Homogenization of daily peak wind gust series from Spain and Portugal

José A. Guijarro ${ }^{1}$, Cesar Azorin-Molina ${ }^{2}$

${ }^{1}$ State Meteorological Agency (AEMET), Palma de Mallorca, Spain
${ }^{2}$ Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
EUMETNET Data Management Workshop
St. Gallen, Switzerland, 28-30 October 2015

Outline

Introduction

Homogenization strategies

Impact on extreme wind indexes

Conclusions

Introduction

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question

Do,we really need, to homogenize the daily series?

Introduction

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question

Dowe weally need to homogenize the daily series?

Introduction

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50,100 and 200 years.

Introduction

- Homogenization of daily series is difficult, due to their lower noise/signal ratio.
- Yet the study of the variability of extreme weather events requires homogeneous and quality controlled daily series.
- Here we apply different strategies to homogenize daily maximum gust speeds from Portugal and Spain, and analyze their impact on the evaluation of the trends of mean and maximum gusts, the number of days over the 90 percentile and maximum expected gusts for return periods of 50, 100 and 200 years.
- Question:

Do we really need to homogenize the daily series?

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:

Average monthly values, using MM5 series as references
when available, and adjusting the daily series with
interpolated monthly correction factors.

- Direct homogenization of daily values, using MM5 series as references when available.
- Direct homogenization of daily values, without MIM5 references.

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.
- Direct homogenization of daily values, without MM5 references.

Methodology

- The data set consisted of 80 series (7 Portuguese and 73 Spanish) of daily maximum peak wind gusts spanning 54 years (1961-2014).
- Corresponding daily series from MM5 simulations at 10 km resolution were available until 2007 (Murcia University).
- Homogenization was performed with Climatol 2.2 (multiplicative model) on:
- Average monthly values, using MM5 series as references when available, and adjusting the daily series with interpolated monthly correction factors.
- Direct homogenization of daily values, using MM5 series as references when available.
- Direct homogenization of daily values, without MM5 references.
- Annual values of maximum and average wind peak gusts and number of days over the 90 percentile.

Station locations

VX station locations (5 clusters)

Data availability

VX data availability

Data availability

Nr. of VX-d data in all stations

Regression observations vs MM5

Zaragoza (1961-2007)

Correlations observations vs MM5

Correlations between observed and MM5 series

Inhomogeneities

VX-d at 2614(26), ZAMORA

Shift

VX-d at P535(75), LISBOA GEOFÍSICO

Trend

VX-d at B278(71), PALMA DE MALLORCA/SON SAN JUAN

Relative homogeneity

VX-d at 1024E(7), SAN SEBASTIÁN,IGUELDO

Windowed SNHT histogram

Histogram of maximum tV

Complete SNHT histogram

Histogram of maximum SNHT

Abnormal series reconstruction

VX-m at 8368U(57), TERUEL

Residual inhomogeneities

VX2-d at 2539(25), VALLADOLID/VILLANUBLA

Change of variance

VX2-d at P535(75), LISBOA GEOFíSICO

Other homogenizations

Due to these unsatisfactory results, further homogenizations were performed either directly on the daily data or on annual extreme wind indexes, which led to decreasing levels of break detection when compared to the monthly homogenization:

Series	Breaks	
Raw (filled)	-	
Monthly+MM5 to daily		171
Daily+MM5	87	
Daily		47
Annual indexes:	Averages	Maximums
	28	6

Trends of mean peak gusts

Trends of mean daily peak gusts

Homogenization methods

Trends of annual peak gusts

Trends of annual maximum peak gusts

Homogenization methods

Trends of days > 90\%

Trends of nr. of days with peak gust > $\mathbf{9 0}$ precentile

Homogenization methods

Max. expected peak gusts

Maximum expected peak gusts (m / s) for return periods of 50, 100 and 200 years

Conclusions

- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution. \Rightarrow Further experiments should be performed with synthetic data.

Conclusions

pf ngterch

- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
\Rightarrow Further experiments should be performed with synthetic data.

Conclusions

- In many cases, there is no clear evidence suggesting that the homogenization of the daily series is needed (especially for computing trends of average values).
- But these results, derived from real data, cannot be conclusive, since we do not know the true solution.
- \Rightarrow Further experiments should be performed with synthetic data.

