Uncertainties in TOC retrieval for Brewer and Dobson data and the role of cross-correlations among influence parameters

O. El Gawhary¹, F. C. Parra-Rojas^{2,3}, A. Redondas Marrero^{2,3}

¹ VSL Dutch Metrology Institute, The Netherlands
 ²Agencia Estatal de Meteorologia, Tenerife Spain
 ³University of La Laguna, Tenerife Spain

01-06-2017, ATMOZ Workshop at RBCC-E, El Arenosillo, Spain

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Outline

Definition of the problem

Cross-correlation emerging from the model: Dobson case

Application to Brewer data

Outlook

Just as reminder....

Dobson and Brewer networks.

Total Column Ozone (TOC) measurements performed at a set of wavelengths pairs.

 $A \Rightarrow \lambda_1 = 305.5$ nm and $\lambda_2 = 325.4$ nm.

Beer-Lambert law

$$I_{\lambda} = I_{0\lambda} \exp\left[-\alpha_{\lambda}\mu\Omega - \beta m \frac{P}{P_0} - \delta_{\lambda} \sec(Z)\right]$$
(1)

(日)

Double ratio method I

$$I_{\lambda} = I_{0\lambda} \exp\left[-\alpha_{\lambda}\mu\Omega - \beta m \frac{P}{P_0} - \delta_{\lambda} \sec(Z)\right]$$
(2)

- I_{λ} is the direct normal spectra irradiance at λ
- $I_{0\lambda}$ is the extraterrestrial spectral irradiance at λ
- *α_λ* is the ozone absorption coefficient at *λ*
- μ is the ratio of actual and vertical paths of solar radiation through the ozone layer.
- Ω is the TOC
- β_{λ} is the Rayleigh scattering coefficient at λ
- *m* is the airmass corresponding to solar zenith.
- P is the atmospheric pressure at the measurement station
- *P*₀ is the mean sea pressure
- δ_{λ} is the scattering coefficient (optical depth) of aerosol at wavelength λ .
- Z is the solar zenith angle

・ロト・「聞・ 《聞・ 《聞・ 《曰・

Double ratio method II

If the spectral irradiance is measured at one pair of wavelengths, then one can, in principle, obtain a value of the O_3 by inverting

$$I_{\lambda} = I_{0\lambda} \exp\left[-\alpha_{\lambda}\mu\Omega - \beta m \frac{P}{P_0} - \delta_{\lambda} \sec(Z)\right]$$
(3)
$$\Omega = \frac{N - [(\beta - \beta')mP/P_0] - (\delta - \delta')\sec(Z)}{(\alpha - \alpha')\mu}$$
(4)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

where $N = \log I / I'_0 - \log I / I'$

Double ratio method III

If the measurements at two distinct couples of wavelengths are combined together one gets

$$\Omega = \frac{(N_1 - N_2) - [(\beta - \beta')_1 - (\beta - \beta')_2] \, mP/P_0 - [(\delta - \delta')_1 - (\delta - \delta')_2] \sec(Z)}{[(\alpha - \alpha')_1 - (\alpha - \alpha')] \, \mu}$$
(5)

▲□▶▲□▶▲□▶▲□▶ □ のQで

It is generally assumed that $(\delta - \delta')_1 - (\delta - \delta')_2 \simeq 0$

Double ratio method IV

The process of determining the total column ozone can be seen as a method where one tries to match the measured quantity

$$y^{(m)} = (\log I/I'_0 - \log I/I')_1 - (\log I/I'_0 - \log I/I')_2$$
(6)

(日)

and the model

$$y = (\Delta \alpha_1 - \Delta \alpha_2) \,\mu \Omega + (\Delta \beta_1 - \Delta \beta_2) \, m P / P_0 + \Delta \delta \sec(Z) \quad (7)$$

where

$$\Delta \alpha = \alpha - \alpha', \ \Delta \alpha = \beta - \beta' \text{ and } \Delta \delta = (\delta - \delta')_1 - (\delta - \delta')_2.$$

Jacobian matrix

 $\Delta \alpha_1$, $\Delta \alpha_2$, $\Delta \beta_1$, Ω , $\Delta \beta_2$, *P*, $\Delta \delta$, *Z* (μ and *m* are function of *Z*). We build the Jacobian matrix

$$\left[J_{jk}\right] = \left[\frac{\partial y}{\partial a_j} \cdot \frac{\partial y}{\partial a_k}\right] \tag{8}$$

 $a_j \Rightarrow$ parameter, with j = 1, ..., 8, $a_1 = \Delta \alpha_1$, $a_2 = \Delta \alpha_2$, and so on.

From $[J_{jk}]$ one can compute the covariance matrix $[C_{jk}] = [J_{jk}]^{-1}$. Degree of cross correlation matrix $[\rho_{jk}]$

$$[\rho_{jk}] = \left[\frac{C_{jk}}{\sqrt{C_{jj}}\sqrt{C_{kk}}}\right]$$
(9)

(日) (日) (日) (日) (日) (日) (日) (日)

Why are correlations important?

If we have $y = x_1 + x_2$, then, for the uncertainty in y we get

$$u_y^2 = u_{x_1}^2 + u_{x_2}^2 + 2\rho_{1,2}u_{x_1}u_{x_2}$$

• If $\rho_{1,2} = 0$ (no correlation) then $u_y^2 = u_{x_1}^2 + u_{x_2}^2$.

• If, $u_{x_1} = u_{x_2}$ and $\rho_{1,2} = -1 \Rightarrow u_y^2 = 0$ (!!).

Anti-correlations are the main reason of the popularity of some research fields, such as quantum optics

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <lp>・

 <lp>・

 ・

 ・

 ・

 <lp>・

 ・

 </

Need for regularization

We need J^{-1} , but the inversion problem is often ill-posed and needs to be regularized.

$$J = U \cdot S \cdot V^T \tag{10}$$

where U and V are orthogonal matrices so that their inverse are equal to their transposes.

S is a diagonal matrix with its diagonal (all positive) elements being the singular values of the original matrix *J*. Written in this way, the inverse J^{-1} would take the form

$$J^{-1} = V \cdot \left[diag(1/s_j) \right] \cdot V^T \tag{11}$$

If any of s_i is close to zero, the inverse is very sensitive to noise.

Situation for Brewer Model

For Brewer dataset, one can re-write the measurement equation as in the following

$$\Omega = \frac{N - B}{A\mu} \tag{12}$$

where,

$$N = \sum_{i}^{n} w_i \log \frac{l_i}{l_0}$$
(13)

$$\boldsymbol{A} = \sum_{i}^{n} \boldsymbol{w}_{i} \boldsymbol{\alpha}_{i} \tag{14}$$

$$B = m \frac{P}{P_0} \sum_{i}^{n} w_i \beta_i$$
 (15)

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Brewer Model

A typical Brewer data set will look like (with meaning of coefficients as in Brewer manual)

Figure : Brewer 070, El Arenosilo 2015. (courtesy A. Redondas)

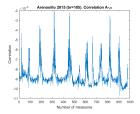
A1	Ozone	Rayleigh	Pressure	AOD	SZA	airmass	date	ETC	MS9
0.3385	370.0294557	1	1007.7		63.85116641	2.239717799	736108.3059	2950	5755.357874
0.3385	372.1812848	1	1007.7		60.95543503	2.038812779	736108.3165	2950	5518.564943
0.3385	373.0615912	1	1008.3		51.08351434	1.584120693	736108.3526	2950	4950.448975
0.3385	373.1912714	1	1008.3		49.1946256	1.523704952	736108.3596	2950	4874.824019
0.3385	374.0884515	1	1008.4		39.32730405	1.289980267	736108.3965	2950	4583.488348
0.3385	376.1539616	1	1008.5		38.72588121	1.279166188	736108.3988	2950	4578.738207
0.3385	376.000551	1	1008.8		35.49784253	1.226288118	736108.4114	2950	4510.772752
0.3385	374.8214293	1	1008.831		34.29958985	1.20869474	736108.4162	2950	4483.556275
0.3385	375.5418098	1	1008.874		33.19977888	1.193432359	736108.4207	2950	4467.101987
0.3385	375.1339048	1	1008.9		32.6389146	1.18596119	736108.423	2950	4455.967044
0.3385	376.9879481	1	1008.9		29.66998831	1.149690717	736108.4356	2950	4417.125158
0.3385	377.129491	1	1009		27.62181693	1.127638523	736108.4448	2950	4389.524537
0.3385	375.5391251	1	1009		23.31008837	1.088225195	736108.4674	2950	4333.351801
0.3385	376.6040015	1	1009.063		22.93873325	1.0852401	736108.4697	2950	4333.469013
0.3385	378.4930126	1	1008.8		20.19711531	1.065051071	736108.4934	2950	4314.542205
0.3385 0.3385 0.3385 0.3385 0.3385 0.3385 0.3385 0.3385	376.000551 374.8214293 375.5418098 375.1339048 376.9879481 377.129491 375.5391251 376.6040015	1 1 1 1 1 1 1 1 1	1008.8 1008.831 1008.874 1008.97 1008.9 1008.9 1009 1009 1009.063		35.49784253 34.29958985 33.19977888 32.6389146 29.66998831 27.62181693 23.31008837 22.93873325	1.226288118 1.20869474 1.193432359 1.18596119 1.149690717 1.127638523 1.088225195 1.0852401	736108.4114 736108.4162 736108.4207 736108.4237 736108.4356 736108.4456 736108.4448 736108.4674 736108.4697	2950 2950 2950 2950 2950 2950 2950 2950	4510.772752 4483.556275 4467.101987 4455.967044 4417.125158 4389.524537 4333.351801 4333.469013

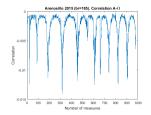
Cross-correlation in Brewer algorithm

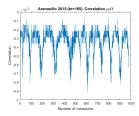
For uncertainty purposes, TOC retrieval from Brewer model can be considered as a minimization of the functional

$$\|\boldsymbol{N}^{(measured)} - (\boldsymbol{A}\mu\boldsymbol{\Omega} + \boldsymbol{B})\|$$
(16)

Local optimization \Rightarrow starting values from direct model:

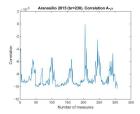

 $A_{nominal}, \Omega_{nominal}, \mu_{nominal}, B_{nominal}.$ Example at $sza \simeq 41^{\circ}$

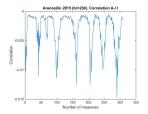

 $[J_{jk}] = \begin{bmatrix} 2.137034729^{13} & 2.087114641^{11} & 5.471782962^{13} & 4.624860617^{10} \\ 2.0871146410^{11} & 2.0383606614^9 & 5.3439647822^{11} & 4.5168261299^8 \\ 5.4717829624^{13} & 5.3439647822^{11} & 1.4010258407^{14} & 1.184175117^{11} \\ 4.624860617^{10} & 4.51682612^8 & 1.18417511^{11} & 1.00088854^8 \end{bmatrix}$ (17)

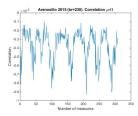

Cond number 1.06980²² \Rightarrow Not possible to invert

Cross-correlation in Brewer algorithm, Brewer 185

After regularizing J (Tickhonov regularization), we obtain

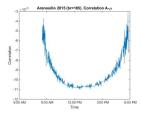


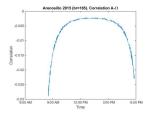


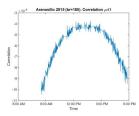


Cross-correlation in Brewer algorithm, Brewer 230

After regularizing J (Tickhonov regularization), we obtain






・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cross-correlation in Brewer algorithm, Brewer 185

After regularizing J (Tickhonov regularization), we obtain

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

TOC uncertainty

$$u_{\Omega}^{2} = u_{a_{3}}^{2} = \frac{u_{y}^{2} + \sum_{i,j} \frac{\partial f}{\partial a_{i}} \frac{\partial f}{\partial a_{j}} \rho_{i,j} u_{a_{i}} u_{a_{j}}}{(\frac{\partial f}{\partial a_{3}})^{2}}$$
(18)

The $\rho_{i,j}$ from the model are available.

The measurements uncertainties u_{a_i} must be determined for each measuring instruments.

Outlook

- We have derived the uncertainties and correlations from the model.
- The total TOC uncertainties combines the measurements/instruments uncertainties and the model uncertainties.
- Now working on the values and entity of atmospheric ad instrumental uncertainties to compile the comprehensive TOC uncertainty budget.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので