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h i g h l i g h t s

< We studied how industrial emissions contribute to ultrafine particles (UP).
< Traffic and industrial UP episodes are identified from the relation of UP and PM2.5.
< Road traffic emissions, in the morning rush hours, are associated with OM and BC.
< Industrial plumes, during daylight, are related with heavy metals.
< Industrial emissions are the first cause of high UP in Huelva city.
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a b s t r a c t

Urban air quality impairment by ultrafine particles has become a matter of concern due to the adverse
effects on human health. Most of the studies of ultrafine particles in urban air quality have focused on
vehicle exhaust emissions. We studied how industrial emissions contribute to ultrafine particle
concentrations in downwind urban ambient air. This research is based on experimental data collected in
the ambient air of the industrial city of Huelva (SW Spain) over April 2008eDecember 2009 period
(particle number, gaseous pollutants and black carbon concentrations and levels and chemical
composition of PM10 and PM2.5 with daily and hourly resolution). This city is affected by emissions from
the second largest Cu-smelter in Europe, phosphoric acid and fertilizer production plants and an oil
refinery and petrochemical plant. Industrial emissions are the main cause of ultrafine particle episodes.
When vehicle exhaust emissions are the main source, ultrafine particles typically show (24-h mean)
concentrations within the range 14,700e5000 cm�3 (50the1st), with 60% of these linked to this source
and 30% to industrial emissions. In contrast, when daily mean levels of N are within the range 50,000
e25,500 cm�3 (100the70th), industrial and vehicle exhaust emissions accounted for 49 and 30%,
respectively. High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) were recorded when the
study city suffered fumigations of the Cu-smelter plumes (e.g. 10e25 ng m�3 As, 1e2 ng m�3 Cd and
>105 cm�3 of ultrafine particles). Because of these industrial emissions, ultrafine particle concentrations
during daylight are about two times higher than those observed in other European cities. Recently,
ultrafine particle emissions in vehicle exhausts have been subject to limit values in a recent stage of the
EURO standards. Industrial emissions should also be considered.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Epidemiological studies performed during recent decades have
shown that in urban areas there is a relationship between the mass
concentration of particles smaller than 10 and 2.5 mm aerodynamic
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diameter (PM10 and PM2.5, respectively) and cardiovascular and
respiratory morbidity (WHO, 2005). Because of this, standards for
PM10 andPM2.5 have been set inmany countries.More recent studies
reveal that some of the cardiovascular effects attributed to exposure
to PM2.5 may be due to ultrafine particles (diameter smaller than
0.1 mm; Araujo & Nel, 2009). Ultrafine particles typically account for
80e90% of the total number concentrations and for <10% of the
PM2.5 particlemass concentration (Putaud et al., 2010 and references
therein). Most of the PM2.5 mass concentrations (�90%) occur in the
accumulationmode (0.1e1 mm). As a consequence ultrafine particles
are not properly monitored using PM10 and PM2.5 as air quality
assessment metrics. The total number concentration of particles
coarser than a given size (usually 2 or 10 nanometres) has been used
as a metric representative of ultrafine particles (e.g. Puustinen et al.,
2007). Size-resolved measurements have been used to study the
sources and processes contributing to ultrafine particles (e.g. Casati
et al., 2007). The correlation between particle number and PM2.5
concentrations in urban ambient air is rather weak (Putaud et al.,
2010). In urban areas it has been observed that organic matter and
elemental carbon are the only two PM2.5 components that may
significantly correlate with the particle number, with this being
attributed to vehicle exhaust emissions (Rodríguez et al., 2007).
Because of the concern linked to ultrafine particle ambient air
pollution, standards for particle number emissions have been set in
EURO-5b (Regulation 692/2008).

Although biogenic SOA emissions may in general contribute to
ultrafine and organic carbon concentrations, the high correlation
between OC and BC in the study area points to anthropogenic
emissions (industrial plus vehicle exhaust emissions) as dominant
source. Particles emitted by this source tend to be bimodal, exhib-
iting a nucleation mode (<30 nm), constituted by sulphuric acid
droplets that may be covered by condensed hydrocarbons, and
a soot mode (50e200 nm; Kittelson, 1998). The formation rate of
the nucleationmode particles is significantly influenced by ambient
air conditions (e.g. wind speed, temperature and humidity; Casati
et al., 2007). The soot mode is constituted by light-absorbing
elemental carbon, primary organic carbon, condensed metals and
sulphates and some carcinogenic organic pollutants (e.g. polycyclic
aromatic hydrocarbons; Morawska and Zhang, 2002).

Up to the present date, modest attention has been paid to other
potential major anthropogenic sources of ultrafine particles, even
though it is well known that some activities may release large
amounts of gaseous precursors. This is the case of some industrial
activities that release large amounts of SO2 and/or hydrocarbons.
Sulphuric acid plays a key role in nucleation and new particle
formation processes (Kulmala et al., 2004). These emissions result
in gas-to-particle conversion processes that may prompt ultrafine
and accumulation mode (0.1e1 mm) particle pollution. Nucleation
of sulphur gases followed by particle growth by condensation
and/or coagulation may result in the formation of ultrafine and fine
particles and both (especially the latter) result in PM2.5 pollution.
These particles may be externally or internally mixed with trace
elements linked to industrial emissions.

The development of techniques or methods for identifying the
sources contributing to ultrafine particles is a major challenge in
urban air quality nowadays. Several attempts have been made, by
studying the relationship between particle number and PM2.5
composition (Pey et al., 2009), by performing speciation of organic
compounds (Kleeman et al., 2009) and by using the relationship
between black carbon and particle number with a high time reso-
lution (Rodríguez and Cuevas, 2007).

In this studywe focused on identifying the sources and processes
contributing to the number concentration of particles coarser than
2.5 nm in an urban area affected by industrial emissions. Different
methods were used. Particle number concentrations were analysed

using: 1) 1-h data of black carbon, trace gases and meteorological
parametersmeasured over twoyears, 2) 1-h resolution data of PM2.5
elemental composition, and 3) receptor-modelling techniques
based on 2-years’ data of 24-h average PM2.5 chemical composition.
Results show that the contribution of industrial emissions to ultra-
fine particles in the urban ambient air of industrial cities is compa-
rable to that of vehicle exhausts.

2. Methodology

2.1. Study area

The study city (Huelva; 37�150000N, 6�570000W, 54 m.a.s.l) is
located in SW Spain (Fig. 1). Air pollutants are mostly emitted by
vehicle exhausts and by industrial activities in two estates to the
south of Huelva: Punta del Sebo and Nuevo Puerto (Fig. 1). The
second largest Cu-smelter factory in Europe (which emits SO2,
H2SO4, As, Sb, Pb, Zn and Sn) and a fertilizer and phosphoric acid
production plant (which emits NH4

þ andNa phosphate, phosphoric
acid, sulphuric acid and sodium silicate) are located in Punta del
Sebo. A crude oil refinery and a petrochemical complex (which

Fig. 1. Map of Huelva. Green lines indicate main roads and motorways around Huelva
city. Punta del Sebo and Nuevo Puerto Industrial Estates and the University Campus
measurement site are highlighted. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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emits SO2, NOx, NH3, Ni, V and awide variety of hydrocarbons) are to
be found inNuevo Puerto. Pollutants emitted by these industries are
described in previous works (De la Rosa et al., 2010; Fernández-
Camacho et al., 2010a; Sánchez de la Campa et al., 2011) and in
the European Pollution and Emission Register (http://eper.ec.
europa.eu/eper/). These industrial emissions can reach the city of
Huelva on the southerly winds episodically linked to specific
synoptic conditions or on an almost daily basis linked to the
development of coastal breezes during daylight (Castell et al., 2010).

2.2. Experimental data

Concentrations of gaseous pollutants and levels and composi-
tion of atmospheric particulate matter were monitored in an urban
background station (37�16013.100, 6�55030.900 m.a.s.l) located at the
University Campus on the northern side of the city. The site is sit-
uated about 7 km from Punta del Sebo Estate and about 14 km from
Nuevo Puerto Estate. Moreover, two entry roads to the city are
located about 500m to thewest and about 1000m to the east of the
measurement site. The measurements used for this study were
collected from April 2008 to December 2009.

2.2.1. Particle number, black carbon, PM10 and PM2.5 concentrations
Details of the experimental methods have been presented by

Fernández-Camacho et al. (2010b). Thus a brief summary is per-
formed here. The particle number (PN) was monitored using a TSI�
3776 model Ultrafine Condensation Particle Counter (UCPC). The
instrument records data averaged at 1-min intervals and detects
particles coarser than 2.5 nanometres (nm) operating in high-flow
mode (1.5 l m�1). Because 80e90% of particles in urban air are
<0.1 mm, PN is considered representative of ultrafine particle
number concentration. Black carbon (BC) concentration was moni-
toredusing a Thermo�Carussomodel 5012Multi-Angle Absorption
Photometer (MAAP). BC concentrations were calculated using
a mass-specific attenuation cross-section equal to 10.31 m2 g�1

(Fernández-Camacho et al., 2010b). Instruments were inter-
compared before the measurement campaign and calibrated for
airflow on a weekly basis using a Gilibrator� bubble-flow meter.
Data availability was 90% for BC and 70% for particle number.

PM10 and PM2.5 were sampled (24-h) using EU reference
methods: a Graseby Andersen� sampler (68 m3 h�1, EN-12341) for
PM10 and a MCV� (30 m3 h�1, EN-14907) for PM2.5. The sampling
frequency was 1 sampling day (00:00e00:00 GMT) every four days
in 2008 and every eight days in 2009. MUNKELL� microquartz
fibre filters were used. Filters were conditioned at 20 �C and 25% RH
before weighting previous and after sampling. Blank field filters
were also used.

Hourly levels of PM10 and PM2.5 were monitored using
a GRIMM� optical particle counter. Their concentrations were
converted to the gravimetric equivalent by comparing with the EU
(gravimetric) reference method using the EU standardized method
(EC Working Group on Particle Matter report, 2002).

2.2.2. Gaseous pollutants, meteorology and road traffic data
Concentrations of gaseous pollutants (SO2, NOx and O3) were

monitored with 1-h resolution using the reference methods of the
European air quality directives (2008b/50/EC). Meteorological
parameters (wind speed and direction, temperature, relative
humidity, pressure and global radiation), monitored in a station less
than 2 km away managed by the Meteorological State Agency
(AEMET), and road traffic intensity data (number of vehicles$h�1),
recorded on the two roads close to the measurement site, were also
used. These data were obtained during 2008 and 2009 with 1-h
resolution.

2.2.3. Bulk chemical composition of particles: 24-h resolution
Samples of PM10 and PM2.5 collected on the microquartz fibre

filters were chemically analysed using the method of Querol et al.
(2008). This method includes ICP-OES and ICP-MS for elemental
composition, Ion Chromatography for ions (SO4

2�; NO3
�;

Cl� and NH4
þ) and the LECO SC-144 DR instrument for total carbon.

Average precision and accuracy are within the range of 3e10% for
mostelements andcompounds. Silica andcarbonatewereestimated
by stoichiometry using the Ca, Mg and Al data (Querol et al., 2001).

A set of 62 samples of PM10 and 59 samples of PM2.5 were
selected for the analysis of organic carbon (OC) and elemental
carbon (EC), using the Thermo Optical Transmittance technique
(Birch and Cary, 1996) and a Sunset Laboratory� instrument with
the default temperature steps of the EUSAAR2 program. The filters
were selected in a homogeneous way, covering a representative
range of concentrations of the area of study during the four seasons.
The EC data were used to determine the mass-specific attenuation
cross-section by comparison with the absorption coefficient
measured by the MAAP. Then, mean black carbon (BC) concentra-
tions were determined for each PM10 and PM2.5 sample. To deter-
mine the BC load in PM2.5, the mean ratio of BC in PM2.5/BC in PM10

was used. A mass-absorption efficiency of 10.31 � 0.25 m2 g�1 and
a mean BC in PM2.5/BC in PM10 ratio equal to 0.74 � 0.025 was
obtained (see details in Fernández-Camacho et al., 2010b). Then,
the organic carbon in each PM10 and PM2.5 sample was determined
as the difference betweenTC and BC. Finally, the organicmatter was
estimated by multiplying OC concentrations by 1.8 to take the
contribution of other atoms into account (Turpin and Lim, 2001).

A total of 136 samples of PM10 and 134 samples of PM2.5
collected from April 2008 to December 2009 were analysed using
this method (Table 1).

2.2.4. Elemental composition of particles: 1-h resolution
A ‘streaker’ sampler (PIXE International Corporation) was

employed to collect samples of fine (<2.5 mm aerodynamic diam-
eter) and coarse (2.5e10 mm) particles with one hour resolution
(D’Alessandro et al., 2003). A paraffin-coated kapton foil was used
as an impaction surface for coarse particles and a Nuclepore filter as
a fine particle collector. Elemental composition was determined by
PIXE in the LABEC laboratory at INFN in Florence (Italy): Ti, V, Cr,
Mn, Fe, Ni, Cu, Zn, As, Se, Sr and Pb as trace elements and Na, Mg, Al,
Si, P, S, Cl, K and Ca as major elements. Concentration uncertainties
were around 5%. Detection limits were about 10 ng m�3 for low-Z
elements and 1 ng m�3 (or below) for medium-high Z elements.
(Chiari et al., 2006). The sampling was performed from 15th to
22nd October 2009.

2.3. Data treatment

2.3.1. Components of ultrafine particles
In order to identify the sources and processes that contribute to

the particle number concentrations, PN was split into two
components (Rodríguez and Cuevas, 2007):

PN1 ¼ S1$BC (1)

PN2 ¼ PN� PN1 (2)

where S1¼6.9 106 particlesng�1 BC is theminimum slope observed
in the PN vs BC plot in our measurement site and represents the
minimum number of particles formed/emitted per nanogram of BC
emitted by vehicle exhausts (Fig. 2).

In cities where black carbon is dominated by vehicle exhaust
emissions, this method allows to segregate the contribution of this
source from that of other sources to the ultrafine particle
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concentrations. PN1 accounts for the minimum primary emissions
of vehicle exhausts and is constituted by the previously described
soot mode (light-absorbing elemental carbon, carbonaceous mate-
rial, trace metals, etc.) and those components nucleating and
condensing immediately after emission (e.g. sulphates, condensed
hydrocarbons and unburned oil). PN2 accounts for those particles
resulting from enhancement in new particle formation processes in
several contexts: during the dilution and cooling of vehicle exhausts
or in ambient air linked to photochemical processes and/or in gas-
to-particle conversion processes in precursor plumes. This method
has successfully been applied in European cities (Reche et al., 2011).

2.3.2. Source apportionment
The sources that contribute to particle concentration were

identified by performing Principal Component Analysis (PCA) fol-
lowed by varimax rotation. Because the results of the PCA depend
on the data set analysed, several combinations of variables were
tested. The contribution of each source was quantified by Multi-

Linear Regression Analysis (Thurston and Spengler, 1985). The
sources contributing to particle number were identified using the
number concentration and PM2.5 composition data. For PM10, PM2.5
and PM2.5e10, bulk levels and composition data were analysed.
Saharan events were excluded from the database in order to
prevent the influence of external sources of sulphate, nitrate and
other pollutants mixed with dust (Rodríguez et al., 2011).

3. Results and discussion

3.1. Chemical composition of particles

The mean chemical composition of PM10 and PM2.5 is shown
in Table 1. An average value equal to 32.7 � 13 mg PM10 m�3 and
19.3 � 11 mg PM2.5 m�3 was observed. The most important
contributors to PM2.5 were secondary inorganic compounds
(sulphate, nitrate and ammonium) and organic matter, which
accounted for 23% and 30% of PM2.5, respectively. The sulphate
load was large, accounting for 14% of PM2.5. Because these
compounds mostly occur in the <2.5 mm fraction, their absolute
concentrations in PM10 and PM2.5 are close. As expected, the
mineral dust and sea salt mostly occur in the coarse 2.5e10 mm
fraction. The mean contribution of major species to PM10 and
PM2.5 is similar to that observed in other cities in Spain (Querol
et al., 2004a, 2008). The most significant feature of the PM10
and PM2.5 composition in Huelva is the high content of toxic
trace metals of environmental interest. Concentrations of As, Cu,
Zn, Se and Bi are 3e5 times higher than those typically observed
in other European cities (Querol et al., 2004b, 2008; Rodríguez
et al., 2007; Putaud et al., 2004). Mean concentration of As
(6.2 ng m�3) is slightly higher than the annual target value of the
European standard (6 ng m�3 in PM10; 2004/107/EC).

3.2. Influence of industrial emissions on composition and daily
evolution of particles

3.2.1. Ultrafine particles and gaseous pollutants
Figure 3 shows the hourly average values for particle number

(PN, PN1 and PN2), BC concentrations and gaseous pollutant
concentrations, road traffic intensity, road traffic intensity/wind
speed and somemeteorological parameters and PM2.5 and PM2.5e10
concentrations. Working days (Monday to Friday) and weekends
are segregated. The influence of vehicle exhaust and industrial
emissions on the particle number concentration tends to occur at

Table 1
Mean chemical composition of PM10 and PM2.5 in Huelva from April 2008 to
December 2009. NS: number of samples. OM: organic matter. SIC: secondary inor-
ganic compounds.

NS PM10 PM2.5 PM2.5e10

136 134 134

mg m�3 % mg m�3 % mg m�3 %

PM 32.7 � 13.0 19.3 � 10.6 13.4 � 8.0
OM 5.8 � 3.6 18 5.8 � 3.6 30 0.0 � 1.9 0
BC 0.8 � 0.4 2 0.6 � 0.4 3 0.2 � 0.2 2
nss-SO4

2� 3.0 � 2.0 9 2.7 � 1.6 14 0.3 � 0.6 2
NO3

� 2.6 � 1.7 8 1.0 � 1.1 5 1.6 � 1.2 12
NH4

þ 0.8 � 0.6 3 0.8 � 0.7 4 0.0 � 0.6 0
Na 1.3 � 1.0 4 0.5 � 0.3 3 0.8 � 0.6 6
Cl� 1.2 � 1.4 4 0.2 � 0.4 1 1.0 � 1.1 7
ss-SO4

2� 0.3 � 0.2 1 0.1 � 0.1 1 0.2 � 0.2 1
CO3

¼ 2.2 � 1.2 7 0.8 � 0.4 4 1.5 � 1.0 11
SiO2 4.6 � 2.7 14 1.3 � 0.8 6 3.3 � 2.3 25
Al2O3 1.5 � 0.9 5 0.4 � 0.3 2 1.1 � 0.8 8
Ca 1.0 � 0.6 3 0.4 � 0.2 2 0.7 � 0.6 5
K 0.4 � 0.2 1 0.2 � 0.2 1 0.2 � 0.1 1
Mg 0.3 � 0.1 1 0.1 � 0.1 0 0.2 � 0.1 1
Fe 0.6 � 0.3 2 0.2 � 0.1 1 0.4 � 0.3 3
PO4

3� 0.2 � 0.2 1 0.1 � 0.1 0 0.1 � 0.2 1

ng m�3 & ng m�3 & ng m�3 &

Ti 46.5 � 30.1 1.4 17.8 � 29.9 0.9 28.7 � 25.0 2.1
V 5.3 � 4.2 0.2 3.4 � 3.2 0.2 1.9 � 1.5 0.1
Cr 2.3 � 2.0 0.1 1.6 � 4.4 0.1 0.7 � 1.8 0.1
Mn 9.6 � 5.2 0.3 4.0 � 2.0 0.2 5.6 � 3.7 0.4
Co 0.3 � 0.2 <0.1 0.2 � 0.1 <0.1 0.1 � 0.3 <0.1
Ni 3.7 � 2.8 0.1 2.3 � 1.7 0.1 1.4 � 2.0 0.1
Cu 45.3 � 30.2 1.4 31.2 � 20.4 1.6 14.1 � 17.5 1.1
Zn 47.4 � 42.9 1.4 37.3 � 49.5 1.9 10.1 � 40.4 0.8
As 6.2 � 7.8 0.2 5.1 � 7.6 0.3 1.1 � 4.1 0.1
Se 2.1 � 2.8 0.1 1.7 � 2.8 0.1 0.4 � 1.6 <0.1
Rb 1.2 � 0.7 <0.1 0.4 � 0.4 <0.1 0.8 � 0.5 0.1
Sr 6.2 � 2.5 0.2 1.3 � 0.7 0.1 4.9 � 1.3 0.4
Mo 12.2 � 1.6 0.4 0.7 � 0.9 <0.1 11.5 � 1.9 0.9
Cd 0.7 � 0.9 0.0 0.6 � 1.0 <0.1 0.1 � 0.6 <0.1
Sn 2.6 � 2.0 0.1 1.5 � 1.3 0.1 1.1 � 0.8 0.1
Sb 1.6 � 0.9 <0.1 0.8 � 0.6 <0.1 0.8 � 0.5 0.1
Ba 31.9 � 48.4 1.0 19.7 � 36.7 1.0 12.2 � 57.2 0.9
Pb 14.4 � 15.2 0.4 10.8 � 14.3 0.6 3.6 � 4.3 0.3
Bi 0.9 � 1.1 <0.1 0.8 � 1.0 <0.1 0.1 � 0.5 <0.1

mg m�3 % mg m�3 % mg m�3 %

PM 32.7 � 13.0 19.3 � 10.6 13.4 � 8.0
P

chemistry 26.9 � 5.5 82.1 15.2 � 3.3 78.5 11.7 � 2.3 87.3
SIC 6.4 � 1.2 19.6 4.5 � 1.0 23.4 1.9 � 0.8 14.2
OM 5.8 � 3.6 17.8 5.8 � 3.6 30.0 0.0 � 1.9 0.2
BC 0.8 � 0.4 2.5 0.6 � 0.4 3.1 0.2 � 0.2 1.5
Mineral dust 10.8 � 1.4 32.9 3.3 � 0.4 17.0 7.5 � 1.0 55.9
Marine 2.9 � 0.5 8.7 0.9 � 0.2 4.4 2.0 � 0.4 15.0

0
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0 2000 4000 6000 8000
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Fig. 2. Hourly average values of the particle number (PN) versus black carbon (BC)
concentrations between 06:00 and 09:00 h. S1 indicates the line of minimum slope
which contains N-vs.-BC data.
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different times of day. The sharp increase in road traffic intensity in
the morning results in an abrupt rise in PN, BC and NOx concen-
trations due to vehicle exhaust emissions. The enhancement in the
dilution conditions and air mass renewal due to the development of
inland sea breeze after 09:00 GMT, results in a decrease in the
concentration of these vehicles exhaust pollutants, even if the road
traffic intensity does not decrease. The correlated weekly evolution
of road traffic intensity / wind speed ratio and BC and NOx

concentrations indicates that fresh vehicle exhaust emissions and
dilution/ventilation conditions modulate the behaviour of these
pollutants (Fig. 3A).

The inland sea breeze blowing from 09:00 to 17:00 GMT is
associated with an increase in the sulphur dioxide concentrations
(Fig. 3B and C). This is attributed to the inland transport of plumes
from the industrial estates located to the south of Huelva (Fig. 1).
Observe the correlation between the daily evolution of SO2, wind

Fig. 3. Hourly average values of particles (PN, PN1 and PN2), BC concentrations and gaseous pollutant (NOx and SO2) concentrations, and of road traffic intensity, the road traffic
intensity (number of vehicles/h)/wind speed ratio, of the PN/BC ratio and solar radiation and of PM2.5 and PM2.5e10 concentrations, for working days, Saturdays and Sundays during
2008e2009.
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speed and solar radiation. The increase in the PN/BC ratio and in
PN2 concentrations observed during the inland blowing period is
attributed to ultrafine particle formation in the SO2 plumes.
Fernández-Camacho et al. (2010b) showed that there is a strong
statistical relationship between PN2 and SO2, and between PN1
and NOx, in such a way that PN2 tends to show high values during
fumigations of industrial plumes, whereas PN1 shows high values
linked to vehicle exhaust emissions. Stanier et al. (2004) and
Cheung et al. (2011) observed that high particle number concen-
tration in industrial SO2 plumes was due to nucleation burst
linked to the sulphuric acid/sulphate particles. During the morning
NOx maximum period, when ultrafine particles were linked to
vehicle exhaust emissions, PN is higher on average value than
23,000 cm�3, and PN2 accounted for 53% of PN, whereas during
the noon e afternoon SO2 maximum due to the impact of the
industrial plumes, PN is typically higher on average value than
29,000 cm�3, and PN2 accounted for 70% of PN.

3.2.2. Ultrafine particles and elemental composition
Themean daily evolution (hourly values) of PN, SO2 and NOx and

of PM2.5 elemental composition observed during the weekdays
(Monday to Friday) and weekends (Saturday and Sunday) of the
streaker campaign (15th to 22ndOctober 2009) is shown in Figure 4.
The two types of ultrafine particle episodes are recognized:

� Fresh road traffic emissions. These are observed during the
morning rush hours of the working days and are associated
with high concentrations of typical road dust elements (Si, Al,
Fe, Mg, K, Ca, Ti and Mn; Amato et al., 2009).

� Fresh industrial plumes. These events are associated with high
concentrationsof tracemetals (As, Cu, Zn, Se, PbandP)during the
central hours of daylight (10:00e17:00 GMT) due to inland
transport of the industrial plumes both during weekdays and
weekends. The Fig. 4B shows the highest concentrations of PN,
trace metals and SO2 occurring during weekends. This fact can
probablybeduetotheworkregimeof industrialestates, asduring
weekends and holidays, the electric cost is cheaper (by 60e70%).

The occurrence of high PN and tracemetal concentrations due to
the impact of the industrial plumes (containing SO2) is clearly
observed in Figure 5A. Observe that several events of N and As
concentrations as high as 105 cm�3 and 18 ng m�3 occurred during
the streaker campaign. Because the stacks of the Cu-smelter and
fertilizer plants are very close together in Punta del Sebo Estate
(Fig. 1), simultaneous high As and P events occurred due to mixing
of the plumes during inland transport.

The hourly evolution of S (in PM2.5) and bulk PM2.5 is compared
with that of N and Zn (in PM2.5) in Fig. 5B. It can clearly be observed
that the PM2.5 and S concentrations do not properly detect the
fumigations of the industrial plumes. Only in the fumigations that
occurred on 18th October is an increase in S concentrations
observed. Moreover, high S and bulk PM2.5 concentrations were
observed during periods of non-fumigation or fresh emissions, e.g.
17th October at night. This indicates that S and PM2.5 concentra-
tions are linked to aged emissions, i.e. they are aged grownparticles
occurring in the accumulation mode (0.1e1 mm). In contrast, the
high PN and SO2 concentrations are attributed to fresh ultrafine
sulphuric acid/sulphate formation in the industrial plumes
(Fig. 5A). The contribution of this ultrafine sulphuric acid/sulphate
to bulk S (in PM2.5) is so low that it does not result in significant
increases in the concentration of the S (Fig. 5B). Similar behaviour
was identified in Milan (Italy) and Barcelona (Spain) by Rodríguez
et al. (2007); they observed that high PM2.5 concentrations were
associated with particle growth due to condensation of ammonium
nitrate and ammonium sulphate in aged air, whereas fresh emis-
sions resulted in much larger increases in ultrafine than in PM2.5
particles. The streaker data showed that S, V, Ni, Cr and Br did not
show a daily pattern, and high concentrations of these elements
were recorded linked to specific events.

Observe in Fig. 5C how PN exhibits a high correlation with
elements linked to the fresh industrial Cu-smelter emissions (e.g. Zn,
Cu and Pb, r: 0.48e0.64) and the phosphoric acid-based fertilizer
plant (e.g. P, r¼ 0.44). In contrast, PM2.5 shows high correlationwith
compounds linked to aged emissions from the oil refinery (S, V and
Ni; r: 0.4e0.6) and road dust (Fe, Ca, K, Al and Sr; r: 0.3e0.4).

Fig. 4. Daily evolution (hourly values) of particle number (PN), gaseous pollutants (NOx and SO2) and Fe, Al, Zn, Cu and As in PM2.5 averaged during weekdays (MondayeFriday) and
weekends (SaturdayeSunday) of the streaker campaign.
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3.3. Ultrafine particles episodes

A classification of ultrafine particle events was performed. This
was done by identifying the pollutants that tend to increase
simultaneously with hourly particle number concentration N. This
classification allows the most frequent scenarios in which ultrafine
particle events occur to be identified. Eight types of event, in which
N experiences simultaneous increases with NOx, SO2, BC and/or
solar radiation, were considered (Table 2). The most frequent time
of occurrence and mean concentrations of the measured parame-
ters are included in the analysis. The overall results show that:

� 29% of the peak events in hourly PN concentrations occurred in
the morning (08:00 GMT) with concurrent increase of NOx and
BC concentrations. These type-1 events are attributed to
vehicle exhaust emissions.

� 31% of the peak events in PN were simultaneous with
increases in SO2 concentrations (type 2, 4, 6 and 8). Most of

these events occurred from 13:00 to 14:00 GMT, when
industrial plumes typically reach the measurement site. In
most of these events (21% of all PN increases) NOx was the
only pollutant that experienced a simultaneous increase with
SO2 and PN (type-6).

� In w20% of the events, no increase in the measured pollutants
was observed during the increases in PN concentrations. These
type-3 events mostly occurred at noon, when simultaneous
increases in PN and in solar radiation were observed.

Fig. 6A and B show the mean PN versus SO2 and O3 concen-
trations recorded in all types of events (data included in Table 2).
It can clearly be observed how particle number tends to increase
with SO2 and O3 concentrations. In fact, the highest PN concen-
trations are recorded during type-6 (N ¼ 80,891 cm�3) events,
which are associated with the highest SO2 (28 mg m�3) and O3
(98 mg m�3) concentrations. This result suggests the significant
involvement of photochemistry in the processes involved in the

Fig. 5. AeB) Hourly average values of particle number (PN), SO2, NOx, some trace metals (P, As, Cu and Zn) and sulphur (S) in PM2.5. C) Correlation coefficient between PN and all the
elements analysed in PM2.5. All data have hourly time resolution. Scale factor has been applied for some elements (x 2 for As, x 5 for P,/10 for S) in order to adjust the scale of the
graphic.
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conversion of SO2 to ultrafine particles within the industrial
plumes during inland transport prompted by sea breeze. Observe
how the PN2 contribution to PN increases with O3 concentrations
(Fig. 6D). The contribution of PN1 to PN is only significant during
type-1 events (primary vehicle exhaust emissions), when it rea-
ches 37% (Table 2). The contribution of PN2 particles to PN is also
high during type-3 and 5 events, even if SO2 concentrations are
rather low (8e9 mg m�3). The relationship between PN2 and O3
during these events (a linear trend similar to that observed in all
events) suggests the involvement of photochemical processes
(Fig. 6D). The fact that increases in SO2 concentrations were not
observed in these events could be due to the fact that SO2 is
consumed by conversion to sulphate, or species other than SO2
are involved in the nucleation and subsequent particle growth
(e.g. organic species; Metzger et al., 2010; Sipilä et al., 2010).

3.4. Sources that contribute to ultrafine particles

The sources that contribute to ultrafine particles were identified
by applying PCA and varimax rotations to data for particle number
concentration data and PM2.5 chemical composition. Different

combinations of variables were tested (e.g. PN and PM2.5 composi-
tion, PN1, PN2 and PM2.5 composition, including trace gases and/or
meteorological parameters). A PCA with 45 cases and 27 variables
was considered using the software package STATISTICA 7. Three
Principal Components (PCs) were persistently observed (Table 3):

� APC-1, showing a high association with species linked to
industrial emissions from the Cu-smelter (nss-SO4

¼, As, Sb, Pb,
Zn and Sn), the phosphoric acid and fertilizer plant (nss-SO4

¼,
P and NH4

þ) and the oil refinery (nss-SO4
¼, NO3

�, NH4
þ, V and

Ni), was persistently observed. The presence of PN2 in this PC is
attributed to ultrafine sulphate particle formation in the plume
during inland transport prompted by sea breeze. The associa-
tion of PN2 in this factor is in agreement with the results above
obtained using the streaker, which showed high concentra-
tions of PN and trace metals during fumigations of the indus-
trial SO2 plumes (Figs. 4B and 5A).

� APC-2 associated with road traffic emissions: vehicle exhaust
emissions (OM and PN1) plus road dust (Al, Ca, Fe, Ti, Mn and
K). The association of this PC with particle number (PN1) is due
to vehicle exhaust emissions, with the contribution of road

Table 2
Classification of ultrafine particle events. Type, characteristic, frequency, most frequent time of occurrence (GMT), and concentrations of the considered pollutants.

Type of events PN peak correlated
with

F Time PN PN1 PN2 NOx SO2 BC O3

cm�3 % % mg m�3 mg m�3 ng m�3 mg m�3

NOx involved 36%
Type-1 NOx and BC 29% 8:00 22,352 37 63 52 8 1351 50
Type-5 NOx 7% 13:00 45,989 7 93 33 8 497 74
SO2 involved 31%
Type-2 SO2, BC and NOx 5% 13:00 33,828 16 84 30 20 807 81
Type-4 SO2 4% 14:00 71,989 6 94 20 25 622 82
Type-6 SO2 and NOx 21% 13:30 80,891 5 95 32 28 608 98
Type-8 SO2 and BC 1% 11:00 23,466 14 86 6 12 472 75
Only BC involved 14%
Type-7 BC 14% 11:00 18,080 20 80 18 7 603 69
Non primary

pollutants
20%

Type-3 Only solar radiation 20% 12:00 36,994 9 91 20 9 505 76

Fig. 6. Contributions of PN in absolute concentrations (cm�3; A and B) and of PN2 in relative concentrations (%, C and D) versus SO2 and O3 concentrations. The number near each
dot indicates the type of event described in Table 2. A and B) Dotted lines indicate plus/minus one standard deviation.
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dust considered being almost negligible (road dust is mostly
coarse, with a high contribution tomass, but a low contribution
to number concentrations). The association of road dust in this
PC is attributed to the simultaneous (correlated) increases in
road dust and vehicle exhaust components during the morning
rush hours (e.g. Fig. 4A). The presence of PN1 in this PC is in
agreement with the weekly cycles of NOx and PN1 particles
described above, which exhibited high values during working-
day rush hours (Fig. 3).

� APC-3 showing high factor loading for typical sea salt compo-
nents (Cl,NaandMg).Asexpected,neitherof theparticlenumber
components, PN1 or PN2, was associated with this factor.

Only two sources contributed significantly to the particle
number PN: road traffic accounted for 50 � 9%, whereas industrial
emissions accounted for 44 � 7% of PN (Fig. 7). The contribution of
sea salt was negligible (<1%), whereas the undetermined fraction
(the difference between measured PN and the sum of the identified
sources) accounted for 4% (Fig. 7). The contribution of these two

sources to ultrafine particle concentration in ambient air is of
a comparable magnitude: the daily mean contribution of each of
these sources to the particle number concentration exhibits values
within the range 10,000e30,000 cm�3 (Fig. 8). Observe how
industrial emissions can frequently contribute 20,000e30,000 cm�3

to the particle number and can result in As concentrations within
the range 10e25 ng m�3 (Fig. 8B). Fig. 9 shows the daily mean

Table 3
Factor loading of the Principal Components Analysis (followed by a varimax rota-
tion) obtained using daily data of PM2.5 chemical composition and of PN1 and PN2
particles.Q1

PC-1 PC-2 PC-3

Industrial Road traffic Sea salt

OM 0.37 0.57 �0.10
PN1 0.52 0.59 �0.10
PN2 0.57 0.26 �0.06
nss-SO4

2� 0.84 �0.02 �0.14
NO3

� 0.51 0.26 �0.14
NH4

þ 0.87 0.05 �0.29
Na �0.08 �0.06 0.86
Cl� 0.15 �0.03 0.81
Mg �0.13 0.33 0.83
Al 0.13 0.76 �0.21
Ca �0.07 0.89 0.14
Fe 0.14 0.95 0.05
Ti 0.14 0.46 0.25
Mn 0.26 0.83 0.12
K 0.29 0.71 0.13
P 0.67 0.10 0.10
As 0.83 0.26 0.16
Pb 0.86 0.21 0.28
Cd 0.88 0.18 0.32
V 0.82 0.25 �0.09
Ni 0.74 0.29 0.02
Zn 0.61 0.11 0.31
Cu 0.44 0.13 �0.05
Bi 0.81 0.07 0.39
Mo 0.53 �0.01 0.21
Sn 0.71 0.44 0.20
Sb 0.41 0.30 �0.29
% Var 39.20 12.00 11.70

Fig. 7. Mean daily contribution to PN (cm�3 and %) of the different factors identified by
the PCA analysis.

Fig. 8. Daily averaged values of BC, As and of the particle number PN linked to vehicle
exhaust and industrial emissions.

Fig. 9. A) Daily averaged values of PN classified from the highest to the lowest
concentration (100th to 1st percentile) highlighting the contribution of the industrial,
vehicle exhaust and undetermined fraction contributions. The associated concentra-
tions of As, Cd, P, Pb, Al, Fe and BC are plotted in B and C.
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averaged values of the particle number PN, classified from the
highest to the lowest concentration (100th to 1st percentile), and
the contribution of the identified sources. Observe how PN values
>25,500 cm�3 (70th P) aremainly induced by industrial emissions,
whereas for PN values <14,700 cm�3 (50th P) the vehicle exhaust
contribution is greater:

� For daily mean levels of PN within the range 50,000e
25,500 cm�3 (100the70th) industrial and vehicle exhaust
emissions accounted for 49 and 30%, respectively.

� For daily PN values within the range 14,700e5000 cm�3

(50the1st), vehicle emissions accounted for 60% of PN, with
only 30% of PN being linked to industrial emissions.

These results suggest that high PN concentrations, about
25,000 cm�3, are mostly due to industrial emissions. Observe the
sharp increase in the concentrations of As, Cd, Pb and P (linked to
the Cu-smelter and fertilizer production plants) when PN concen-
trations higher than the 70th P are recorded (Fig. 9B). In contrast,
compounds linked to vehicle exhaust and road dust emissions
increase progressively from low to high PN events (Fig. 9C).

The potential contribution of new particle formation in ambient
air linked to photochemical processes, typically occurring with low
concentrations of primary pollutants (e.g. NOx and SO2; Rodríguez

et al., 2009), was not identified in our PCA, with this being attrib-
uted to the fact that any chemical tracer of such a process was
analysed. The features of the type-3 events we observed in the time
series analysis suggest that these events occur in our study area. In
fact, these events could account for the unexplained variance in the
PCA (w37%) and for the unaccounted-for fraction in the source
contribution (4%; Fig. 7). Pey et al. (2009) identified such photo-
chemically induced new particle formation events in Barcelona,
and concluded that they accounted for 3% of the number of parti-
cles >10 nm and for 23% of 10e20 nm particles.

The high impact of these industrial emissions on the ultrafine
particle concentration is clearly observed in Fig. 10, where the
number and black carbon concentration in several European cities
is plotted (Reche et al., 2011). In Huelva, BC concentrations exhibit
a maximum during the morning rush hours, as in other EU cities
due to the dominant role of vehicle exhaust emissions. However,
the particle number concentration in Huelva shows a distinct
maximum during the nooneafternoon due to the impact of the
industrial plumes over the city. Because of this, PN concentrations
in Huelva are much higher than in other cities, even though BC
levels in Huelva are significantly lower.

4. Conclusions

Urban air pollution by ultrafine particles is a matter of concern
due to the adverse effects on human health. Studies performed
during the last decade showed that vehicle exhausts are a major
source of ultrafine particles in urban ambient air. Thus, ultrafine
particle emissions in vehicle exhaust have recently been subject to
limit values in a recent stage of the EURO standards.

The results of this study show that some industrial emissions
result in high concentrations of ultrafine particles. This is the case of
the industrial city of Huelva, where the second largest Cu-smelter
plant in Europe, phosphoric acid and fertilizer plants, an oil
refinery and a petrochemical plant are located. These sources
release SO2, toxic metals and hydrocarbons, among other pollut-
ants. The results of this study show that industrial emissions are the
main cause of ultrafine particle episodes. When vehicle exhaust is
the main source, ultrafine particles typically show (24-h mean)
concentrations within the range 14,700e5000 cm�3 (50the1st),
with 60% of these being linked to this source and 30% to indus-
trial emissions. In contrast, when dailymean levels of PN arewithin
the range 50,000e25,500 cm�3 (100the70th), industrial and
vehicle exhaust emissions accounted for 49 and 30%, respectively.
High concentrations of toxic trace metals (As, Cu, Cd, Zn and Pb) are
recorded during these ultrafine particle pollution events linked to
industrial emissions (e.g. 10e25 ng m�3 As and 1e2 ng m�3 Cd).
Because of these industrial emissions, ultrafine particle concen-
trations during daylight are about two times higher than those
observed in other European cities.
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black carbon ratio (PN/BC) in several European cities. PNx: number concentrations of
particles with a size higher than x nanometers. Data from Santa Cruz (Spain), Barcelona
(Spain), London (UK) and Lugano (Switzerland) provided by Reche et al. (2011).
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