
Kettering University Kettering University 

Digital Commons @ Kettering University Digital Commons @ Kettering University 

Mechanical Engineering Publications Mechanical Engineering 

11-15-2011 

On the Effect of Functionally Graded Materials on Resonances of On the Effect of Functionally Graded Materials on Resonances of 

Rotating Beams Rotating Beams 

Arnaldo J. Mazzei Jr. 

Follow this and additional works at: https://digitalcommons.kettering.edu/mech_eng_facultypubs 

 Part of the Mechanical Engineering Commons 

https://digitalcommons.kettering.edu/
https://digitalcommons.kettering.edu/mech_eng_facultypubs
https://digitalcommons.kettering.edu/mech_eng
https://digitalcommons.kettering.edu/mech_eng_facultypubs?utm_source=digitalcommons.kettering.edu%2Fmech_eng_facultypubs%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.kettering.edu%2Fmech_eng_facultypubs%2F195&utm_medium=PDF&utm_campaign=PDFCoverPages


Shock and Vibration 19 (2012) 1315–1326 1315
DOI 10.3233/SAV-2012-0673
IOS Press

On the effect of functionally graded materials
on resonances of rotating beams

Arnaldo J. Mazzei, Jr.∗
C. S. Mott Engineering and Science Center, Department of Mechanical Engineering, Kettering University, Flint,
MI, USA

Received 11 February 2010

Revised 15 November 2011

Abstract. Radially rotating beams attached to a rigid stem occur in several important engineering applications. Some examples
include helicopter blades, turbine blades and certain aerospace applications. In most studies the beams have been treated as
homogeneous. Here, with a goal of system improvement, non-homogeneous beams made of functionally graded materials are
explored. The effects on the natural frequencies of the system are investigated. Euler-Bernoulli theory, including an axial
stiffening effect and variations of both Young’s modulus and density, is employed. An assumed mode approach is utilized,
with the modes taken to be beam characteristic orthogonal polynomials. Results are obtained via Rayleigh-Ritz method and are
compared for both the homogeneous and non-homogeneous cases. It was found, for example, that allowing Young’s modulus
and density to vary by approximately 2.15 and 1.15 times, respectively, leads to an increase of 23% in the lowest bending rotating
natural frequency of the beam.
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1. Introduction

Rotating machinery form an important part of engineering and radially rotating beams constitute a major category
of such systems. Some examples include rotor blades, propellers and turbines. For vibration control it is important
to identify possible system resonances and, if required and possible, change these values.

Extensive work on these types of problems has been done in the aerospace literature. Comprehensive reviews can
be found in the papers of Kane and Ryan [13] and Haering et al. [7]. They, and others, showed that at high speeds
the rotating structure can be prone to instabilities. It is assumed here that the rotational speeds are small enough that
no instabilities are encountered.

There are numerous works on vibrations of radially rotating beams (uniform beams, beams including pre-twist
and tapered beams). Two classes of problems arise, namely, prescribed motions and prescribed torques. Earlier
studies on the former type of problem can be found in the texts by Putter and Manor [24], Hoa [8], Hodges [9] and
Hodges and Rutkwoski [10]. Putter and Manor used a finite element approach to obtain the natural frequencies and
mode shapes of the beam, including shearing forces, rotary inertia and varying centrifugal forces. Hoa also utilized
a finite element approach for the same objective, but effects of root radius, setting angle and tip mass were included.
Hodges used asymptotic expansions to obtain an approximate value for the fundamental frequency of a uniformbeam
and, in a subsequent work, Hodges and Rutkwoski used a finite element approach to calculate the eigenvalues and
eigenvectors of the beam including different hub radii, tapered beams and beams with discontinuities. Kojima [15]
investigated the transient flexural vibrations of a beam/mass system attached to a rotating rigid body.
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The prescribed torque problem has been studied by, for example, Yigit et al. [28]. In that work the flexural motion
of a rotating beam was investigated by using a specified torque profile to drive the rotating body (so that the rigid body
motion was not known a priori). The results showed that for small values of the ratio of the flexible beam and rigid
shaft inertia, uncoupled equations could lead to substantially incorrect results, notably with regard to frequencies.

Lee et al. [16] presented experimental results confirming that centrifugal effects cannot be neglected, even at first
order, when modeling these systems.

Models utilizing a Timoshenko beam type approach (other than Euler-Bernoulli) are also numerous. See, for
example, the work of Lin and Hsiao [19] which investigates the effect of Coriolis force on the natural frequencies
of the rotating beam. More complex models including base excitation can be found in references [12,26]. Also, the
fundamental frequency of rotating beams with pre-twist was studied by, for example, Hu et al. [11].

Beams made of Functionally Graded Materials (FGM – see, for example, reference [21]) and rotating about
their longitudinal axes have recently received attention. Oh et al. [22] investigated the thermoelastic modeling and
behavior of circular cylindrical thin-walled beams made of FGMs and spinning with constant speed about their
longitudinal axes. The implications of conservative and gyroscopic forces in conjunction with a temperature field,
which yielded material degradation of the beam elastic properties on their vibration and instability, were studied.
The FGMs considered utilized a continuously graded variation in the composition of the ceramic and metal phases,
across the beam wall thickness, by means of a simple power law distribution. Results showed that the spinning beam
could experience instabilities by flutter and divergence and that the volume fraction played a strong role. Ahmad and
Naeem [1] investigated the vibration characteristics of longitudinally rotating FGM cylindrical shells for a number
of distinct boundary conditions. The equations of motion were obtained using thin shell theory and were solved
using a wave propagation approach. Numerical results were compared to ones available in the literature and were
found to be in a good agreement.

The role of FGMs in radially rotating beams has not been fully investigated. Fazelzadeh and Hosseini [5] studied
a thin-walled FGM beam that could be used as a rotating blade in turbo-machinery under aero-thermoelastic loading.
The governing equations were based on first order shear deformation theory and included the effects of presetting
angle, secondary warping, temperature gradient through the wall thickness of the beam and rotational speed. Results
demonstrated that the natural frequencies of the system decreased under aero-thermoelastic loading at high mach
numbers.

Librescu et al. [18], in a prescribed motion problem, studied the effects of material variation through the beam
thickness on the eigenfrequencies of the system. In that context, the implications on the eigenfrequencies and mode
shapes of the proportions of the two phases of the FGM (ceramic and metal) were discussed and noted. The structural
model developed was found to be useful in the design of advanced rotor blades made up of FGMs and exposed to
high-temperature gradients.

In a recent study, Piovan and Sampaio [23] developed a non-linear model of a rotating beam including shear
deformation and metallic-ceramic FGMs. The FGM properties varied along the thickness of the beam in a metallic-
rich core/ceramic-rich surfaces distribution. Assuming prescribed motion, a finite element approach was employed
to investigate some features of the problem. It was found that the ratio between constituents plays an important role
on the dynamic behavior of the beam. This was observed to be important when the beam was mainly composed of
metal and subjected to sudden changes in acceleration.

In the present work a prescribed motion problem is investigated with material properties varying along the length
of the beam. The possibility of changing the natural frequencies of vibration of a cantilever radially rotating beam
is investigated. The approach includes changing the material of the beam from a homogeneous type to a FGM
while keeping the physical dimensions of the beam constant. An assumed mode approach is employed with the
mode shapes taken to be beam characteristic orthogonal polynomials. Results for the frequencies are obtained via
Rayleigh-Ritz method with the aid of MAPLE [30].

Results indicate that, for example, in the case of a beam made of aluminum and silicon carbide, the frequencies
can be increased substantially. For instance, when the rotational speed is approximately 955 rpm, the increase for
the first mode frequency is approximately 23% when compared to a pure aluminum beam. Higher modes show
percentual increases even higher, on the order of 40%.
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Fig. 1. Rotating cantilever beam.

2. Modeling

Figure 1 shows a beam with length L attached to a rigid hub of radius b. The hub rotates radially with angular
velocity Ω. A set of mutually perpendicular unit vectors�a1, �a2 and �a3 is attached to the undeformed configuration of
the beam. A second set of mutually perpendicular unit vectors, �n1, �n2 and �n3 is assumed to be the inertial reference
frame. The vector �n3 is the axis of rotation for the hub and remains parallel to �a3 during motion. θ is the angle
between the vector �n1 and �a1 and defines the angular position of the hub with respect to the inertial frame. Note that
Ω = dθ

dt .
For rotation on the plane, the position, velocity and acceleration of point P on the deformed configuration of the

beam are given, respectively, by:

�Rp = (b + r)�a1 + w�a2 (1)

�Vp = −wθ̇�a1 + [(b + r)θ̇ + ẇ]�a2 (2)

�Ap = −[2ẇθ̇ + (b + r)θ̇2 + wθ̈]�a1 + [ẅ + (b + r)θ̈ − wθ̇2]�a2 (3)

The kinetic energy of the beam can be computed from (note r = x):

T =
1
2

∫ L

0

ρ(x)A

{(
∂w

∂t

)2

+ 2θ̇

(
∂w

∂t

)
(b + x) + θ̇2[(b + x)2 + w2]

}
dx +

1
2
Jθ̇2 (4)

The potential energy of the system comes from two parts. The first part is caused by the bending elastic strain. Using
Euler-Bernoulli beam theory, this can be calculated by:

Vs =
1
2

∫ L

0

E(x)I

{(
∂2w

∂x2

)2
}

dx (5)

The second part is due to the centrifugal force acting on the beam, which causes axial elongation (see, for example,
reference [26]). It is given by:

Va =
1
2

∫ L

0

(
∂w

∂x

)2
{∫ L

x

ρ(x)A
[
θ̇2(b + x) + 2θ̇

∂w

∂t
+ wθ̈

]
dx

}
dx (6)

The total potential energy is obtained from:

V = Vs + Va (7)
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Next an assumed mode approach is adopted. The following is assumed for the elastic form (harmonic motion):

w(x, t) = ϕ(x)cos(λt) (8)

where:

ϕ(x) =
k∑
1

ciφi(x) (9)

The shape function ϕ(x) is taken to be a linear combination of k beam characteristic orthogonal polynomials φi

where the ci are arbitrary constants to be determined. Each polynomial satisfies the geometric boundary conditions
at the clamped end of the beam.

The set of orthogonal polynomials is generated by the Gram-Schmidt process [3] as demonstrated by Bhat [2].
The procedure is reproduced below.

The first polynomial is chosen as the simplest one of least order that satisfies both the geometrical and natural
boundary conditions of the beam. The other members of the orthogonal set in the interval x1 < x < x2 are generated
by using:

φ2(x) = (x − B2)φ1(x), . . . , φk(x) = (x − Bk)φk−1(x) − (Ck)φk−2(x) (10)

where:

Bk =
[∫ x2

x1

x u(x)(φk−1(x))2dx

] /[∫ x2

x1

u(x)(φk−1(x))2dx

]
(11)

and

Ck =
[∫ x2

x1

x u(x)(φk−1(x)φk−2(x))dx

] /[∫ x2

x1

u(x)(φk−2(x))2dx

]
(12)

The function u(x) is the weight function and, in the following, is assumed to be 1. Note that the polynomials φk

satisfy the orthogonality condition:∫ x2

x1

u(x)(φk(x)φl(x))dx =
{

0, k �= l
akl, k = l

(13)

For the present problem, as done by Bhat [2], the first polynomial is taken to satisfy only the two geometrical
boundary conditions at the clamped end. It is assumed to have the following form:

φ1(x) = Sx2 (14)

The constant S is chosen so that Eq. (13). is satisfied in the following manner:∫ L

0

(φk(x))2dx = 1 (15)

Next the Lagrangian [6] can be written as:

L = T − V =
1
2

{∫ L

0

ρ(x)A{ϕ2η̇2 + 2θ̇ϕη̇(b + x) + θ̇2[(b + x)2 + ϕ2η2]}dx

}
+

1
2
Jθ̇2

(16)

−1
2

∫ L

0

{
E(x)Iϕ′′2η2 + ϕ′2η2

{∫ L

x

ρ(x)A[θ̇2(b + x) + 2θ̇ϕη̇ + ϕηθ̈]dx

}}
dx

and the time averaged value of the Lagrangian can be obtained from:

L̄ =
∫ 2π

λ

0

L dt (17)

Utilizing Eqs (8), (9), (16) and (17) and applying the Rayleigh-Ritz method, one obtains the following homogeneous
simultaneous equations:
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Table 1
Material properties for Al/SiC FGM

Aluminum / Silicon Carbide

E0(GPa) 105.197
ρ0(kg/m3) 2710.000

a 1.14568
m 1.00000
n 0.17611

Table 2
Homogeneous material properties

Steel Aluminum Zirconium Oxide Aluminum Oxide

E0 (GPa) 210 71 151 380
ρ0 (kg/m3) 7850 2710 6000 3690

ν 0.3 0.3 0.3 0.3

Table 3
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Aluminum beam, angular velocity = 0

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 22.76 224.28
3 22.66 143.26 761.26
4 22.66 142.77 408.17 1814.45
5 22.66 141.98 407.49 828.42 3628.86
6 22.66 141.98 397.67 827.69 1456.67
7 22.66 141.98 397.67 776.26 1456.14

∂L̄
∂ci

= 0, i = 1, 2, 3 . . . k (18)

which can be cast into a standard eigenvalue problem form, from which the natural frequencies can be calculated.
In the following, homogeneous and non-homogeneous material types are considered. The non-homogeneous

materials utilized are FGMs. Results for the fundamental frequencies of the FGM beams are compared to those for
the homogeneous beams.

3. Numerical results

3.1. FGM 1 model

The FGM model used here is based on the one described by Chiu and Erdogan [29]. The material is assumed to
be isotropic and non-homogeneous with properties given by:

E(x) = E0

(
a

x

L
+ 1

)m

, ρ(x) = ρ0

(
a

x

L
+ 1

)n

(19)

where a, m and n are arbitrary real constants with a > −1. E0 and ρ0 are the Young’s modulus and mass density
at x = 0. The material is a composite made from aluminum and silicon carbide (Al/SiC). Its properties are given in
Table 1 and are taken from reference [29].

For the numerical simulations, the beam is taken to have a circular cross section with a radius given by R0 =
0.0127m. The length of the beam is L = 0.896 m and the radius of the hub is b = 0.05 m. Also, the mass moments of
inertia of the rigid andflexible parts are taken to be related in the followingmanner: J = (0.5)(

∫ L

0
ρ(x)A(b + x)2dx)

(“inertia ratio” = 0.5). The homogeneous materials properties are given in Table 2.
Using Eq. (18), the natural frequencies are evaluated for the beams at two different rotational speeds, namely,

Ω = 0 and Ω = 100 rad/s (approximately 955 rpm). Results are presented in Tables 3 to 6. Convergence is checked
by varying the number of terms included in the polynomial shape function.
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Table 4
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Aluminum beam, angular velocity = 100 rad/s

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 24.36 227.66
3 24.14 148.36 763.87
4 24.14 147.88 413.51 1816.44
5 24.14 147.21 412.90 833.78 3630.99
6 24.14 147.21 403.44 833.15 1461.91
7 24.14 147.21 403.42 782.33 1461.38

Table 5
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Al/SiC beam, angular velocity = 0

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 29.23 357.26
3 28.52 203.73 1246.84
4 28.52 197.94 595.36 3004.20
5 28.52 197.65 576.84 1217.24 6035.23
6 28.52 197.65 569.12 1169.54 2129.85
7 28.52 197.65 568.71 1126.17 2020.73

Table 6
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Al/SiC beam, angular velocity = 100 rad/s

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 30.47 359.44
3 29.61 207.46 1248.47
4 29.59 201.82 599.16 3005.43
5 29.59 210.56 581.05 1220.93 6036.16
6 29.59 210.56 573.41 1173.93 2133.12
7 29.59 210.56 573.41 1130.75 2024.92

For comparison purposes, the natural frequencies of the non-rotating aluminum beam can be calculated using
traditional approaches by (see, for example [20]):

ωn = fn

√
EI

ρAL4
(20)

where fn is a numerical value specific to each mode of vibration. For instance, for the first mode, fn = f1 = 3.5160,
for the second mode f2 = 22.0345 and for the third mode f3 = 61.6972. This gives: ω1 = 22.66 Hz, ω2 =
141.98 Hz and ω3 = 397.55 Hz.

Some observations can then be made. The tables demonstrate that convergence for the first three modes can be
achieved with the use of seven terms in the polynomial shape function. As seen in Table 3, excellent agreement
between the frequencies calculated above and the ones given by the approach was obtained, lending confidence to
the method.

A comparison between values given in Tables 3 and 4 shows the stiffening effect that the rotational speed introduces
into the system. The same can be said for the FGM shaft (Table 5 versus Table 6).

The use of the FGM led to increases in all the frequencies. For the non-rotating case the first frequency increases
by 26%, the second by 39% and the third by 43%. For the rotating case, the first frequency increases by 23%, the
second by 43% and the third by 42%. These results demonstrate that the use of this FGM can be beneficial for the
application when the goal is to increase resonant frequencies.

Moreover, note that the frequency increases were obtained via a material with variations of Young’s modulus and
density, along the length of the beam, of 2.15 and 1.15 times, respectively. When compared to the aluminum beam,
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Table 7
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Al2O3/Al beam, angular velocity = 0

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 45.93181463 296.8184430
3 45.89431680 246.7079979 895.6802700
4 45.88942898 243.9079402 672.1557060 2005.775835
5 45.88805364 243.5383077 648.3818570 1359.628762 3861.039990
6 45.88789314 243.4116960 644.1356000 1267.198320 2417.326605
7 45.88786638 243.4053993 642.2768530 1251.160955 2133.862662

Table 8
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – Al2O3/Al beam, angular velocity = 100 rad/s

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 46.80055954 299.2361516
3 46.78446580 249.4685694 897.7694340
4 46.78139328 246.7568208 675.0733720 2007.481776
5 46.78025050 246.4140287 651.4061420 1362.469208 3861.764011
6 46.78009469 246.2899516 647.2391395 1269.562755 2380.346332
7 46.78006850 246.2833426 645.3639115 1239.962126 1959.611411

Table 9
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – ZrO2/Al beam, angular velocity = 0

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 28.08988951 214.5945200
3 28.08297948 151.4218537 698.1197095
4 28.06952986 151.4111546 412.8852145 1650.720092
5 28.06911403 150.5151688 412.4049606 827.9034520 3304.298998
6 28.06911260 150.4936100 402.6999892 825.4927805 1471.638531
7 28.06911238 150.4924530 402.5012276 784.7620085 1424.763892

the increase in weight is only about 8%. Here these values are considered reasonable and the observed trends are
beneficial.

3.2. FGM 2 model

The second FGM model is developed by assuming that its composition is derived from of a mixture of two
materials, with the material variation given by a power-law gradient (see, for instance, reference [17]). The effective
properties are given by:

E(x) = Eb + (Et − Eb)
( x

L

)ζ

, ρ(x) = ρb + (ρt − ρb)
( x

L

)ζ

(21)

where ζ is a positive constant describing the volume fraction, which can be determined experimentally [17]. The
subscripts b and t refer to the value of the parameter at x = 0 and x = L, respectively. These values are the ones for
the “pure” materials involved in the composition of the FGM.

In the following the FGMs are taken to be composed of two phases, metallic and ceramic, as in the example
above, but with the distinct variations given by Eq. (21). A brief discussion on the manufacturing processes for such
materials can be found in reference [25] (see also reference [27] for a different type of application of these materials).
For the examples discussed below, ζ = 1 is used and the pure material properties are given in Table 2. (A study on
the effects of ζ on the frequencies and weight of the shafts is carried out later.)

For the first example the beam is assumed to be aluminum oxide (alumina – Al2O3) “rich” at x = 0 and aluminum
“rich” at x = L. Tables 7 and 8 demonstrate that convergence for the first three modes can be achieved with the
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Table 10
Convergence of natural frequencies as a function of number of terms in the polynomial shape
function – ZrO2/Al beam, angular velocity = 100 rad/s

Number of Mode 1 (Hz) Mode 2 (Hz) Mod 3 (Hz) Mode 4 (Hz) Mode 5 (Hz)
terms

2 29.45030348 217.6377362
3 29.40626868 155.4756157 700.5396945
4 29.40265500 155.4688272 417.1733580 1652.561670
5 29.40216803 154.6751698 416.6782194 831.9742340 3303.099721
6 29.40216054 154.6504006 407.2461077 829.7066525 1432.472568
7 29.40216034 154.6496372 407.0718360 778.1836840 1430.743812

Fig. 2. Mass and frequency variation as a function of ζ for Al2O3 – Al.

use of seven terms. A comparison between the values given in the tables highlights the stiffening effect due to the
rotational speed, as observed above for both the aluminum and Al/SiC shafts.

Increases in frequencies, when compared to the aluminum shaft, are as follows. For the non-rotating case the first
frequency increases by 103%, the second by 71% and the third by 62%. For the rotating case, the first frequency
increases by 94%, the second by 67% and the third by 60%. Note that this FGM can lead to significant increases in
the resonant frequencies. The FGM increases the overall weight of the shaft by about 18% when compared to the
homogeneous material.

For comparison purposes within the same material category, a second beam composed by zirconium dioxide
(zirconia – ZrO2) and aluminum is considered next (ZrO2 “rich” at x = 0 and aluminum “rich” at x = L). For this
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Fig. 3. Mass and frequency variation as a function of ζ for ZrO2 – Al.

case, convergence was also observed to occur with the use of seven terms, as well as, the rotational stiffening effect
noticed in the previous examples. Tables 9 and 10 show the frequencies for the two distinct velocities.

For this case increases in frequencies when compared to the aluminum shaft are: 24% (first frequency), 6%
(second frequency) and 1% (third frequency) for the non-rotating case. For the rotating case these are: 22%, 5% and
1%, respectively. For this FGM the overall weight increase is about 61% when compared to the homogeneous shaft.

It is seen that the choice of the ceramic phase in this FGM model has a strong effect both on the resonant
frequencies and overall weight of the shaft.

It is also possible to utilize the same FGM model Eq. (21) for the case of two distinct metallic phases in the
composition of the FGM shaft (see reference [17]). As a final comparison study, consider a shaft made of steel and
aluminum (steel “rich” at x = 0 and aluminum “rich” at x = L). Properties for structural steel are given in Table 2.

In this case the FGM leads to the following results. When compared to a pure aluminum shaft, for the non-rotating
case, the first frequency increases by 37%, the second by 11% and the third by 5%. For the rotating case, the first
frequency increases by 33%, the second by 10% and the third by 4%. In this case though, the overall increase
in weight is about 95%, which, when compared to the previous FGMs, can impose restrictions on the use of this
material.

As a final study, an exploration of the power-law distribution effects on the frequencies and mass of shafts
built using this category of materials is carried out in the following. The study was conducted for the ceramic –
metallic materials only. Figures 2 and 3 show frequency and mass variations, as functions of ζ, for shafts built
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of alumina/aluminum and zirconia/aluminum respectively. The plots depict trend results for the materials as the
distribution between the metallic and ceramic phases is changed. Note that the included tables show the first three
frequencies and mass values of the shafts for discrete values of ζ, which varies from 1 to 5.

For alumina/aluminum, it is seen that all three frequencies increase as ζ increases. Between ζ values of 1 and
5 variations are 4.4%, 17.3% and 20.1% for the first, second and third frequencies, respectively. Note though that
this is accompanied by a mass increase of approximately 10.3%. This trend is shown in the respective plot which
includes extended frequency and mass values.

For zirconia/aluminum results are mixed. Between ζ values of 1 and 5, the first frequency decreases by 7.1%, the
second practically does not vary and the third increases by 1%. In this case the mass increase is about 25.3%. The
included plot shows these results for extended values of frequency and mass.

As a summary of results, one should note that increases in frequencies, for the rotating beam problem, can be
achieved by the use of FGMs. The approach is followed by variations, which can be significant, in Young’s modulus,
density and overall weight of the shafts. Thus manufacturing considerations (see references [4,14]), as well as
application requirements, will dictate the advantages of the use of one material over the other.

4. Conclusions

The use of FGMs for radially rotating cantilever beams can change the natural frequencies of vibration of the
system significantly. For the materials considered, it was shown that the use of ceramic – metallic FGMs can lead
to advantages in terms of obtaining higher non-rotating and rotating natural frequencies without excessive weight
increases.

For example, a shaft made of aluminum silicon carbide led to increases in frequencies varying from 23% to 43%
when compared to a pure aluminum shaft. That was achieved with only an 8% increase in shaft overall weight.
Another example that used alumina and aluminum led to increases varying from60% to 103%, which are encouraging
results since they were achieved with an increase in overall weight of only 18%. The choice of materials will then
depend on frequency versus weight demands as well as manufacturing issues.

A shaft composed of two metallic phases also led to increases in frequencies but with a larger increase in weight
when compared to the ceramic – metallic ones, which shows that the latter category is a better choice.

Nomenclature

A, area of the beam cross section
a, C, m, n constant numerical parameters
b hub radius
Bk, Ck parameter values in the Gram-Schmidt process
ci, arbitrary constants
E, Young’s modulus (E0− FGM 1 Young’s modulus value at x = 0; Eb, Et – FGM 2 values)
fn, fundamental frequency coefficient (mode dependent – classical approach)
I , area moment of inertia of the beam cross section
J , mass moment of inertia of the beam and hub about �n3

k, l, integer numbers
L, beam length
L, Lagrangian
L̄, time averaged value of the Lagrangian
r, distance from hub of a generic point P on the beam (undeformed configuration)
R0, beam cross section radius
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T , kinetic energy
t, time
V , potential energy
Va, potential energy due to axial elongation
Vs, potential energy due to bending
u(x), weight function
x, longitudinal coordinate (along �a1)
w, beam deflection in the �a2 direction
�a1,�a2,�a3, reference system attached to undeformed configuration of the beam
�Ap acceleration of a generic point P on the beam
�n1, �n2, �n3, inertial reference system
�RP , position of a generic point P on the beam
S, numerical parameter in first characteristic polynomial (determined by orthogonality)
�VP , velocity of a generic point P on the beam
λ, frequency of harmonic component of assumed elastic form
ζ, non-negative constant describing the volume fraction
θ, hub angular position
ρ, mass density (ρ0 – FGM 1 mass density value at x = 0; ρb, ρt – FGM 2 values)
ν, Poisson’s ratio
ϕ, spatial shape function
ωn, fundamental frequency of the beam
Ω, angular velocity of the hub (Ω = dθ/dt)
•, derivative with respect to time (d/dt)
′, derivative with respect to longitudinal coordinate (d/dx)
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