

Consistency for water vapour of GRUAN, LBLRTM and IASI

Collocation: best practices and related uncertainties

Xavier Calbet (xcalbeta@aemet.es)

4 November 2015 GEWEX G-VAP Workshop 2015

PRINCIPLE

Radiation Bias: Final Result

OBS-CALC Bias. GRUAN + HylandAndWexler Sat. Vap. Press.

Only 11 cases left!!

CONCLUSIONS

- GRUAN and IASI are compatible!!
- There are many critical issues:
 - Adequate collocation: scale lengths and times of WV are extremely small (~ 2-6 km, 10-40 min.) ← [Steinke et al. 2015, Vogelmann et al. 2015 and results from these GRUAN collocations]
 - Water Vapour saturation function: Hyland and Wexler needed
 - GRUAN processing needed!! Mostly for humidity bias correction
 - Proper cloud detection is critical
 - GRUAN processing seems to have a dry bias for daytime

COLLOCATION UNCERTAINTY

Immler et al. 2010: two measurements are consistent when with

 $k \simeq 2$

and m₁, m₂ measurements 1 (satellite) and 2 (reference, e.g. sonde)

with u₁, u₂ uncertainties 1 (satellite) and 2 (reference, e.g. sonde)

and σ is the different measurement uncertainty (mostly collocation)

$$|m_1 - m_2| < k\sqrt{\sigma^2 + u_1^2 + u_2^2}$$

COLLOCATION UNCERTAINTY versus REFERENCE MEASUREMENT for HUMIDITY

TYPE OF REFERENCE OBSERVATION	EXAMPLE	RESULT
One "point" observation	Only one sonde	$\sigma > u_1$
Two "point" observations	Two sondes, LIDAR?, etc.	σ ~ 0
Unbiased measurement	CFH Sonde	No bias
Biased measurement with GRUAN pre- flight conditioning and processing	RS92 Sonde with GRUAN processing	Small humidity bias mostly during daytime
Biased measurement with no bias correction	RS92 Sonde	Big humidity bias mostly during daytime
Large collocation window	200 km, 6 hrs	$\sigma >> u_1$

COLLOCATION UNCERTAINTY FOR INDIVIDUAL CASES

- No conclusive results yet
- If properly determined, it could quantify the values of σ in the previous table
- Could make the full comparison of Immler et al. with all the uncertainties known σ , u_1 , u_2
- Could σ be quantified with the help of NWP fields? Perhaps not, if really WV scale length is so small and its scale length correlation is also small
- More work on this needed