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ABSTRACT

Formaldehyde (CKD) is a tracer of the photochemical activity of ienosphere. Linked to air
quality, CHO is an ozone (£§) precursor and serves as a proxy for natural amdr@pogenic
reactive organic emissions. As a product of thetgdradation of methane (CH and other
hydrocarbons (e.g., isoprene), {&LHrepresents an important source of radicals irreéhgote free
troposphere. This work aims at improving the chimr@zation of this part of the troposphere where
data are scarce. In particular, this study assdbsegsresence of GO at two high-altitude remote
sites: El Teide (TEI, 3570 m a.s.l., Tenerife, Ggrialands, Spain) and Pic du Midi (PDM, 2877 m
a.s.l.,, French Pyrenees). Through ground-basedteesensing measurements performed during
two field campaigns in July (TEI) and September NP[2013, this study presents the vertical
distribution of CHO at both locations. Results at PDM show that,@Hhixing ratios follow a
decreasing vertical profile with a mean maximumOds + 0.2 nmol mat (i.e., ppbv) at the
instruments’ altitude. At TEI, observations indeaan uplifted layer of CHD with a mean
maximum of 1.3 + 0.3 nmol mdlat 3.8 km a.s.l. (i.e., 300 m above the instrurseaititude). At
both remote sites, the observed OHlevels are higher than expected for backgrounthame

oxidation (a threefold increase in the case of TEIy mass back trajectory analysis links £H
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observations with abundant natural (e.g. forestdja anthropogenic isoprene emissions from the
region nearby PDM, while the high GBI levels detected at TEI indicate in-plume formatiaf
CH,0 resulting from its precursors emitted from weftigan and Canadian fires. Finally, as a key
trace gas for @and HQ chemistries, we estimate the upper limit of braammonoxide (BrO) in

the free troposphere at TEl and PDM to be 0.8 afighthol mof (i.e., pptv) respectively.
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1. Introduction

Formaldehyde (CED) is a volatile organic compound (VOC) that plays important role in the
tropospheric chemistry and budget of, @0, (OH + HQ,) and NQ (NO + NQ,). Ubiquitously
present in the Earth’'s atmosphere, formaldehydeisical and geographical distribution is not
homogenous and has been the subject of investigakio decades. Kitchens et al. (1976) presented
a review of CHO in polluted environments and its related heakks; while Lowe and Schmidt
(1983) addressed the relevance and challenges adurieg CHO in the non-urban atmosphere.
Currently, CHO is considered one of thigssential Climate Variablesy the WMO (GCOS, 2016)
and measurements of its atmospheric abundance &ey dor a better understanding of the
oxidizing mechanisms in the troposphere, for tnagkiCHO emissions and their embedded
hydrocarbon reactions as well as for parametriatngospheric chemical and transport models.
Although a small fraction of C}D (< 2%) enters the troposphere directly from bissnlaurning or
from anthropogenic or vegetation emissions (Andraad Merlet, 2001; Olivier et al., 2003;
Lathiére et al., 2006), most of the @Hin the atmosphere is a secondary product of xidation

of methane (60 %, with a production rate of 1600yfjgand non-methane hydrocarbons (NMHC),
mainly isoprene (~20 %, Stavrakou et al., 2009ae8and Jacob, 2019). As for the Q¥xidation
channel, one of its intermediate products is mepleybxy radical (CkD,), which proceeds reacting
primarily with NG, (NO + NQ,) in the semi- and polluted atmosphere, yieldinghmey radical
(CH30) and then CKD (Lowe and Schmidt 1983; Wolfe et al., 2016). fpalluted environments
(NO < 20 pmol mot), CHO, reacts with H® forming methyl hydroperoxide (GOOH),
eventually yielding CED. In addition to reactions with OH and photoly&@sy., von Kuhlmann et
al., 2003), CHOOH can be lost through heterogenous reactions #wsrosols may indirectly
regulate the presence of gM

Regarding CHD loss processes, its main sink is photolysis @850 nm (Crutzen 1988), resulting
in an increase of atmospheric carbon monoxide (@Qgh is an ozone precursor. Also, reaction
with the hydroxyl radical (OH) and washout and digposition can contribute to GBI losses
(Solberg et al., 2001). As for the @bl lifetime, although it can span up to 2 days,ha sunlit
atmosphere it is only a few hours (Lowe and Schniii83; Sander et al., 2006). Due to this short
lifetime, CH,O is often used as a constraint for determiningaiemissions of non-methane VOC.
During the last two decades, global tropospheriaraons of CHO have been intensively monitored
by different satellites (GOME/ERS2, SCIAMACHY/Enats GOME2/MetOp, OMI/Aura,
TROPOMI/S5P; e.g., Chance et al.,, 2000; De Smedtl.et2018) aiming at characterizing the
tropospheric chemical processes, mainly those dinkeair quality or climate change (Schroeder et
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al., 2016). In fact, CKD is one of the very few VOC that can be detecteddiellite and several
studies have aimed at determining VOC emissionsa ajlobal scale using GB satellite
observations (Palmer et al., 2003; Stavrakou gp@09a, b; Bauwens et al., 2016) often assisted by
numerical models. Also, by means of satellite olmstiszns of CHO along with chemical models,
the distribution of OH in the remote troposphera ba inferred (Wolfe et al., 2019). The down-
scaling effort of the satellite and model community understand Ci0 and the oxidizing
mechanisms within emission plumes makes essehtatharacterization of pristine areas since in
those regions the low signal-to-noise ratio of $htellite observations results in worse data qualit
and the VOC inventories are scarce.

Despite all the years that @Bl has been a scientific target, very few studies ieen performed

in remote areas (Platt et al., 1979; Lowe and SdhriP83; de Serves 1994; Arlander et al., 1995,
Riedel et al., 1999; Mahajan et al., 2010; Vigouretial., 2018) since determining its presence and
vertical distribution in the remote tropospherénideed an instrumental challenge. Several studies
have addressed the budget of OHn the free troposphere from airborne observatidiowe et al.,
1980; Arlander et a., 1995; Singh et al., 2001;eNiet al., 2016; Anderson et al., 2017; Wolfe et
al., 2019; Kluge et al., 2020) and also from measents at high-altitude sites in The Andes (Pico
Espejo, 4765 m, Schreier et al., 2016), in Mexislizomoni, 3980 m; Vigouroux et al., 2018), in
Reunion Island (Maido, 21600 m; Vigouroux et ab1®), in the USA (Mauna Loa, 3397 m, Heikes
et al. 1992; Zhou et al 1996; Cantrell et al., 19@&gouroux et al., 2018, and Idaho Hill, 3000 m,
Fried et al., 1997; Cantrell et al., 1997; Hardeale 1997), in The Alps (Jungfraujoch, 3580 nm,
Legreid et al., 2008; Balzani Loov et al.,, 2008artao et al.,, 2015, and Zugspitze, 2962 m,
Leuchner et al., 2016; Schreier et al., 2016; Vigay et al., 2018), in the Apennines (Mt. Cimone,
2165 m, Fischer et al., 2003) and in the Canaantis (Izafia-1ZO, 2360 m, Fischer et al., 1998; de
Reus et al., 2005; Salisbury et al., 2006; Vigouret al., 2018). Overall, these studies set the
values of CHO in the free troposphere between 0.1 and 1 nmdl*mweith high variability
depending on season (minimum in winter and maxinimreummer), location and altitude, and
reaching up to 5 nmol molin case of upslope pollution transported from plenetary boundary
layer (PBL). The above-mentioned studies expantaygpnd the PBL into free troposphere, report
a vertical distribution of CHD with a decreasing profile and a weak diurnalatan in the free
troposphere.

This study aims at a better understanding of themital composition of the free troposphere by
providing observations from two different enviromtge from an island in the subtropical region
and from the Pyrenees, more exposed to Europeariipnl In particular, this work reports ground-

based remote sensing observations of@kHNd BrO from two remote high-altitude sites: Eide
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(TEI, Tenerife, Canary Islands, Spain; 3570 m) Riwddu Midi (PDM, French Pyrenees; 2877 m).
During two field campaigns (AMISOC-TEI and Pic dudidPDM) in July (TEI) and September
(PDM) 2013, a MAX-DOAS instrument (Multi-Axis Diffential Optical Absorption Spectroscopy;
Honninger et al., 2004; Wagner et al., 2004; Pattl Stutz, 2008) scanned the troposphere
vertically in order to gain insights regarding thBmospheric composition at the measurement
locations. This work first describes the field caigms as well as the measurement sites and
methodology. Then, it presents the observationsater on, discuss the presence of,OHat the
two mountain sites and address the upper limitr@f Bt the sites during each field campaign.

2. Measurements and methods

This section describes the two field campaigns alogkrvational sites referred to in this study,

along with the measurement method during both cagnpa

2.1. Field campaigns and sites description

During July and September/October 2013, two diffemne-month field campaigns took place at
two different remote high-altitude sites (El Tewted Pic du Midi, see Fig. 1). Given the scarcity of
observations in the free troposphere (i.e., ab@@®2n a.s.l.; Chevalier et al., 2007), the goahef
campaigns was to characterize the composition af ffart of the atmosphere. Indeed, the
possibility of performing consecutive ground-basdgervations from El Teide and Pic du Midi
presented itself as a unique opportunity to ingest the free troposphere in two different
environments (marine and continental) and in défifeédatitudinal locations (sub-tropics and mid-
latitudes). In the following, each field campaigmdacharacteristics of the observational sites are

described.
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Fig. 1. Mean formaldehyde tropospheric column densityradu013 as observed from space. The
observational sites referred to in this work amdidated in black (El Teide-TEIl and Pic du Midi-
PDM). The satellite data belong to the Ozone Maimitp Instrument (OMI) on the Aura platform
(http://h2co.aeronomie.be, last access 09/11/2019).

2.1.1. AMISOC campaign at El Teide (28.27° N, 16.64° W, 3570 m a.s.l.)

Within the framework of the AMISOC research projeat by INTA (Spanish National Institute for
Aerospace Technology), a field campaign took plackuly 2013 at the island of Tenerife (Canary
Islands, Spain) in the Atlantic Ocean. The majogdha of the campaign was the study of the
tropospheric vertical distribution of minor speciedated to the ozone chemistry in an oceanic
environment. The specific goal of team of the Sgfarlational Research Council (CSIC) within
AMISOC was to explore the presence and verticdfidigion of UV-absorbing trace gases such as
halogen oxides (BrO) and VOCs (gB) in the remote free troposphere in the sub-topic

In collaboration with INTA and the lIzafia AtmosplieResearch Center (IARC) from the State
Meteorological Agency of Spain (AEMET, Cuevas et 2017), the CSIC team installed a MAX-
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DOAS instrument at El Teide (TEI) from"7July until ' August 2013. The instrument was
mounted on a hut nearby the upper cable car stafi&h Teide National Park, approximately 1200
m above the lzafia Observatory (1ZO, IARC), and ~ib®elow the summit of the volcano El
Teide.

TEI sits at a very dry environment under high iatioh most of the year. Although TEI itself is not
a permanent measurement site, multiple atmospbbservations have been performed for decades
at 120 (i.e., ~1 km below TEI). These investigatiatescribe 1ZO as free troposphere background
conditions. The site is usually above the tempegaitwversion layer, and periodically impacted by
the Saharan Air Layer, mainly in summer (Cuevea.eR013, 2017; Rodriguez et al., 2011; Garcia
et al., 2014). Indeed, 1ZO is a well-established aharacterized research center that is part of the
World Meteorological Organization-Global Atmosplievwwatch Programme (WMO-GAW) and its
predecessor Background Atmospheric Pollution Maimitp Network (BAPMoN) since 1984. 1ZO
also contributes to several international reseametworks such, e.g., the AErosol RObotic
NETwork (AERONET), the Network for the Detection #tmospheric Composition Change
(NDACC) or the Total Carbon Column Observing NetfCCON) (Cuevas et al., 2015).

2.1.2. Pic du Midi campaign (42.93° N, 0.13° E, 2877 m a.s.l)

From 1% September until 3 October 2013, the same MAX-DOAS instrument from ISKAC
was deployed at the Pic du Midi Observatory (PDRl)the French Pyrenees. The goal of the
campaign, organized by the University of Toulousas to investigate the oxidation pathways of
mercury (Hg) in the free troposphere. As in AMISOie specific goal of the CSIC-DOAS
observations was to assess the presence of reaotivgounds such as halogens (BrO) or aldehydes
(CHx0) in the free troposphere, this time in the mititddes. During the campaign, the MAX-
DOAS measurements were performed from the fadglitiethe Atmospheric Research Laboratory
at PDM, along with observations of Hg, CO ang(®arusczak et al., 2017).

The PDM (http://p20a.aero.obs-mip.fr/) is part lo¢ Observatoire Midi-Pyrénéeand is a GAW
station since 2018, offering long-term astronomiaatl atmospheric observations since th& 19
century. From an air quality point of view, théesis defined as “mostly remote” (Henne et al.
2010) and, since PDM sits on top of the Pic du Midi Bigorre and hence 1300 m above the
surrounding area, the location has often been ased remote location for free-tropospheric
observations (Marenco et al. 1994). Under predominaesterly winds, the PDM generally
receives humid air masses from the Atlantic Oc®#¥darming of the surrounding plains leads to up-
slope winds during daytime, carrying pollutants (g, black carbon) up to the PDM (Fu et al.,
2016). During nighttime, the PDM katabatic windsnfr free tropospheric air to the PDM,
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providing a window into the middle and upper freepbsphere (2-8 km, Marenco et al. 1994;
Gheusi et al., 2011; Fu et al. 2016).

2.2. Remote sensing method

The MAX-DOAS instrument deployed during both cangpai consisted of two units (indoor and
outdoor units) and it was previously describedha twork of Prados-Roman et al. (2015) and
references therein. Thus, only a brief descriptsoprovided here. In summary, through a scanning
telescope and a 10 m long optic fiber bundle, ttatered skylight of the sunlit atmosphere was
directed from the weatherproof outdoor unit to ittdoor unit. The latter consisted of a Princeton
CCD camera and a 0.5 m Czerny-Turner spectromdtarmobile mirrors and a 600 groove/nm
grating on a rotating turret. That turret was awttoally moved every 25 min in order to change
the diffracting angle so we could gather spectrthenUV and in the Vis range. In this work, only
UV data will be referred to. The set-up yieldediastrumental field of view (FOV) of 0.5° and a
spectral resolution of 0.5 nm (FWHM). Figure 2 skdhe outdoor units as deployed at each site.
Although the concept of the measurement routinersiog the atmosphere at discrete elevation
angles from the limb to the zenith was the saméndusoth campaigns, the details were slightly
different depending on the location. In the casdhef deployment at TEI, the instrument FOV
azimuth angle was fixed at 62° (0° is North) anel thosen scanning elevation angles above the
instrument plane were -1, 0, 1, 2, 3, 5, 10, 30ai® 90 degrees (~3minutes/scan). In the case of
PDM set-up, the azimuth angle of the MAX-DOAS instient was 195° while the elevation angles
were set to -2, -1, 0, 1, 2, 20 and 90° (-2 mirdstes). Note that in both cases, the MAX-DOAS
observations were performed only for solar zenitigles (SZA) lower than 70° (SZA 90° is
overhead sun), minimizing possible contributionstshtospheric trace gases to the retrieval of the

aimed tropospheric constituents.
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(a), the outdoor unit of the instrument was mourttedhe roof of a hut at 3570 m a.s.l., just below
El Teide’'s summit (3718 m a.s.l., shown in the pgoaph). At the Pyrenees (b), the instrument was
placed on the roof of the Atmospheric ChemistryfBten at the PDM (2877 m a.s.l.), with the field
of view towards the South (195°). In both casesgubh a rotating mirror inside the outdoor unit,
the atmosphere was scanned vertically from the torthe zenith.

2.2.1. Spectral retrieval of trace gases

The procedure for the DOAS (Differential Optical sdlbbption Spectroscopy; Platt and Stuzt, 2008)
spectral retrieval of the trace gases was the damieoth datasets and the software used for the
spectral retrieval in both campaigns was QDOAS (Baart et al., 2017). Following the settings
suggested by Pinardi et al. (2013) where the astiparformed a thorough comparison and
validation exercise for MAX-DOAS observations, tmectral retrieval of CH¥D was performed in
the 336.5-359 nm spectral window (further detais provided in Table 1). An example of the
spectral fit is shown in Fig. 3.

In the case of TEI observations, due to saturatisnes, the spectra acquired at elevation angles of
90° and at SZA < 20° were filtered out and not wsedll (i.e., no observations between noon and
2:30 pm). As for the analysis procedure, the spestere analyzed against the spectra with the
higher elevation angle of each scan (i.e., 70° &, ©0° in PDM). In the case of the PDM
campaign in the Pyrenees, where weather conditiere highly variable, the PDM-DOAS data
were cloud-filtered. This was not needed in thaidlree conditions of the TEI campaign. Further
details on the data quality filtering are providedhe Supplementary Material.
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Table 1: Summary of the settings used for the spectrakratl of CHO (after Pinardi et al., 2013).

Paramete Specificatiol
Absorption ross sectior
CH,O Meller and Moortgat (200
0O; Bogumil et al. (200:
NO, Vandaele et al. (199
BrO Fleischmann et al. (20C
O, Thalman and Volkamer (201
Ring QDOAS(Chance and Spy, 1997
Closure terr 5™ order polynomie
Wavelength calibratic Based on reference solar spectriChance anKurucz, 201()
Intensity offse Lineai

In addition to CHO, the presence of BrO in the free tropospherealsasinvestigated at both high-
altitude sites. Using the same absorption crossosscas those for the GB spectral retrieval
(Table 1), the BrO DOAS analysis was performedhire¢ different spectral windows: in the
classical two BrO absorption bands (346 - 359 nimgpested by Aliwell at el. (2002), in the 336.5-
359 nm range covering 4 bands (i.e., window of @O retrieval) and, based on the work of
Franco et al. (2015), also in the region of 32&9-8m (i.e., 6 BrO absorption bands) where the
correlation between the BrO and @Habsorption cross sections is minimum. Moreoves,BrO
retrieval in those windows was also tested by §ixi@H,O to the average slant column density
inferred at each station. Despite several testsetivas no positive spectral detection of BrO,(i.e.
no signatures above the residual of the DOASHiBnce in this work only upper limits of BrO at
each site are reported (Sect. 3.1). Note that diajuthe BrO cross section of the @MHspectral fit
decreased the GB differential slant column densities (dSCD) inyofhl% (within the 15 % mean
error of the CHO dSCD, see Supplementary Material). Similarlyludig the water absorption
(Polyansky et al., 2018) in the spectral fit of OHloes not affect the retrieved &HASCD (refer

to the Supplementary Material).

In order to invert the retrieved dSCD at the défarelevation angles into the vertical distributadn
the target gases, additional information regardirgglight path is needed. The standard method for
MAX-DOAS observations is to retrieve the-O, collision induced absorption (i.e.,Orhalman
and Volkamer et al., 2013) since its vertical disttion is known in the atmosphere. In this work,
the spectral retrieval of Qwas performed between 339-367 nm using the sammer@tion cross
sections as for C}D (Table 1).

10
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Fig. 3: Example of the DOAS spectral fit of GB. The measurement was taken off' 18ly 2013

at TEI (10:30 UTC) for an elevation angle of 0heTit of the absorption cross sections is provided
in red while the measured features are shown iokbl@he retrieved CHD dSCD correspond to
3.76-16° molec cnif (RMS = 1.88-10).

2.2.2. Inversion of vertical profile distribution

The inversion of the vertical profile distributiaf CH,O was performed by means of the,“O
method” (Wagner et al., 2004; Friel3 et al., 20063 itwo-step approach: (1) the vertical profile of
the aerosol extinction coefficient (AEC) was finsterted from the retrieved QISCD, and (2) the
obtained aerosol profile is used as input in tivelision of the trace gas vertical profile distribat
Note that only positive elevation angles @) were used in the vertical profile retrievalfiese
retrievals were performed with the Linearized Déser Ordinate Radiative Transfer (LIDORT)
radiative transfer model (Spurr et al, 2008) ag prthe BePRO inversion algorithm (BIRA,
Clémer et al. 2010), based on the Optimal Estimali@thod (OEM, Rodgers, 2000). In order to
use this method, measuremerfy @nd a prior §;) covariance matrices must be provid&dis a
diagonal matrix whose diagonal terms correspontthéosquared error coming from the DOAS fit.
Diagonal elements 0§, correspond to 100% of the a priori profile whee ®HO profiles are
estimated. Diagonal values & for aerosol retrieval were calculated followinglé@er et al.,
2010), using a scaling factg$)(of 0.4. This method allows to capture large w#oies of the aerosol
concentrations, as those observed at Tenerife (DBardabonero et al., 2016) when Saharan dust

intrusions take place. In both cases {OHand aerosols}, non-diagonal elements correspond to a

11
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Gaussian distribution (Hendrick et al., 2004) widttcorrelation length of 100 m. The averaging
kernel matrix of the retrieval, as defined in Radg000), describes the sensitivity of the rettbv
profile to the true state. Its trace provides thgrdes of freedom of the retrieval. In this wonklyo
inversions with degrees of freedom equal or highet were considered (i.e., at least a piece of
information of the profiles came from the measunet®@nd not from the a priori). The atmospheric
characterization of TElI and PDM was obtained frdra standard atmosphere (Anderson et al.,
1986) for tropical and mid-latitudes, respectivaljzie considered atmospheric vertical grid consists
of layers 100 m thick up to 6 km, layers 500 mkHietween 6 and 8 km and equal to the standard
atmosphere above. The surface albedo has beemGé7tfor both stations. This value is typical of
sea water for the UV-A spectral range (Chadysiend Aloyzas, 2008) and it is also an
intermediate value between pasture (0.0243) anestiome (0.11) for the UV radiation (Turner et
al., 2018), corresponding to the observed scenatid¥fl and PDM respectively. In the radiative
transfer model, aerosols were characterized thrdabght phase moments and single scattering
albedo (SSA). For TEI, these parameters were oddaifrom available AERONET data
corresponding to the studied days. For PDM, theeeewno available AERONET data for the
studied period, thus several reasonable valuesS®k and the asymmetry parameteyks Were
tested, finally choosing those providing the béstbBtween simulated and calculated dSCDs
(SSA=0.95, y=0.65). Then, phase moments were calculated usiegnéy-Greenstein phase
functions.

For the vertical profile retrieval of aerosols extion and CHO volume mixing ratio (vmr) at both
stations, an a priori vertical profile exponengiatlecreasing with altitude was considered. This
assumption is based on the fact that its photol¥3i$0O main sink) increases with altitude as well
as with the distance from the emission sourcefiénRBL. In addition, the concentration of OH
decreases with altitude and so does the oxidatiorCld, (CH,O main source in the free
troposphere) (Lowe et al., 1980; Arlander et 893, Singh et al., 2001; Lawrence et al., 2001,
Nicely et al., 2016). Aerosol optical depth (AODresponding to the aerosol a priori profile was
0.01 and 0.005 for TEI and PDM, respectively. \Gatticolumn density (VCD) values for the a
priori profiles of CHO were 0.7-18 molec cnf and 1.0-18 molec cnf for TEI and PDM,
respectively. These values of AOD and VCD provittesl best fit between simulated and observed
dSCDs of Q and CHO, respectively. The degrees of freedom of theicadrprofiles retrieved in
this work were 1.9 £ 0.2 and 1.6 = 0.2 for £Hat TEI and at PDM, respectively (i.e., mean *
standard deviation); and 2.8 + 0.4 and 2.4 + 0.8 tfe aerosol retrieval (TEI and PDM,

respectively).
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An example of a CHD vertical profile retrieved at TElI and at PDM, eekd to also later on, is
shown in Fig. 4. The statistics of all the &Hand AEC inverted vertical profiles at each site a
summarized in Fig. 5.
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Fig. 4. Examples of inferred Ci vmr vertical profiles. The example (a) correspond

observations performed at El Teidd' @ly 2013, 9 am UTC) and (b) to observations peréal at
PDM on 28" September, 2013 (9.45 UTC). The dotted e both plots indicatethe average
detection limit.Note that the vertical scales are different in hutts

13



373
374

375
376
377

5.0 T —— . : 50 m ———— 11—
s [ 1(25%~75%) L [ ](25%~75%)
] @ I Min~Max :l—‘ I Min~Max 1
| --- Median Line | ] ~ Median Line
| HI— ]
4511 - 4 45— -
= E I
E N1+ E DO
R E o ]
| = L
4.0 4 40— i
I
[
|
35 {E‘ , ! ; 3.51‘,..,.,...
00 05 10 15 20 25 30 0.0 02 0.4 06 058 1.0
Range of CH,O vmr at TEI (nmol mol™) Range of AEC at TEI (km™)
(c) (d)
4.0 T Y BN B (R S— S B 4.0 T T T T T T T T T
,{F [ 1(25%~75%) H— [ (25%~75%)
1 I Min~Max T Min~Max
Fﬂq --- Median Line H - Median Line
iy E.. |
<351 o ﬂ*
: -4 = |
? : ,
3.0—{] . 3.0-2ﬂ i
T ‘I T T T T T T g T T ‘ T ! T T
00 05 10 15 20 25 30 0.0 0.2 04 0.6 0.8 1.0
Range of CH,0 vmr at PDM (nmol mol™) Range of AEC at PDM (km™)

Fig. 5: Box chars of the vertical profiles of CK¥D vmr (eft: a, ¢) and AEC (ight: b, d) at TEI
(up: a, b) and PDM (down: c, d) at each retriayé layer. Note the same vertical scads

each siteThe a priori profiles for the inversion are pme@ in cyan (CHD) and green (AEC).
Only cloud free data are considered.
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3. Results and discussion
This section presents the vertical distributior€éf,O and aerosol extinction coefficient retrieved at

each site. Also, this section reports the BrO upipeit and discusses G observations at each

site.

3.1. CH,0 and aerosol vertical distribution

The time series of the GB and AEC vertical profiles during the two reseaoempaigns are
shown in Fig. 6 (TEI) and Fig. 7 (PDM). From ther@sol load point of view, both stations
presented rather clear conditions although thesaéraptical depth was generally higher at TEI
where a strong intrusion of Saharan dust took ptacéhe last day of the campaign. Overall, both
stations presented a mean aerosol extinction caffi of ~0.05 kril at the instrument’s altitude
(0.04 km" at 3570 m at TEI, and 0.06 Knat 2877 m at PDM). At PDM, most of the extinctivas
located between the research site and an altitiddim. However, at TEI, a higher AEC was often
found above the instrument’s location. As for £kl the median of the retrieved mixing ratio
vertical profiles indicated that, while the maximumr is at the instrument’s altitude during the Pic
du Midi campaign (0.5 + 0.2 nmol nibat 2.9 km a.s.l.), during AMISOC the maximum £CHvmr
was located hundreds of meters above the instrusnatitude (0.7 + 0.2 nmol mdlat TEI and 1.3

+ 0.3 nmol mol at about 3.8 km a.s.l.). The mean OHietection limit (i.e., double of the error of
the retrieval) at the instrument’s altitude waswizein 0.1 and 0.3 nmol mbét both sites. Further
details of the vertical profile inversion at eachiesand its statistics are provided in the
Supplementary Materials.

As previously mentioned, unless ventilation frora #BL takes place, the vertical profile of £H

in the troposphere is usually assumed to decredékealtitude. While in this work this is the case
for the vertical profiles retrieved at PDM, it i®tnthe case for TEIl observations. The unique
distribution of CHO at TEI with a maintained uplifted maximum throogh AMISOC is unlikely
related to upslope transport of air masses fromPBe& since in summer a thick (~200 m) and
strong temperature inversioA{~+3°C) associated to the top of the marine boynidaer is found
between 1500 and 1800 m a.s.l. (Carrillo et all,@0far below TEI altitude. During AMISOC, the
meteorological vertical profiles from the radioseadaunched at Guimar (Tenerife) showed these
characteristics. As an example, Fig. 8 shows thewSk —Log P diagram of the radiosonde
corresponding to the"8July 2013 (CHO vertical profiles of this day are shown in Fig)4On this
day, there was a very strong temperature inver@idn+10°C) between ~ 860 m a.s.l. (base of the
temperature inversion) and ~ 1400 m a.s.l. (tofneftemperature inversion), preventing ventilation

from the PBL (see Supplementary Materials with $ew t —Log P diagram plots of the 12 UTC
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WMO- 60018 radiosonde station corresponding topdeod July 1 —August 3, 2013). Although
TEI itself is an arid site, a possible nearby emis®f CHO (and/or its precursors) above the PBL
could be the pine forest below TEI that expandsnf®0 m up to 2000 m a.s.l. (Cuevas et al.,
2013) and could well be a source of isoprene, gdri@ VOC that produces 18% of the £H
found globally (Bates and Jacob, 2019). Howevaup#lope transport of air masses takes place and
the origin of the ChHD observed at TEIl was solely this forest, given tigh irradiation at this
altitude in this subtropical region, a decreasirnd,@ vertical profile would be expected with its
maximum located around 1ZO (i.e., 1.2 km bellow J[Elot 1800 m above the tree line (and over
300 m above TEI). Note that during similar time tbe year as AMISOC, previous studies
performed at 1ZO reported on GBI vmr similar to the ones observed in this worK &t's altitude
(i.e., no decreasing GB vertical profile between 1ZO and TEI). With irttsianalyzers placed at
IZO, de Reus et al. (2005) and Salisbury et al0§2@eported 0.65 nmol mblmean CHO daily
values for non-dust conditions. Similar findingsrevenade by Fischer et al. (1998), whose study
already pointed out the high @Bl values observed at IZO as compared to box medelts and to
observations at the remote site of Mauna Loa. Als®MAX-DOAS observations do not represent
in-situ measurements but an average of the pregeofi air masses tens of kilometers away from
the instrument’s location (Gomez et al., 2014). §'ithe CHO uplifted maximum detected during
AMISOC agrees with an advected layer around El & ¢t sits at ~4 km altitude throughout July
2013 (i.e., just above the volcano’s summit). Apicked in the 22-year study of Cuevas et al.
(2013), the air masses arriving at 1ZO during thenth of July come from the west (Atlantic Ocean
or Canada), or from the east (from the Sahel regimhthe northern savannas of Africa). This is
also shown by the backward trajectories calculatét the HYbrid Single-Particle Lagrangian
Integrated Trajectory model (HYSPLIT, Stein et 2015, https://www.arl.noaa.gov/hysplit/, last
access: 09/11/2019) at TEI during AMISOC (e.g.,. Bignote that the backward trajectories for
each day are provided in the Supplementary Majer@iring AMISOC, during few days {7 15",

20" and 2% July) the air masses arriving at TEI's altitudessed the Atlantic Ocean. However,
most of the time the air masses arriving at TEgiodted from the northern savannas of Africa
(e.g., 8 July) or from the Sahel region (e.g."2Rily). In July, these two African regions are with
the Inter Tropical Convergence Zone (ITCZ) influerfsee Supplementary Material, Fig. S3), with
deep convection lifting air masses straight up itite free troposphere and transporting them
poleward (Nicholson, 2009). Measurement and mogeist out these northern savannas as a
source region of isoprene emissions (Marais e8ll4). As shown in Fig. 10a, during July 2013
the Sahel and the northern savannas of Africa mdfaumerous fires, known to be strong direct

sources of CkD and its precursors. Moreover, as shown in Figp, tiring AMISOC absorbing
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aerosols (related to biomass burning, dust anddtmamo activity, e.g., Torres et al., 1998) were
detected over the North Atlantic Ocean as a redfudtrong Canadian fires and also carbonaceous
aerosols and/or desert dust from African outflow.

The history of the vertical distribution of the amasses arriving at Tenerife during summertime is
indeed quite complex. As an example, Fig. 11 (ayshthe backward trajectories of the air masses
arriving at Tenerife on 31July, 2013. While the air masses arriving at 205 &titude (~1ZO
station) came from the free troposphere of the [Salgeon, those arriving at 4 km (~TEI site) came
from isoprene-rich northern savannas of Africa lfwites), and the air masses above the Teide
summit came from the clean upper troposphere deAtlantic Ocean. Note that the different air
masses above and below 5 km altitude for this sdemewere previously reported by Dyroff et al.
(2015). This sort of vertical stratification of tlheigin of the air masses reaching Tenerife, diagct
the unique behaviour of GB observed during AMISOC with maximum @Bl observed up to 500

m above the instrument’s altitude (e.g., Fig, 12 b)

As for the trajectories of the air masses reaclitiig du Midi, in general they come from the
Atlantic Ocean, from France or from Spain (e.g. B, note that the backward trajectories for each
day are provided in the Supplementary Material)gdRéless, the air masses arrived PDM after
passing over through the Pyrenees. Note that thenBgs and Spain are known to be strong sources
of isoprene from vegetation and/or pollution (Sinaral., 2001; Simpson et al., 1995, 1999; Jiang
et al., 2019). In addition, as shown in Fig. 1& tiberian Peninsula suffered biomass burning during
the measurement period at the Pyrenees. Overdlkeuat TEI, at PDM the retrieved GB
presented decreasing vertical profiles with a maxmvalue located nearby the altitude of the
instrument. An example of the GB retrieved at PDM is shown in Fig. 4b and theistias of the
CH,0 retrieved at PDM are provided in Fig. 5c. Furtdescussion on the evolution of GBI at
both sites will be addressed in Sect. 3.2.

Regarding BrO, there was no positive detectionrdfte DOAS retrieval and only an upper limit
(i.e., double of the measurement error) of the dethocompound could be set at each high-altitude
site. This was made using the RTM calculations nfad&ayleigh conditions for the limb viewing
direction (0°). Results indicate that the BrO uplpeit at TEI during July is of 0.8 pmol mbl(at

3.5 km a.s.l.). At PDM the BrO upper limit during@ember was 1.5 pmol miofat 2.9 km a.s.l.).
Note that this higher upper limit at PDM relatesworse lighting conditions compared to TEI
campaign. Both BrO vmr upper limits in the freepwephere are consistent with previous studies
(Volkamer et al. 2015; Wang et al. 2015).
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(b) Time Averaged Map of UV Aerosol Index daily 1 deg. [OMI OMTO3d v003]
over 2013-07-07 - 2013-08-01
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3.2. Formaldehyde at each site

For a better understanding of the evolution of,Ghh the free troposphere during each campaign,
Fig. 14 shows the Cl mixing ratios retrieved at each site (as showrFiop 6 and Fig. 7),
averaged over each site’s location up to 1 km highleus, in Fig. 14 the Ci# vmr are averaged
from TEI up to 4.5 km (mean altitude 4035 m a.suh)l from PDM up to 4 km (mean altitude 3438
m a.s.l). Note that these altitude ranges coveldbation of the CHD maximum at each station
and measurement time, simplifying therefore an veer of the CHO mixing ratio in the free
troposphere at each location. Additionally, Fig. dldo includes (in red) the amount of £H
expected from a simplified scheme where the maimcgoof CHO in a pristine troposphere is the
oxidation of background CHoy OH, and the main loss processes are photayglsoxidation by
OH (Equation 1-3; Platt et al., 1979):

CH,0+hv—->H+HCO (1)

CH,0 + hv - H, + CO (2)

CH,0 + OH — H,0 + HCO (3)

For the steady state calculation given by

k4[OH][CH4]

[CHZ O] - k3[OH]+]1+]2

(4)

and shown in Fig. 14, the OH concentration, phaislyates () ) and CH oxidation rate (K
used are those reported by Zhou et al. (1996)Herhigh-altitude site of Mauna Loa (latitude
19.47° N)

in summer (TEI) and autumn (PDM) values. The coiffit rate k used is based on Platt et al.
(1979) and the concentration of ¢Hsed is of 1851 nmol mdl mean value measured at 1IZO in
2013 with a standard deviation of less than 1%utjhout the year (Cuevas et al., 2015). The
concentration of OH in the troposphere is very depat of latitude, altitude and season (e.g.,
Lelieveld et al., 2016; Wolfe et al., 2019). Thgsjen the stability of Chlin a remote troposphere,
OH oxidation of CH and CHO is the main uncertaintp] in this simplified estimation of steady-
state CHO concentration. In this sense, sensitivity testhcate that, e.g., an overestimation of 20
% in the concentration of OH used in our work (Whig feasible given, for instance, the OH values
reported for a mid-latitude mountain site of simgdtitude as PDM, Fried et al. 1997), would lead
to an overestimation of ~14 % in the amount of,Ghkh the steady-state calculation (i&.CH,0]

~ 0.7 X A[OH]). Thus, in this case, the steady-state.QHralues provided in Fig. 14 would

represent simplified upper limits.
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Regarding the CHD mixing ratio, Fig. 14 shows the difference betwéeth remote sites. While
the mean free tropospheric M mixing ratio in the free troposphere of the Pgefniwas 0.35 +
0.12 nmol mot (PDM), at the Canary Islands (TEI) it was 0.97.28nmol mof (i.e., more than
double). This difference could be due to the faeit the AMISOC campaign took place during
summer (when CHD typically shows its seasonal maximum) and thedgidvlidi campaign took
place in summer/autumn. However, the photolysi€HEO at TEI (i.e., in the subtropics and at
higher altitude) is expected to be faster than RMPThus, if only local sources of GB are
considered, the high GB values observed at TEI are unexpected for ainmidtigh-altitude
location.

As shown in Fig. 14, overall, the observed OHat both sites exceeded the values expected for a
pristine troposphere with background methane as 1@&bO source, which could only explain 40
% and 0.4 % of the observations at PDM and TElpeetively. Moreover, the mean observed
CH,0 values at TEI were over 3 times higher than ptedifrom CH oxidation. But, in addition to
this background Ckl isoprene is also known to be a relevant@ldource producing about 20 % of
the global CHO budget (Stavrakou et al., 2009a; Bates and Ja2@b9). Therefore, if one
considers not only background ¢Hut also that 20 % of the observed £OHcould come from
isoprene, then both background sources (i.e., methad isoprene) could explain the observations
in the Pyrenees but they could only partially ekpthe CHO values measured at TEI (51%).

The observations at the Pyrenees might be expldipddMHC transported from the PBL to PDM,
like e.g. uplifted pollution from continental Spaand/or VOC emissions from the Pyrenees
(Gomez and Baldasano, 1999). Indeed, Spain isharratrong source of VOCs and particularly of
isoprene from vegetation and/or pollution (Jiangakt 2019) and, in addition to the above-
mentioned fires, in September/October a thermal imwtill present over the Iberian Peninsula
yielding in a thick convective boundary layer (Hkanand Castro, 2003). As for NMHC in Pic du
Midi region, isoprene is emitted at a rate of 20k4month" during the summer/autumn season
(Simpson et al., 1995). Also, Simon et al. (200dt)neated an isoprene emission of 3.6 ktand a
total biogenic VOC emission of 3.6 ki yrom the Pyrenees. Thus, although at PDM obsemsti
and calculation agreed when considering that 20f $heo CHO could derive from isoprene, that
contribution might be underestimated. Note thatthi® authors’ knowledge, this is the first time
CH.0 is reported in the Pyrenees.

The observations at the Canary Islands suggestascaunted strong uplifted source of CHThe
isoprene emissions from the forest under the obsiervsite could influence the values detected at
TEI, but cannot explain the uplifted @Bl layer encountered at Tenerife through one whalatim

This uplifted layer might relate to long-range spart of CHO precursors (VOC emissions)
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mainly from Africa due to synoptic scale conditiareund the ITCZ (Marais et al., 2014). Indeed,
after a study of the trajectories followed by th#fedent emissions from Africa during summer,
Meyer-Arnek et al. (2005) concluded that Africam ajasses could be lifted up to the mid
troposphere and transported at high altitudes faayafrom their source region. They also
concluded that the air masses showing@ldnhancement further from the source region (uigta

of days), where those affected by biomass burnlagi¢ot et al., 2008). Thus, NMHC emitted from
the biomass burning in Africa (and in Canada) aaddported at high altitude to Tenerife seems a
reasonable source for the detected,@lduring AMISOC. Such an uplifted layer of @M and its
precursors transported from Africa and Canada &gieement with the recent studies of Behrens et
al. (2019) and Alvarado et al. (2020). Further stigations with e.g. airborne observations would
be helpful to track the air masses and study th@ugen and transformation of GB and its
precursors from their source regions —such wildfireinto the free troposphere, as well as their
long-range transport. Indeed, the current effortthd scientific community on recent aircraft
campaigns encountering fire plumes such e.g. dihiedC-8 ATom 2016-2018 in remote regions,
the HALO CAFE-2018 mission over West Africa or SOLRAC mission in Southern America in
fall 2019, will tackle this issue and might alssiasto improve the parametrization of chemical

transport models (CTMs) that could be used to asbesimpact of wildfires worldwide.
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Fig. 14: Time series of the mean @Bl mixing ratios observed at TEI (a) and PDM (b)e Malues
are averaged within the first kilometre above estettion (up to 4.5 km in TEI and up to 4 km in
PDM). The night periods are given in grey, the @asi with lack of measurements due to bad
weather are dashed and the values below detedtnitnare shown in black. Formaldehyde yield
from its steady state is marked in red. Note timeeseertical scale at both sites.
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4. Summary and conclusions
This study reports on formaldehyde (&M vertical profiles at the high-altitude sitesElf Teide

(Canary Islands) and Pic du Midi (French Pyrenedsjng ground-based multi-axis differential
optical absorption spectroscopy during two fielanpaigns in July (TEI) and September (PDM)
2013, observations indicate a mean,OHnaxima of 0.5 + 0.2 nmol mblat 2.9 km altitude at
PDM, and an uplifted layer of GB at 3.8 km at TEl (mean maxima of 1.3 + 0.3 nmal
gradually decreasing levels towards instrumentéalion limit. The PDM CHO levels reported
are slightly above levels expected from pristin@iremment, suggesting influence from natural
and/or anthropogenic isoprene emissions (i.e.;GCHrecursor) from the Pyrenees and/or Spain.
The unexpected uplifted GB layer detected at TEI during the whole measurérmampaign (~ 1
month), rather than the presence of a@ldource in the nearby region of El Teide, poiotgards
effective recycling and long transport (convectammd advection) of hydrocarbons. In agreement
with recent studies, observations at TEI suppogt itifluence of wildfires (mainly African) on
emission and recycling of GB and its source products which, in this case,aaheected and
uplifted to TEI increasing the reactivity of thebswpical North Atlantic free troposphere during
the summer months. The possibility of such a laamgge transport of Ci and/or its source
products should be further investigated with dedidacampaigns and CTMs. Along with
investigations on CHD, this study also reports on reactive BrO uppmitéi of 0.8 and 1.5 pmol
mol™* at TEl and PDM, respectively. Therefore, this gtadntributes to broadening the knowledge
of the chemical composition of the free troposphegarding VOCs and reactive halogens in mid-

and sub-tropical latitudes.
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