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Abstract

The analysis of surface variables and parameterization of surface processes of the reference
HIRLAM system is described. Special emphasis has been put on the treatment of surface hetero-
geneity making that surface 
uxes of heat and momentum inherit such high spacial variability.
The so called \tiling" approach has been adopted to prevent the problems associated with the
use of e�ective parameters in case of strongly changing surface conditions. The tiles are de�ned
by coupling independently each homogeneous patch or \tile" of a grid square to the lowest level
of the model. Tiles interact each other only through the atmosphere. Average surface 
uxes are
then computed by averaging surface 
uxes over each land-use tile weighted by their fractional
area. The model allows up to �ve di�erent tiles (water, sea ice, bare ground, low vegetation,
forest) within each grid square. Fractional snow cover is also allowed within each tile. The ISBA
scheme has been selected to model land surface processes.

The surface analysis initializes the following surface variables: sea surface temperature (SST),
fraction of water and ice, snow depth, 2-metre temperature, 2-metre relative humidity, surface
soil temperature, mean soil temperature, surface soil water content and total soil water content.
The algorithm is able to cope with the tiled structure by averaging some variables only over land
tiles. SST and snow depth analyses are based on the successive correction method. 2-metre
temperature and relative humidity analyses are based on the optimal interpolation method.
Finally, soil water content analysis is based on the sequential method, which corrects water
content depending on 2-metre temperature and relative humidity forecast errors, only in those
synoptic cases where screen variables are strongly in
uenced by the surface beneath.

A comprehensive list of parallel runs covering all seasons of the year have been conducted to
demonstrate the superiority of the new package against the previous surface treatment. Special
emphasis has been put on summer time and midlatitude regions were the in
uence of soil water
content on screen temperature and humidity is extremely high.
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1 Introduction

The importance of the exchange processes at all time scales between the earth surface and the

atmosphere has been increasingly recognized during the recent years. The requirement of accurate
forecasting of weather parameters, such as screen level temperature and humidity, wind in the
boundary layer and precipitation, needs a realistic description both of the surface physiographic

features and of the exchange processes of momentum and heat. A new treatment of the surface
processes should take into account the following aspects of the atmosphere/surface interaction: i)
the importance of soil water content controlling the partition of the net radiative energy reaching
the soil between latent and sensible heat 
ux; ii) the role of vegetation allowing exchange of water

between the atmosphere and soil at the root depth and iii) the high dependence of screen level
temperature and humidity on initial speci�cation of soil water content.

Over the last years some de�ciencies of the HIRLAM system related with an insu�cient treat-
ment of surface processes (see K�allen (1996) for a description of the old surface scheme) were
repeatedly reported. The lack of vegetation over the land surface, the absence of any assimila-

tion of soil water content, the lack of treatment of soil water freezing and thawing, the insu�cient
physiographic description, etc. were all degrading the forecasting of weather parameters. The new
package includes treatment of heterogeneity and assimilation of surface variables, especially of soil

moisture. A state-of-art land-surface scheme will improve signi�cantly the modelling of near surface
and boundary layer variables.

This technical report describes in detail both the parameterization of surface processes and the
analysis of surface variables recently implemented in the HIRLAM reference system (version 5.2.0).
Some aspects not described here, e.g., the physiograpic databases used, the vegetation and soil

related parameters for the ISBA model and the postprocessed surface parameters, can be found
in the �rst formulation of the scheme (Bringfelt, 1996) and which are still valid with only minor
changes. Section 2 provides a brief review of land surface parameterization schemes and the prob-

lems linked to the treatment of surface heterogeneity. Section 3 gives a general introduction to the
analysis of surface variables. The criteria considered to select an appropriate land-surface scheme
are discussed in Section 4. Section 5 gives a brief description of the treatment of heterogeneity
based on the mosaic of tiles approach and of the ISBA code �nally chosen to model surface pro-

cesses over land fractions. Section 6 describes the surface analysis algorithm used for the di�erent
analized variables: water surface temperature, snow depth, 2-metre temperature, 2-metre relative
humidity, soil temperatures and soil water content. In Section 7 some considerations in connexion
with postprocessing and veri�cation are discussed. Finally, Section 8 describes the experiments

conducted to validate and verify the whole new code for surface analysis and surface parametriza-

tion. Parallel runs using di�erent domains, horizontal resolutions and covering all seasons of year
have been carried out to compare the new code against the previous surface treatment in HIRLAM.
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2 Parameterization of surface processes in numerical weather pre-

diction models

2.1 Heterogeneity in the surface cover

The surface heat and momentum 
uxes, which provide the coupling between the atmosphere and

the earth's surface, depend not only on atmospheric conditions but also on surface characteristics.
The earth's surface shows a high spatial variability at all scales, as can be readily appreciated
by examining soil, vegetation and land-use maps. Consequently, the surface 
uxes inherit such

high spatial variability. The resolution of current atmospheric numerical models varies from a few
km (in mesoscale models) up to about 100 km (in general circulation models). Therefore, it is
necessary to integrate the e�ects of spatial variability to obtain representative surface 
uxes at the
grid resolution of the atmospheric models.

The e�ects of surface inhomogeneities on the atmosphere depend on the horizontal scale of

landscape variation. Shuttleworth (1988) suggested that for length scales smaller than about 10
km, no apparent impact of the surface inhomogeneities can be observed in the atmosphere since
turbulence is very e�cient at mixing the boundary layer. Li and Avissar (1994) illustrated the
impact of microscale variability of land characteristics (including soil water content) on the surface

heat 
uxes by comparing averaged surface 
uxes computed from di�erent distributions of land
surface parameters with surface 
uxes computed from the corresponding distribution means. They
found that latent heat 
ux was the most sensitive to spatial variability, and that radiative 
ux

emitted by the surface was the least sensitive. They emphasized the importance of considering the
spatial variability of leaf area index, stomatal conductance, and, in bare land, soil-surface water
content to calculate accurately the surface 
uxes. They also found that the more positively skewed
the distribution within the range of land-surface characteristics that is non-linearly related to the

energy 
uxes, the larger the di�erence between the energy 
uxes computedwith the distribution and
the corresponding mean. Entekhabi and Eagleason (1989) also stressed the importance of spatial

variability of soil moisture and precipitation for the parameterization of land-surface processes.

Land-surface heterogeneity induces over domains within meso-
 scale preferent scales in the

convective boundary layer. Such scales are characterized by organized rolls of size equivalent to
length-scale of the surface heterogeneity (Baidya Roy and Avissar, 2000; Avissar and Schmidt,
1998). Also the heterogeneity linked to the topography a�ects soil moisture distribution. The
acknowledgement of this e�ect allows a di�erent land-surface modelling strategy based on the

partitioning of the surface into a mosaic of hydrologic catchments, de�ned through analysis of
high-resolution elevation data (Koster et al., 2000; Ducharne et al., 2000).

Giorgi (1997a, 1997b) represents the surface heterogeneity assuming that surface temperature
and soil water content can be described by continuous analytical probability density functions
(PDFs), and by integrating relevant non-linear terms over the appropriate PDF. His choice of lin-

ear symmetric PDFs allows analytical integrations which considerably reduce the computing time
needed for this scheme. With the \statistical dynamical" approach (Avissar, 1992; Famiglietti and
Wood, 1994; Sivapalan andWoods, 1995) surface inhomogeneities of vegetation and soil characteris-

tics vary according to distributions that can be approximated by PDFs. Grid-scale average surface

uxes are explicitly calculated using numerical or analytical integration over appropriate PDFs.
This approach, however, can be computationally demanding when several land characteristics need
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to be represented by PDFs.

E�ective (or aggregated) parameters are parameters which account for the non-linear e�ects

explicitly calculated with the statistical dynamical approach. A few averaging techniques have
already been proposed to compute e�ective parameters for land processes of atmospheric numerical
models (e.g., Noilhan and Lacarrere, 1995; Wood and Mason, 1991; Dolman and Blyth, 1997;

Sellers et al., 1997; Noilhan et al., 1997; Kabat et al., 1997, Rodriguez-Camino and Avissar, 1999).
For instance, an e�ective surface roughness has been considered by Andr�e and Blondin (1986),
Wieringa (1986), Taylor (1987), Mason (1988) and Claussen (1990, 1991) and an e�ective stomatal
resistance was proposed by Claussen (1990) and by Blyth et al. (1993). However, Blyth et al.

(1993) pointed out that parameter aggregation fails to represent strongly varying conditions. This
is due to the non-linearity of the relationship between turbulent 
uxes and vertical mean pro�les.
For instance, the vertical gradient of potential temperature can be positive on average over a large
area, while local 
uxes can be in opposite direction due to a local negative gradient of temperature,

as explained, e.g., by St�ossel and Claussen (1993). The e�ects of soil moisture aggregation were
estimated by Sellers et al. (1997) and Wood (1997). Finally, the impact of using e�ective land
surface properties in atmospheric models at di�erent scales has been studied among many others

by Sellers et al. (1995) using the FIFE-89 data set, by Noilhan and Lacarrere (1995) using the
HAPEX-MOBILHY-1986 data set and by Noilhan et al. (1997) using the EFEDA data set.

The so-called \mosaic of tiles" approach circumvents these problems by coupling independently
each land-use patch or \tile" of a grid element to the atmosphere of the model, and patches
a�ect each other only through the atmosphere. The primary motivation for the tiling approach is

to promote suitable balance enhancements in horizontal complexity and to increase the physical
realism of modelled surface energy and water 
uxes. However, the main justi�cation of the \mosaic
of tiles" approach is the correctness of energy budget for each tile and, consequently, a better
description of each 
uxes. Comparisons of a grid-point model output against �eld data frequently

face with the fact that observational sites are located over fairly homogeneous areas with only small
variations in the gross vegetation type. Only a few surface �eld campaigns supply surface 
uxes
over more than one type of vegetation and therefore they are adequate to assess the bene�ts of a

tiled model structure (see, e.g., the comparison against BOREAS data described by Betts et al.
(2001) and van den Hurk et al. (2000)). The \mosaic of tiles" approach was introduced by Avissar
and Pielke (1989), and adopted by Claussen (1991), Koster and Suarez (1992) and Decoudr�e et al.
(1993). The use of a tiled surface has also been recently incorporated to several operational NWP

models (Bringfelt, 1996; Cox et al., 1999; van den Hurk et al., 2000).

Because the dependence of surface 
uxes on land characteristics is non-linear, estimates of the
area averaged 
uxes calculated with mean land characteristics (e�ective parameters) do not yield
the same results as those obtained by calculating the 
uxes locally (as in the \mosaic of tiles"

approach) and then averaging them (Li and Avissar, 1994). Thus, the choice of e�ective land
characteristics, such as leaf area index or soil water content, is not straightforward.

2.2 Land surface parameterization schemes

The land-surface processes and their parameterization in NWP models are important for a number
of reasons. The radiative solar and atmospheric 
uxes absorbed by land-surface are mainly redis-

tributed as latent and sensible heat. Both heat 
uxes are the main mechanisms to turn back energy
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into the atmosphere from land surface. Moreover, the sensible and latent heat 
uxes at the surface

are the lower boundary for the enthalpy and moisture equations in the atmosphere. The relative
importance of sensible and latent heat 
uxes depend strongly on surface features. In bare, dry soils,

the absorbed radiative energy is mostly used to heat the surface, turning back the energy to the

atmosphere usually as a vigorous, turbulent sensible 
ux. On the other hand, densely vegetated
surfaces with enough water available for evapotranspiration invest most of the radiative energy
in extracting subsurface water through the root system. The process of transpiration is mainly
controlled by leaves, opening and closing their stomata according to the environmental conditions

and to the available soil water. Transpiration turns energy back to the atmosphere in form of
latent heat 
ux (Garrat, 1992; Viterbo, 1996). Land surface processes are also responsible of near
surface weather parameters, such as screen level temperature and relative humidity, and low level
cloudiness. Surface conditions provide also the appropriate feedback mechanisms for other physical

processes in the atmosphere: low level cloudiness in
uences the surface radiative balance, sensible
and latent heat 
uxes in
uence the boundary layer structure and the triggering and intensity of
convective processes. The partitioning of radiative energy between sensible and latent heat 
uxes

is related to the vegetation and soil properties, singularly to soil water availability. As mesoscale
models continue to increase their spatial resolution, the density of the observation network is un-
able to capture the initial mesoscale structure at small scales. The majority of such mesoscale
structures that are missed by the observation network are resulting from land surface forcing by

topography, soil moisture, surface vegetation and soil characteristics. Therefore, it is crucial that
mesoscale models include not only an advanced land surface model (LSM) but also a �ne scale and
realistic physiographic description of the land surface. The important role of the speci�cation of
initial conditions for soil water content has already been commented on.

Many investigations have already addressed the importance of the di�erent land-surface pa-

rameters in atmospheric modelling (e.g., Mintz, 1984; Walker and Rowntree, 1977; Rowntree and
Bolton, 1993; Miyakoda and Strickler, 1981; Shukla and Mintz, 1982; Charney et al., 1977; Chervin,

1978; Carson and Sangster, 1981; Sud et al., 1988; Dickinson and Henderson-Sellers, 1988; Sud et

al., 1990; Henderson-Sellers, 1993, 1996a, 1996b, 1993c; Xue et al., 1996). Collins and Avissar
(1994) have �rst used the Fourier Amplitude Sensitivity Test (FAST) to estimate the relative im-
portance of land-surface parameters. Rodriguez-Camino and Avissar (1998) have also estimated
the most relevant land-surface parameters by comparing di�erent land-surface schemes and using

the FAST technique. This last study demonstrates that four parameters can explain most of the
variance of surface heat 
uxes under a broad range of environmental conditions. Soil wetness plays
a predominant role for the heat 
uxes. Roughness length is the most important parameter for the
momentum 
ux. Leaf area index, in vegetated land, and texture, mainly in bare land, have also

a signi�cant impact on the 
uxes. Roughness length is usually more important for sensible heat

ux than for latent heat 
ux, and is mostly important under stable atmospheric conditions. Soil
wetness and vegetation parameters are the dominant parameters under buoyant conditions.

Recent reviews of methods for representing land-surface processes in NWP and climate mod-

els include Garrat (1993), Schmugge and Andr�e (Eds., 1991), and Viterbo (1996). Land-surface
schemes in NWP models have very much evolved from the so-called \bucket model" for estimat-
ing evaporation and runo� (Manabe, 1969). Deardor� (1978) introduced the use of restoring and
forcing terms for both temperature and soil water content. At the same time he also introduced a

foliage layer (or \big layer" model) to simulate the contribution of evapotranspiration from plants
to the latent heat 
ux. In fact, most of the currently used schemes for NWP models (Dickinson
et al., 1993; Sellers et al., 1986; Chen et al., 1996; Noilhan and Planton, 1989) mimic the e�ect

of plant physiology to regulate the opening and closing of leaf stomata. Stomata are sensitive to
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certain environmental conditions (i.e., solar radiation, temperature, humidity, carbon dioxide, and

soil water potential in the root zone). The concept of stomatal resistance as a product of di�erent
functions was �rst intruced by Jarvis (1976) and it is common to most schemes.

As pointed out by Viterbo (1996), Richardson (1922), in his pioneer book on NWP, identi�ed
practically all relevant subjects in land surface parameterization. A quick summary of his work

in this �eld is practically a description of the basic principles of current land surface schemes.
First, he noticed that the formulation of lower boundary conditions for the atmospheric equations
simpli�es greatly if soil water content is also forecasted. He is probably the �rst to write an
equation for the water transfer in the unsaturated part of the soil by generalizing the Darcy's

law originally formulated for the 
ow of water in a saturated medium. He integrated the resulting
partial di�erential equation with precipitation and evaporation as top boundary conditions. He also
proposed to specify soil hydraulic properties depending on soil water content. For the heat transfer,
he applied the classical Fourier law with heat conductivity depending on soil water content. The

top boundary condition is the net heat 
ux at the surface. For the computation of evaporation from
the canopy, he recognizes the physiological control of plants depending on soil moisture. He also
made use of the concept of canopy resistance based on the electric analogy. Finally, he also used

an interception reservoir, representing the leaves, able to collect precipitation and to evaporate at
the potential rate.

Coupling a surface scheme in a NWP model involves several complex issues. First, the land-
surface scheme should be relatively simple but at the same time it must be able to capture the
essential features of the energy and hydrological 
uxes. Second, the number of vegetation and

soil parameters must remain within manageable limits, considering their relative impact on surface
processes. Third, the physiographical description of soil and vegetation must be consistent with
the complexity of the land surface scheme. Finally, the initialization of surface/soil variables
(singularly of soil moisture) is a critical problem a�ecting the partition of surface energy and

having implications on the model behaviour.

3 Analysis of surface variables

The use of land-surface parameterization schemes with increasing complexity implies the introduc-

tion of additional prognostic variables which in principle need to be initialized. Most land-surface
schemes are based on simpli�cations of the equations for soil water transfer and for heat transfer.

The prognostic variables introduced by these equations are usually soil water content and soil tem-

perature. The major problem of specifying the initial conditions of these variables is the lack of
routine observations. This is specially true in the case of soil water content. For soil temperature
the climate network exists, but observations are not exchanged routinely via the GTS at the time
of measurement. Consequently, in practice most stations performing observations at least daily

can only be used, in delayed mode, for veri�cation purposes. Another additional problem is the
large spatial variability of soil water content and soil temperature, mainly inherited from the high
heterogeneity of soil and vegetation properties. This large spatial variability associated with surface
properties poses the added problem of using statistics of forecasts errors to spatially distribute the

local increments. Such statistics are not known for soil variables.

The general problem of analysis of surface variables has been reviewed by Mahfouf and Viterbo
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(1996). Description of di�erent analysis techniques also applied for surface variables can be found

in the classical text by Daley (1991). A review of measurement techniques of surface variables can
be found in Schmugge and Andr�e (1991).

When considering time scales of a few days, soil water content variations appear to have a
more signi�cant in
uence on heat surface 
uxes and on the planetary boundary layer than changes

in other surface parameters, such as albedo, roughness length, etc. (see Rodriguez-Camino and
Avissar, 1998). In fact, it has been shown that horizontal gradients of soil moisture can generate
sea-breeze type mesoscale circulations (Ookouchy et al., 1984) and can alter the location and
intensity of severe storms (Lanicci et al., 1987). It must be highlighted that the speci�cation of

initial conditions for soil water content a�ects model forecastings on all time scales: from short term
to climate simulations (see e.g., Garratt, 1993; Rowntree and Bolton, 1983; Rowell and Blondin,
1990; Yang et al., 1994; Mahfouf, 1991).

Despite the sensitivity of short range forecasting to initial conditions of soil water content, few

methods are currently available to estimate soil water in NWP models. The ground-based tech-

niques include gravimetric method, neutron scattering, electromagnetic method, and tensiometer
method. None of the above techniques is adequate for routine measurements due to a number of
reasons: lack of representiveness of point measurements, excessive cost, human intervention needed,

etc. The only feasible alternative is the use of satellite-based estimates of soil water content. Both
infrared and microwave channels are informative about soil water content (see review in Schmugge
and Becker, 1991). However, these estimates only provide information for the water content in the
top few centimetres of the soil. No current satellite-based method of measurement can estimate

soil water content in the root zone, as it is needed by most schemes. Some attemps have been
made to retrieve soil water content in the root zone from surface water content and temperature
estimates by inverting some land-surface scheme (Calvet et al., 1998). Other authors have proposed
soil water content estimates based on satellite computed heating rates (van den Hurk et al., 1997).

This last method, however, can only be applied for cloud-free pixels.

Two methodologies are currently applied in forecast/data assimilation systems for initializing

soil water content. Mahfouf (1991) and Bouttier et al. (1993a, 1993b) proposed an optimal in-
terpolation scheme (Daley, 1991) for the assimilation of soil water using the information of both

temperature (T2m) and relative humidity (RH2m) at the heigth of two meters, which can be formally
written:

Wa �Wf = �T (T2ma � T2mf) + �H(RH2ma �RH2mf) (1)

The optimal interpolation coe�cients �T and �H minimize the analysis variance and are related
to the forecast error statistics. The subscripts a and f refer to the analyzed and forecast values,

respectively. This method assumes a linear relationship between screen variable increments and soil
moisture corrections, which is a rather crude approximation. Therefore, the major disadvantage
of this method is that errors in screen variables that are not related to soil moisture e�ects will

lead to soil moisture corrections. In reality, the signal in the bias of near-surface temperature and
humidity is only related to soil water content under restricted synoptic conditions: small horizontal
advection, no snow cover, absence of precipitation, daytime, etc.

Another alternative is the variational method, which seems more appropriate to treat the non-
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linear dependence between screen variables and soil moisture and to assimilate measurements dis-

tributed in time. Mahfouf (1991), Hess (2000) and Balsamo et al. (2001) have used a 1D-Var
approach to estimate the initial soil moisture best �tting to observations of temperature and rel-

ative humidity during a diurnal cycle. Therefore, the optimal soil water content minimizes the

following cost-function:

J(W ) =
NX
i=1

"�
T2moi � T2mfi

�T

�2
+

�
RH2moi �RH2mfi

�RH

�2#
(2)

�T and �RH are the assumed observational errors of temperature and relative humidity, respectively,
and the subscripts oi and fi represent the observation i and the forecast value interpolated to the
point i. The summation goes over the total number of observation points, N .

The only existing method for initializing deep soil temperature consist of correcting soil tem-

perature proportionally to the analysed increments of 2-metre temperature (Coi�er et al., 1987).
Optimal interpolation and variational approaches are in principle more adequate to initialize also
deep soil temperatures.

Analyses of 2-metre temperature and relative humidity over land are needed, apart from their

obvious relevance in diagnosis studies, to analyze soil water content based on screen variables incre-
ments (Mahfouf, 1991; Navascu�es, 1997). Both screen variables are analyzed from measurements
in SYNOP reports. Screen variables show high heterogeneity inherited from surface properties:
topography, vegetation, etc.

Snow covered surfaces deserve a special treatment as their features and physical mechanisms

di�er substantially from the snow free surfaces. First, the high snow albedo (close to 0.85 for
recent snow) reduces substantially the available energy at the surface. Second, the snow layer
acts as a insulator between the atmosphere and the soil. Third, the snow cover shows a high

heterogeneity linked to the orography and to the vegetation type. The most simple models only

add one equation for snow mass, which needs to be initialized. The snow mass analysis can bene�t
both from ground-based observations (snow-depth, snow fall) (see e.g., Brasnett, 1999) and from
microwave satellite imagery (see e.g., Armstrong and Hardman, 1991; Hallikainen, 1996a, 1996b).

Furthermore, satellite information helps to discriminate snow covered surfaces by their exceptionally
high albedo.

Finally, some authors have recently shown that the speci�cation of vegetation properties, such
as vegetation cover, leaf area index (LAI), vegetation albedo, etc., and its right seasonal variation
have a signi�cant impact on near ground atmospheric variables (Champeaux et al., 2000; Xue

et al., 1996). The use of land-use maps together with monthly varying correspondence tables
for vegetation features is the most commonly accepted way to specify the slowly evolving �elds
describing vegetation properties. The use of satellite data able to capture vegetation indexes and
their seasonality is the appropriate tool to estimate vegetation variables.
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4 Selection of the land surface model

The importance of land surface processes in mesoscale modelling has been increasingly recognized

over the last years (Bougeault et al., 1991; Pielke et al., 1997; Bringfelt et al., 1999; Chen and
Avissar, 1994a,b). In fact, mesoscale structures which are hardly captured by the observation
network can only be produced during the model integration either by the atmospheric forcing or

by the lower boundary forcing. The e�orts to represent land-atmosphere processes in a realistic
and accurate way have resulted in a rather big number of surface schemes with a wide variety of
complexity. From the simplest ones based on the \bucket" concept (Manabe, 1969) up to the more
complex models using a very comprehensive treatment of biophysical and radiative interaction

between soil, vegetation and atmosphere (e.g., Sellers et al., 1986; Dickinson, 1993; Xue et al.,
1991), the range of intermediate possibilities is rather big.

The recent Project for Intercomparison of Land-Surface Parameterization Schemes (PILS)
(Henderson-Sellers et al., 1993; Henderson-Sellers et al., 1995; Shao and Henderson-Sellers, 1996;
Chen et al., 1997; Wood et al., 1998) has shown that even forcing with the same conditions, the

simulated surface heat 
uxes, soil moisture and runo� by di�erent LSMs can vary between a wide
range of values. Another surprising feature of the comparison is that sophisticated LSMs hardly
outperform the relatively simple schemes. Among the reasons behind the modest results of the

most complex models can be mentioned the following: (i) the big number of soil and vegetation
parameters which usually are di�cult to specify over all domains of integration; (ii) the excessive
number of layers supplies in principle a better discretization of the heat and water transfer equa-
tions, but on the other hand increases the number of variables to analyse; (iii) lack of adequate

physiographic data at the model resolution; (iv) absence of an appropriate treatment of the land
surface heterogeneity present in the real world.

Taking into account the big number of existing schemes, the following list of desirable features
was also considered: (i) the number of soil and vegetation parameters should be kept to a minimum;

(ii) schemes should be well tested and validated both in �eld experiments and in operational
environments; (iii) schemes should be able to simulate accurately the diurnal cycle of surface
heat 
uxes; (iv) incorporation of some solution for the initialization of the soil moisture and soil
temperature �elds; (v) existence of physiographic data consistent with model requirements.

The Interaction Soil-Biosphere-Atmosphere (ISBA) model meets all the requirements stated

above and consequently was �nally selected to simulate the land surface tiles. ISBA is a re�nement
of the Deardor� (1978) scheme. It makes use of the force-restore method for both temperature
and soil water content. It consist of a thin layer (1 cm) reacting very quickly to the atmospheric
forcing and a total layer (typically 1 m depth) where bulk water content is computed. The diurnal

timescale forces the thermal equation, while for the water budget the forcing for each layer is
parameterized based on the soil texture and the Clapp and Horberger (1978) relationships. It may
be argued that the force-restore method is a rather crude approximation and that direct integration

of the Fourier and Richards equations for heat and water transfer would be preferable. Dickinson
(1988) has, however, demonstrated the theoretical equivalence of both methods.

The ISBA scheme makes use of a very limited number of surface parameters. In fact, the
knowledge of the soil type (texture) and the vegetation type allows the computation of the hydraulic
properties of the soil and the vegetation features a�ecting evapotranspiration, interception by the

foliage and radiative e�ects.
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ISBA has been successfully applied at single-point (Noilhan and Planton, 1989), mesoscale

(Bougeault et al., 1991) and global GCMs (Giard and Bazile, 2000). It has been validated against
�eld experiment in a wide range of atmospheric conditions and ecosystems (see Noilhan and Mahfouf

(1996) for a short review). ISBA or variants thereof is the scheme used in the following operational

NWP models: ARPEGE/ALADIN (Giard and Bazile, 2000), ARPS (Xue et al., 2001), HIRLAM
(Bringfelt, 1996), GEM (Côt�e et al., 1998).

Mahfouf (1991) studied the feasibility of soil moisture analysis from observations of 2-metre
temperature (T2m) and 2-metre relative humidity (RH2m) using ISBA in 1D mode. Both varia-
tional and optimal interpolation (OI) methods were considered, and the corresponding statistics

were derived using a Monte Carlo method for a discrete set of soil and vegetation features. Further
steps with sequential OI analysis of surface and deep soil water contents using an analytical formu-
lation for the OI coe�cients were given by Bouttier et al. (1993a,b) and Giard and Bazile (2000),
crystallizing in an algorithm well adapted to the vegetation and soil parameters used by the ISBA

scheme.

Big e�orts have also been pursued to improve the physiographic description of the surface with
the same accuracy and horizontal resolution as the host NWP models using ISBA. Using Advanced
Very High Resolution Radiometer (AVHRR) data from NOAA satellites, Champeaux et al. (2000)

have designed a method based on an automatic clustering of multi-temporal Normalized Di�erence
Vegetation Index (NDVI) maximum values to characterize eleven vegetation classes. Forest were
previously identi�ed from a thorough analysis of visible re
ectances in early summer. The use of
look-up tables assigning monthly values to the following ISBA vegetation parameters (roughness

length, leaf area index, fractional vegetation cover and minimum stomatal resistance) allows to
map them and aggregate them from the original 2 km resolution to the model resolution. The
use of look-up tables assigning parameters to certain vegetation classes restrict the use of the
physiographic description to a relatively small region of the globe (Europe in this case).

5 Brief description of the parameterization of surface processes

5.1 Treatment of heterogeneity

The HIRLAM surface scheme makes use of the mosaic of tiles or aggregation of 
uxes approach
mentioned above. Such approach represents the surface heterogeneity within one grid element
assuming the existence of di�erent land-use patches which evolve independently and couple directly
to the atmosphere of the model. The land-use patches within one grid square a�ect each other only

through the atmosphere.

In principle, the scheme may treat an arbitrary number of surface types in each grid square
(Bringfelt, 1996). Several global and local physiographic databases were merged to assign a
geographically{dominating vegetation type and soil texture for each subgrid surface. At present,

�ve surface types are considered within each grid square: sea/lake water, ice, bare land, forest and
agricultural terrain/low vegetation. However, the code maintains a high 
exibility to allow easy
implementation of more complex tiling approaches in the future if required.

At each time step, the sensible (Hi) and latent (Ei) heat 
uxes from each subgrid surface are
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weighted according to their fractional share of the grid square to form the total surface 
uxes.

The aggregated 
uxes were used at the lowest model level as a lower boundary condition for the
boundary layer vertical di�usion and the radiation schemes. At this level the wind, temperature

and humidity were kept constant within the whole grid square. The surface 
uxes Hi and Ei are

based on the di�erences in temperature and humidity, between the lowest model level and the
surface values for each sub-surface type, respectively. The atmospheric stability functions used for
the computation of the aerodynamic resistance are given in Louis et al. (1982). The vegetation
surface resistance for conditions, respectively. The vegetation surface resistance for transpiration

includes the e�ect of the solar radiation, water stress in the root zone, water vapour de�cit and
air temperature, following Noilhan and Planton (1989). For the calculation of Hi and Ei the local
roughness length due to vegetation is used.

The weighted momentum 
ux is calculated using a di�erent strategy, mainly based on the
computation of an e�ective roughness length. The momentum roughness length is obtained by

adding the orographic roughness length, z0orog , and an aggregated local vegetation roughness length
(z0veg), which in turn is computed by averaging from the local roughness lengths for the subsurfaces

(z0i) according to Mason (1988): 1=(ln lb
z0veg

)
2
=
P
fi=(ln

lb
z0i

)
2
, where lb is the blending height or

the height at which the 
ow becomes approximately independent of horizontal position (Claussen,
1991). The main justi�cation of the parameter aggregation for the momentum roughness length
resides in the di�erent behaviour of the momentum and heat transports. The momentum exchange

is disproportionally a�ected by the large roughness elements in the domain (Blyth et al., 1993;
Dolman and Blyth, 1997), whereas the e�ective roughness length for heat is dominated by the
smooth elements with low values of the roughness length (Wood and Mason, 1991). Also the no-
slip condition at the surface (implying that the velocity is always zero) a�ects in the same way the

contribution of di�erent elements within a grid square to the momentum exchange. In contrast,
transport of heat lacks a no-slip condition at the surface and the calculation of an e�ective resistance
to heat transport is complicated by the variability in surface temperature. The usage of di�erent
averaging (aggregation) procedures for heat/moisture and momentum is not a novelty and it has

already been proposed by several authors (e.g., , Dolman, 1993; Blyth et al., 1993).

In reality, the blending height, above which the structure of turbulence has attained horizontal
homogeneity by turbulent mixing, is expected to vary with the patchiness and the mixing activity
(i.e., essentially stability). Assuming that the blending height is of the order of 1/100 of the

horizontal scale of the roughness variations (Claussen, 1995)), for typical landscape variations of
1000 m the blending height is of the order of 10 m. For our computation purposes, a constant
blending height (lb = 10:) has been used. This choice certainly imposes restrictions to the lowest
model level, which should be higher than lb. The time step should be accordingly chosen in order

to allow the turbulent mixing to reach horizontal homogeneity at the blending height. However,
cases of high blending heights can sporadically occur, as e.g., in convective situations, and it may
happen that the lowest model layer violates the assumption of one single value for all fractions.
This is probably not too serious and for most of the cases can be assumed that the lowest model

level is above the blending height.

Diagnostic �elds, such as 2-metre temperature and relative humidity, 10-metre wind, etc., are
also computed and are available for each grid box fraction separately.

For sea/lake, there is no energy balance equation for calculating the water temperature: this
quantity is kept constant. The surface roughness of the water is calculated using the modi�cations
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to the Charnock (1955) formula proposed by Nielsen (1999) for the smooth surface regime. For

ice, a three layer model for temperature is used based on the one-dimensional equation for vertical
heat di�usion with constant heat capacity and di�usivity in time and space (K�allen, 1996).

The current formulation of the surface scheme here described does not include speci�c tiles
for snow covered surfaces. Given the importance of a separate energy balance equation for high

and low vegetation tiles with snow, work is on progress to add the corresponding tiles (S. Gollvik,
personal communication).

The surface analysis part is consistent with the tiled structure used in the parameterization
part. In particular, only one analysis of 2-metre temperature and relative humidity is conducted
for the averaged of the three land subtypes. It is worthwhile to note that the average surface

speci�c humidity includes the contributions from both the canopy evapotranspitation and the
ground evaporation.

5.2 The ISBA land surface scheme

A brief description of the variables and equations in the ISBA scheme is provided here. The
algorithm described in the original paper (Noilhan and Planton, 1989) has been upgraded with a

number of additions and modi�cations (see (Noilhan and Mahfouf, 1996) and (Giard and Bazile,
2000) for the most updated versions of the scheme and (Bringfelt, 1996) for the �rst HIRLAM

implementation.

5.2.1 Equations of the scheme

The prognostic equations for the surface temperature, Ts, and for its mean value, T2, over one day,
� , are obtained from the force-restore method. The surface temperature is representative of the

soil-vegetation medium. The corresponding equations are:

@Ts
@t

= CtG�
2�

�
(Ts � T2) (3)

@T2
@t

=
Ts � T2

�
(4)

where G is the sum of the 
uxes at the surface in the soil-vegetation medium (net radiation 
ux

(Rn), sensible heat 
ux (H) and latent heat 
ux (LvE)) and Ct is the thermal coe�cient expressed
by

Ct =

"
(
1� veg

Cg
+
veg

Cv
)

#�1
(5)
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here veg is the fraction of vegetation, Cv is the thermal inertia coe�cient for the canopy, which

has been tuned to 8 � 10�6Km2J�1, and Cg is the thermal inertia coe�cient for the soil, which
adopts the following expression (Giard and Bazile, 2000):

Cg = min

(
Cgmax

; Cgsat

�
wsat

max(w2; wwilt)

�(b=log10))
(6)

here, b is the slope of the retention curve and Cgsat is the soil thermal coe�cient at saturation.

Both are estimated for each soil texture (Noilhan and Planton, 1989). Cg is limited to its value
at wilting point, with a maximum Cgmax

set to 8 � 10�6Km2J�1. These limits are imposed for
a better representation of the diurnal cycle of surface and low-level atmospheric variables. This
constraint may be revised later with further improvements in the rest of the physics.

For the treatment of the soil water, an analogous force-restore model has also been applied.

The soil is divided, as it was already mentioned in Section 4, in two layers: one surface layer (d1),
with a depth typically of 1 cm, interacting directly with the atmosphere, and a total soil column
(d2) extending down to a depth of about 1 m. The prognostic equations for the surface, ws, and

total, w2, volumetric water content are de�ned in the corresponding layers. Over the vegetation
a skin reservoir for the rain (dew) water retained on the vegetation canopy, wr. is de�ned. The
corresponding equations are:

@ws

@t
=

C1

�wd1
(Pg � Eg)�

C2

�
(ws � wgeq) (7)

@w2

@t
=

1

�wd2
(Pg �Eg � Etr)�

C3

�
max[0; (w2 � wfc)] (8)

@wr

@t
= veg � P � Er; wr � wrmax (9)

where �w is water density, Pg is the precipitation reaching the soil, P is the precipitation at the top

of the vegetation, Eg is the evaporation rate from the ground, which dries the shallow layer only,
Etr is the canopy transpiration 
ux from vegetation, which acts through the plant roots, Er is the
evaporation 
ux from the fraction � of the foliage covered by intercepted water and wrmax is the
threshold value of the interception reservoir.

The hydric coe�cient C1 includes the idea of Braud et al. (1993) for dry soils further modi�ed by

Giordani (1993) and Giard and Bazile (2000):

C1 =

(
C1maxd1exp[�(ws � wmax)

2=�] for ws < wwilt

C1satd1(wsat=ws)
(b=2+1) for ws � wwilt

(10)

where C1max, wmax and � are the maximum, the abscissa of the maximum and the standard
deviation of the Gaussian, respectively. wsat is the saturated volumetric soil water content, which
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depends on soil texture. C1max, wmax and � depend on the wilting point and surface temperature.

The position (wmax) and width (�) of the Gaussian curve are adjusted to ensure continuity of the
formulation at the wilting point and to �x a minimum value for very dry soils: C1(0) = 0:1.

The hydric restore coe�cient C2, characterizing the velocity at which the water pro�le is restored
to its equilibrium, follows the original (Noilhan and Planton, 1989) formulation:

C2 = C2ref (
w2

wsat � w2 + wl
) (11)

where wl is a small numerical value preventing any singularity at the saturation point. The coe�-

cient C2ref has been estimated for di�erent soil textures.

The drainage coe�cient C3 is a relaxation coe�cient of total water content to the �eld capacity
(wfc), to simulate the gravitational drainage. It depends only on soil texture (Mahfouf et al., 1994)

The equilibrium surface water content wgeq (when gravity balances capillarity forces) is used instead
of the total water content for the restore term. It follows the original formulation:

wgeq = wsat

"
w2

wsat
� a

�
w2

wsat

�p 
1�

�
w2

wsat

�8p!#
(12)

The parameters a and p have been estimated for di�erent soil textures.

5.2.2 Surface 
uxes over land

The turbulent latent and sensible heat 
uxes are computed using the classical aerodynamic expres-

sions. For the sensible heat 
ux:

H = �N cpCHVN (Ts � TN ) (13)

where cp is the speci�c heat, and TN , VN and �N are the temperature, the wind speed and the air
density at the lowest model level, respectively. CH is the drag coe�cient depending on the thermal
stability of the atmosphere. It is computed using the atmospheric stability functions given in Louis
et al. (1982).

The latent heat 
ux, LvE, formulation closely follows Noilhan and Planton (1989). It includes

the evaporation, Eg, from the ground and the evapotranspiration, Ev from the vegetation:

Eg = (1� veg)�NCHVN (huqsat(Ts)� qN ) (14)

Ev = veg�NCHVNhv(qsat(Ts)� qN ) (15)
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where qsat(Ts) is the saturated speci�c humidity at temperature Ts, and qN the atmospheric speci�c

humidity at the lowest model level.

The relative humidity at the ground surface, hu, is related to the surface soil moisture, wg ,
through the following expression:

hu =

(
1
2 [1� cos(

wg

wsat
�)]; if wg < wsat

1; if wg � wsat
(16)

When the evapotranspiration 
ux, Ev, is positive (upwards), the Halstead coe�cient, hv, takes

into account the direct evaporation, Er, from the fraction, �, of the foliage covered by intercepted
water, as well as the transpiration, Etr, of the remaining part of the leaves. When Ev is negative,
the dew deposition is supposed to take place at the potential rate (hv = 1).

hv = (1� �)Ra=(Ra +Rs) + �

Er = veg �
Ra
�N (qsat(Ts)� qN )

Etr = veg 1��
Ra+Rs

�N (qsat(Ts)� qN )

(17)

where � = (wr=wrmax)
2=3 (Deardor�, 1978) and the aerodynamic resistance, Ra, is equal to

1=(CHVN ).

The surface resistance, Rs is expressed by the product of a minimum resistance, Rsmin, and a
number of limiting factors (Jarvis, 1976) depending on environmental conditions (radiation, water
stress, water vapor de�cit and air temperature):

Rs =
Rsmin

LAI
F1F2

�1F3
�1F4

�4 (18)

The factor F1 measures the in
uence of the photosynthetically active radiation, PAR, (Sellers,
1985) which is assumed to be equal to 0:55(1� �)Rg:

F1
�1 = 1� a1log

a2 + PAR

a3 + PAR
(19)

where Rg is the incoming solar radiation, � is the vegetation albedo, and a1, a2 and a3 are param-
eters depending on canopy properties (see Sellers, 1985) which are assigned the values proposed
by Blondin (1991): a1 = 0:19, a2 = 1128Wm�2 and a3 = 30:8Wm�2. This formulation of the

factor F1 gives a smoother dependency on PAR than the original one in Noilhan and Planton

(1989), which for certain combinations of canopy properties show a very strong sensitivity to small
variations of PAR.

The factor F2 takes into account the e�ect of water stress on surface resistance:
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F2 =

8><
>:

1 if w2 > wfc
w2�wwilt

wfc�wwilt
if wwilt � w2 � wfc

0 if w2 < wwilt

(20)

where wfc and wwilt are �eld capacity and wilting point, respectively.

The factor F3 represents the e�ects of vapor pressure de�cit of the atmosphere:

F3 = 1� g(qsat(TN )� qN) (21)

where g is only di�erent from zero in case of coniferous forests (g = 40)

The factor F4 introduces an air temperature dependence on the surface resistance (Dickinson,

1993):

F4 = 1� 0:0016(298 � TN )
2 (22)

The phase changes of water in the soil may have an important e�ect on the water and energy
transfer in the soil. The freezing and thawing of soil water manifest as a \thermal barrier" at
about 0oC, making soil temperatures less responsive to the atmospheric forcing. Therefore, the

main impact will be both to delay the soil cooling when dropping temperatures and to delay the
soil warming in spring when the solar forcing starts to melt frozen surfaces. The 
ux due to the
soil water change of phase (Fi) can be expressed by:

Li�w(1� veg)d2@wi=@t (23)

where Li is the latent heat of fusion and @wi=@t is the variation of the total ice water content.
Following the ideas of Viterbo et al. (1999), the total ice water content can be assumed to be
wi = f(Ts)w2, where f(Ts) is a function taking the value 1 for temperatures well below 0oC (all
soil water content is in solid phase), 0 for temperatures well above 0oC (all soil water content is in

liquid phase) and with some smooth transition around 0oC. To avoid undesirable coupling between
the temperature and water equations w2 is additionally assumed to be equal to the �eld capacity
value, wfc, in the expression for Fi. The �nal expression for the 
ux due to the soil water change
of phase is:

Fi = [Li�w(1� veg)d2wfcdf(Ts)=dTs]@Ts=@t (24)

This term has been included in the left-hand side term of the surface temperature equation and
incorporates the barrier e�ect through the pulse-like function of surface temperature, df(Ts)=dTs,
to simulate the soil water content freezing/thawing around 0oC.
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The `thermal barrier" method mimics the e�ect of reduced responsiveness of soil temperature

to the atmospheric forcing due to the phase changes of soil water. It was originally designed for
its use with a di�usion equation for soil temperature. Its application to the force- restore scheme

described here implies some additional retuning which is currently under way.

Snow sub-fractions are allowed within the ice fraction and within each of the land-surface

fractions. Snow is represented by a single layer with a prognostic equation for snow depth. Two
options are additionally available for the snow treatment: one modifying the thermal coe�cient and
albedo over snow covered fractions, and another including additional equations for snow density
and snow albedo to simulate the ageing process of the snow (Douville et al., 1995). The snow

parameterization is complemented in both options with a 6 hourly snow depth analysis based on a
successive correction method making use of observations.

6 Description of the surface analysis algorithm

The HIRLAM surface analysis is consistent with the mosaic approach adopted in the parameteri-
zation of soil/surface processes. As it has already been documented above, �ve di�erent tiles are
allowed within each grid square: water, ice, bare ground, low vegetation, and forest. The sur-
face analysis module has been developed from the original surface parameter analysis operational

at SMHI (Gustafsson, 1985) and the assimilation of soil water content based on the sequential
method (Bouttier et al., 1993a, 1993b; Giard and Bazile, 2000) It has been substantially modi�ed
to adapt it to the current parameterization requirements. It provides initial values to the following

variables: water surface temperature (SST), fractions of ice and water, snow depth over ice and
land fractions, screen level temperature and relative humidity over land fractions, super�cial and
mean soil temperatures, and super�cial and total volumetric water contents.

6.1 Analysis of water surface temperature

As it has already been described in Subsection 5.1, both sea and lake water are considered one

of the �ve types of surface within a grid square. It was also mentioned that water temperature
is kept constant during the integration. Consequently, the water surface temperature is only up-
dated during the assimilation step. The analysis of surface temperature, contrary to the surface
parameterization, provides a separate treatment to the inland lake and sea water fractions.

At each assimilation step, a background �eld is generated by relaxing the previous analysis

to the corresponding climatological �eld. This relaxation ensures a correct seasonal evolution
over persistently data void areas. Sea surface reports (SHIP and BUOY) and pseudo-observations
generated from the ECMWF sea surface temperature �eld (produced daily by NCEP) provide an
uniform density of data over open ocean. Special observations, as e.g., locally derived SST values

from AVHRR radiances, can be added optionally.

The observation operator consists of a bi-linear interpolation. It takes additionally into account
the type of surface, either open ocean or inland lakes, of both grid points and observation station.
They can be classi�ed into �ve di�erent classes according to their fractions of land and lake: lake,

inland, near coast, coastal and open sea:
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Table 1: Classi�cation of observation stations and grid points.

inland near coast coast lake open sea

fland > 0:8 0:8 � fland > 0:5 0:5 � fland > 0:2 flake > 0:02 fland � 0:2

Restrictions are imposed in the model interpolation of water surface temperature to the obser-
vations positions. Only grid points of similar type to the observation can be used to create the

model equivalent of observed temperature. The only quality control to the data is a simple �rst
guess check (each observed temperature should not be too di�erent from the temperature in the
previous analysis). The default analysis method is successive corrections. The formulation of a
priori determined observations weights follows Cressman (1959):

w(r) =

(
R2�r2

R2+r2
r � R

0 r > R
(25)

Three iterations with successive radius R at 600 km, 400 km, and 150 km are applied.

In the current tiling scheme, water temperature and ice fraction represent two di�erent �elds.

Their values over land and sea points refer to lakes and ocean, respectively. Thus, topography in-

duces a discontinuity basically along the coast line, that should be taken into account. In particular,
it is undesirable that a sea observation could in
uence surface temperature over lakes in the prox-
imity (Eerola,1995). In order to account for this land-sea anisotropy, observations weights depend

not only on horizontal distance but they are further scaled using the grid points and observation
classi�cation. The following table is used for the scaling factors, f(classi; classk), considering the
topographic features:

Table 2: Scaling factors associated to land/water anisotropy.

obs.class grid point class

inland near coast coast lake open sea

inland 1. 0.5 0.0 1. 0.0

near coast 0.5 1. 0.5 0.5 0.3

coast 0.0 0.5 1.0 0.0 0.9

lake 1. 0.5 0.0 1. 0.0

open sea 0.0 0.3 0.9 0.0 1.0

The analysis at grid point k, at iteration j + 1, aj+1k , is then

aj+1k = ajk +

PN
i=1Wik�

�2
o (yi � aji )PN

i=1Wik�
�2
o + ��2b

(26)

where yi � aji is the background departure at the i observation position, �o and �b are the obser-
vation and background error standard deviations, respectively, and Wik are the weights given to
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observations i=1,N:

Wik = w(rik)f(classi; classk) (27)

In the �rst iteration, a
j
i is the background �eld obtained by relaxing the previous analysis to the

climatology.

Once that surface temperature over water has been analysed, fractions of water and ice are
diagnosed. The algorithm is linear between two limiting temperature values. Di�erent pairs of

threshold values are used over the Baltic Sea, lakes and open ocean to take into account the water
salinity.

6.2 Analysis of snow depth

The mosaic scheme allows snow mass accumulation in sea-ice and land fractions. Consequently, the

analysed �eld is the fractional average over these tiles. The background snow mass is additionally
relaxed to climatology and converted into snow depth by assuming a monthly varying snow density.
The corresponding conversion factors (from water equivalent (m) to snow depth (cm)) are the
following:

Table 3: Conversion factor from snow mass (m) to snow depth (cm)

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

450 430 416 360 320 320 320 700 700 620 550 470

The only information used are the observations contained in land surface reports. The obser-
vation operator is simply a bi-linear interpolation. Data checking consists only of a �rst guess

check. The analysis method is successive corrections with Cressman type dependence on horizontal
distance of observation weights.

Observation weights are also vertically scaled to account for the di�erence between model orog-
raphy and observation height and to prevent from getting analysed snow cover in the mountain
surroundings in case of no availability of stations not reporting snow depth (Eerola, 1995). The

scaling factor, f(�z), is

f(�z) =

8><
>:

0:0 �z � 0 j �z j� zcrit
zcrit2��z2

zcrit2+�z2
�z � 0 j �z j< zcrit

1: �z > 0

(28)

�z = zmod � zobs

zcrit = 300m

The observation weights, Wik(r;�z), are �nally:

Wik(r;�z) =

(
f(�z)R

2�r2

R2+r2 r � R

0 r > R
(29)
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Four scans are conducted at horizontal radius (R) 600 km, 400 km, 150 km and 100 km.

The analysed �eld converted back to equivalent water snow mass is copied into the ice and three

land subtypes of surface.

6.3 Analysis of 2-metre temperature and relative humidity

Analysis of screen level variables is a useful tool for model validation or diagnostic studies. However,
the main purpose here is to assimilate soil temperatures and water content at each land tile. Relative
humidity is the chosen humidity variable to be analyzed, due to the easier modelling of �rst guess

error statistics. Data used are 2-metre temperature and relative humidity (derived from dew point
temperature) from SYNOP reports. The model state projection onto observation space is described
in Navascues (1997). The projection operator consists of the following steps:

� Horizontal bi-linear interpolation to observation position of atmospheric vertical pro�les.
Only grid points with not negligible fraction of land are used.

� Vertical interpolation of the whole pro�le from the model orography to the station height.

The algorithm preserves the stability structure in the boundary layer (K�allen, 1996).

� Averaging of surface variables over land fractions: surface temperature and speci�c humidity,
snow mass, and roughness length.

� Re-calculation of the surface temperature to keep the potential temperature lapse rate in the
surface layer.

� Diagnosis of 2-metre temperature and relative humidity following Geleyn (1988).

An e�ective local roughness length, z0, is created from the local roughness length at each land

tile, z0;i, by means of a blending height, zb, following the method proposed by Mason (1988) and
used in the diagnosis of near surface parameters:

1

ln2
�
zb
z0

� =
X
i

Ai

ln2
�

zb
z0;i

� (30)

The analysis method for both near surface parameters is univariate statistical interpolation. It

allows an additional quality control to data by checking each observation against its neighbours.
This optimum interpolation check is only applied to active data, i.e., data not rejected after the
�rst guess check.

The autocorrelation model � is anisotropic, based on the relevant orographic features found

when studying T2m and RH2m errors covariances corresponding to the old surface parametrization.
The analytical formulation of the structure function consists of a gaussian dependence on both the
horizontal and vertical distances r;�z. Characteristic length scales have been set ad hoc as follows:
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�(r;�z) = exp[�0:5(
r2

R2
+
�z2

H2
)] (31)

with R = 100km for T2m, R = 75km for RH2m and H = 400m for both T2m and RH2m.

Preliminary values for observation and background error variances have been assigned after

some experimentation. Both the ratio of observations to �rst guess errors and characteristic length
scales have been tuned to avoid too noisy analysis increments, to minimize the rejected observations

during the optimum interpolation check and to produce an analysis close to the observations.

The optimum interpolation check is performed by dividing the model area in boxes. Observa-
tions in a radius from the center of box are used together to decide the �nal status of data contained
in the box. All active observations are afterwards used in wider analysis boxes to solve the analysis

problem.

6.4 Analysis of soil temperatures

Surface, Ts, and mean layer, Td, soil temperatures are separately analysed for each subtype of sur-
face following Giard and Bazile (2000). The method is a simple correction based on the calculated
2-metre temperature analysis increment at every assimilation step:

�Td = �T2m=(2�) (32)

�Ts = �T2m (33)

6.5 Analysis of soil water content

Surface, ws, and total layer, wd, water contents, are assimilated separately at each tile. Water
intercepted by vegetation, wr, is not analysed, being simply copied from the �rst guess to the

analysis. The method to initialize ws and wd is based on the sequential assimilation developed by
Mahfouf (1991), with optimum coe�cients approximated analytically by Bouttier et al. (1993a,b),
and totally rewritten for operational implementation in the ARPEGE model by Giard and Bazile
(2000). It was implemented in HIRLAM by Ayuso (1995) simultaneously to the tiled surface

package.

The analysed 2-metre temperature and relative humidity at each grid point are used as obser-
vations for the analysis of soil water contents. Soil moisture corrections are linearly calculated from
the screen level analysis increments by means of an optimum interpolation analysis:

�ws = �Ts�T2m + �Hs �H2m (34)

�wd = �Td�T2m + �Hd �H2m (35)

where �Ts ; �
H
s ; �

T
d ; �

H
d are the optimum coe�cients that minimize the mean square error of the

estimation.

The statistics of the forecast errors on soil moisture was estimated by Mahfouf (1991). He used a
Monte Carlo method consisting of a set of 24h perturbed one-dimensional simulations, each of them
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started from a randomly modi�ed soil moisture. Bouttier et al. (1993) analysed the distribution of

the forecast errors statistics at each local solar time due to the variation of the incident radiation on
the surface and the dependence of optimum coe�cients on the surface characteristics. Then, they

proposed an analytical formulation for �Ts ; �
H
s ; �

T
d ; �

H
d . The formulation of optimum coe�cients in

the current version di�ers from the original by Bouttier et al. (1993), and follows Giard and Bazile
(2000). Coe�cients depend on vegetation coverage, veg, local solar time, t�, leaf area index, LAI,
minimum stomatal resistance, Rsmin and soil texture, txt:

�Ts = f(txt)(1� veg)
h
aT0 (t

�) + aT1 (t
�)veg + aT2 (t

�)veg2
i

(36)

�Hs = f(txt)(1� veg)
h
aH0 (t

�) + aH1 (t
�)veg + aH2 (t

�)veg2
i

(37)

�Td = f(txt)
n
(1� veg)

h
bT0 (t

�) + bT1 (t
�)veg + bT2 (t

�)veg2
i
+ veg LAI

Rsmin

h
cT0 (t

�) + cT1 (t
�)veg

io
(38)

�Hd = f(txt)
n
(1� veg)

h
bH0 (t

�) + bH1 (t
�)veg + bH2 (t

�)veg2
i
+ veg LAI

Rsmin

h
cH0 (t

�) + cH1 (t
�)veg

io
(39)

Where f(txt) accounts for the scaling of optimum coe�cients for the di�erent range of variation
between wilting point, wwilt, and �eld capacity, wfc, for the di�erent soil textures:

f(txt) =
(wfc � wwilt)txt
(wfc � wwilt)loam

(40)

The coe�cients in the polynomial terms, aTi ; a
H
i ; b

T
i ; b

H
i ; c

T
i ; c

H
i , have been tuned by Giard and

Bazile (2000), by �tting the adopted analytical function of the vegetation properties and local solar

time to the original set of O.I. coe�cients obtained by Mahfouf (1991).

A few constraints have additionally been imposed to prevent undesired corrections in synoptic
situations such that the atmosphere is not sensitive to errors in soil moisture. Consequently,
corrections to soil water content are not applied in the cases of snow covered surface, strong wind
speed, signi�cant rain, attenuation of solar radiation by clouds, very short length of daylight or

dew deposition. Most of these conditions have been analytically introduced by means of scaling
factors w1; w2; w3, decreasing smoothly the soil moisture corrections following the ARPEGE model
operational implementation (E. Bazile, personal communication):

w1 =

8<
:

day length
minimum day length day length � minimum day length

1 day length > minimum day length
(41)

where the minimum day length is 6 hours.

w2 =

(
1:� kv10k

kv10maxk
k v10 k�k v10max k

0: k v10 k>k v10max k
(42)

where k v10max k= 10ms�1.
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w3 =

(
1:� prec

preccrit
prec � preccrit

0: prec > preccrit
(43)

where the critical value of accumulated precipitation over the past 6 hours, preccrit, has been set
to 6 mm.

An analogous reduction of soil moisture increments in cloudy situations is modulated by the
factor w4:

w4 =

(
1:� cloud

cloudcrit
cloud � cloudcrit

0: cloud > cloudcrit
(44)

where cloudcrit = 0:8.

A further condition requires that soil moisture is only corrected provided that T2m and RH2m

analysis increments have opposite signs.

The assimilation only takes place between wilting point and �eld capacity to avoid unrealistic
corrections to the surface variables, provided that only within this range soil moisture is controlling

the evaporation rate. In practice the lowest limit is set to veg*wilting point, to leave the minimum
value allowed to have a dependence on the vegetation coverage.

The mean volumetric soil water content is changed by the mean of the last four analysis incre-
ments with the aid of a history �le of soil wetness increments. It produces a smoother evolution of
the soil moisture, as physically expected.

Systematic errors in screen level relative humidity are very much a�ected by errors in the
speci�cation of soil water content. However, 2-metre temperature systematic errors are very often
due to other di�erent reasons, as e.g., errors in the radiative forcing. Following Giard and Bazile
(2000), a systematic long-term T2m increment, �Tn

2f is calculated at the nth assimilation cycle:

�Tn
2f = (1� r)�Tn�1

2f + r�T2m (45)

with r = 0:5.

Instead of the full 2-metre temperature increment, obtained in the nth screen level parameters
analysis, �T2m, only the T2m e�ective increment, �T eff

2m , de�ned as the deviation from this mean
value is used to modify the soil moisture:

�T eff
2m = �T2m ��Tn

2f (46)

The above soil moisture corrections masking is based on a sequence of conditions, which identi-
�es the lack of atmospheric sensitivity to the variation of soil water content. An alternative option

could consist of a careful selection of the observations used in the analyses of 2-metre temperature
and relative humidity. If similar conditions to the constraints (41)-(44) were applied to screen
2-metre observations, the subsequent analysis increments would no longer need of a masking proce-

dure during the soil moisture assimilation step. However, it is very likely than then the insu�cient
number of observations and the simplicity of the hypothesis assumed for the formulation of the
structure function would not be able to produce the appropriate analysis increments patterns in
some areas, as e.g., in the inland to coast direction. Furthermore, the 2-metre temperature analysis
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plays an important role leading the time evolution of soil temperature in winter time. In any case,

the screen level analyses are also a very useful tool to monitor the model performance and they
also serve as input for many other operational applications, which otherwise would not be covered

in some areas and for long periods (e.g., snow covered regions).

7 Relevance of postprocessing and veri�cation

The tiling approach to the parameterization of surface processes involves forecasting of surface
variables for each of the tiles existing within a grid square. In the current approach each tile is

fully independent from its neighbour tiles. Both surface and total (deep) layers do not have any
coupling with any other tiles within the grid box. The only interaction between tiles in the same
grid box takes place only through the lowest model layer. The added complexity of the tiled surface
structure allows many di�erent possibilities for postprocessing �elds and also for verifying them

against observations.

Diagnosed screen variables (2-metre temperature, 2-metre relative humidity, 10-metre wind) are
computed for each existing tile within a grid square. Also the areal average value representative
of the grid square is computed during the postprocessing. The ideal veri�cation should proceed
by comparing the observed value against the model equivalent to the observed variable. This

process is routinely done during the assimilation step by comparing observations against the output
from the analysis observation operator. In case of 2-metre temperature and relative humidity, the
observation operator, �rst, interpolates horizontally and vertically the atmospheric pro�les from

model orography to station height, second, surface variables over land fractions are horizontally
interpolated, third, surface temperature is re-calculated to keep stability structure in the surface
layer and, �nally, 2-metre temperature and relative humidity are diagnosed based on Geleyn (1988).

Some experimentation has proved that two of the steps included in the observation operator

have a very relevant role in the veri�cation of 2-metre temperature and relative humidity: One

step is the averaging of subgrid surface variables over land fractions. The other one is the vertical
interpolation of atmospheric pro�les from model orography to the station height.

Figure 1 shows the big impact of the procedure followed to compute the postprocessed model
2-metre temperature on the observation veri�cation scores. One procedure consists of comparing

the observed 2-metre temperature value against the corresponding model output from the most
predominant land fraction in the grid square. The other one compares the observed value against
the areal average of 2-metre temperature over all existing fractions. The scores shown in Figure 1
correspond to 6 hours forecasts over the highly heterogeneous Scandinavian area (mainly due to the

presence of lakes). The second alternative very much in
uenced by water tiles gives clearly worse
scores both for bias and rms error, due to the fact that the stations are mainly representative of the
land tiles. Besides, lake water temperature is only initialized using climatic values due to the lack
of observations. Other posible alternatives, as the use of areal average only over land fractions or

the use of the low vegetation fraction (closer to WMO speci�cations for SYNOP measurements),
have been been tried (not shown here) and they do not show such big impact as the inclusion of
the water fraction. The current version of the code computes for the diagnosed screen variables two

types of areal average: i) over all existing fractions (water and ice included) within the grid square
and ii) only over land fractions. The �rst one, usually smoother, includes the damping e�ect of the
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water tiles, whereas the second one is more appropriate for veri�cation purposes as the SYNOP

stations used for veri�cation are located over land.

The impact of vertical interpolation of the atmospheric pro�les on the veri�cation scores is
crucial over certain mountainous areas. In fact, the lack of vertical interpolation usually produces
some slight cold bias due to the higher model orography than the real station height. This di�erence

can be explained by the fact that over mountainous regions observing stations are usually located
at the bottom of valleys, frequently represented with higher altitude by models.

The observation statistics �les generated by the surface analysis package are normally used to
check the assimilation system performance and to monitor observations. It can be additionally used
to test di�erent veri�cation strategies. One strategy would be to compare observations of 2-metre

temperature and relative humidity against the output from the observation operator. Another
alternative strategy, closer to the current veri�cation package, could be to compare observations
against the ouput from the observation operator but without any vertical interpolation from the

model height to the real observation height. Figures 2 and 3 compare both veri�cation strategies

for H+6 forecasts of 2-metre temperature and relative humidity, respectively. The e�ect of the
height correction is very noticeable for 2-metre temperature over mountainous areas. E.g., over the
Spanish veri�cation area, bias is corrected up to 1K and rms error is reduced up to 0:8K. The

Scandinavian and France areas also show the big impact of height correction in the veri�cation
scores.

Figure 4 shows the di�erence between the station height and the corresponding model height
versus di�erence of 2-metre temperature bias for the two veri�cation strategies (with and without
vertical correction) mentioned above. Di�erent veri�cation times (00 and 12 UTC) and di�erent

areas are shown separately. Also the standard lapse rate correction of 0:65K=100m is shown to
be a reasonable approximation. As it can be seen from Fig. 4, the procedure used in the 2-metre
temperature observation operator allows for a time of the day and a day to day variation of the

temperature vertical correction.

The complexity introduced in the model by the tiling structure allows many di�erent alter-
natives for the veri�cation algorithms, which have still to be explored and exploited. The few
examples described here show that there is still a lot of room for the improvement of the veri�ca-
tion procedures, in particular over highly heterogeneous terrain.

8 Parallel runs: veri�cation and validation

The new surface scheme together with the related surface analysis and soil assimilation package
has been debugged, tuned and tested during the last couple of years. A set of parallel test runs

with a system employing a developed new scheme and an existing reference system is an e�cient
method of debugging and tuning.

Parallel tests with the old HIRLAM reference surface scheme and the new scheme have been
carried out at INM and FMI. The INM tests have been carried out for the HIRLAM Delayed
Mode Run (DMR) domain covering most of Europe. The FMI tests have been run for a Nordic

area. Figure 5 shows both domains. The early tests, several years ago, were conducted with the
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HIRLAM 2.7 and 4.1 systems and later on 4.6.2 and 5.0.0 systems were used. These runs helped

to detect several problems and de�ciencies and thus improved the new scheme. Furthermore, these
test runs helped to �nd a few code portability problems as well as to speed up the code on di�erent

computer platforms. Some results from those tests have been reported in, e.g., J�arvenoja (1998,

1999, 2002a, 2002b), Rodriguez et al. (2001), Rodriguez et al. (2002), Navascues et al. (2001). The
new tiled surface scheme together with the related surface analysis and soil assimilation package
has now been accepted into the HIRLAM Reference system as version 5.2. In the following, the
latest results from parallel tests for the DMR domain and for the Nordic test domain using the old

reference surface scheme and the new tiled scheme will be summarized.

8.1 DMR domain parallel experiments

The results presented here are based on the HIRLAM version 5.1.1 for the 'reference' and the new

tiled scheme. The two parallel experiments, di�ering only in the surface treatment, are as follows:

� DMR : old reference surface scheme (HIRLAM 5.1.1)

� DMI : new tiled surface scheme together with the new surface analysis and soil assimilation.

The common features for the two experiments are:

� Domain: Area corresponding to the DMR HIRLAM suite with a 0.5� horizontal resolution

� 166 * 130 grid points; 31 levels in the vertical

� Semi-Lagrangian advection, dt = 10 min

� Each suite with its own data assimilation (OI, 6 h cycling)

� Lateral boundary conditions: ECMWF analyses

� 48 h forecasts from 00 UTC analyses only

� Periods: 1-15 January 1996, 15-30 April 1995, 1-15 July 1995 and 1-15 October 1994.

The INM parallel tests were conducted for two weeks periods in each of the four seasons. The
January 1996 period represents a cold Nordic winter with snow covering Northern and Central
Europe for most of the period. This period has been simulated in both implementations, but using

di�erent domains and horizontal resolutions. The April 1995 case was selected to study the quick
irruption of warming and snow melting in Nordic latitudes. July 1995 represents the typical summer
conditions in Southern Europe, with mainly warm and dry weather. Finally, October 1994 brings

precipitation and allows to recharge the reservoir of soil water content in Central and Northern
Europe, whereas the Iberian Peninsula still maintains dry summer conditions.

In the following, some results from the parallel experiments are presented for each test period:
winter, spring, summer and autumn. Results are mainly focused on near-surface parameters, in
particular 2-metre temperature (T2m) and 2-metre relative humidity (RH2m).
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i) Winter: January 1996

The observation veri�cation scores, bias and rms error as computed against EWGLAM sta-

tions for the January 1996 period are shown in Fig. 6 for T2m (top left) and RH2m (top right),
respectively. As the long forecasts were run from the 00 UTC analyses, the forecast lengths of 24
and 48 h are verifying at night-time (00 UTC) and forecast lengths of 12 and 36 h at daytime (12

UTC). The experiment DMR shows a T2m positive bias, whereas the bias is slightly negative in
case of the DMI experiment. The rms error is smaller in DMI for all forecast lenths. The new
surface scheme experiment (DMI) shows a RH2m bias close to zero as opposed to the negative bias
of the reference experiment (DMR), which is consistent with the clear reduction of rms error also

in favour of the DMI experiment. Most of the improvement in the scores computed only over snow
covered areas (not shown here) comes from the positive impact of soil temperature assimilation
also allowed over snowed areas. As a whole, over the set of EWGLAM stations, the new surface
(DMI) controls reasonable well bias of both T2m and RH2m and shows a clear reduction of rms

errors of both variables.

ii) Spring: April 1995

This spring case shows again a remarkable tendency to keep biases of T2m and RH2m close to
zero, as shown in Fig. 6 (2nd row left and right, respectively). The rms error is slightly reduced in
the new surface (DMI) with respect to the old reference surface (DMR), mainly at noon (forecast

lengths of 12 and 36 h). These results are consistent with and similar to the other spring case
(April 1998) run with the Nordic implementation and described below in more detail.

iii) Summer: July 1995

Figure 7 shows bias and rms error of 6 h forecasts for a 3-month period starting on 1st July 1995.
The scores are again referred to the set of EWGLAM observations. In summer time the evolution
of soil water content is crucial to estimate the partition of surface heat 
uxes and therefore of T2m
and RH2m. As soil water content in the old surface package is mainly forced by model precipitation
and radiation (the old surface scheme has no assimilation of soil water!), apart from other possible
problems in the scheme, any bias or inaccuracy in the parameterization of condensation or radiation

processes will be inherited by the evolution of soil water and it will be manifested as a drift of T2m
and RH2m. Figure 7 for the month of September (bottom �gures) shows some noticeable bias of
T2m and RH2m towards warmer and drier values in the old reference surface (DMR), which is nicely
controlled by the new scheme (DMI). Scores of bias and rms error for the �rst two weeks of the

summer 1995 period (see 3rd row left and right of Figure 6) show the same features described for
the spring period, but more highlighted. As a summary of the summer period, it can be said that
T2m and RH2m are mainly unbiased for the new surface treatment (DMI). One of the main features
of the new surface package is the sequential assimilation of soil water content. As it was mentioned

in the corresponding section, the assimilation of soil water content is only applied when synoptic
conditions are such that 6 h forecast errors of screen variables are informative of the partition of
radiative 
uxes absorbed by land-surface between latent and sensible heat. Such partition is mainly

controlled by soil water content. These synoptic conditions are mainly summerlike conditions, i.e.,
dry weather, no strong advection, no cloudiness, etc. With such constraints in the assimilation of
soil water one would expect more bene�t in summer time and in Southern latitudes.

iv) Autumn: October 1994
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The October 1995 case further con�rms the good control of biases in a rainy period over most

of Central and Northern Europe. It must be mentioned here that inaccuracies in the precipita-
tion forecasts and its e�ect on soil moisture evolution can be compensated by the soil moisture

assimilation algorithm (Douville et al., 2000).

8.2 Nordic domain parallel experiments

The results presented below are based on the latest parallel runs that have been carried out using the
HIRLAM version (5.1.2) and the � version (5.1.4) for 'reference' and 'new surface' runs, respectively.
Again, the two parallel experiments, di�ering only in the surface treatment, are as follows:

� REL : old reference surface scheme (HIRLAM 5.1.2)

� ISL : new tiled surface scheme together with the new surface analysis and soil assimilation
(HIRLAM 5.1.4)

The common features for the two experiments are:

� Domain: Area corresponding to the FMI operational European suite (ENO) with a 0.2�

horizontal resolution

� 198 * 140 grid points; 31 levels in the vertical

� Semi-Lagrangian advection, dt = 5 min

� Each suite with its own data assimilation (OI, 6 h cycling)

� Lateral boundary conditions: ECMWF analyses

� 48 h forecasts from 12 UTC analyses only

� Periods: 1-15 January 1996, 12-26 April 1998 and 6-17 June 1997

The FMI parallel tests have been carried out for three di�erent seasons. January 1996 represents
a cold Nordic winter case with a high pressure dominating over Russia and northern Europe, and a
low pressure area over the Atlantic. The April 1998 case is an example of a rapid warming and snow

melt in northern Europe. This case highlights severe problems of the present reference system in
spring at high latitudes: a substantial negative bias in predicted surface and 2-metre temperature.
Finally, June 1997 represents a warm summer situation with convective activity.

In the following, some results from the parallel experiments are presented for each test period:

winter, spring and summer. The focus in the results is the near-surface parameters, the 2-metre
temperature (T2m) and the 2-metre relative humidity (RH2m) in particular. Observation veri�ca-
tion as well as �eld veri�cation scores will be presented, and examples from systematic di�erences
between parallel runs will be shown.

i) Winter: January 1996
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The observation veri�cation scores, bias and standard deviation as computed against EWGLAM

stations for the January 1996 period are shown in Fig. 8 for T2m (top left) and RH2m (top right),
respectively. As the long forecasts were run from the 12 UTC analyses, the forecast lengths of 24

and 48 h are verifying at daytime (12 UTC) and forecast lengths of 12 and 36 h at night-time (00

UTC). Both experiments, REL and ISL show a T2m negative bias, but the bias is smaller in case
of the ISL experiment. The standard deviation is also smaller in ISL, especially at shorter forecast
lengths. Both experiments show a small positive RH2m bias, with ISL being less biased. On the
other hand, the REL experiment shows s smaller standard deviation compared to ISL. As a whole,

the ISL experiment is slightly better than REL in terms of these two near-surface variables.

ii) Spring: April 1998

The T2m bias (Fig. 8, middle left) for REL varies between -0.5 and -1�C, being more negative
during daytime. However, if the veri�cation is done against Scandinavian stations only, the bias is
close to -3�C at daytime! The bias of the ISL experiment is centered around zero, but has a diurnal

cycle being positive during daytime and negative during night-time. The standard deviation is

smaller in case of ISL compared to REL. The RH2m bias (Fig. 8, middle right) is positive for both
runs, but the REL bias is clearly larger, more than 10% during daytime. In terms of the standard
deviation, the REL experiment seems to better than ISL. As a whole, due to the smaller biases,

the ISL experiment is superior to REL.

As the observation veri�cation revealed, the predicted T2m forecasts from the REL system
showed a clear negative bias while the ISL system had practically no bias. The observation veri�-
cation, when compressed to a single number as is shown in, e.g., Fig. 8 (middle left), does not tell
anything about the geographical distribution of the bias. The 2-metre temperature is now analyzed

in the ISL experiment with the aid new surface analysis scheme, and as the analysis draws close
to the observed T2m, this analyzed �eld can be used as the verifying �eld for the T2m forecasts, for
both experiments REL and ISL. Figure 9 shows the geographical distribution of the T2m bias for

the REL experiment for the two-week period in April 1998. The general outlook is terrible. For
most of the land area the bias is negative and it is really large, being as much as -7�C at worst,

over areas of Finland, Sweden, Estonia and western parts of Russia. In single cases, the forecast
error can be as much as -15�C, which is unacceptable. Figure 10 shows the corresponding bias �eld

for the ISL experiment. The di�erence to Fig. 9 is drastic: the large negative bias seen in the REL
experiment has almost disappeared. There remains a bias of -1...-2�C in northern Europe, while
the positive bias in southern latitudes is slightly larger. As a whole, the ISL experiment shows a
tremendous improvement compared to REL.

The cold bias in the REL experiment is not limited only to the surface, but extends further up

to 925 hPa. The �eld veri�cation reveals that there is a bias of -1...-3�C over southern Finland,
Estonia and western Russia (not shown). However, there is practically no temperature bias at 850
hPa.

The di�erent behavior of the REL and ISL runs can be highlighted with the aid of model

pro�les (soundings) from 24 h forecasts of respective experiments for a grid point close to the
Luonetj�arvi station (62� 24'N, 25� 41'E) in central Finland for 12 UTC 26 April 1998, as shown in
Fig. 11. In the REL pro�le, there is an inversion at 925 hPa and below 950 hPa saturation occurs.
The low-level cloud deck prevents the SW radiation from reaching the ground and thus results in

low near-surface temperatures. The predicted surface temperature (or T2m) is only 4�C, which is
about 10�C colder than observed. The main reason for the cold bias in the REL experiment is
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the excessive evaporation, which in turn leads to formation of low clouds. The ISL pro�le is very

di�erent. There is no sign of an inversion, the temperature and the dewpoint temperature are well
separated from each other and the temperature pro�le below 900 hPa follows the dry-adiabatic.

The predicted surface temperature is 15�C, which is in a good agreement with the observation.

Evaporation in the ISL experiment is smaller than in REL leading to lower near-surface humidity
and less clouds.

iii) Summer: June 1997

Figure 8 (bottom) shows the observation veri�cation scores for the June 1997 period. Both
experiments show a slight positive bias on average, but there is a clear diurnal cycle as well. There
is a positive T2m bias of 0.5�C in the REL experiment (Fig. 8 (bottom left) at night-time (12 and

36 h), while the ISL experiment shows a similar bias in the morning (18 and 42 h). The ISL run
shows a slight negative bias at night-time (12 and 36 h). The ISL run is somewhat better in terms
of the standard deviation. Figure 8 (bottom right) shows that there is a negative RH2m bias in the

REL experiment at all verifying times, while there is diurnal cycle (centered around zero) in the

ISL run, at the opposite phase to the T2m bias. In terms of the standard deviation, the ISL run
is again superior. Examples of systematic di�erences between ISL and REL forecasts are given in
Figures 12 and 13, which demonstrate di�erences of accumulated precipitation and cloud cover in

48 h forecasts (ISL-REL), respectively. The ISL experiment gives about 2 mm more precipitation
in 48 hours (corresponding to 30 mm in a month) over Russia north of the Black Sea than REL
(Fig. 12), on average. This feature coincides with a larger (1 to 2 octas) daytime cloud cover in ISL
as shown in Fig. 13. The lesser cloud cover in REL results in a higher daytime T2m compared to

ISL, and there is a positive bias of 1 - 3�C in the REL experiment over continental areas, especially
over Russia (not shown). There is generally only a small bias in the ISL experiment, except over
mountainous areas where ISL has a positive bias of a few degrees locally (not shown).

9 Summary

The new package for the analysis of surface variables and parameterization of surface processes
has been presented. The surface analysis provides initial values of the following variables: water
surface temperature, fraction of water and ice, snow depth, 2-metre temperature, 2-metre relative

humidity, surface soil temperature, mean soil temperature, surface soil water content and total soil
water content. Both the analysis and the parameterization part treat the high surface heterogeneity
by making use of a tiled structure within each grid square. The current version of the code allows

up to �ve di�erent tiles (water, sea ice, bare ground, low vegetation, forest), although the upgrading
to a bigger number of tiles is straighforward. The ISBA scheme was selected to model land surface
tiles.

Parallel tests with the old HIRLAM reference surface scheme and with the new tiled surface
scheme have been carried out for three di�erent seasons in a Nordic area with 20 km horizontal res-

olution and for four di�erent seasons in the Delayed Mode Run (DMR) area with 50 km horizontal
resolution. The resulting forecasts have been validated by means of observation and �eld veri�ca-
tion. The winter period (1-15 January 1996), which was run using both domains, shows some slight

di�erences in connexion with 2-metre temperature biases. These di�erences are easily explained
considering that most of Southern Europe stations are not included in the Nordic implementation.
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The main focus in the forecast validation has been the near-surface parameters, the 2-metre

temperature in particular, due to their importance for duty forecasters. The veri�cation results
have shown that the new tiled scheme results in better T2m forecasts compared to the old reference

surface scheme, especially in spring time for the Nordic simulations and in summer time for the

DMR simulations. Also some positive impact can be seen in the rest of the periods simulated.
The long-lasting problem of dramatic 2-metre temperature biases, in particular the cold bias in
springtime, has been solved to a great extent with the introduction of the new tiled surface scheme.
The scores for upper-air parameters were very similar for new and old surface treatments and for

all test periods.
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Figure 1: 2-metre temperature bias and rms error of H+6 forecasts using two di�erent veri�cation
strategies: i) comparing observations against the most predominant land fraction and ii) comparing
observations against the areal average over all existing fractions. Veri�cation period: 6-15 June

1997. Veri�cation area: Scandinavia
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Figure 2: 2-metre temperature bias and rms error of H+6 forecasts using two di�erent veri�cation

strategies: i) comparing observations directly against the horizontally interpolated model �elds
(dash lines) and ii) comparing observations against the horizontally interpolated model �eld and
vertically corrected to the observation height (solid lines). Veri�cation period: 15-30 April 1995.

Di�erent �gures correspond to the veri�cation areas in the HIRLAM reference system: all observa-
tions in the integration area, Scandinavia, Spain, Netherlands, France, Ireland. Only observations
accepted by the analysis algorithm have been used.
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Figure 3: As in Fig. 2, but for 2-metre relative humidity.
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Figure 4: Average distance between station height and the corresponding model height versus
di�erence in 2-metre temperature bias for the two veri�cation strategies described in the text. Both

di�erences in height and 2-metre temperatures are averaged for all stations within the reference
system veri�cation areas. Each �gure corresponds to di�erent veri�cation time: 00 and 12 UTC.
Each point within each �gure corresponds to di�erent veri�cation dates over the period 15-30 April

1995.
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Figure 5: Domains used for parallel testing: i) DMR covering most of Europe and North At-
lantic (0.5o horizontal resolution); ii) FMI covering mainly a Nordic European area (0.2o horizontal
resolution).
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Figure 6: Bias and rms error as a function of integration range averaged for EWGLAM stations.
All integrations start at 00 UTC: T2m (left), RH2m (right). Experiment DMR refers to version
5.1.1 and DMI to the new surface package on top of version 5.1.1. Each row corresponds to a

di�erent test period: 1st row: 1-15 January 1996; 2nd row: 15-30 April 1995; 3rd row: 1-15 July
1995; 4th row: 1-15 October 1994.
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Figure 7: 2-metre temperature (left) and 2-metre relative humidity (right) bias/rms error of H+06

forecastings. Experiment DMR refers to version 5.1.1 and DMI to the new surface package on top
of version 5.1.1. July 1995 (top), August 1995 (middle), September 1995 (bottom).
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Figure 8: T2m (left) and RH2m (right) bias (full lines) and standard deviation (dashed lines) as a
function of forecast length for REL (square) and ISL (circle) experiments. All integrations start

at 12 UTC. Each row corresponds to a di�erent test period: 1st row: 1-15 January 1996; 2nd row:
12-26 April 1998; 3rd row: 6-17 June 1997.
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Figure 9: T2m forecast error (forecast-analysis) in the 48 h forecasts (valid at daytime) for REL experiment,
12-26 April 1998. Contour interval: 1�C. The zero isoline not plotted, negative values indicated with dashed
lines.

Figure 10: T2m forecast error (forecast-analysis) in the 48 h forecasts (valid at daytime) for ISL experiment,
12-26 April 1998. Contour interval: 1�C. The zero isoline not plotted, negative values indicated with dashed
lines.
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Figure 11: Forecast (+24 h) model pro�les valid at 12 UTC 26 April 1998 for a grid point close to
the Luonetj�arvi station in central Finland, REL (left) and ISL (right).
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Figure 12: Systematic di�erence in 48 h accumulated precipitation between ISL and REL (ISL-REL)
experiments, 6-17 June 1997. Contour interval: 2 mm. The zero isoline not plotted, negative values indicated
with dashed lines.

Figure 13: Systematic di�erence in 48 h (daytime) total cloud cover between ISL and REL (ISL-REL)
experiments, 6-17 June 1997. Contour interval: 1 octa. The zero isoline not plotted, negative values
indicated with dashed lines.
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