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Abstract: Queueing models in which customers or messages 

arrive in batches with inter-arrival times of batches possibly 

correlated and services rendered in batches of varying sizes play 

an important role in telecommunication systems. Recently 

queueing models of BMAP/G/1-type in which a new type of group 

clearance was studied using embedded Markov renewal process as 

well as continuous time Markov chain whose generator has a very 

special structure. In this paper, we generalize these models to 

multi-server systems through simulation approach. After 

validating the simulation model for the single server case, we 

report our simulated results for much more general situations. 

 
Index Terms: Desktop Grid, Multiserver Systems, Group 

Clearance, BMAP, Simulation.  

I. INTRODUCTION 

Queueing models in which arrivals and services occur in 

batches have been studied extensively in the literature (see 

e.g., [6]). Recently, a queueing model in which arrivals occur 

according to a batch Markovian arrival process (BMAP), a 

versatile point process introduced by Neuts [10]. The services 

are offered in groups of varying sizes such that all waiting 

customers at the beginning of a service are taken into service, 

was studied by Chakravarthy, et.al., [5]. This type of group 

services was first studied in [5]. Such models, referred to as 

queueing models with group clearance in [5], have 

applications in modern telecommunication and computing 

systems, such as distributed and cloud computing, data 

transfer by means of wireless networks, solid-state drives and 

many other applications, thanks to recent developments in 

information technology. The authors in [5] employ matrix-

analytic methods and report some interesting results both 

analytically and numerically by looking at the model in the 

context of a single server. Illustrative numerical examples are 

based on service times with phase type distribution. In the 

present paper we extend the aforementioned models to multi-

server systems. While one can study the multi-server systems 

along the lines of [5], here we will resort to simulation to 

study such systems. 
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Suppose that generator 𝑄 = ∑ 𝐷𝑘
∞
𝑘=0  of dimension m is an 

irreducible generator of a continuous-time Markov chain 

(CTMC) such that D0 governs transitions corresponding to no 

arrivals/events to a system, and Dk governs transitions 

corresponding arrivals of size k, k ≥ 1. A BMAP is now 

formally characterized by the sequence of matrices {Dk}. The 

point process of BMAP is a semi-Markov process with 

transition probability matrix given by 

 

    ∫ 𝑒𝐷0𝑡𝑑𝑡
𝑥

0
= [𝐼 − 𝑒𝐷0𝑥](−𝐷0)−1 𝐷𝑘 , 𝑘 ≥ 1.           (1) 

 

One can choose the initial probability vector, α, of the 

CTMC with generator Q, in a variety of ways to make the 

BMAP to be even more suitable for many applications in 

practice. Among the many choices, the most interesting one 

is α = π, where πQ = 0, πe = 1, where e is a column vector of 

dimension m with all entries equal to 1. 

The fundamental rate, λ, is defined as λ = π∑ 𝑘𝐷𝑘
∞
𝑘=1 𝒆 . 

The quantity λ gives the rate (per unit of time) at which 

customers arrive to the system. The quantity λg = π (−D0) e 

gives the rate (per unit of time) at which batches arrive to the 

system. To have a specific value for λg we multiply the Dk, k 

≥ 0, by the appropriate common constant. 

The motivation for Neuts to introduce BMAP as a versatile 

Markovian point process is the ability to model correlation, if 

any, of successive inter-arrival times and at the same time use 

matrix algebra to carry out the analysis of queueing models 

involving such processes. For full details on BMAP and its 

special cases including applications and reviews, we refer to 

[1–3, 8, 9, 12, 13]. 

Very briefly the model studied in [5] is as follows. 

Customers arrive according to a BMAP. If the arriving batch 

of customers finds the server idle, the entire batch gets into 

service; otherwise, the batch gets into a buffer (with unlimited 

capacity). The service times are generally distributed but for 

illustrative examples, the authors use phase type (PH-) 

distributions which are dense in the class of all non-negative 

continuous-time distributions [11]. The model is analyzed in 

steady-state including busy period (BP) analysis in [5]. As is 
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known, the BP analysis in queueing systems, in general, is 

very involved and complicated. In particular, the probability 

density function of the BP in a relatively simple M/M/1 

queueing system is obtained in terms of modified Bessel 

function. A detailed discussion including simulation study of 

BPs in the context of multi-server queueing systems can be 

seen in Chakravarthy [4]. One can also see a number of key 

references including some historical perspectives of BPs in 

[4]. 

While the BP in general is defined as the length of the time 

interval starting with an arrival of a customer to an empty 

system and ending with the departure of a customer leaving 

the system empty, there are two types of BPs with respect to 

multi-server systems. The above definition (which is the 

standard one and causes no confusion in the single server 

system) is referred to as partial BP under a multi-server 

queueing system. On the other hand, a full BP starts with all 

servers becoming busy, ending when at least one server 

becomes free. Note that in a single-server system the partial 

BP coincides with the full BP. On the contrast, stability 

criterion of a multi-server case does not guarantee finiteness 

of partial BP (i.e. system clearance) in general.  

In this paper, we study the model introduced in [5] from 

the context of a multi-server system by using general service 

time distributions including heavy tailed distributions 

through simulation. The rest of the paper is organized as 

follows. In Section 2, we describe the simulated model along 

with listing a few key system performance measures. The 

validation of our simulated model (with the analytical one 

studied in [5]) is carried out in Section 3, and a few illustrative 

examples are presented in Section 4. 

II. SIMULATED MODEL 

We consider a c-server queueing system in which the 

arrivals occur according to a BMAP with representation 

{Dk}, k ≥ 0, of dimension m. Let λ be the rate of customers 

arriving to the system and λg denote the rate at which the 

customers arrive in batches. Thus, λ/λg, gives the average 

number of customers in a batch at the time of the arrival. The 

service times are assumed to be generally distributed with 

distribution function H(.) having a finite mean given by 1/μ 

so that μ gives the rate of service. 

An arriving batch finding an idle server will get into 

service immediately; however, if all servers are busy, the 

arriving batch will enter into a buffer of infinite capacity and 

wait for a free server. Upon completion of a service, the 

server will become idle if the queue is empty; otherwise, the 

server will offer services to all those present in the queue. 

While this multi-server queueing model can be analyzed, 

similar to the single server case done in [5], in this paper we 

will resort to simulation. The system performance measures 

(see, [5] for details on the analytic expressions needed for 

numerical computation and here we do not need that due to 

simulation) for the queueing model under study are defined 

as follows.  

1. Probability that the server is idle, PI. 

2. Mean number of customers in the queue, μNq. 

3. Mean number of customers in service, μBS. 

4. Mean number of customers in the system, μNS. Note 

that μS = μNq + μBS. 

5. Mean sojourn time in the system of a customer, 

μWs. 

6. Variance of waiting time of customers in the 

system, σ2
Ws. 

7. Mean number of service completions during a BP, 

μSC. 

8. Mean number of customers served during a BP, 

μSR. Note that μSR = μSC μNS. 

For all our cases including the validation ones, we 

simulated the model using ARENA [7] by using 5 

replications and for 100,000 units (which in our case is 

minutes) for each replicate. 

III. VALIDATION 

It is imperative that any model developed through 

simulation should be validated so as to have confidence in 

using it for other scenarios where analytical results are not 

known or difficult to get. Thus, in this section we will validate 

our simulated model to the numerical results obtained 

through analytical model in [5]. Towards this end, we use 

Example 1 in [5] wherein the authors considered 

BMAP/PH/1 with five different BMAPs and three different 

PH- services with arrival rates, λg = 1, 2 and λ =3λg , 5λg, and 

in all scenarios μ is fixed to be 1. 

The five BMAPs and the three services considered in [5] 

are reproduced below. The five different BMAPs with 

representation {Dk} are such that Dk = Dpk, k ≥ 1, where {pk} 

gives the batch size probability mass function. It should be 

pointed out that in [5] it was shown that while the steady-state 

probability vector depends on the batch size distribution, only 

a few measures depend on the mean (arrival) batch size and 

not on the distribution itself. However, the steady-state 

probability vector depends on the (arrival) batch size 

distribution as is to be expected. 

 TaP 1: Erlang (ErA): Here we consider an Erlang 

distribution of order 5 with rate 5λg. 

TaP 2: Exponential (ExA): This corresponds to the 

classical Poisson process with rate λg. 

TaP 3: Hyperexponential (HeA): We look at a mixture of 

two exponentials with rates 1.9 λg and 0.19 λg, respectively, 

with probabilities 0.9 and 0.1. 

TaP 4: MAP with negative correlation (MnA): 

𝐷0  = 𝜆𝑔 [
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

] 

𝐷1  = 𝜆𝑔 [
0 0 0

0.01002 0 0.99220
223.4925 0 2.2575

] 

TaP 5: MAP with positive correlation (MpA): 

𝐷0  = 𝜆𝑔 [
−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

] 

 

𝐷1  = 𝜆𝑔 [
0 0 0

0.99220 0 0.01002
2.2575 0 223.4925

] 

 

 

All of the above BMAP 

processes will be normalized 

so as to have a specified 

(group) arrival rate, λg. 
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Observe that these BMAPs are qualitatively different with 

different variance and correlation structure. It is worth 

mentioning that (a) the arrival processes ErA, ExA, and HeA 

are renewal processes and hence the correlation is 0; (b) the 

arrival process labeled MnA has negatively correlated 

arrivals, the correlation coefficient of the two successive 

inter-arrival times is -0.4889 and, symmetrically, the arrivals 

corresponding to the MpA process have positive correlation 

with coefficient 0.4889; (c) the ratio of the standard 

deviations of the inter-arrival times of these five arrival 

processes with respect to ErA are, respectively, 1, 2.2361, 

5.0194, 3.1518, and 3.1518. 

In our examples below, we consider three service time 

distributions. These are: 

ToS 1: Erlang (ErS) This is Erlang of order 5 with rate 5μ 

in each stage. 

ToS 2: Exponential (ExS) This is an exponential 

distribution with rate μ. 

ToS 3: Hyperexponential (HeS) : Here we look at mixture 

of three exponentials with rates 7.30μ, 0.730μ and 0.073μ, 

respectively, with mixing probabilities 0.8, 0.15 and 0.05. 

 For the batch size distribution, we consider three different 

probability functions (see [5]). Note that while some system 

performance measures depend on the mean batch size, others 

do not even depend on the batch size at all. However, the 

steady-state probability vector of the number in queue (or 

number in system) does indeed depend on the batch size 

distribution. More on this in a later section. 

BsD 1: Poisson Batch Size Here we assume that the 

arriving batch is of size k with probability given by 

𝑒−𝜃𝜃𝑘−1 (𝑘 − 1)!⁄ , 𝑘 ≥ 1. Note that the mean batch size is 

given by θ + 1. 

BsD 2: Geometric Batch Size Here the arriving batch is 

of size k with probability given by (1 − 𝑝)𝑝𝑘−1, 𝑘 ≥ 1. Note 

that the mean batch size is given by 1/(1−p). 

BsD 3: Uniform Batch Size Here it is assumed that the 

batch size is uniformly distributed on {1, 2, ..., N}. Due to the 

finiteness of N, it is clear that we assume that Di = 0, i > N. 

Note that the mean batch size is given by 0.5 (N + 1). 

So as to compare various scenarios (where the distribution 

and/or mean of the batches have influence on the 

performance) properly, the parameters of the batch size 

distribution will be fixed as follows: 1+θ= 1/(1-p) = 0.5(N+1) 

in order for the batch means to be the same. 

  

In Tables 1 and 2 the (absolute) error percentage, which is 

defined as 100 |analytical − simulated|/analytical% is 

displayed for various scenarios. By looking at the entries in 

these Tables 1 and 2, we outline a good agreement of the 

results of numerical simulation and the analytical results 

reported in [5]. While all the (absolute) error percentages are 

all very small (none exceeding 5%) with the largest one is 

4.1%, a closer look at the analytical and simulated values for 

this measure (namely, μNq) are, respectively, 2.14795 and 

2.0601, which are close enough for all practical purposes. 

 

 

 

 

 

Table 1. Error percentages for measures (λg=1). 
λ  TS BMAP PI μNq μBS μNS CV  μSC  μSR 

  ErA 0.4 0.0 0.0  0.0 0.1 0.0  0.0 

  ExA 0.1 0.0 0.0  0.0 0.0 0.3  0.3 

 ErS HeA 0.4  0.6  0.1 0.2 0.1 0.4 0.5 

  MnA 0.1 0.0 0.1  0.1 0.2 0.0  0.1 

  MpA 0.1 3.8 1.8  2.1 1.1 0.0  1.8 

  ErA 0.4 0.4 0.1  0.2 0.2 0.2  0.3 

  ExA 0.2 0.1 0.1  0.1 0.5 0.2  0.2 

3 ExS HeA 0.0  0.5  0.4 0.4 0.1 0.2 0.6 

  MnA 0.2 0.4 0.1  0.1 0.1 0.1  0.0 

  MpA 0.5 1.5 0.5  0.0 0.8 0.2  0.7 

  ErA 0.1 1.3 0.1  1.0 0.2 0.1  0.1 

  ExA 0.3 1.4 0.4  1.2 0.1 0.1  0.4 

 HeS HeA 0.9  2.6  0.8 2.2 0.1 0.1 0.8 

  MnA 0.3 1.1 0.2  0.9 0.7 0.2  0.4 

  MpA 0.1 2.0 0.5  1.4 0.2 0.0  0.5 

  ErA 0.4 0.1 0.0  0.0 0.1 0.0  0.0 

  ExA 0.1 0.0 0.0  0.0 0.0 0.3  0.3 

 ErS HeA 0.4  0.6  0.1 0.2 0.1 0.4 0.5 

  MnA 0.1 0.1 0.1  0.1 0.2 0.0  0.1 

  MpA 0.1 4.1 1.8  2.2 1.0 0.0  1.9 

  ErA 0.4 0.4 0.1  0.2 0.3 0.2  0.3 

  ExA 0.2 0.1 0.0  0.0 0.5 0.2  0.2 

5 ExS HeA 0.0  0.6  0.4 0.4 0.1 0.2 0.6 

  MnA 0.2 0.4 0.0  0.1 0.1 0.1  0.0 

  MpA 0.5 1.5 0.5  0.1 0.8 0.2  0.7 

  ErA 0.1 1.2 0.1  1.0 0.2 0.1  0.1 

  ExA 0.3 1.4 0.5  1.2 0.0 0.1  0.4 

 HeS HeA 0.9  2.7  0.8 2.2 0.1 0.1 0.8 

  MnA 0.3 1.1 0.2  0.9 0.7 0.2  0.4 

  MpA 0.1 1.9 0.5  1.4 0.2 0.0  0.4 

 

Table 2. Error percentages for measures (λg = 2). 
λ  TS  BMA

P  

PI μNq μBS μNS CV  μSC  μSR 

  ErA  1.0 0.2  0.1  0.1 0.1 0.3 0.4 

  ExA  0.2 0.0 0.0  0.0 0.1 0.5  0.5 

 ErS  HeA  0.2  0.1  0.0 0.0 0.1 0.1 0.1 

  MnA  0.4 0.1 0.1  0.1 0.1 0.1  0.2 

  MpA  0.1 0.6 0.6  0.6 0.7 0.0  0.7 

  ErA  0.3 0.3 0.1  0.1 0.3 0.4  0.5 

  ExA  0.0 0.0 0.1  0.0 0.1 0.1  0.2 

6 ExS  HeA  0.3  0.1  0.2 0.2 0.2 0.1 0.1 

  MnA  0.2 0.4 0.3  0.3 0.0 0.1  0.2 

  MpA  0.1 0.9 0.3  0.5 0.3 0.2  0.5 

  ErA  0.3 1.6 0.4  1.4 0.2 0.1  0.3 

  ExA  0.4 0.6 0.2  0.5 0.0 0.1  0.3 

 HeS  HeA  0.1  0.4  0.4 0.4 0.6 0.0 0.4 

  MnA  1.4 2.7 1.1  2.4 2.0 0.1  1.2 

  MpA  0.7 2.2 0.3  1.8 0.7 0.3  0.6 

  ErA  1.0 0.2  0.1  0.1 0.1 0.3 0.4 

  ExA  0.2 0.0 0.1  0.0 0.1 0.5  0.5 

 ErS  HeA  0.2  0.1  0.0 0.0 0.1 0.1 0.1 

  MnA  0.4 0.1 0.1  0.1 0.1 0.1  0.2 

  MpA  0.1 0.6 0.6  0.6 0.7 0.0  0.7 

  ErA  0.3 0.3 0.0  0.1 0.3 0.4  0.5 

  ExA  0.0 0.1 0.1  0.0 0.1 0.1  0.2 

10 ExS  HeA  0.3  0.1  0.2 0.2 0.2 0.1 0.1 

  MnA  0.2 0.4 0.3  0.4 0.0 0.1  0.2 

  MpA  0.1 0.9 0.3  0.5 0.3 0.2  0.5 

  ErA  0.3 1.6 0.5  1.4 0.2 0.1  0.3 

  ExA  0.4 0.6 0.1  0.5 0.1 0.1  0.2 

 HeS  HeA  0.1  0.4  0.4 0.4 0.6 0.0 0.4 

  MnA  1.4 2.7 1.1  2.4 2.0 0.1  1.2 

  MpA  0.7 2.2 0.3  1.8 0.7 0.3  0.6 
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IV.  ILLUSTRATIVE EXAMPLES 

In this section we will discuss a few illustrative examples 

based on simulated results. In addition to the eight system 

performance measures listed in Section 2, we will also 

consider the following measures, one dealing with tail 

probabilities and the other with the BP. This measure will 

depend on the batch size distribution and will enable us to see 

the effect of variation/correlation in the arrival process as well 

as service time distribution. 

9. Probability that the number in the queue exceeds a 

certain value, P (Nq > n), n ≥ 0. 

10. Mean BP, μBP, both partial and full ones, will be 

considered. Note that it will be clear from the 

context in the example below whether we are 

dealing with partial or full BP. 

  

For the arrival processes we consider the same five BMAPs 

listed in Section 3. Further, we add the following two service 

time distributions to the ones listed in Section 3, the first, 

shifted exponential, belonging to the class of so-called log-

concave distributions and the second, Weibull, being heavy-

tailed. The probability density functions are as follows: 

 ToS 4: Shifted Exponential (SeS). The density of a SeS 

with a shift of magnitude 0.2 is given by  

𝑓(𝑡) = 1.25𝑒−1.25 (𝑡−0.2), 𝑡 ≥ 0.2. 
ToS 5: Weibull (WeS). The 2-parameter Weibull 

considered here has the probability density function  

𝑓(𝑡) = (2𝑡)−0.5𝑒−√2𝑡 , 𝑡 ≥ 0. 
 In our examples below we consider the above five BMAPs 

(with three batch size distributions as mentioned earlier), 

five service time distributions, take λg = c, and fix the 

service rate, μ = 1. Note that by taking λg = c we compare 

different multi-server queueing systems in such a way that 

on the average each server has a (group) arrival rate of 1.  

A. Example 1 

In this example, we vary c = 1, 2, 5, 10, and look at 300 

scenarios through five types of arrivals, five services, three 

batch size distributions, and four values for the number of 

servers. We study the measures defined above, making one 

more convention: we define the coefficient of variation of 

sojourn time in the system as 𝐶𝑉 = 𝜎𝑊𝑠
𝜇𝑊𝑠

⁄ . 

 First, we display in Table 3, the significance (at 5% level) 

of various measures with regard to the type of arrivals (TaP), 

the type of services (ToS), the number of servers (c), and the 

type of batch size distribution (BsD). Here an “X” indicates 

significance at 5% level and a blank space indicates 

insignificance at the same level. 

Table 3. Significance of measures 

Measure  c  TaP  ToS  BsD  

P (Nq > 1) X X X X  

P (Nq > 2) X X X X  

P (Nq > 4) X X X  

P (Nq > 8) X X X  

P (Nq > 16) X X X  

P (Nq > 32) X  X  

PI X X X  

μNq X  X  

μBS X X X  

CV X X X  

 

An examination of the entries of Table 3 indicates the 

following key observations for the range of the parameter 

values considered.  

1. Batch size distribution plays a significant role in the 

case of the two tail probabilities, P (Nq > 1) and P 

(Nq > 2). However, it doesn’t play a significant role 

in the other measures. The insignificance of the 

batch size distribution for the system measures 

(other than the tail probabilities) considered here is 

proved in [5]. 

2. For all measures considered here, the type of service 

times, ToS, and the number of servers (c), play a 

significant role indicating items such as variability 

in the service times, heavy tails, concavity, and the 

number of resources affects the system measures 

appreciably. 

3. In almost all cases, the type of arrival process (TaP) 

affects significantly the system performance 

measures. The exceptions appear to be the mean 

number of customers in the queue and the tail 

probability, P (Nq > 32).  

  

We did a statistical analysis, including multiple 

comparisons, on the simulated data with regard to c, TaP, 

ToS, and BsD and we summarize the key observations below.  

1. With regard to P (Nq > 1) and P (Nq > 2), we noticed: 

a. a decreasing trend as c is increased. This is as is 

to be expected since a higher c (in spite of having 

the same (group) arrival rate of 1 per server) will 

help to reduce the number of customers waiting 

in the queue. 

b. ErA producing a higher value for these measures; 

MpA producing the least value (about 25% of the 

ErA one). The trend of this measure decreasing 

with increasing variability in the interarrival 

times (among renewal processes) holds true. 

c. while HeS and WeS produced two largest values, 

ErS yielded the smallest value in the case of both 

measures. 

d. while BsD 3 yielded the largest value, BsD 1 

produced the smallest value. This measure for 

BsD 2 is significantly different from BsD 1 but 

not from BsD 3. 

2. With respect to P (Nq > n), n = 4, 8, 16, 32, we noticed 

similar (to P (Nq > 1)) observations except that there 

was no significant difference with respect to the type 

of distribution used for batch size distribution (BsD). 

3. As proved in [5] the measures: PI, μNq, CV, μSC are 

insensitive to BsD. In addition to these measures, even 

the μBP is insensitive to the type of distribution used 

for the batch size. 

4. The measure, PI, is such that 

a. it decreases as c increases in all cases, which is 

as expected and coincides with observations 

given for P (Nq > 1). 

b. it appears that the lowest value is for ErA  
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arrivals and the largest is for the MpA arrivals. 

c. HeS and WeS produce the largest value with 

ErS and SeS yielding the smallest. 

5. The measure, μNq, is such that  

a. it decreases as c increases in all scenarios. 

b. HeS produces the largest value while ErS 

yielding the smallest. 

6. When we look at μBS, which stands for the mean 

number of customers in a service, we notice that this 

measure 

a. decreases as c increases in all scenarios. 

b. for MpA arrivals, appears to yield the largest 

value while ErA producing the smallest one. 

c. for HeS and WeS arrivals, produce the largest 

value with the rest, namely, ErS, ExS and 

SeS yielding the smallest. 

7. Finally, we look at the coefficient of variation, CV, of 

the sojourn time in the system and observe that 

a. this increases as c increases in all cases. 

b. the largest value appears to occur for both 

MpA and ErA arrivals, while the smallest one 

is registered for MnA arrivals. 

c. HeS produce the largest value with ErS 

yielding the smallest. 

 The purpose of the next example is to compare partial and 

full BPs. We do so by looking at the mean BP, coefficient of 

variation of BP, and the ratio of the BP to the corresponding 

mean sojourn time. Note that the rest of the measures (see 

above) do not depend on the type of BP. 

B. Example 2 

This example is similar to Example 1 except that now we 

vary c = 1, 2, 3, 4 and vary the other parameters as in Example 

1. Our main focus here is on the mean BPs (μBP) - both partial 

(PBP) and full (FBP) - as well as on the ratio of mean BP to 

the mean sojourn time. In Table 4 (split into many) we display 

these two measures under various scenarios. 

Table 4. Mean BP and its ratio to mean sojourn time 

 
 

 

 
 

 
 

 
 

A quick look at the entries in Table 4 reveals the following 

observations. 

 

 

 

 

  

1. As is to be expected 
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μBP > μWs in the case when c = 1 for all scenarios. 

This is mainly due to the fact that all waiting 

customers at the beginning of a service will be 

served. It is worth comparing this to the one in the 

case of classical queues. In [4], it is shown that for a 

variety of combinations of arrival and services, μBP 

> μWs and for some others μBP < μWs for single as 

well as multiple-server cases. 

2. With regard to PBP, we see μBP > μWs for all 

scenarios considered here. Again, this is not 

surprising and agrees with intuition due mainly to 

providing the type of group services considered 

here. 

3. With regard to FBP, we notice μBP < μWs in all but 

three scenarios considered here. These three 

scenarios’ (all corresponding to HeA arrivals) 

values are not far away from 1 and could be 

attributed to sampling error. It is worth pointing out 

that by definition the mean BP under “full” will 

always be less (unless c = 1 in which case it will be 

equal) than the corresponding “partial” one, and we 

see that in our simulated results this inequality also 

holds. 

 
Figure 1. Selected measures under various scenarios for 

SeS and WeS services 

 

 

 
Figure 1. Selected measures under various scenarios for 

SeS and WeS services 

 

Finally, we compare the two services, SeS and WeS. The 

plots of selected measures are given in Figure 1. Recall that 

WeS is a heavy tailed distribution while SeS is log-concave 

one. A quick look at the plots in Figure 1 reveals the distinct 

role of heavy tailed services with regard to the (full and 

partial) mean BPs, coefficient of variation of the (full and 

partial) BPs, and the ratio of (full and partial) mean BPs to 

the corresponding mean sojourn time. 

V. CONCLUSION 

In this paper, we considered a novel model of multiserver 

system with group clearance using simulation approach. This 

approach allowed us to significantly extend the model 

comparing to analytical study performed earlier, from a 

single-server to multi-server case, as well as to study the 

model under various assumptions, such as heavy-tailed or 

log-concave service time distribution. We illustrated the 

inference of correlation, variance, service time and batch size 

distribution on some key performance measures of the model.  
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We also studied the partial and full busy periods, which are 

important characteristics of a multi-server system. These 

results might be of practical interest for various fields of 

application, including the distributed computing systems, 

wireless transmission systems and solid state drives. 
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