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ABSTRACTABSTRACTABSTRACTABSTRACT        19 

Formaldehyde (CH2O) is a tracer of the photochemical activity of the atmosphere. Linked to air 20 

quality, CH2O is an ozone (O3) precursor and serves as a proxy for natural and anthropogenic 21 

reactive organic emissions. As a product of the photooxidation of methane (CH4) and other 22 

hydrocarbons (e.g., isoprene), CH2O represents an important source of radicals in the remote free 23 

troposphere. This work aims at improving the characterization of this part of the troposphere where 24 

data are scarce. In particular, this study assesses the presence of CH2O at two high-altitude remote 25 

sites: El Teide (TEI, 3570 m a.s.l., Tenerife, Canary Islands, Spain) and Pic du Midi (PDM, 2877 m 26 

a.s.l., French Pyrenees). Through ground-based remote sensing measurements performed during 27 

two field campaigns in July (TEI) and September (PDM) 2013, this study presents the vertical 28 

distribution of CH2O at both locations. Results at PDM show that CH2O mixing ratios follow a 29 

decreasing vertical profile with a mean maximum of 0.5 ± 0.2 nmol mol-1 (i.e., ppbv) at the 30 

instruments’ altitude. At TEI, observations indicate an uplifted layer of CH2O with a mean 31 

maximum of 1.3 ± 0.3 nmol mol-1 at 3.8 km a.s.l. (i.e., 300 m above the instrument’s altitude). At 32 

both remote sites, the observed CH2O levels are higher than expected for background methane 33 

oxidation (a threefold increase in the case of TEI). Air mass back trajectory analysis links CH2O 34 
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observations with abundant natural (e.g. forests) and/or anthropogenic isoprene emissions from the 35 

region nearby PDM, while the high CH2O levels detected at TEI indicate in-plume formation of 36 

CH2O resulting from its precursors emitted from west-African and Canadian fires. Finally, as a key 37 

trace gas for O3 and HOx chemistries, we estimate the upper limit of bromine monoxide (BrO) in 38 

the free troposphere at TEI and PDM to be 0.8 and 1.5 pmol mol-1 (i.e., pptv) respectively. 39 

 40 

  41 
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1111....    IntroductionIntroductionIntroductionIntroduction    42 

Formaldehyde (CH2O) is a volatile organic compound (VOC) that plays an important role in the 43 

tropospheric chemistry and budget of O3, HOx (OH + HO2) and NOx (NO + NO2). Ubiquitously 44 

present in the Earth’s atmosphere, formaldehyde’s vertical and geographical distribution is not 45 

homogenous and has been the subject of investigations for decades. Kitchens et al. (1976) presented 46 

a review of CH2O in polluted environments and its related health risks, while Lowe and Schmidt 47 

(1983) addressed the relevance and challenges of measuring CH2O in the non-urban atmosphere. 48 

Currently, CH2O is considered one of the Essential Climate Variables by the WMO (GCOS, 2016) 49 

and measurements of its atmospheric abundance are a key for a better understanding of the 50 

oxidizing mechanisms in the troposphere, for tracking CH2O emissions and their embedded 51 

hydrocarbon reactions as well as for parametrizing atmospheric chemical and transport models. 52 

Although a small fraction of CH2O (< 2%) enters the troposphere directly from biomass burning or 53 

from anthropogenic or vegetation emissions (Andreae and Merlet, 2001; Olivier et al., 2003; 54 

Lathière et al., 2006), most of the CH2O in the atmosphere is a secondary product of the oxidation 55 

of methane (60 %, with a production rate of 1600 Tg/yr) and non-methane hydrocarbons (NMHC), 56 

mainly isoprene (~20 %, Stavrakou et al., 2009a; Bates and Jacob, 2019). As for the CH4 oxidation 57 

channel, one of its intermediate products is methyl peroxy radical (CH3O2), which proceeds reacting 58 

primarily with NOx (NO + NO2) in the semi- and polluted atmosphere, yielding methoxy radical 59 

(CH3O) and then CH2O (Lowe and Schmidt 1983; Wolfe et al., 2016). In unpolluted environments 60 

(NO < 20 pmol mol-1), CH3O2 reacts with HO2 forming methyl hydroperoxide (CH3OOH), 61 

eventually yielding CH2O. In addition to reactions with OH and photolysis (e.g., von Kuhlmann et 62 

al., 2003), CH3OOH can be lost through heterogenous reactions, thus aerosols may indirectly 63 

regulate the presence of CH2O.  64 

Regarding CH2O loss processes, its main sink is photolysis at λ ≤ 350 nm (Crutzen 1988), resulting 65 

in an increase of atmospheric carbon monoxide (CO) which is an ozone precursor. Also, reaction 66 

with the hydroxyl radical (OH) and washout and dry deposition can contribute to CH2O losses 67 

(Solberg et al., 2001). As for the CH2O lifetime, although it can span up to 2 days, in the sunlit 68 

atmosphere it is only a few hours (Lowe and Schmidt, 1983; Sander et al., 2006). Due to this short 69 

lifetime, CH2O is often used as a constraint for determining direct emissions of non-methane VOC.  70 

During the last two decades, global tropospheric columns of CH2O have been intensively monitored 71 

by different satellites (GOME/ERS2, SCIAMACHY/Envisat, GOME2/MetOp, OMI/Aura, 72 

TROPOMI/S5P; e.g., Chance et al., 2000; De Smedt et al., 2018) aiming at characterizing the 73 

tropospheric chemical processes, mainly those linked to air quality or climate change (Schroeder et 74 
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al., 2016). In fact, CH2O is one of the very few VOC that can be detected by satellite and several 75 

studies have aimed at determining VOC emissions at a global scale using CH2O satellite 76 

observations (Palmer et al., 2003; Stavrakou et al., 2009a, b; Bauwens et al., 2016) often assisted by 77 

numerical models. Also, by means of satellite observations of CH2O along with chemical models, 78 

the distribution of OH in the remote troposphere can be inferred (Wolfe et al., 2019). The down-79 

scaling effort of the satellite and model community to understand CH2O and the oxidizing 80 

mechanisms within emission plumes makes essential the characterization of pristine areas since in 81 

those regions the low signal-to-noise ratio of the satellite observations results in worse data quality 82 

and the VOC inventories are scarce. 83 

Despite all the years that CH2O has been a scientific target, very few studies have been performed 84 

in remote areas (Platt et al., 1979; Lowe and Schmidt, 1983; de Serves 1994; Arlander et al., 1995, 85 

Riedel et al., 1999; Mahajan et al., 2010; Vigouroux et al., 2018) since determining its presence and 86 

vertical distribution in the remote troposphere is indeed an instrumental challenge. Several studies 87 

have addressed the budget of CH2O in the free troposphere from airborne observations (Lowe et al., 88 

1980; Arlander et a., 1995; Singh et al., 2001; Nicely et al., 2016; Anderson et al., 2017; Wolfe et 89 

al., 2019; Kluge et al., 2020) and also from measurements at high-altitude sites in The Andes (Pico 90 

Espejo, 4765 m, Schreier et al., 2016), in Mexico (Altzomoni, 3980 m; Vigouroux et al., 2018), in 91 

Reunion Island (Maïdo, 21600 m; Vigouroux et al., 2018), in the USA (Mauna Loa, 3397 m, Heikes 92 

et al. 1992; Zhou et al 1996; Cantrell et al., 1996; Vigouroux et al., 2018, and Idaho Hill, 3000 m, 93 

Fried et al., 1997; Cantrell et al., 1997; Harder et al, 1997), in The Alps (Jungfraujoch, 3580 nm, 94 

Legreid et al., 2008; Balzani Lööv et al., 2008; Franco et al., 2015, and Zugspitze, 2962 m, 95 

Leuchner et al., 2016; Schreier et al., 2016; Vigouroux et al., 2018), in the Apennines (Mt. Cimone, 96 

2165 m, Fischer et al., 2003) and in the Canary Islands (Izaña-IZO, 2360 m, Fischer et al., 1998; de 97 

Reus et al., 2005; Salisbury et al., 2006; Vigouroux et al., 2018). Overall, these studies set the 98 

values of CH2O in the free troposphere between 0.1 and 1 nmol mol-1, with high variability 99 

depending on season (minimum in winter and maximum in summer), location and altitude, and 100 

reaching up to 5 nmol mol-1 in case of upslope pollution transported from the planetary boundary 101 

layer (PBL). The above-mentioned studies expanding beyond the PBL into free troposphere, report 102 

a vertical distribution of CH2O with a decreasing profile and a weak diurnal variation in the free 103 

troposphere.  104 

This study aims at a better understanding of the chemical composition of the free troposphere by 105 

providing observations from two different environments: from an island in the subtropical region 106 

and from the Pyrenees, more exposed to European pollution. In particular, this work reports ground-107 

based remote sensing observations of CH2O and BrO from two remote high-altitude sites: El Teide 108 
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(TEI, Tenerife, Canary Islands, Spain; 3570 m) and Pic du Midi (PDM, French Pyrenees; 2877 m). 109 

During two field campaigns (AMISOC-TEI and Pic du Midi-PDM) in July (TEI) and September 110 

(PDM) 2013, a MAX-DOAS instrument (Multi-Axis Differential Optical Absorption Spectroscopy; 111 

Hönninger et al., 2004; Wagner et al., 2004; Platt and Stutz, 2008) scanned the troposphere 112 

vertically in order to gain insights regarding the atmospheric composition at the measurement 113 

locations. This work first describes the field campaigns as well as the measurement sites and 114 

methodology. Then, it presents the observations to, later on, discuss the presence of CH2O at the 115 

two mountain sites and address the upper limit of BrO at the sites during each field campaign. 116 

2222....    Measurements and methodsMeasurements and methodsMeasurements and methodsMeasurements and methods    117 

This section describes the two field campaigns and observational sites referred to in this study, 118 

along with the measurement method during both campaigns. 119 

2.12.12.12.1....    Field campaigns and sites descriptionField campaigns and sites descriptionField campaigns and sites descriptionField campaigns and sites description    120 

During July and September/October 2013, two different one-month field campaigns took place at 121 

two different remote high-altitude sites (El Teide and Pic du Midi, see Fig. 1). Given the scarcity of 122 

observations in the free troposphere (i.e., above 2000 m a.s.l.; Chevalier et al., 2007), the goal of the 123 

campaigns was to characterize the composition of that part of the atmosphere. Indeed, the 124 

possibility of performing consecutive ground-based observations from El Teide and Pic du Midi 125 

presented itself as a unique opportunity to investigate the free troposphere in two different 126 

environments (marine and continental) and in different latitudinal locations (sub-tropics and mid-127 

latitudes). In the following, each field campaign and characteristics of the observational sites are 128 

described. 129 

 130 

 131 

 132 

 133 

 134 

 135 
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 139 

 140 
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 167 

Fig. 1: Mean formaldehyde tropospheric column density during 2013 as observed from space. The 168 

observational sites referred to in this work are indicated in black (El Teide-TEI and Pic du Midi-169 

PDM). The satellite data belong to the Ozone Monitoring Instrument (OMI) on the Aura platform 170 

(http://h2co.aeronomie.be, last access 09/11/2019). 171 

 172 

2.1.1. 2.1.1. 2.1.1. 2.1.1. AMISOC campaign at El Teide (28.27° N, 16.64° W, 3570 m a.s.l.)AMISOC campaign at El Teide (28.27° N, 16.64° W, 3570 m a.s.l.)AMISOC campaign at El Teide (28.27° N, 16.64° W, 3570 m a.s.l.)AMISOC campaign at El Teide (28.27° N, 16.64° W, 3570 m a.s.l.)    173 

Within the framework of the AMISOC research project led by INTA (Spanish National Institute for 174 

Aerospace Technology), a field campaign took place in July 2013 at the island of Tenerife (Canary 175 

Islands, Spain) in the Atlantic Ocean. The major target of the campaign was the study of the 176 

tropospheric vertical distribution of minor species related to the ozone chemistry in an oceanic 177 

environment. The specific goal of team of the Spanish National Research Council (CSIC) within 178 

AMISOC was to explore the presence and vertical distribution of UV-absorbing trace gases such as 179 

halogen oxides (BrO) and VOCs (CH2O) in the remote free troposphere in the sub-tropics. 180 

In collaboration with INTA and the Izaña Atmospheric Research Center (IARC) from the State 181 

Meteorological Agency of Spain (AEMET, Cuevas et al., 2017), the CSIC team installed a MAX-182 
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DOAS instrument at El Teide (TEI) from 7th July until 1st August 2013. The instrument was 183 

mounted on a hut nearby the upper cable car station of El Teide National Park, approximately 1200 184 

m above the Izaña Observatory (IZO, IARC), and ~150 m below the summit of the volcano El 185 

Teide. 186 

TEI sits at a very dry environment under high insolation most of the year. Although TEI itself is not 187 

a permanent measurement site, multiple atmospheric observations have been performed for decades 188 

at IZO (i.e., ~1 km below TEI). These investigations describe IZO as free troposphere background 189 

conditions. The site is usually above the temperature inversion layer, and periodically impacted by 190 

the Saharan Air Layer, mainly in summer (Cuevas et al., 2013, 2017; Rodríguez et al., 2011; García 191 

et al., 2014). Indeed, IZO is a well-established and characterized research center that is part of the 192 

World Meteorological Organization-Global Atmospheric Watch Programme (WMO-GAW) and its 193 

predecessor Background Atmospheric Pollution Monitoring Network (BAPMoN) since 1984. IZO 194 

also contributes to several international research networks such, e.g., the AErosol RObotic 195 

NETwork (AERONET), the Network for the Detection of Atmospheric Composition Change 196 

(NDACC) or the Total Carbon Column Observing Network (TCCON) (Cuevas et al., 2015).  197 

2.1.2. 2.1.2. 2.1.2. 2.1.2. Pic du Midi campaign (42.93° N, 0.13° E, 2877 m a.s.l)Pic du Midi campaign (42.93° N, 0.13° E, 2877 m a.s.l)Pic du Midi campaign (42.93° N, 0.13° E, 2877 m a.s.l)Pic du Midi campaign (42.93° N, 0.13° E, 2877 m a.s.l)    198 

From 15th September until 13th October 2013, the same MAX-DOAS instrument from AMISOC 199 

was deployed at the Pic du Midi Observatory (PDM) in the French Pyrenees. The goal of the 200 

campaign, organized by the University of Toulouse, was to investigate the oxidation pathways of 201 

mercury (Hg) in the free troposphere. As in AMISOC, the specific goal of the CSIC-DOAS 202 

observations was to assess the presence of reactive compounds such as halogens (BrO) or aldehydes 203 

(CH2O) in the free troposphere, this time in the mid-latitudes. During the campaign, the MAX-204 

DOAS measurements were performed from the facilities of the Atmospheric Research Laboratory 205 

at PDM, along with observations of Hg, CO and O3 (Marusczak et al., 2017). 206 

The PDM (http://p2oa.aero.obs-mip.fr/) is part of the Observatoire Midi-Pyrénées and is a GAW 207 

station since 2018, offering long-term astronomical and atmospheric observations since the 19th 208 

century.  From an air quality point of view, the site is defined as “mostly remote” (Henne et al. 209 

2010) and, since PDM sits on top of the Pic du Midi de Bigorre and hence 1300 m above the 210 

surrounding area, the location has often been used as a remote location for free-tropospheric 211 

observations (Marenco et al. 1994). Under predominant westerly winds, the PDM generally 212 

receives humid air masses from the Atlantic Ocean. Warming of the surrounding plains leads to up-213 

slope winds during daytime, carrying pollutants (Hg, CO, black carbon) up to the PDM (Fu et al., 214 

2016). During nighttime, the PDM katabatic winds bring free tropospheric air to the PDM, 215 
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providing a window into the middle and upper free troposphere (2-8 km, Marenco et al. 1994; 216 

Gheusi et al., 2011; Fu et al. 2016). 217 

 218 

2.22.22.22.2....    Remote sensing mRemote sensing mRemote sensing mRemote sensing methodethodethodethod    219 

The MAX-DOAS instrument deployed during both campaigns consisted of two units (indoor and 220 

outdoor units) and it was previously described in the work of Prados-Roman et al. (2015) and 221 

references therein. Thus, only a brief description is provided here. In summary, through a scanning 222 

telescope and a 10 m long optic fiber bundle, the scattered skylight of the sunlit atmosphere was 223 

directed from the weatherproof outdoor unit to the indoor unit. The latter consisted of a Princeton 224 

CCD camera and a 0.5 m Czerny-Turner spectrometer with mobile mirrors and a 600 groove/nm 225 

grating on a rotating turret. That turret was automatically moved every 25 min in order to change 226 

the diffracting angle so we could gather spectra in the UV and in the Vis range. In this work, only 227 

UV data will be referred to. The set-up yielded an instrumental field of view (FOV) of 0.5° and a 228 

spectral resolution of 0.5 nm (FWHM). Figure 2 shows the outdoor units as deployed at each site. 229 

Although the concept of the measurement routine scanning the atmosphere at discrete elevation 230 

angles from the limb to the zenith was the same during both campaigns, the details were slightly 231 

different depending on the location. In the case of the deployment at TEI, the instrument FOV 232 

azimuth angle was fixed at 62º (0° is North) and the chosen scanning elevation angles above the 233 

instrument plane were -1, 0, 1, 2, 3, 5, 10, 30, 70 and 90 degrees (~3minutes/scan). In the case of 234 

PDM set-up, the azimuth angle of the MAX-DOAS instrument was 195º while the elevation angles 235 

were set to -2, -1, 0, 1, 2, 20 and 90º (~2 minutes/scan). Note that in both cases, the MAX-DOAS 236 

observations were performed only for solar zenith angles (SZA) lower than 70º (SZA 90° is 237 

overhead sun), minimizing possible contribution of stratospheric trace gases to the retrieval of the 238 

aimed tropospheric constituents.  239 

 240 

 241 
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 242 

Fig. 2: Outdoor unit of the MAX-DOAS instrument installed at the two research sites. At Tenerife 243 

(a), the outdoor unit of the instrument was mounted on the roof of a hut at 3570 m a.s.l., just below 244 

El Teide’s summit (3718 m a.s.l., shown in the photograph). At the Pyrenees (b), the instrument was 245 

placed on the roof of the Atmospheric Chemistry Platform at the PDM (2877 m a.s.l.), with the field 246 

of view towards the South (195°). In both cases, through a rotating mirror inside the outdoor unit, 247 

the atmosphere was scanned vertically from the limb to the zenith. 248 

 249 

2.2.12.2.12.2.12.2.1....    Spectral retrieval of trace gasesSpectral retrieval of trace gasesSpectral retrieval of trace gasesSpectral retrieval of trace gases    250 

The procedure for the DOAS (Differential Optical Absorption Spectroscopy; Platt and Stuzt, 2008) 251 

spectral retrieval of the trace gases was the same for both datasets and the software used for the 252 

spectral retrieval in both campaigns was QDOAS (Danckaert et al., 2017). Following the settings 253 

suggested by Pinardi et al. (2013) where the authors performed a thorough comparison and 254 

validation exercise for MAX-DOAS observations, the spectral retrieval of CH2O was performed in 255 

the 336.5-359 nm spectral window (further details are provided in Table 1). An example of the 256 

spectral fit is shown in Fig. 3. 257 

In the case of TEI observations, due to saturation issues, the spectra acquired at elevation angles of 258 

90° and at SZA < 20º were filtered out and not used at all (i.e., no observations between noon and 259 

2:30 pm). As for the analysis procedure, the spectra were analyzed against the spectra with the 260 

higher elevation angle of each scan (i.e., 70° in TEI, 90° in PDM). In the case of the PDM 261 

campaign in the Pyrenees, where weather conditions were highly variable, the PDM-DOAS data 262 

were cloud-filtered. This was not needed in the cloud-free conditions of the TEI campaign. Further 263 

details on the data quality filtering are provided in the Supplementary Material.  264 

 265 
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Table 1: Summary of the settings used for the spectral retrieval of CH2O (after Pinardi et al., 2013). 266 

Parameter Specification 
Absorption cross sections  

CH2O Meller and Moortgat (2000) 
O3 Bogumil et al. (2003) 
NO2 Vandaele et al. (1996) 
BrO Fleischmann et al. (2004) 
O4 Thalman and Volkamer (2013) 
Ring  QDOAS (Chance and Spurr, 1997) 

Closure term 5th order polynomial 
Wavelength calibration Based on reference solar spectrum (Chance and Kurucz, 2010) 
Intensity offset Linear 
 267 

 268 

In addition to CH2O, the presence of BrO in the free troposphere was also investigated at both high-269 

altitude sites. Using the same absorption cross sections as those for the CH2O spectral retrieval 270 

(Table 1), the BrO DOAS analysis was performed in three different spectral windows: in the 271 

classical two BrO absorption bands (346 - 359 nm) suggested by Aliwell at el. (2002), in the 336.5-272 

359 nm range covering 4 bands (i.e., window of the CH2O retrieval) and, based on the work of 273 

Franco et al. (2015), also in the region of 328.5-359 nm (i.e., 6 BrO absorption bands) where the 274 

correlation between the BrO and CH2O absorption cross sections is minimum. Moreover, the BrO 275 

retrieval in those windows was also tested by fixing CH2O to the average slant column density 276 

inferred at each station. Despite several tests, there was no positive spectral detection of BrO (i.e., 277 

no signatures above the residual of the DOAS fit). Hence in this work only upper limits of BrO at 278 

each site are reported (Sect. 3.1). Note that excluding the BrO cross section of the CH2O spectral fit 279 

decreased the CH2O differential slant column densities (dSCD) in only 1 % (within the 15 % mean 280 

error of the CH2O dSCD, see Supplementary Material). Similarly, including the water absorption 281 

(Polyansky et al., 2018) in the spectral fit of CH2O does not affect the retrieved CH2O dSCD (refer 282 

to the Supplementary Material).    283 

In order to invert the retrieved dSCD at the different elevation angles into the vertical distribution of 284 

the target gases, additional information regarding the light path is needed. The standard method for 285 

MAX-DOAS observations is to retrieve the O2-O2 collision induced absorption (i.e., O4; Thalman 286 

and Volkamer et al., 2013) since its vertical distribution is known in the atmosphere. In this work, 287 

the spectral retrieval of O4 was performed between 339-367 nm using the same absorption cross 288 

sections as for CH2O (Table 1).  289 

 290 
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 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 

 305 

 306 

 307 

Fig. 3: Example of the DOAS spectral fit of CH2O. The measurement was taken on 19th July 2013 308 

at TEI (10:30 UTC) for an elevation angle of 0º.  The fit of the absorption cross sections is provided 309 

in red while the measured features are shown in black. The retrieved CH2O dSCD correspond to 310 

3.76·1016 molec cm-2 (RMS = 1.88·10-4). 311 

 312 

2.2.22.2.22.2.22.2.2....    Inversion of vInversion of vInversion of vInversion of vertical ertical ertical ertical pppprofilerofilerofilerofile    distributiondistributiondistributiondistribution    313 

The inversion of the vertical profile distribution of CH2O was performed by means of the “O4 314 

method” (Wagner et al., 2004; Frieß et al., 2006) in a two-step approach: (1) the vertical profile of 315 

the aerosol extinction coefficient (AEC) was first inverted from the retrieved O4 dSCD, and (2) the 316 

obtained aerosol profile is used as input in the inversion of the trace gas vertical profile distribution. 317 

Note that only positive elevation angles (≥ 0º) were used in the vertical profile retrievals. These 318 

retrievals were performed with the Linearized Discrete Ordinate Radiative Transfer (LIDORT) 319 

radiative transfer model (Spurr et al, 2008) as part of the BePRO inversion algorithm (BIRA, 320 

Clémer et al. 2010), based on the Optimal Estimation Method (OEM, Rodgers, 2000). In order to 321 

use this method, measurements (Se) and a prior (Sa) covariance matrices must be provided. Se is a 322 

diagonal matrix whose diagonal terms correspond to the squared error coming from the DOAS fit. 323 

Diagonal elements of Sa correspond to 100% of the a priori profile when the CH2O profiles are 324 

estimated. Diagonal values of Sa for aerosol retrieval were calculated following (Clémer et al., 325 

2010), using a scaling factor (β) of 0.4. This method allows to capture large variations of the aerosol 326 

concentrations, as those observed at Tenerife (Cordoba-Jabonero et al., 2016) when Saharan dust 327 

intrusions take place. In both cases (CH2O and aerosols), Sa non-diagonal elements correspond to a 328 
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Gaussian distribution (Hendrick et al., 2004) with a correlation length of 100 m. The averaging 329 

kernel matrix of the retrieval, as defined in Rodgers (2000), describes the sensitivity of the retrieved 330 

profile to the true state. Its trace provides the degrees of freedom of the retrieval. In this work, only 331 

inversions with degrees of freedom equal or higher to 1 were considered (i.e., at least a piece of 332 

information of the profiles came from the measurements and not from the a priori). The atmospheric 333 

characterization of TEI and PDM was obtained from the standard atmosphere (Anderson et al., 334 

1986) for tropical and mid-latitudes, respectively. The considered atmospheric vertical grid consists 335 

of layers 100 m thick up to 6 km, layers 500 m thick between 6 and 8 km and equal to the standard 336 

atmosphere above. The surface albedo has been set to 0.07 for both stations. This value is typical of 337 

sea water for the UV-A spectral range (Chadysiene and Aloyzas, 2008) and it is also an 338 

intermediate value between pasture (0.0243) and limestone (0.11) for the UV radiation (Turner et 339 

al., 2018), corresponding to the observed scenarios at TEI and PDM respectively. In the radiative 340 

transfer model, aerosols were characterized through their phase moments and single scattering 341 

albedo (SSA). For TEI, these parameters were obtained from available AERONET data 342 

corresponding to the studied days. For PDM, there were no available AERONET data for the 343 

studied period, thus several reasonable values for SSA and the asymmetry parameters (γ) were 344 

tested, finally choosing those providing the best fit between simulated and calculated dSCDs 345 

(SSA=0.95, γ=0.65). Then, phase moments were calculated using Heyney-Greenstein phase 346 

functions. 347 

For the vertical profile retrieval of aerosols extinction and CH2O volume mixing ratio (vmr) at both 348 

stations, an a priori vertical profile exponentially decreasing with altitude was considered. This 349 

assumption is based on the fact that its photolysis (CH2O main sink) increases with altitude as well 350 

as with the distance from the emission sources in the PBL. In addition, the concentration of OH 351 

decreases with altitude and so does the oxidation of CH4 (CH2O main source in the free 352 

troposphere) (Lowe et al., 1980; Arlander et al., 1995; Singh et al., 2001; Lawrence et al., 2001; 353 

Nicely et al., 2016). Aerosol optical depth (AOD) corresponding to the aerosol a priori profile was 354 

0.01 and 0.005 for TEI and PDM, respectively. Vertical column density (VCD) values for the a 355 

priori profiles of CH2O were 0.7·1015 molec cm-2 and 1.0·1015 molec cm-2 for TEI and PDM, 356 

respectively. These values of AOD and VCD provided the best fit between simulated and observed 357 

dSCDs of O4 and CH2O, respectively. The degrees of freedom of the vertical profiles retrieved in 358 

this work were 1.9 ± 0.2 and 1.6 ± 0.2 for CH2O at TEI and at PDM, respectively (i.e., mean ± 359 

standard deviation); and 2.8 ± 0.4 and 2.4 ± 0.3 for the aerosol retrieval (TEI and PDM, 360 

respectively).  361 
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An example of a CH2O vertical profile retrieved at TEI and at PDM, referred to also later on, is 362 

shown in Fig. 4. The statistics of all the CH2O and AEC inverted vertical profiles at each site are 363 

summarized in Fig. 5. 364 

 365 

 366 

Fig. 4: Examples of inferred CH2O vmr vertical profiles. The example (a) corresponds to 367 

observations performed at El Teide (8th July 2013, 9 am UTC) and (b) to observations performed at 368 

PDM on 26th September, 2013 (9.45 UTC). The dotted line on both plots indicates the average 369 

detection limit. Note that the vertical scales are different in both plots. 370 

 371 

  372 
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 373 

Fig. 5: Box charts of the vertical profiles of CH2O vmr (left: a, c) and AEC (right: b, d) at TEI 374 

(up: a, b) and PDM (down: c, d) at each retrieval grid layer. Note the same vertical scales at 375 

each site. The a priori profiles for the inversion are provided in cyan (CH2O) and green (AEC). 376 

Only cloud free data are considered.  377 
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3333....    Results and Results and Results and Results and ddddiscussioniscussioniscussioniscussion    378 

This section presents the vertical distribution of CH2O and aerosol extinction coefficient retrieved at 379 

each site. Also, this section reports the BrO upper limit and discusses CH2O observations at each 380 

site.  381 

3.1. 3.1. 3.1. 3.1. CHCHCHCH2222O and aerosolO and aerosolO and aerosolO and aerosol vevevevertical rtical rtical rtical distributiondistributiondistributiondistribution    382 

The time series of the CH2O and AEC vertical profiles during the two research campaigns are 383 

shown in Fig. 6 (TEI) and Fig. 7 (PDM).  From the aerosol load point of view, both stations 384 

presented rather clear conditions although the aerosol optical depth was generally higher at TEI 385 

where a strong intrusion of Saharan dust took place on the last day of the campaign. Overall, both 386 

stations presented a mean aerosol extinction coefficient of ~0.05 km-1 at the instrument’s altitude 387 

(0.04 km-1 at 3570 m at TEI, and 0.06 km-1 at 2877 m at PDM). At PDM, most of the extinction was 388 

located between the research site and an altitude of 4 km. However, at TEI, a higher AEC was often 389 

found above the instrument’s location. As for CH2O, the median of the retrieved mixing ratio 390 

vertical profiles indicated that, while the maximum vmr is at the instrument’s altitude during the Pic 391 

du Midi campaign (0.5 ± 0.2 nmol mol-1 at 2.9 km a.s.l.), during AMISOC the maximum CH2O vmr 392 

was located hundreds of meters above the instrument’s altitude (0.7 ± 0.2 nmol mol-1 at TEI and 1.3 393 

± 0.3 nmol mol-1 at about 3.8 km a.s.l.). The mean CH2O detection limit (i.e., double of the error of 394 

the retrieval) at the instrument’s altitude was between 0.1 and 0.3 nmol mol-1 at both sites. Further 395 

details of the vertical profile inversion at each site and its statistics are provided in the 396 

Supplementary Materials.  397 

As previously mentioned, unless ventilation from the PBL takes place, the vertical profile of CH2O 398 

in the troposphere is usually assumed to decrease with altitude. While in this work this is the case 399 

for the vertical profiles retrieved at PDM, it is not the case for TEI observations. The unique 400 

distribution of CH2O at TEI with a maintained uplifted maximum throughout AMISOC is unlikely 401 

related to upslope transport of air masses from the PBL since in summer a thick (~200 m) and 402 

strong temperature inversion (ΔT~+3ºC) associated to the top of the marine boundary layer is found 403 

between 1500 and 1800 m a.s.l. (Carrillo et al., 2016), far below TEI altitude. During AMISOC, the 404 

meteorological vertical profiles from the radiosondes launched at Güímar (Tenerife) showed these 405 

characteristics. As an example, Fig. 8 shows the Skew t –Log P diagram of the radiosonde 406 

corresponding to the 8th July 2013 (CH2O vertical profiles of this day are shown in Fig. 4a). On this 407 

day, there was a very strong temperature inversion (ΔT~+10ºC) between ~ 860 m a.s.l. (base of the 408 

temperature inversion) and ~ 1400 m a.s.l. (top of the temperature inversion), preventing ventilation 409 

from the PBL (see Supplementary Materials with the Skew t –Log P diagram plots of the 12 UTC 410 
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WMO- 60018 radiosonde station corresponding to the period July 1 –August 3, 2013). Although 411 

TEI itself is an arid site, a possible nearby emission of CH2O (and/or its precursors) above the PBL 412 

could be the pine forest below TEI that expands from 600 m up to 2000 m a.s.l. (Cuevas et al., 413 

2013) and could well be a source of isoprene, a biogenic VOC that produces 18% of the CH2O 414 

found globally (Bates and Jacob, 2019). However, if upslope transport of air masses takes place and 415 

the origin of the CH2O observed at TEI was solely this forest, given the high irradiation at this 416 

altitude in this subtropical region, a decreasing CH2O vertical profile would be expected with its 417 

maximum located around IZO (i.e., 1.2 km bellow TEI), not 1800 m above the tree line (and over 418 

300 m above TEI). Note that during similar time of the year as AMISOC, previous studies 419 

performed at IZO reported on CH2O vmr similar to the ones observed in this work at TEI’s altitude 420 

(i.e., no decreasing CH2O vertical profile between IZO and TEI). With in-situ analyzers placed at 421 

IZO, de Reus et al. (2005) and Salisbury et al. (2006) reported 0.65 nmol mol-1 mean CH2O daily 422 

values for non-dust conditions. Similar findings were made by Fischer et al. (1998), whose study 423 

already pointed out the high CH2O values observed at IZO as compared to box model results and to 424 

observations at the remote site of Mauna Loa. Also, the MAX-DOAS observations do not represent 425 

in-situ measurements but an average of the properties of air masses tens of kilometers away from 426 

the instrument’s location (Gomez et al., 2014). Thus, the CH2O uplifted maximum detected during 427 

AMISOC agrees with an advected layer around El Teide that sits at ~4 km altitude throughout July 428 

2013 (i.e., just above the volcano’s summit). As depicted in the 22-year study of Cuevas et al. 429 

(2013), the air masses arriving at IZO during the month of July come from the west (Atlantic Ocean 430 

or Canada), or from the east (from the Sahel region and the northern savannas of Africa). This is 431 

also shown by the backward trajectories calculated with the HYbrid Single-Particle Lagrangian 432 

Integrated Trajectory model (HYSPLIT, Stein et al., 2015, https://www.arl.noaa.gov/hysplit/, last 433 

access: 09/11/2019) at TEI during AMISOC (e.g., Fig. 9, note that the backward trajectories for 434 

each day are provided in the Supplementary Material).  During AMISOC, during few days (7th, 15th, 435 

20th and 21st July) the air masses arriving at TEI’s altitude crossed the Atlantic Ocean. However, 436 

most of the time the air masses arriving at TEI originated from the northern savannas of Africa 437 

(e.g., 8th July) or from the Sahel region (e.g., 22th July). In July, these two African regions are within 438 

the Inter Tropical Convergence Zone (ITCZ) influence (see Supplementary Material, Fig. S3), with 439 

deep convection lifting air masses straight up into the free troposphere and transporting them 440 

poleward (Nicholson, 2009). Measurement and models point out these northern savannas as a 441 

source region of isoprene emissions (Marais et al., 2014). As shown in Fig. 10a, during July 2013 442 

the Sahel and the northern savannas of Africa suffered numerous fires, known to be strong direct 443 

sources of CH2O and its precursors. Moreover, as shown in Fig. 10b, during AMISOC absorbing 444 
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aerosols (related to biomass burning, dust and/or volcano activity, e.g., Torres et al., 1998) were 445 

detected over the North Atlantic Ocean as a result of strong Canadian fires and also carbonaceous 446 

aerosols and/or desert dust from African outflow. 447 

The history of the vertical distribution of the air masses arriving at Tenerife during summertime is 448 

indeed quite complex. As an example, Fig. 11 (a) shows the backward trajectories of the air masses 449 

arriving at Tenerife on 31st July, 2013. While the air masses arriving at 2.5 km altitude (~IZO 450 

station) came from the free troposphere of the Sahel region, those arriving at 4 km (~TEI site) came 451 

from isoprene-rich northern savannas of Africa (with fires), and the air masses above the Teide 452 

summit came from the clean upper troposphere over the Atlantic Ocean. Note that the different air 453 

masses above and below 5 km altitude for this same day were previously reported by Dyroff et al. 454 

(2015). This sort of vertical stratification of the origin of the air masses reaching Tenerife, directed 455 

the unique behaviour of CH2O observed during AMISOC with maximum CH2O observed up to 500 456 

m above the instrument’s altitude (e.g., Fig, 12 b). 457 

As for the trajectories of the air masses reaching Pic du Midi, in general they come from the 458 

Atlantic Ocean, from France or from Spain (e.g. Fig. 12, note that the backward trajectories for each 459 

day are provided in the Supplementary Material). Regardless, the air masses arrived PDM after 460 

passing over through the Pyrenees. Note that the Pyrenees and Spain are known to be strong sources 461 

of isoprene from vegetation and/or pollution (Simon et al., 2001; Simpson et al., 1995, 1999; Jiang 462 

et al., 2019). In addition, as shown in Fig. 13, the Iberian Peninsula suffered biomass burning during 463 

the measurement period at the Pyrenees. Overall, unlike at TEI, at PDM the retrieved CH2O 464 

presented decreasing vertical profiles with a maximum value located nearby the altitude of the 465 

instrument. An example of the CH2O retrieved at PDM is shown in Fig. 4b and the statistics of the 466 

CH2O retrieved at PDM are provided in Fig. 5c. Further discussion on the evolution of CH2O at 467 

both sites will be addressed in Sect. 3.2. 468 

Regarding BrO, there was no positive detection after the DOAS retrieval and only an upper limit 469 

(i.e., double of the measurement error) of the halogen compound could be set at each high-altitude 470 

site. This was made using the RTM calculations made for Rayleigh conditions for the limb viewing 471 

direction (0º). Results indicate that the BrO upper limit at TEI during July is of 0.8 pmol mol-1 (at 472 

3.5 km a.s.l.). At PDM the BrO upper limit during September was 1.5 pmol mol-1 (at 2.9 km a.s.l.). 473 

Note that this higher upper limit at PDM relates to worse lighting conditions compared to TEI 474 

campaign. Both BrO vmr upper limits in the free troposphere are consistent with previous studies 475 

(Volkamer et al. 2015; Wang et al. 2015).  476 

  477 
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 506 

Fig. 6: CH2O (a) and AEC (b) at El Teide. The horizontal scale shows the time period of the 507 

measurement campaign. The vertical scale indicates the altitude in the troposphere while the colour 508 

code depicts de CH2O vmr (a) and the Aerosol Extinction Coefficient (b). The night periods when 509 

no observations were performed are shown in grey and values below detection limit in black.   510 

 511 
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 556 

Fig. 7: CH2O (a) and AEC (b) at Pic du Midi. The horizontal scale shows the time period of the 557 

measurement campaign. The vertical scale indicates the altitude in the troposphere while the colour 558 

code depicts de CH2O vmr (a) and the Aerosol Extinction Coefficient (b). The night periods are 559 

shown in grey, the periods with lack of measurements due to bad weather are dashed and the values 560 

below detection limit are shown in black. 561 
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 563 

Fig. 8: Meteorological sounding corresponding to 8th July, 2013 (12 UTC, WMO- 60018 564 

radiosonde station). Note the strong temperature inversion of ΔT~+10ºC between 1000 and 850 565 

hPa (indicated in red). The vertical profiles of CH2O observed this day are shown in Fig. 4a. 566 

Horizontal dashed grey lines correspond to standard pressure levels (hPa), isotherm lines (°C) are 567 

shown in right slanted dashed black, dry adiabats (°C) are given in curved brown lines, saturation 568 

adiabats (°C) are shown in blue, and saturation mixing ratios (g/kg) are shown in right slanted 569 

dashed blue lines. The left and right black lines represent the dewpoint (°C) and temperature (°C), 570 

respectively. The wind bars are provided in green.  571 
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 574 

 575 

Fig. 9: 10-day backward trajectories at TEI for the 8th July (a) and for the 22th July (b), 2013. Red 576 

lines represent the backward trajectories arriving at 4 km altitude and blue lines at 500 m (a.s.l.). 577 
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 594 

 595 

Fig. 10: Conditions during the AMISOC 2013 campaign. (a) Fire counts during July 2013. The TEI 596 

site is shown in white (Fire Information for Resource Management System, FIRMS, NASA). (b) 597 

Time averaged UV Aerosol Index (Torres et al., 1998) during AMISOC 2013 (OMTO3d, NASA 598 

Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center, GES 599 

DISC, https://giovanni.gsfc.nasa.gov/giovanni/, last access 02/02/2020). 600 
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 602 

 603 

 604 

Fig. 11: (a) 10-day backward trajectories of the air masses arriving at 10 UTC at TEI (green), at 4 605 

km (blue) and at 5.5 km (red) on 31st July, 2013. (b) Vertical distribution of the CH2O mixing ratio 606 

retrieved on that day (10.30 UTC, the dot line shows the average detection limit).  607 
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 623 

Fig. 12: 3-day backward trajectories at PDM for the 15th (a) and 26th September (b), 2013. Red lines 624 

represent the backward trajectories arriving at 3.5 km altitude and blue lines at 500 m (a.s.l.). 625 
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 637 

Fig. 13: Fire counts during the Pic du Midi campaign (September-October 2013). The PDM site is 638 

shown in green (Fire Information for Resource Management System, FIRMS, NASA). 639 

 640 
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 643 

3.2. Formaldehyde at 3.2. Formaldehyde at 3.2. Formaldehyde at 3.2. Formaldehyde at each each each each sitesitesitesite    644 

For a better understanding of the evolution of CH2O in the free troposphere during each campaign, 645 

Fig. 14 shows the CH2O mixing ratios retrieved at each site (as shown in Fig. 6 and Fig. 7), 646 

averaged over each site’s location up to 1 km higher. Thus, in Fig. 14 the CH2O vmr are averaged 647 

from TEI up to 4.5 km (mean altitude 4035 m a.s.l.) and from PDM up to 4 km (mean altitude 3438 648 

m a.s.l). Note that these altitude ranges cover the location of the CH2O maximum at each station 649 

and measurement time, simplifying therefore an overview of the CH2O mixing ratio in the free 650 

troposphere at each location. Additionally, Fig. 14 also includes (in red) the amount of CH2O 651 

expected from a simplified scheme where the main source of CH2O in a pristine troposphere is the 652 

oxidation of background CH4 by OH, and the main loss processes are photolysis and oxidation by 653 

OH (Equation 1-3; Platt et al., 1979): 654 

���� + ℎ� → � + ��� 
1� 

���� + ℎ� → �� + �� 
2� 

���� + �� → ��� + ��� 
3� 

For the steady state calculation given by 655 

����O� =  
�����������

������������
 (4) 656 

and shown in Fig. 14, the OH concentration, photolysis rates (J1, J2) and CH4 oxidation rate (k4) 657 

used are those reported by Zhou et al. (1996) for the high-altitude site of Mauna Loa (latitude 658 

19.47° N) 659 

in summer (TEI) and autumn (PDM) values. The coefficient rate k3 used is based on Platt et al. 660 

(1979) and the concentration of CH4 used is of 1851 nmol mol-1, mean value measured at IZO in 661 

2013 with a standard deviation of less than 1% throughout the year (Cuevas et al., 2015). The 662 

concentration of OH in the troposphere is very dependent of latitude, altitude and season (e.g., 663 

Lelieveld et al., 2016; Wolfe et al., 2019). Thus, given the stability of CH4 in a remote troposphere, 664 

OH oxidation of CH4 and CH2O is the main uncertainty (Δ) in this simplified estimation of steady-665 

state CH2O concentration. In this sense, sensitivity tests indicate that, e.g., an overestimation of 20 666 

% in the concentration of OH used in our work (which is feasible given, for instance, the OH values 667 

reported for a mid-latitude mountain site of similar altitude as PDM, Fried et al. 1997), would lead 668 

to an overestimation of ~14 % in the amount of CH2O in the steady-state calculation (i.e., Δ[CH2O] 669 

~ 0.7 x Δ[OH]). Thus, in this case, the steady-state CH2O values provided in Fig. 14 would 670 

represent simplified upper limits. 671 
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Regarding the CH2O mixing ratio, Fig. 14 shows the difference between both remote sites. While 672 

the mean free tropospheric CH2O mixing ratio in the free troposphere of the Pyrenees was 0.35 ± 673 

0.12 nmol mol-1 (PDM), at the Canary Islands (TEI) it was 0.97 ± 0.26 nmol mol-1 (i.e., more than 674 

double). This difference could be due to the fact that the AMISOC campaign took place during 675 

summer (when CH2O typically shows its seasonal maximum) and the Pic du Midi campaign took 676 

place in summer/autumn. However, the photolysis of CH2O at TEI (i.e., in the subtropics and at 677 

higher altitude) is expected to be faster than at PDM. Thus, if only local sources of CH2O are 678 

considered, the high CH2O values observed at TEI are unexpected for a pristine high-altitude 679 

location.   680 

As shown in Fig. 14, overall, the observed CH2O at both sites exceeded the values expected for a 681 

pristine troposphere with background methane as main CH2O source, which could only explain 40 682 

% and 0.4 % of the observations at PDM and TEI, respectively. Moreover, the mean observed 683 

CH2O values at TEI were over 3 times higher than predicted from CH4 oxidation. But, in addition to 684 

this background CH4, isoprene is also known to be a relevant CH2O source producing about 20 % of 685 

the global CH2O budget (Stavrakou et al., 2009a; Bates and Jacob, 2019). Therefore, if one 686 

considers not only background CH4 but also that 20 % of the observed CH2O could come from 687 

isoprene, then both background sources (i.e., methane and isoprene) could explain the observations 688 

in the Pyrenees but they could only partially explain the CH2O values measured at TEI (51%).  689 

The observations at the Pyrenees might be explained by NMHC transported from the PBL to PDM, 690 

like e.g. uplifted pollution from continental Spain and/or VOC emissions from the Pyrenees 691 

(Gomez and Baldasano, 1999). Indeed, Spain is a rather strong source of VOCs and particularly of 692 

isoprene from vegetation and/or pollution (Jiang et al., 2019) and, in addition to the above-693 

mentioned fires, in September/October a thermal low is still present over the Iberian Peninsula 694 

yielding in a thick convective boundary layer (Hoinka and Castro, 2003). As for NMHC in Pic du 695 

Midi region, isoprene is emitted at a rate of 20-40 kt month-1 during the summer/autumn season 696 

(Simpson et al., 1995). Also, Simon et al. (2001) estimated an isoprene emission of 3.6 kt y-1 and a 697 

total biogenic VOC emission of 3.6 kt y-1 from the Pyrenees. Thus, although at PDM observations 698 

and calculation agreed when considering that 20 % of the CH2O could derive from isoprene, that 699 

contribution might be underestimated. Note that, to the authors’ knowledge, this is the first time 700 

CH2O is reported in the Pyrenees. 701 

The observations at the Canary Islands suggest an unaccounted strong uplifted source of CH2O. The 702 

isoprene emissions from the forest under the observation site could influence the values detected at 703 

TEI, but cannot explain the uplifted CH2O layer encountered at Tenerife through one whole month. 704 

This uplifted layer might relate to long-range transport of CH2O precursors (VOC emissions) 705 
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mainly from Africa due to synoptic scale conditions around the ITCZ (Marais et al., 2014). Indeed, 706 

after a study of the trajectories followed by the different emissions from Africa during summer, 707 

Meyer-Arnek et al. (2005) concluded that African air masses could be lifted up to the mid 708 

troposphere and transported at high altitudes far away from their source region. They also 709 

concluded that the air masses showing CH2O enhancement further from the source region (distance 710 

of days), where those affected by biomass burning (Janicot et al., 2008). Thus, NMHC emitted from 711 

the biomass burning in Africa (and in Canada) and transported at high altitude to Tenerife seems a 712 

reasonable source for the detected CH2O during AMISOC. Such an uplifted layer of CH2O and its 713 

precursors transported from Africa and Canada is in agreement with the recent studies of Behrens et 714 

al. (2019) and Alvarado et al. (2020). Further investigations with e.g. airborne observations would 715 

be helpful to track the air masses and study the evolution and transformation of CH2O and its 716 

precursors from their source regions —such wildfires— into the free troposphere, as well as their 717 

long-range transport. Indeed, the current effort of the scientific community on recent aircraft 718 

campaigns encountering fire plumes such e.g. during the DC-8 ATom 2016-2018 in remote regions, 719 

the HALO CAFE-2018 mission over West Africa or SouthTRAC mission in Southern America in 720 

fall 2019, will tackle this issue and might also assist to improve the parametrization of chemical 721 

transport models (CTMs) that could be used to assess the impact of wildfires worldwide. 722 
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Fig. 14: Time series of the mean CH2O mixing ratios observed at TEI (a) and PDM (b). The values 753 

are averaged within the first kilometre above each station (up to 4.5 km in TEI and up to 4 km in 754 

PDM). The night periods are given in grey, the periods with lack of measurements due to bad 755 

weather are dashed and the values below detection limit are shown in black. Formaldehyde yield 756 

from its steady state is marked in red. Note the same vertical scale at both sites. 757 
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4. 4. 4. 4. Summary and cSummary and cSummary and cSummary and conclusionsonclusionsonclusionsonclusions    759 

This study reports on formaldehyde (CH2O) vertical profiles at the high-altitude sites of El Teide 760 

(Canary Islands) and Pic du Midi (French Pyrenees). Using ground-based multi-axis differential 761 

optical absorption spectroscopy during two field campaigns in July (TEI) and September (PDM) 762 

2013, observations indicate a mean CH2O maxima of 0.5 ± 0.2 nmol mol-1 at 2.9 km altitude at 763 

PDM, and an uplifted layer of CH2O at 3.8 km at TEI (mean maxima of 1.3 ± 0.3 nmol mol-1), 764 

gradually decreasing levels towards instrumental detection limit. The PDM CH2O levels reported 765 

are slightly above levels expected from pristine environment, suggesting influence from natural 766 

and/or anthropogenic isoprene emissions (i.e., CH2O precursor) from the Pyrenees and/or Spain. 767 

The unexpected uplifted CH2O layer detected at TEI during the whole measurement campaign (~ 1 768 

month), rather than the presence of a CH2O source in the nearby region of El Teide, points towards 769 

effective recycling and long transport (convection and advection) of hydrocarbons. In agreement 770 

with recent studies, observations at TEI support the influence of wildfires (mainly African) on 771 

emission and recycling of CH2O and its source products which, in this case, are advected and 772 

uplifted to TEI increasing the reactivity of the subtropical North Atlantic free troposphere during 773 

the summer months. The possibility of such a long-range transport of CH2O and/or its source 774 

products should be further investigated with dedicated campaigns and CTMs. Along with 775 

investigations on CH2O, this study also reports on reactive BrO upper limits of 0.8 and 1.5 pmol 776 

mol-1 at TEI and PDM, respectively. Therefore, this study contributes to broadening the knowledge 777 

of the chemical composition of the free troposphere regarding VOCs and reactive halogens in mid- 778 

and sub-tropical latitudes. 779 
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• Vertical profiles of formaldehyde mixing ratios at two high-altitude remote sites 

• Uplifted layer of formaldehyde above El Teide 

• Long-range transport of wildfire emissions into the North Atlantic free troposphere 

• Isoprene emissions from the Pyrenees and/or Spain reach Pic du Midi 

• First reported observations of atmospheric formaldehyde in the Pyrenees 
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