 1c). There were no 
significant differences between groups in Minnesota Mul-
tiphasic Personality Inventory, DDQ, and Hamilton scores 
(Table 1).

Serum Cortisol and DHEAS Levels as the Endocrine 
Markers
The cortisol levels differed significantly among 

groups (F2, 86 = 36.65, p < 0.001) and post hoc analyses 

revealed increased cortisol levels in both heroin-no ELS 
(p < 0.001) and heroin-ELS groups (p < 0.05) when com-
pared to ELS group. Also, cortisol levels were signifi-
cantly higher in heroin-no ELS group compared to her-
oin-ELS group (p < 0.0001; Fig. 2a).

DHEAS was assessed because it is an essential marker 
of endocrine function and also for its role in antagoniz-
ing many glucocorticoid-related changes. The DHEAS 
levels differed significantly in the 3 groups (F2, 86 = 8.81, 
p < 0.003). Post hoc analyses indicated increased DHEAS 
levels in both heroin-no ELS (p < 0.001) and heroin-ELS 
groups (p < 0.05) when compared to the ELS group. We 
did not find significant differences in DHEAS level be-
tween heroin-no ELS group and heroin-ELS group 
(Fig. 2b). Also, the cortisol/DHEAS ratio did not differ 
among the groups (F2, 86 = 2.77, p = 0.068; Fig. 2c).

Biochemistry Blood Markers
Liver enzymes (AST/ALT) and albumin levels did not 

show significant differences between groups (Table 2).

Immune System and Soluble Apoptosis Markers
WBC counts differed significantly among groups 

(F2,  86 = 7.16, p < 0.01) and post hoc analyses revealed 
higher WBC counts in heroin-no ELS (p < 0.01) and her-
oin-ELS groups compared to ELS group (p < 0.01; Fig. 3a). 
However, no statistically significant differences among 
the heroin-no ELS, ELS, and heroin-ELS groups emerged 
in terms of ESR, IL-6, and CRP levels (Table 2).

Although no significant statistical difference was found 
for serum TWEAK among groups (F2, 85 = 1.51, p > 0.05; 
Fig. 3b), higher levels of sTNFR I were found in heroin-no 
ELS group compared to heroin-ELS group (p < 0.01) and 
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Fig. 1. Clinical assessment of subjects. ELS was assessed by CTQ 
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test of crude differences between groups using ANOVA using the 
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in ELS group compared to heroin-ELS group (p < 0.0001; 
Fig. 3c). Also, heroin group had a significantly higher con-
centration of TRAIL compared to ELS group (p < 0.01; 
Fig. 3d).

Clinical Correlates of Endocrine and Immune 
Variables
First, we assessed clinical correlates of endocrine chang-

es reported here. No correlations were found between BDI 
or Hamilton scores with cortisol levels and morning DHEAS 
levels in any groups. However, in the assessment of relation-

ship between clinical and immune variables, BDI scores re-
lated positively to sTFNR I in heroin-noELS group (r = 
0.369, p = 0.037; Fig.  4a) and BMI related positively to 
sTFNR I in the ELS group (r = 0.4066, p = 0.0393; Fig. 4b).

Also, in ELS group, TRAIL levels was found positively 
related to DHEAS levels (r = 0.535, p = 0.0048; Fig. 5a) 
and negatively related to cortisol/DHEA ratio (r = –0.534, 
p = 0.0049; Fig. 5b). Interestingly, in heroin-ELS group, 
TRAIL levels had positive correlation with cortisol levels 
(r = 0.641, p = 0.0001; Fig. 5c) and DHEAS levels (r = 
0.453, p = 0.009; Fig. 5d). Also, the negative correlation 
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between BDI and TWEAK concentrations was found in 
heroin-no ELS group (r = –0.0386, p = 0.0289). In addi-
tion, in ELS group, TRAIL serum level was found posi-
tively related to CRP (r = 0.396, p = 0.044; Fig. 6a) and 
ALT (r = 0.433, p = 0.027; Fig. 6b). A positive correlation 
was also found between sTNFR I and ESR levels in the 
heroin group (r = 0.396, p = 0.024; Fig. 6c). The remain-
ing immune variables were not found to correlate with 
adrenal hormones or clinical indices in the 3 groups.

Discussion

In the present study, we investigated some inflamma-
tory and biologic markers including CRP, ESR, WBC, 
IL-6, ALT, AST, sTNFR I, TWEAK, TRAIL, and stress 
hormones (cortisol and DHEAS) in heroin-dependent 
patients without a history of ELS (Heroin-no ELS group), 
heroin-dependent patients with a history of ELS (Heroin-
ELS group), and their siblings who were not addicted 
(ELS group).
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Fig. 5. Correlation of endocrine and immune variables. a Positive 
correlation between TRAIL serum levels and DHEAS in ELS 
group. b Negative correlation between TRAIL serum levels and 
cortisol/DHEAS ratio in ELS group. c Positive correlation between 
TRAIL serum levels and cortisol in heroin-ELS group. d Positive 
correlation between TRAIL serum levels and DHEAS in heroin-

ELS group. e Positive correlation between TWEAK serum levels 
and BDI in heroin group. Heroin-no ELS: n = 32, ELS: n = 26, 
heroin-ELS: n = 31. DHEA, dehydroepiandrosterone; TRAIL, 
TNF-related apoptosis-inducing ligand; DHEAS, dehydroepian-
drosterone sulfate; BDI, Beck Depression Inventory; TWEAK, 
TNF-related weak inducer of apoptosis.
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The relationship between posttraumatic stress disor-
der and substance use disorders and also higher rate of 
posttraumatic stress disorder in substance use disorder 
subjects in the process of detoxification highlights the 
role of stress in substance use disorders [55]. Our findings 
demonstrated increased cortisol and DHEAS levels in 
both heroin and heroin-ELS groups when compared to 
the ELS group. These increases were significantly higher 
in heroin-no ELS group compared to heroin-ELS group. 
Previous findings have indicated ELS has long-term ef-
fects on neurophysiological pathways and may have pro-

found consequences up to adulthood [56]. Elevated levels 
of cortisol and DHEA have been reported in ELS expo-
sure (e.g., parental depression, marital conflict, family 
upheaval) in multiple studies [57–61]. 

In addition, Walter et al. [62] have shown that heroin 
has an acute effect on the HPA axis response compared 
to placebo when administered to healthy controls. They 
also found that cortisol levels were higher in patients 
compared to healthy controls, and its levels decreased in 
heroin-dependent patients after heroin administration 
[62]. 
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Fig. 6. Correlation of immune variables. a Positive correlation be-
tween TRAIL serum levels and CRP in ELS group. b Positive cor-
relation between TRAIL serum levels and ALT in ELS group. c 
Positive correlation of sTNFR I with ESR levels in heroin group. 

Heroin-no ELS: n = 32, ELS: n = 26. CRP, C-reactive protein; 
TRAIL, TNF-related apoptosis-inducing ligand; ALT, alanine 
transaminase; ESR, erythrocyte sedimentation rate; sTNFR I, sol-
uble tumor necrosis factor receptor type I.

Table 1. Demographic and clinical characteristics of the study participants

Variables Heroin-ELS 
group (n = 31)

Heroin-no ELS 
group (n = 32)

ELS group
(n = 26)

p value

Age, years 31.00±8.149 36.16±9.109 31.96±7.49 0.39
Marital status, % (n)

Permanent marriage 32.26 (10) 37.5 (12) 96.1 (25)
Single/never married 19.35 (6) 21.88 (7) – 0.0001
Separated/but not divorced 25.80 (8) 21.88 (7) –
Divorced 22.56 (7) 18.74 (6) 3.9 (1)

BMI, kg/m2 22.10±3.63 23.10±3.58 27.66±3.63 0.0001
BDI score 29.77±14.13 21.91±9.20 15.31±10.52 0.0001
DDQ score –8.0.03±17.7 –1.9±24 – 0.261
MMPI score 26.13±5.39 23.28±6.15 28/85±14/22 0.076
Hamilton 17.90±11.64 15.52±10.62 – 0.348
CTQ score 53.7±16.6 32.09±10.1 51.96±15.8 0.0001

Values are showed as mean ± SD.
p value obtained from ANOVA (comparison of means).
Heroin-ELS, Heroin Dependents with history of Childhood Maltreatment; Heroin, Heroin Dependents with-

out history of Childhood Maltreatment; ELS, Subjects with history of Childhood Maltreatment; BMI, body mass 
index; BDI, Beck Depression Inventory; DDQ, Daily Drinking/Drug Questionnaire; MMPI, Minnesota Multi-
phasic Personality Inventory; CTQ, Childhood Trauma Questionnaire.
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Therefore, in our study, an increase in cortisol and 
DHEAS levels in heroin-no ELS group, compared to her-
oin-ELS group, maybe due to abstinence from heroin be-
fore the start of the research in this group. Also, in the 
absence of the suppressor effect of heroin on HPA axis, 
cortisol and DHEAS levels in heroin-ELS group were sig-
nificantly higher in comparison to the ELS group. Ac-
cordingly, our findings are consistent with previous stud-
ies that have shown the association of opioid withdrawal 
with increased stress hormone secretion [63–65]. 

Also, in the present study, WBC count was significant-
ly higher in heroin-no ELS and heroin-ELS groups com-
pared to ELS group. However, no statistically significant 
difference among heroin, ELS, and heroin-ELS groups 
emerged in terms of ESR, IL-6, and CRP levels.

Previous studies have shown that the production of 
some inflammatory cytokines rise a few minutes after 
morphine administration [66, 67].

Additionally, the increase in IL-6 level has been indi-
cated after morphine treatment in patients receiving mor-
phine for pain management [68]. In another study, Chan 
et al. [96] showed that the production of IL-1β, IL-6, and 
IL-8 were significantly higher in a group of methadone-
maintained patients compared to a healthy control group. 

On the other hand, various studies in heroin-dependent 
patients have indicated that opioids consistently cause im-
munosuppression [69–71]. IL-6 production can be in-
duced by psychological stress in animals, and its elevation 
can produce other cytokines such as TNF-α and IL-1β [72, 
73]. However, in our study, the lack of significant differ-
ences between groups in ESR, IL-6, and CRP levels was 
probably due to the heroin abstinence period and the 
elimination of its inflammatory effects.

Cortisol displays anti-inflammatory and immunosup-
pressive effects through inhibition of pro-inflammatory 
cytokines and induction of thymocyte apoptosis. Accord-
ingly, cortisol increase in heroin and heroin-ELS groups 
in our study may have reduced the heroin-induced in-
flammatory response [74–76].

TNF receptors are characterized by the ability to bind 
TNF and become soluble only after they are cleaved and 
released in plasma. TNFR I has a death domain and plays 
an essential role in apoptosis (programmed cell death) 
and neurotoxicity [77]. The serum level of sTNFR I is an 
indirect indicator of TNF levels, and studies have shown 
that in response to an increase in TNF, soluble receptors 
are shedding from cell surfaces to neutralize TNFα effects 
such as apoptosis and inflammation [78, 79].

Table 2. Serum levels of biomarkers in ELS-heroin, heroin, and ELS groups

Biomarkers ELS-heroin
group (n = 31)

Heroin-no ELS
group (n = 32)

ELS group
(n = 26)

p value

Cortisol* 14.51±5.37 21.66±5.39 11.18±2.96 0.0001
DHEAS* 251.87±107 296.87±116 172.46±114 0.0001
Albumin 4.24±0.79 3.96±0.73 4.08±0.85 0.389
TWEAK 0.176±0.044 0.161±0.035 0.178±0.44 0.239
TRAIL 0.111±0.055 0.120±0.029 0.085±0.036 0.007
sTNFR I 1.51±1.17 2.21±0.90 2.56±0.11 0.0001
WBC 8.52±2.52 8.32±3.00 6.26±1.38 0.001
ALT 19.19±18.15 20.78±10.91 19.26±9.23 0.874
AST 18.64±18.83 22.38±15.07 18.73±9.25 0.548
ESR 7.81±8.06 8.00±4.83 11.23±5.79 0.088
CRP 3.13±4.17 4.92±6.51 5.51±6.24 0.257

Values are showed as mean ± SD.
p values represent a test of crude differences between groups using ANOVA using the Tukey-Kramer adjust-

ment for multiple comparisons.
* Cortisol and DHEAS resulted from ANCOVA and adjusted were made for sex.
Heroin-ELS, Heroin Dependents with history of Childhood Maltreatment; Heroin, Heroin Dependents with-

out history of Childhood Maltreatment; ELS, Subjects with history of Childhood Maltreatment; DHEAS, dehy-
droepiandrosterone sulfate; TWEAK, TNF-related weak inducer of apoptosis; TRAIL, TNF-related apoptosis-
inducing ligand; sTNFR I, soluble tumor necrosis factor receptor type I; WBC, white blood cell; ALT, alanine 
transaminase; AST, aspartate transaminase; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; AN-
COVA, analysis of covariance.
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We found that sTNFR I was significantly lower in the 
heroin-ELS group compared to heroin-no ELS and ELS 
groups. These results are consistent with the cortisol test 
results in our study.

Consistent with our findings, Levandowski et al. [44] 
have found lower sTNFR I in crack-ELS patients com-
pared to crack-addicted subjects. Therefore, it seems 
sTNFR I levels decrease in the presence of cortisol prob-
ably due to cortisol anti-inflammatory effect. However, 
we did not find a significant correlation between cortisol 
and sTNFR I in all groups. In the present study, there 
was a positive correlation between BMI and sTNFR I in 
ELS group.

ELS influence physical health and are associated with 
increased inflammation [80]. Raposa et al. [81] have 
found a positive correlation between BMI and sTNFR II 
and CRP in subjects with ELS. Accordingly, the positive 
relationship between BMI and sTNFR I in ELS group may 
be related to the inflammatory response in ELS group. 
Additionally, lower levels of cortisol and its anti-inflam-
matory effects in ELS group compared to the other groups 
may have affected the results.

Regarding the inflammation parameters, a positive as-
sociation was found between sTNFR I and BDI in heroin-
no ELS group. Moderate to severe depressive symptoms 
are usually common in heroin-dependent patients [82–
84]. Additionally, in a study, Tunler et al. [85] found that 
antidepressant response on mirtazapine was associated 
with a highly significant increase of sTNFR I. 

Therefore, it seems sTNFR I increases in response to 
cortisol and contributes to a decrease in depression and 
inflammation in addicted patients. Concomitant to the 
decrease in sTNFR I serum levels, TRAIL levels had in-
creased in the heroin-no ELS group compared to the ELS 
group. Also, there was a positive relationship between 
TRAIL serum levels and DHEAS in ELS group; and 
TRAIL had a positive correlation with cortisol and 
DHEAS serum levels in the heroin-ELS group.

TRAIL has an important role in the activation of the 
apoptotic pathway and also in inflammatory pathways as-
sociated with NF-kB [45]. Previous studies have shown 
that heroin and morphine induce apoptosis in neurons 
and microglia [86–88]. Additionally, accelerated biologi-
cal aging at both cellular and brain system levels have 
been indicated in heroin abuse subjects [8]. In an animal 
model study, Cunha-Oliveira et al. [89] found that heroin 
induces apoptosis in rat cortical neurons. The rate of 
apoptosis is higher in most of aging cell populations and 
organs, including the brain, immune system, eyes, endo-
crine system, intestines, and reproductive system [90]. 

On the other hand, aging phenotypes are associated with 
mild inflammation (inflammaging) in many conditions 
such as changes in body composition, energy production 
and utilization, metabolic homeostasis, immune senes-
cence, and neuronal health [91, 92]. Therefore, according 
to the involvement of neuro-immune-endocrine interac-
tions in heroin addiction and also in ELS, an increase of 
TRAIL in heroin-no ELS group and its positive correla-
tion with cortisol and DHEAS in ELS and heroin-ELS 
groups may be related to chronic inflammation in heroin-
addicted patients and also in ELS subjects. Additionally, 
the anti-apoptotic effects of DHEA and DHEAS on dif-
ferent cells have been indicated in many studies [93]. Re-
cently, Ding et al. [94] showed that pre-treatment of Ley-
dig cells with DHEA inhibited early apoptosis by reduc-
tion of pro-apoptotic protein Bax, caspases-9, and 
caspases-3 mRNA levels. Interestingly, apoptosis through 
TRAIL is exerted by 2 signaling pathways and activation 
of caspases-8, caspases-9, and caspases-3 [95]. Therefore, 
DHEAS production in ELS and heroin-ELS groups is 
likely to reduce TRAIL apoptotic effects. Also, our data 
demonstrated that TRAIL levels were positively associ-
ated with CRP in ELS group. As mentioned before, since 
TRAIL can activate pro-inflammatory pathways through 
NF-kB signaling, it was expected that this relationship 
would be observed.

In spite of no statistically significant alterations in 
TWEAK levels, our findings demonstrate that TWEAK 
levels were negatively associated with BDI in heroin-no 
ELS subjects; this result has been found to be consistent 
with the study by Levandowski et al. [44].

This study has several limitations. First, the sample 
size may have been small, and thus, larger scale studies 
are recommended to confirm these results. Second, the 
histories of ELS were collected retrospectively and are 
subject to recall bias. Finally, it is important to test the 
other apoptosis, immune system, and endocrine system 
biomarkers in heroin-addicted patients, different stress-
or conditions, and also in people who abuse other 
substances.

Conclusion

Based on a novel integration of peripheral inflamma-
tion, molecular and endocrine system measures, and de-
pression severity, the present study presents evidence that 
both heroin abuse and ELS affect the neuro-immuno-en-
docrine system. Specifically, heroin and ELS induces 
chronic inflammation, and stress hormones levels in-
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crease in response to stress and inflammation. Also, in-
flammaging in heroin and ELS condition accelerate bio-
logical aging. These findings constitute a significant con-
tribution to our understanding of how heroin abuse and 
ELS influences the neuro-immuno-endocrine system and 
lays an important foundation for studies that seek to 
characterize further the mechanisms that mediate sub-
stance abuse, ELS, inflammation, and biological aging. 
Understanding such mechanisms raises the possibility of 
reversing the detrimental effects of drug addiction and 
ELS.

Acknowledgment

This work was supported by the Kashan University of Medical 
Sciences (Grant No. 95055).

Statement of Ethics

The study protocol was approved by the Ethics Committee of 
Kashan University of Medical Sciences.

Disclosure Statement

All other authors declare that they have no conflicts of interest.

Author Contributions

N.E., M.M., and H.R.B. designed the study and wrote the pro-
tocol. H.R.M. conducted the statistical analysis, literature searches, 
and provided summaries of previous research studies. M.M. and 
N.E. performed all laboratory tests. N.E. wrote the first draft of the 
manuscript. All authors contributed to and have approved the fi-
nal manuscript.

References

  1	 Bach AG, Jordan B, Wegener NA, Rusner C, 
Kornhuber M, Abbas J, et al. Heroin spongi-
form leukoencephalopathy (HSLE). Clin 
Neuroradiol. 2012 Dec; 22(4): 345–9.

  2	 Tramullas M, Martínez-Cué C, Hurlé MA. 
Chronic administration of heroin to mice 
produces up-regulation of brain apoptosis-
related proteins and impairs spatial learning 
and memory. Neuropharmacology. 2008 
Mar; 54(4): 640–52.

  3	 Wang C, Zheng D, Xu J, Lam W, Yew DT. 
Brain damages in ketamine addicts as re-
vealed by magnetic resonance imaging. Front 
Neuroanat. 2013 Jul; 7: 23.

  4	 Kiefer F, Wiedemann K. Neuroendocrine 
pathways of addictive behaviour. Addict Biol. 
2004 Sep-Dec; 9(3-4): 205–12.

  5	 Walter M, Gerhard U, Gerlach M, Weijers 
HG, Boening J, Wiesbeck GA. Cortisol con-
centrations, stress-coping styles after with-
drawal and long-term abstinence in alcohol 
dependence. Addict Biol. 2006 Jun; 11(2): 

157–62.
  6	 Ying W, Jang FF, Teng C, Tai-Zhen H. Apop-

tosis may involve in prenatally heroin ex-
posed neurobehavioral teratogenicity? Med 
Hypotheses. 2009 Dec; 73(6): 976–7.

  7	 Tan M, Li Z, Ma S, Luo J, Xu S, Lu A, et al. 
Heroin activates Bim via c-Jun N-terminal 
kinase/c-Jun pathway to mediate neuronal 
apoptosis. Neuroscience. 2013 Mar; 233: 1–8.

  8	 Cheng GL, Zeng H, Leung MK, Zhang HJ, 
Lau BW, Liu YP, et al. Heroin abuse acceler-
ates biological aging: a novel insight from 
telomerase and brain imaging interaction. 
Transl Psychiatry. 2013 May; 3(5):e260.

  9	 Sarafian TA, Habib N, Oldham M, Seeram N, 
Lee RP, Lin L, et al. Inhaled marijuana smoke 
disrupts mitochondrial energetics in pulmo-

nary epithelial cells in vivo. Am J Physiol Lung 
Cell Mol Physiol. 2006 Jun; 290(6):L1202–9.

10	 Pomierny-Chamioło L, Moniczewski A, 
Wydra K, Suder A, Filip M. Oxidative stress 
biomarkers in some rat brain structures and 
peripheral organs underwent cocaine. Neuro-
tox Res. 2013 Jan; 23(1): 92–102.

11	 Skrabalova J, Drastichova Z, Novotny J. Mor-
phine as a Potential Oxidative Stress-Causing 
Agent. Mini Rev Org Chem. 2013 Nov; 10(4): 

367–72.
12	 Cunha-Oliveira T, Rego AC, Garrido J, Borg-

es F, Macedo T, Oliveira CR. Neurotoxicity of 
heroin-cocaine combinations in rat cortical 
neurons. Toxicology. 2010 Sep; 276(1): 11–7.

13	 Bazuaye-Ekwuyasi EA, Ogunbileje JO, Ka-
phalia BS, Eltorky MA, Okorodudu AO. 
Comparative effects of cocaine and cocaethyl-
ene on alveolar epithelial type II cells. Toxicol 
Mech Methods. 2015; 25(8): 604–13.

14	 Kousik SM, Napier TC, Carvey PM. The ef-
fects of psychostimulant drugs on blood brain 
barrier function and neuroinflammation. 
Front Pharmacol. 2012 Jun; 3: 121.

15	 Fowler JS, Logan J, Wang GJ, Volkow ND, 
Telang F, Zhu W, et al. Low monoamine oxi-
dase B in peripheral organs in smokers. Proc 
Natl Acad Sci USA. 2003 Sep; 100(20): 11600–
5.

16	 Janković S, Stojisavljević D, Janković J, Erić 
M, Marinković J. Association of socioeco-
nomic status measured by education, and car-
diovascular health: a population-based cross-
sectional study. BMJ Open. 2014 Jul; 

4(7):e005222.
17	 Catania A, Airaghi L, Motta P, Manfredi MG, 

Annoni G, Pettenati C, et al. Cytokine antago-
nists in aged subjects and their relation with 
cellular immunity. The journals of gerontol-

ogy Series A, Biological sciences and medical 
sciences 52 (2):B93-97. 

18	 Bruunsgaard H, Andersen-Ranberg K, Jeune 
B, Pedersen AN, Skinhøj P, Pedersen BK. A 
high plasma concentration of TNF-alpha is 
associated with dementia in centenarians. J 
Gerontol A Biol Sci Med Sci. 1999 Jul; 

54(7):M357–64.
19	 Shin SH, Miller DP, Teicher MH. Exposure to 

childhood neglect and physical abuse and de-
velopmental trajectories of heavy episodic 
drinking from early adolescence into young 
adulthood. Drug Alcohol Depend. 2013 Jan; 

127(1-3): 31–8.
20	 Schückher F, Sellin T, Fahlke C, Engström I. 

The Impact of Childhood Maltreatment on 
Age of Onset of Alcohol Use Disorder in 
Women. Eur Addict Res. 2018; 24(6): 278–
85.

21	 Cicchetti D, Rogosch FA. Diverse patterns of 
neuroendocrine activity in maltreated chil-
dren. Dev Psychopathol. 2001; 13(3): 677–93.

22	 Gunnar MR, Vazquez DM. Low cortisol and 
a flattening of expected daytime rhythm: po-
tential indices of risk in human develop-
ment. Dev Psychopathol. 2001; 13(3): 515–
38.

23	 Ruttle PL, Shirtcliff EA, Armstrong JM, Klein 
MH, Essex MJ. Neuroendocrine coupling 
across adolescence and the longitudinal influ-
ence of early life stress. Dev Psychobiol. 2015 
Sep; 57(6): 688–704.

24	 Del Giudice M, Ellis BJ, Shirtcliff EA. The 
Adaptive Calibration Model of stress respon-
sivity. Neurosci Biobehav Rev. 2011 Jun; 

35(7): 1562–92.
25	 Kroboth PD, Salek FS, Pittenger AL, Fabian 

TJ, Frye RF. DHEA and DHEA-S: a review. J 
Clin Pharmacol. 1999 Apr; 39(4): 327–48.

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f A
la

ba
m

a,
 L

is
te

r 
H

ill
 L

ib
ra

ry
   

   
   

   
 

13
8.

26
.3

1.
3 

- 
10

/2
1/

20
19

 7
:1

2:
09

 P
M



Neuro-Immuno-Endocrine Interactions 
in ELS and Heroin Withdrawal Timeline

11Eur Addict Res
DOI: 10.1159/000503880

26	 Grosse L, Ambrée O, Jörgens S, Jawahar MC, 
Singhal G, Stacey D, et al. Cytokine levels in 
major depression are related to childhood 
trauma but not to recent stressors. Psycho-
neuroendocrinology. 2016 Nov; 73: 24–31.

27	 Mørch RH, Dieset I, Faerden A, Hope S, Aas 
M, Nerhus M, et al. Persistent increase in TNF 
and IL-1 markers in severe mental disorders 
suggests trait-related inflammation: a one 
year follow-up study. Acta Psychiatr Scand. 
2017 Oct; 136(4): 400–8.

28	 Kleiman A, Tuckermann JP. Glucocorticoid 
receptor action in beneficial and side effects of 
steroid therapy: lessons from conditional 
knockout mice. Mol Cell Endocrinol. 2007 
Sep; 275(1-2): 98–108.

29	 Tracey KJ. Reflex control of immunity. Nat 
Rev Immunol. 2009 Jun; 9(6): 418–28.

30	 Sternberg EM. Neural regulation of innate 
immunity: a coordinated nonspecific host re-
sponse to pathogens. Nat Rev Immunol. 2006 
Apr; 6(4): 318–28.

31	 Lee AL, Ogle WO, Sapolsky RM. Stress and 
depression: possible links to neuron death in 
the hippocampus. Bipolar Disord. 2002 Apr; 

4(2): 117–28.
32	 Juruena MF, Cleare AJ, Bauer ME, Pariante 

CM. Molecular mechanisms of glucocorti-
coid receptor sensitivity and relevance to af-
fective disorders. Acta Neuropsychiatr. 2003 
Dec; 15(6): 354–67.

33	 Pandey GN, Ren X, Rizavi HS, Zhang H. Pro-
inflammatory cytokines and their membrane-
bound receptors are altered in the lympho-
cytes of schizophrenia patients. Schizophr 
Res. 2015 May; 164(1-3): 193–8.

34	 Turhan L, Batmaz S, Kocbiyik S, Soygur AH. 
The role of tumour necrosis factor alpha and 
soluble tumour necrosis factor alpha recep-
tors in the symptomatology of schizophrenia. 
Nord J Psychiatry. 2016 Jul; 70(5): 342–50.

35	 Berthold-Losleben M, Himmerich H. The 
TNF-alpha system: functional aspects in de-
pression, narcolepsy and psychopharmacol-
ogy. Curr Neuropharmacol. 2008 Sep; 6(3): 

193–202.
36	 Schmidt FM, Kirkby KC, Himmerich H. The 

TNF-alpha inhibitor etanercept as monother-
apy in treatment-resistant depression - report 
of two cases. Psychiatr Danub. 2014 Sep; 

26(3): 288–90.
37	 Narvaez JC, Magalhães PV, Fries GR, Colpo 

GD, Czepielewski LS, Vianna P, et al. Periph-
eral toxicity in crack cocaine use disorders. 
Neurosci Lett. 2013 Jun; 544: 80–4.

38	 Rumalla VK, Calvano SE, Spotnitz AJ, 
Krause TJ, Hilkert RJ, Lin E, et al. Alterations 
in immunocyte tumor necrosis factor recep-
tor and apoptosis in patients with congestive 
heart failure. Ann Surg. 2002 Aug; 236(2): 

254–60.
39	 Ghezzi P, Cerami A. Tumor necrosis factor as 

a pharmacological target. Mol Biotechnol. 
2005 Nov; 31(3): 239–44.

40	 Chen G, Goeddel DV. TNF-R1 signaling: a 
beautiful pathway. Science. 2002 May; 

296(5573): 1634–5.

41	 Granell S, Pereda J, Gómez-Cambronero L, 
Cassinello N, Sabater L, Closa D, et al. Circu-
lating TNF-alpha and its soluble receptors 
during experimental acute pancreatitis. Cyto-
kine. 2004 Feb; 25(4): 187–91.

42	 Tatlıdil Yaylacı E, Yüksel RN, Ünal K, Altun-
soy N, Cingi M, Yalçın Şahiner Ş, et al. TNF-
related weak inducer of apoptosis (TWEAK) 
levels in schizophrenia. Psychiatry Res. 2015 
Oct; 229(3): 755–9.

43	 Burkly LC, Michaelson JS, Zheng TS. 
TWEAK/Fn14 pathway: an immunological 
switch for shaping tissue responses. Immunol 
Rev. 2011 Nov; 244(1): 99–114.

44	 Levandowski ML, Viola TW, Wearick-Silva 
LE, Wieck A, Tractenberg SG, Brietzke E, et 
al. Early life stress and tumor necrosis factor 
superfamily in crack cocaine withdrawal. J 
Psychiatr Res. 2014 Jun; 53: 180–6.

45	 Falschlehner C, Schaefer U, Walczak H. Fol-
lowing TRAIL’s path in the immune system. 
Immunology. 2009 Jun; 127(2): 145–54.

46	 Wajant H. TRAIL and NFkappaB signaling—
a complex relationship. Vitam Horm. 2004; 

67: 101–32.
47	 Wang S, El-Deiry WS. TRAIL and apoptosis 

induction by TNF-family death receptors. 
Oncogene. 2003 Nov; 22(53): 8628–33.

48	 Bernstein DP, Ahluvalia T, Pogge D, Handels-
man L. Validity of the Childhood Trauma 
Questionnaire in an adolescent psychiatric 
population. J Am Acad Child Adolesc Psychi-
atry. 1997 Mar; 36(3): 340–8.

49	 Boyle P. Cultural and linguistic validation of 
questionnaires for use in international stud-
ies: the nine-item BPH-specific quality-of-life 
scale. Eur Urol. 1997; 32(suppl 2): 50–2.

50	 Butcher JN, Ben-Porath YS, Tellegen A, Dahl-
strom WG, Kaemmer Bs. MMPI-2 (Minne-
sota Multiphasic Personality Inventory-2): 
Manual for administration and scoring. 2nd 
ed. Minneapolis: University of Minnesota 
Pres; 2001.7/01294-8.

51	 Hamilton M. Development of a rating scale 
for primary depressive illness. Br J Soc Clin 
Psychol. 1967 Dec; 6(4): 278–96.

52	 Collins RL, Parks GA, Marlatt GA. Social de-
terminants of alcohol consumption: the ef-
fects of social interaction and model status on 
the self-administration of alcohol. J Consult 
Clin Psychol. 1985 Apr; 53(2): 189–200.

53	 Wesson DR, Ling W. The Clinical Opiate 
Withdrawal Scale (COWS). J Psychoactive 
Drugs. 2003 Apr-Jun; 35(2): 253–9.

54	 Wewers ME, Lowe NK. A critical review of 
visual analogue scales in the measurement of 
clinical phenomena. Res Nurs Health. 1990 
Aug; 13(4): 227–36.

55	 Proescholdt MG, Müller SE, Vogel M, Lang 
U, Wiesbeck GA, Breit W, et al. Early Screen-
ing for Posttraumatic Stress Disorder in Inpa-
tient Detoxification and Motivation Treat-
ment: results and Consequences. Eur Addict 
Res. 2018; 24(3): 128–36.

56	 Gunnar M, Quevedo K. The neurobiology of 
stress and development. Annu Rev Psychol. 
2007; 58(1): 145–73.

57	 Ashman SB, Dawson G, Panagiotides H, Ya-
mada E, Wilkinson CW. Stress hormone lev-
els of children of depressed mothers. Dev Psy-
chopathol. 2002; 14(2): 333–49.

58	 Koss KJ, George MR, Bergman KN, Cum-
mings EM, Davies PT, Cicchetti D. Under-
standing children’s emotional processes and 
behavioral strategies in the context of marital 
conflict. J Exp Child Psychol. 2011 Jul; 109(3): 

336–52.
59	 Koss KJ, George MR, Davies PT, Cicchetti D, 

Cummings EM, Sturge-Apple ML. Patterns 
of children’s adrenocortical reactivity to in-
terparental conflict and associations with 
child adjustment: a growth mixture modeling 
approach. Dev Psychol. 2013 Feb; 49(2): 317–
26.

60	 Essex MJ, Klein MH, Slattery MJ, Goldsmith 
HH, Kalin NH. Early risk factors and devel-
opmental pathways to chronic high inhibi-
tion and social anxiety disorder in adoles-
cence. Am J Psychiatry. 2010 Jan; 167(1): 40–
6.

61	 Essex MJ, Shirtcliff EA, Burk LR, Ruttle PL, 
Klein MH, Slattery MJ, et al. Influence of ear-
ly life stress on later hypothalamic-pituitary-
adrenal axis functioning and its covariation 
with mental health symptoms: a study of the 
allostatic process from childhood into adoles-
cence. Dev Psychopathol. 2011 Nov; 23(4): 

1039–58.
62	 Walter M, Gerber H, Kuhl HC, Schmid O, Jo-

echle W, Lanz C, et al. Acute effects of intra-
venous heroin on the hypothalamic-pitu-
itary-adrenal axis response: a controlled trial. 
J Clin Psychopharmacol. 2013 Apr; 33(2): 

193–8.
63	 Camí J, Gilabert M, San L, de la Torre R. 

Hypercortisolism after opioid discontinua-
tion in rapid detoxification of heroin 
addicts. Br J Addict. 1992 Aug; 87(8): 1145–
51.

64	 Culpepper-Morgan JA, Kreek MJ. Hypotha-
lamic-pituitary-adrenal axis hypersensitivity 
to naloxone in opioid dependence: a case of 
naloxone-induced withdrawal. Metabolism. 
1997 Feb; 46(2): 130–4.

65	 Volavka J, Cho D, Mallya A, Bauman J. Nal-
oxone increases ACTH and cortisol levels in 
man. N Engl J Med. 1979 May; 300(18): 1056–
7.

66	 Pacifici R, di Carlo S, Bacosi A, Pichini S, Zuc-
caro P. Pharmacokinetics and cytokine pro-
duction in heroin and morphine-treated 
mice. Int J Immunopharmacol. 2000 Aug; 

22(8): 603–14.
67	 Peng X, Mosser DM, Adler MW, Rogers TJ, 

Meissler JJ Jr, Eisenstein TK. Morphine en-
hances interleukin-12 and the production of 
other pro-inflammatory cytokines in mouse 
peritoneal macrophages. J Leukoc Biol. 2000 
Nov; 68(5): 723–8.

68	 Beilin B, Shavit Y, Trabekin E, Mordashev B, 
Mayburd E, Zeidel A, et al. The effects of post-
operative pain management on immune re-
sponse to surgery. Anesth Analg. 2003 Sep; 

97(3): 822–7.

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f A
la

ba
m

a,
 L

is
te

r 
H

ill
 L

ib
ra

ry
   

   
   

   
 

13
8.

26
.3

1.
3 

- 
10

/2
1/

20
19

 7
:1

2:
09

 P
M



Moeini/Esmaeil/Mokhtari/Eskandari/
Banafshe

Eur Addict Res12
DOI: 10.1159/000503880

69	 Donahoe RM, Vlahov D. Opiates as potential 
cofactors in progression of HIV-1 infections 
to AIDS. J Neuroimmunol. 1998 Mar; 83(1-2): 

77–87.
70	 Friedman H, Newton C, Klein TW. Microbial 

infections, immunomodulation, and drugs of 
abuse. Clin Microbiol Rev. 2003 Apr; 16(2): 

209–19.
71	 Neri S, Bruno CM, Pulvirenti D, Malaguarnera 

M, Italiano C, Mauceri B, et al. Randomized 
clinical trial to compare the effects of metha-
done and buprenorphine on the immune sys-
tem in drug abusers. Psychopharmacology 
(Berl). 2005 May; 179(3): 700–4.

72	 Allan SM, Rothwell NJ. Cytokines and acute 
neurodegeneration. Nat Rev Neurosci. 2001 
Oct; 2(10): 734–44.

73	 Lucas SM, Rothwell NJ, Gibson RM. The role 
of inflammation in CNS injury and disease. Br 
J Pharmacol. 2006 Jan; 147(suppl 1):S232–40.

74	 Stalder T, Kirschbaum C. Analysis of cortisol 
in hair–state of the art and future directions. 
Brain Behav Immun. 2012 Oct; 26(7): 1019–
29.

75	 Ashwell JD, Lu FW, Vacchio MS. Glucocorti-
coids in T cell development and function*. 
Annu Rev Immunol. 2000; 18(1): 309–45.

76	 Chrousos GP. Stress and disorders of the 
stress system. Nat Rev Endocrinol. 2009 Jul; 

5(7): 374–81.
77	 Ashkenazi A, Dixit VM. Death receptors: sig-

naling and modulation. Science. 1998 Aug; 

281(5381): 1305–8.
78	 Van Zee KJ, Kohno T, Fischer E, Rock CS, 

Moldawer LL, Lowry SF. Tumor necrosis fac-
tor soluble receptors circulate during experi-
mental and clinical inflammation and can 
protect against excessive tumor necrosis fac-
tor alpha in vitro and in vivo. Proc Natl Acad 
Sci USA. 1992 Jun; 89(11): 4845–9.

79	 Shibata J, Goto H, Arisawa T, Niwa Y, Hay-
akawa T, Nakayama A, et al. Regulation of 
tumour necrosis factor (TNF) induced apop-
tosis by soluble TNF receptors in Helico-

bacter pylori infection. Gut. 1999 Jul; 45(1): 

24–31.
80	 Miller GE, Chen E, Fok AK, Walker H, Lim A, 

Nicholls EF, et al. Low early-life social class 
leaves a biological residue manifested by de-
creased glucocorticoid and increased proin-
flammatory signaling. Proc Natl Acad Sci 
USA. 2009 Aug; 106(34): 14716–21.

81	 Raposa EB, Bower JE, Hammen CL, Najman 
JM, Brennan PA. A developmental pathway 
from early life stress to inflammation: the role 
of negative health behaviors. Psychol Sci. 
2014 Jun; 25(6): 1268–74.

82	 Wu Y, Yan S, Bao Y, Lian Z, Qu Z, Liu Z. 
Cross-sectional study of the severity of self-
reported depressive symptoms in heroin us-
ers who participate in a methadone mainte-
nance treatment program. Shanghai Arch 
Psychiatry. 2016 Feb; 28(1): 35–41.

83	 Zaaijer ER, van Dijk L, de Bruin K, Goudriaan 
AE, Lammers LA, Koeter MW, et al. Effect of 
extended-release naltrexone on striatal dopa-
mine transporter availability, depression and 
anhedonia in heroin-dependent patients. 
Psychopharmacology (Berl). 2015 Jul; 

232(14): 2597–607.
84	 Blum J, Gerber H, Gerhard U, Schmid O, Pe-

titjean S, Riecher-Rössler A, et al. Acute ef-
fects of heroin on emotions in heroin-depen-
dent patients. Am J Addict. 2013 Nov-Dec; 

22(6): 598–604.
85	 Tulner DM. Heart in mind mind in heart. 

neurobiological aspects of depression post 
myocardial infarction Groningen: s.n.; 2011.

86	 Mao J, Sung B, Ji RR, Lim G. Neuronal apop-
tosis associated with morphine tolerance: evi-
dence for an opioid-induced neurotoxic 
mechanism. J Neurosci. 2002 Sep; 22(17): 

7650–61.
87	 Oliveira MT, Rego AC, Morgadinho MT, 

Macedo TR, Oliveira CR. Toxic effects of opi-
oid and stimulant drugs on undifferentiated 
PC12 cells. Ann N Y Acad Sci. 2002 Jun; 

965(1): 487–96.

88	 Hu S, Sheng WS, Lokensgard JR, Peterson PK. 
Morphine induces apoptosis of human mi-
croglia and neurons. Neuropharmacology. 
2002 May; 42(6): 829–36.

89	 Cunha-Oliveira T, Rego AC, Garrido J, Borg-
es F, Macedo T, Oliveira CR. Street heroin in-
duces mitochondrial dysfunction and apop-
tosis in rat cortical neurons. J Neurochem. 
2007 Apr; 101(2): 543–54.

90	 Muradian K, Schachtschabel DO. The role of 
apoptosis in aging and age-related disease: 
update. Z Gerontol Geriatr. 2001 Dec; 34(6): 

441–6.
91	 Franceschi C, Campisi J. Chronic inflamma-

tion (inflammaging) and its potential contri-
bution to age-associated diseases. J Gerontol 
A Biol Sci Med Sci. 2014 Jun; 69(suppl 1):S4–
9.

92	 Franceschi C, Bonafè M, Valensin S, Olivieri 
F, De Luca M, Ottaviani E, et al. Inflamm-ag-
ing. An evolutionary perspective on immu-
nosenescence. Ann N Y Acad Sci. 2000 Jun; 

908(1): 244–54.
93	 Takahashi H, Nakajima A, Sekihara H. Dehy-

droepiandrosterone (DHEA) and its sulfate 
(DHEAS) inhibit the apoptosis in human pe-
ripheral blood lymphocytes. J Steroid Bio-
chem Mol Biol. 2004 Mar; 88(3): 261–4.

94	 Ding X, Yu L, Ge C, Ma H. Protective effect of 
DHEA on hydrogen peroxide-induced oxida-
tive damage and apoptosis in primary rat Ley-
dig cells. Oncotarget. 2017 Mar; 8(10): 16158–
69.

95	 Woo SM, Min KJ, Seo SU, Kim S, Park JW, 
Song DK, et al. Up-regulation of 5-lipoxygen-
ase by inhibition of cathepsin G enhances 
TRAIL-induced apoptosis through down-
regulation of survivin. Oncotarget. 2017 Nov; 

8(63): 106672–84.
96	 Chan YY, Yang SN, Lin JC, Chang JL, Lin 

JG, Lo WY. Inflammatory response in hero-
in  addicts undergoing methadone mainte-
nance treatment. Psychiatry Res. 2015 
Mar;226(1):230–4.

D
ow

nl
oa

de
d 

by
: 

U
ni

ve
rs

ity
 o

f A
la

ba
m

a,
 L

is
te

r 
H

ill
 L

ib
ra

ry
   

   
   

   
 

13
8.

26
.3

1.
3 

- 
10

/2
1/

20
19

 7
:1

2:
09

 P
M




