
Murray State's Digital Commons Murray State's Digital Commons 

Faculty & Staff Research and Creative Activity 

Winter 1-31-2020 

Visa trial of international trade: evidence from support vector Visa trial of international trade: evidence from support vector 

machines and neural networks machines and neural networks 

Engin Akman 

Abdullah Karaman 

Cemil Kuzey 
Murray State University, ckuzey@murraystate.edu 

Follow this and additional works at: https://digitalcommons.murraystate.edu/faculty 

 Part of the Business Commons 

Recommended Citation Recommended Citation 
This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Management 
Analytics on March 4, 2020, available online: https://doi.org/10.1080/23270012.2020.1731719 

This Journal Article is brought to you for free and open access by Murray State's Digital Commons. It has been 
accepted for inclusion in Faculty & Staff Research and Creative Activity by an authorized administrator of Murray 
State's Digital Commons. For more information, please contact msu.digitalcommons@murraystate.edu. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Murray State University

https://core.ac.uk/display/326489974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.murraystate.edu/
http://www.murraystate.edu/
https://digitalcommons.murraystate.edu/
https://digitalcommons.murraystate.edu/faculty
https://digitalcommons.murraystate.edu/faculty?utm_source=digitalcommons.murraystate.edu%2Ffaculty%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/622?utm_source=digitalcommons.murraystate.edu%2Ffaculty%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:msu.digitalcommons@murraystate.edu


 

 

VISA TRIAL OF INTERNATIONAL TRADE: EVIDENCE FROM 

SUPPORT VECTOR MACHINES AND NEURAL NETWORKS 

 

Abstract: International trade depends on networking, interaction and in-person 

meetings which stimulate cross-border travels. The countries are seeking policies 

to encourage inbound mobility to support bilateral trade, tourism, and foreign 

direct investments. Some nations have been implementing liberal visa regimes as 

an important part of facilitating policies in view of security concerns. Turkey has 

been among the nations introducing liberal visa policies to support trade in the 

last decade and recorded significant increases in the volumes of exports. In this 

paper, we employed machine learning methodologies, Support vector machines 

(SVM) and Neural networks (NN), to investigate the facilitating impact of liberal 

visa policies on bilateral trade, using the export data from Turkey for the period 

of 2000–2014. The research disentangled the variables that have the strongest 

impact on trade utilizing SVM and NN models and exhibited that visa policies 

have significant impacts on the bilateral trade. More relaxed visa policies are 

recommended for the countries in the pursuit of increasing exports. 

Keywords: Trade modeling; Visa policy; Support vector machine; Neural 

network. 

 

1. Introduction 

Exports are an essential part of economic growth and the countries implement policies 

to support outbound foreign trade as it generates wealth and employment. International 

trade depends on personal contacts, communication, and negotiation which increase the 

need for in-person meetings. Bilateral trade relations and trade volume are decisive 

factors for business travels (Tsui et al. 2018). Global exports comprise 28.5% of global 

gross domestic product and have been almost doubled in the last decade (WDI 2018) 

creating more demand for international travel. Despite the fact that inbound mobility is 



 

 

indispensable in the process of exports starting from networking to delivery and after-

sales services, trade executives from many countries encounter visa barriers. 

The sophisticated high-tech products and the globalization of production where 

different parts of products are manufactured in distant countries and yet assembled in 

another one are perceptible characteristics of many industries. In addition, Industry 4.0 

era makes all the machines, equipment, finished products, processes, production people 

and technological units connected by means of advanced software on the internet (Kim 

2017; Mohelska and Sokolova 2018; Xu, Xu and Li 2018; Xu and Duan 2019; Yli-

Ojanperä et al. 2019). The evolving nature of manufacturing has obviously increased 

the impact on the need for communication, cooperation, and travel. Trends in 

manufacturing industries and the transformation in the goods traded have increased 

cross-border mobility in today’s world. 

Most countries impose visa obligations on the citizens of other nations to limit 

inbound mobility to prevent unsolicited visitors. Strict visa regimes, mostly introduced 

due to security concerns, deter genuine business travelers as well as unwelcome visitors. 

The implication of rigid visa policies causes economic losses in terms of trade and 

tourism by hampering inbound mobility. The hassle and costs of obtaining a visa have 

business travel and trade diversion impact to non-visa geographies (Akman 2016; 

Czaika and Neumayer 2017). Numerous countries are introducing more relaxed visa 

policies to avoid economic losses considering security perceptions in view. The aim is 

to balance the benefits stemming from the obligations imposed on the inbound travelers 

and the costs of the renounced revenues in terms of bilateral trade and tourism. Turkey 

has introduced several policies to encourage inward bound visitors in the last decade 

where permissive visa protocols have been in the core (Kuzey, Karaman, and Akman 

2019). The relaxed visa policies contributed to stimulate export-led growth and emerge 



 

 

as a trading nation (Akman 2016). The period of liberal visa regimes has covered more 

than a decade providing reliable data and offers a natural experiment on visa policies 

and the impacts on exports. 

In this study, different from the previous studies, we selected to use two machine 

learning techniques, support vector machines (SVM), and neural networks (NN), to 

analyze the relationship between exports and visa regimes. The main hypothesis of the 

research is that liberal visa policies will positively affect exports of Turkey. 

The paper is organized as follows: a literature review on the determinants of 

exports, exports and visa policy relationships, SVM and NN research methodology in 

several areas including finance and accounting domains is briefly explained in the next 

section. Data sets and the research methodology are elucidated in the third section. 

Practical evaluation, results, and discussion are included in the fourth section. 

Eventually, the last section concludes the study. 

2. Literature Review 

Liberal visa policies lessen the costs, annoyance, and uncertainty for prospective 

travelers and are expected to instigate exports by encouraging inbound mobility. 

Practical studies in literature showed that visa-lifting protocols increase foreign visitors 

into the administering country (Yasar, Lisner, and Rejesus 2012; Karaman 2016). In the 

same manner, business travel and bilateral trade have a high correlation (Kulendran and 

Wilson 2000; Shan and Wilson 2001; Tsui and Fung 2016; Van De Vijver, Derudder, 

and Witlox 2014). Business travel, specifically, fostered the prosperity in foreign trade 

by 35% globally in the last decade (Oxford Economics 2011). 

Restrictive visa regimes are among the top factors hampering the movement of 

businesspeople. Hassle of getting visas was the second foremost factor out of 10 most 

repeatedly confronted non-tariff commerce barriers (Ching, Wong, and Zhang 2004). 



 

 

As a result, countries are obliged to lower mobility barriers to stimulate international 

trade. 

In the extant literature, determinants of bilateral trade of a country have been 

studied using pure statistical models. Variables listed as the gross domestic product 

(GDP), distance, regional contiguity, colonial links, common language, trade 

agreements, visa restrictions, and immigrant stock were reported to have a substantial 

influence on bilateral trade. While visa restrictions (Akman 2016; Song, Gartner, and 

Tasci 2012; Yasar, Lisner, and Rejesus 2012) and distance (Disdier and Head 2008; 

Berthelon and Freund 2008) had hindering impact on the international trade, trade 

agreements (Baltagi, Egger, and Pfaffermayr 2003), GDP of both host and parent 

countries, immigrant stock and regional contiguity (Akman 2016; Boubacar 2016) were 

analyzed to have stimulating effect on the international trade. 

The impact of visas on bilateral trade has attracted little attention from academia 

notwithstanding its importance. The difficulty of compiling the dynamic visa policy 

data for many countries complicates specific studies on the subject. Restrictive visa 

policies have a hindering effect on the trade as well and impeding global economic 

growth. Empirical and theoretical studies on the matter will have policy implications 

and shed light on the development of efficient visa protocols. 

In this context, Yasar, Lisner, and Rejesus (2012) analyzed the US Visa Waiver 

Program (VWP) at the country level employing panel data techniques for 27 nations for 

the years including 1950-2003. They estimated an expansion of 10-20% in exports of 

the US with its trade partners of VWP, whilst the impacts were fluctuating across the 

board. 

One of the drawbacks of previous pure statistical models is that they frequently 

entail data to follow normality and linearity presumptions that might not hold for many 



 

 

empirical data sets. Nonetheless, data mining techniques in general, and SVMs and 

NNs, in particular, are free of the limitations of these restrictive assumptions (Delen, 

Kuzey, and Uyar 2013a). In addition, these techniques have surpassing predictive 

power, and their attractiveness is increasing in recent studies (Delen et al. 2013b; 

Kuzey, 2018). The use of these techniques by practitioners in various industries is 

increasing as new trends in the industry depend on machine learning and data mining. 

The SVM integrates statistical models and machine learning algorithms and is 

one of the most accurate and robust methods in the data mining field. SVM has been 

used in several applications including time series forecasting (Tay and Cao 2002), 

reliability estimation (Yazdani et al. 2019),  identifying the low-dimensional space 

facial data (Shen et al. 2016), analyzing Chinese luxury consumption behavior (Chi-

Hsien and Nagasawa 2019), internet traffic classification (Yuan et al. 2010), stock 

market movement prediction (Huang, Nakamori, and Wang 2005), tourism demand 

forecasting (Chen and Wang 2007), credit rating analysis (Huang et al. 2004), credit 

scoring (Huang, Chen, and Wang 2007), credit risk evaluation (Yu et al. 2010), 

bankruptcy prediction (Shin, Lee, and Kim 2005; Min and Lee 2005; Olson, Delen, and 

Meng 2012), and prediction in marketing (Cui and Curry 2005), among others. Chen 

and Wang (2007) used support vector regression (SVR), a regression version of SVM, 

in tourism demand forecasting. The authors compared three methods including 

backpropagation NN, SVR, and autoregressive integrated moving average model in 

forecasting incoming tourists to China for the period 1985-2001. In their proposed 

approach, the parameters of the SVR model were determined by the real-valued genetic 

algorithm. The authors demonstrated that SVR performs better than its counterparts 

considering the normalized mean square error and mean absolute percentage deviation. 

Olson, Delen, and Meng (2012) applied numerous data mining tools to bankruptcy 



 

 

prediction paradigm comparing their accuracy and the number of rules using a data set 

of 100 US firms that experienced bankruptcy. The authors concluded that the decision 

tree (DT) techniques slightly outperforms NN and SVM, but the resultant DT models’ 

rules became numerically intractable. Vafeiadis et al. (2018) used several machine-

learning algorithms for fault detection on the application of glue on printed circuit 

boards including the SVMs. The authors, via simulation, showed that Polynomial-SVM 

and Radial Basis Function-SVM (RBF-SVM) outperformed the other techniques. 

Finally, yet importantly, Cui and Curry (2005) used SVM in prediction in marketing. 

The authors illustrated that consumer choice including automated modeling and mass-

produced models can be predicted accurately by the SVM. 

Similarly, NNs have been an appealing technique for researchers and 

practitioners due to their adaptability in modeling a considerable extent of functional 

associations between dependent and independent variables. For this reason, NNs have 

been used in many diverse fields and problems including several in the accounting and 

finance areas. Olson and Mossman (2003) compared the forecasting of stock returns 

using the NN, ordinary least squares, and logistic regression techniques using 61 

accounting ratios for 2352 Canadian firms. They illustrated the backpropagation NN 

technique outperforming its regression counterparts. Lam (2004) also used the 

backpropagation NN algorithm in predicting the financial performance of 364 S&P 

companies including 16 financial statements and 11 macroeconomic variables. The 

author showed that common shareholders’ equity rate of return was predicted well with 

NN, outperforming overall market average return from highly diversified portfolios but 

not overall market average return from perfect information that was a result of top one-

third returns in the market. In addition, Chen and Leung (2004) and Dunis, Laws, and 

Sermpinis (2010) used NN-based techniques in predicting and trading foreign exchange 



 

 

rates. In a similar vein, West, Dellana, and Qian (2005) and Tsai and Wu (2008) used 

NN ensembles in credit scoring and bankruptcy prediction. West, Dellana, and Qian 

(2005), in particular, applied cross-validation, bagging and boosting ensemble 

strategies, and investigated average prediction accuracy. Tsai and Wu (2008), in 

addition to West, Dellana, and Qian (2005), considered Type I and Type II errors as 

other performance measures. NN techniques have been also extended to other domains. 

Li and Da (2000) demonstrated the use of NN for modeling and solving linear and fuzzy 

linear programming problems. The authors listed advantages of NN including clear 

visualization and computation power. Zhou and Xu (2001) proposed a fuzzy neural 

network (RFNN) to model the fuzzy dynamical systems and proved the validity of the 

approach. Zhang (2003) and Zhang and Qi (2005) used NN in time series forecasting. 

Zhang (2003) illustrated that a hybrid Box-Jenkins integrated moving average model 

and NN model outperforms either of the models used individually in terms of prediction 

accuracy. Zhang and Qi (2005) concluded that detrending and deseasonalization are 

necessary to improve the forecasting performance for seasonal and trend time series. 

Ramakalyan et al. (2016) developed hybrid models combining the SVM and 

generalized regression NN for classification and estimation of the composition of flue 

gas mixtures boiler. Panigrahi et al. (2019) applied several NN approaches in flood 

prediction. 

Motivated by the scarcity of studies analyzing the impacts of visa policies on 

international trade, we focused on Turkey which has been dubbed as a natural 

experiment. The underlying reason lying beneath is that Turkey has been liberalizing its 

visa protocols with its counterparts in the last decade. Several countries have been 

conceded visa-free travel privileges allowing business travel, and exports data were 

available for a reasonable period. The experimental setting including its realms 



 

 

extended the potential to analyze the reaction of bilateral trade to the often-evolving 

visa policies. Unraveling the relationship between visa agreements and international 

trade includes analysis of the national-level data for the period of 2000-2014. Another 

contribution of this study is utilizing the machine learning methodologies, SVM and 

NN, to investigate the impacts of visas and the determinants of bilateral trade. 

3. Research Methodology 

This study used the Cross-Industry Standard Process for Data Mining (CRISP-DM), 

which is an extensively used data mining technique. The phases of CRISP-DM include: 

a) comprehending the area and developing the objectives, b) pinpointing, evaluating and 

recognizing the relevant data sets, c) cleansing, pre-processing, and mapping the data, 

d) building models considering related analytical forms, e) judging and weighing the 

suitability of the models among the candidates and in addition to the study objectives, 

and f) using the models in making the decisions (Shearer 2000). In order to achieve 

reliable results, the CRISP-DM empowers the investigator to carry out controlled and 

conclusive data mining study. Data mining techniques require devoting a substantial 

amount of time and attempt to the data organization to provide the desired excellence in 

the inputs thereby the results and the inferences contingent on discoveries are not 

dubious. The illustrative representation of the CRISP-DM is demonstrated in Figure 1. 



 

 

 

Figure 1: Steps of the proposed methodology 

The data sets used in this paper has been compiled from numerous sources. We 

extracted the exports data from the electronic data delivery system of the Central Bank 

of Turkey. The exports data was used as an amplitude of trade activity. Exports data 

was available for the 2000-2014 period and covered for 181 countries of the World. The 

visa restrictions variable, which is the main independent variable, was retrieved from 

the Official Gazette of Turkey and Yakan (2015). Turkey’s visa policy changes were 

provided in the Official Gazette (published in Turkey). In addition, Yakan (2015) 

compiled all the visa agreements of Turkey with other nations. Both sources 

complemented each other and supplied the time-variant manner of visa-policies. 

Turkey’s visa protocols have been grouped into two. One group comprises consulate 



 

 

visas issued before travel, which needs significant effort, time and money. The second 

group includes e-visas, sticker-visas (visa issued on the border), and visa-exempt 

admittance, which is almost hassle-free. 

The economic size of countries has been indicated by GDP (at current US$) and 

was obtained from the World Bank’s World Development Indicators (WDI) database. 

GDP ratio, comparing the financial performance of the two countries, was calculated by 

the authors. Trade openness of a country is the ratio of the sum of exports and imports 

to the GDP and computed by the authors as well. Trade openness explains the level of 

integration of countries into the global business environment. Moreover, free trade 

agreements were introduced as mechanisms facilitating the trade between countries. 

Distance (in km.), Same Region and Contiguity were used as spatial variables. 

While Distance provided the proximity of countries, Same Region indicated the 

countries located in the same geographical area. World Bank has successfully aligned 

countries into regions and World Bank’s alignment scheme formed the basis for this 

study. Contiguity was another latitudinal variable representing countries sharing a 

common border. 

Other variables included Common Language, Colony, and Immigrant Stock. 

Whilst Common Language and Colony data were compiled from the French research 

center in international economics (CEPII1), Immigrant stock data was obtained from the 

Immigration Database of the United Nations. Immigrant stock data stood for a country’s 

foreign-born population (that is, other nationalities reside in Turkey). 

 

1 CEPII is an international economic research centre focusing on global economy and its 

progression, and produces studies, research, databases and/or analyses. 



 

 

We first compiled multiple data sets former to the pre-processing steps. Then, 

we pre-processed the data including the cleansing, choosing the variables, conducting 

the omitted data study to test for the randomness, imputing the lacking data, and 

converting the data inducing less skewness (taking natural logarithms). Next, we 

defined the response (dependent) variable and the predictor (independent) variables and 

identified the data types as ordinal, nominal and scale. Subsequent to these, we 

partitioned the data as training and testing partitions exploiting the hold-out technique. 

In the following steps, we trained and tested the NN and SVM including Linear-SVM, 

Polynomial-SVM, and RBF-SVM. We evaluated the power of the estimations 

conducting a linear regression and measuring the errors in the testing partition. Finally, 

we conducted sensitivity analysis computing the importance scores of the raw variables 

and fusing information, and examining graphically. 

3.1. Cross-validation 

Several cross-validation methodologies including hold-out and k-fold were used to 

compute the precision and the robustness of the suggested estimation models. The hold-

out method is the most repeatedly used technique where the data set is split arbitrarily 

into two (in rare cases three) distinct partitions. The training set is used for building the 

models, the test set is used for testing, selecting and refining the model, and the 

validation set is used for confirming and evaluating the selected model. The validation 

set is usually deemed as optional. 

3.2. Bagging (Bootstrap Aggregating) 

It is used as one of the cross-validation methods to enhance the model robustness while 

reducing variance in estimations. We sampled the data at random, to be exact k-times, 

and following the creation of k-samples, we used them to develop k-models dependent 



 

 

on the created instances. We joined the k-models in an ensemble to attain the final one. 

It yields replication of the training datasets by sampling with replacement from the 

original dataset which generates bootstrap samples of similar size to the original dataset. 

The bagging algorithm generates frequency weights and then a model is established on 

each replication, finally, an ensemble model is built by these models. 

3.3. Modeling Techniques 

3.3.1. Support Vector Machine 

The SVM, among the most accurate and robust algorithms in data mining, was 

originally developed by Vapnik (1995). It is also known as a maximal margin classifier. 

The theoretical foundation of SVM comes from the statistical learning theory, and it 

encompasses the machine learning as well as statistics. SVM learns from examinations 

by creating input and output-matching functions resulted from training data sets. It is 

one of the supervised learning approaches in which the structure includes input space, 

training set, output space, and a learning form (Cortes and Vapnik 1995). The learning 

form is decided by the output space. The mapping functions match the data to a many 

dimensional feature space (named classification or regression). It belongs to the type of 

maximal margin classifier. Besides performing linear classification, SVMs perform a 

nonlinear classification by mapping the inputs into high-dimensional feature spaces 

which are called kernel trick in order to induce the input data effortlessly 

distinguishable as opposed to the original data, thus the kernel functions transform the 

input data to high dimensional feature space. They incorporate four kernel functions 

known as Linear, Polynomial, Radial Based, and Sigmoid functions. The kernel 

functions are used in the case of not simply distinguishable input data for classification 

problems. The objective of the SVM is to locate the optimum hyperplane that splits the 



 

 

clusters of the vector (most suitable demonstration) so as those facts with one group of 

the objective variable are on one lateral of the plane and facts with the other group are 

on the alternative lateral of the plane. The support vectors are those vectors that are near 

the hyperplane. A separator found between the split classes is drawn as the hyperplane. 

3.3.2. Neural Networks 

The NNs display several features including the capability to acquire intricate 

information patterns and universalize the acquired information inspired by the human 

cognitive system. Therefore, the learning processes of the human brain, as well as the 

neurological functionalities of the brain, are used for modeling the Artificial Neural 

Networks (ANN). Significant attention is placed recently in the building of ANNs for 

working out a great extent of problems from diverse domains. 

It attempts to predict a categorical or a continuous dependent variable using one 

or more predictors to determine an unknown and complex pattern in the data. The 

algorithm utilizes the enhancing the model accuracy, model stability, and allows 

working with large datasets. ANNs are categorized into numerous classes dependent on 

supervised and unsupervised learning techniques. Different types of NNs exist including 

feedback recall and feed-forward architectures. The feedback networks are dynamic that 

they have continuously changing states until they reach an equilibrium level, also they 

can have signals in both directions. Feed-forward NNs associate inputs with outputs, 

which is a straightforward network. It has been widely used in pattern recognition. 

There are two types of NN models: Multilayer Perceptron (MLP) and RBF. The 

MLP is a supervised and feed-forward learning algorithm that includes up to two hidden 

layers. It minimizes the prediction error with one or more targets based on one or more 

predictors. They both can be a mix of categorical and continuous variables. The 

structure of the algorithm includes the input layer, hidden layers, and the output layer. 



 

 

The RBF is also a feed-forward, supervised learning algorithm with only one hidden 

layer that is called the radial basis function layer. It utilizes one or more independent 

variables (predictors) that minimized the prediction error of one or more dependent 

variables (targets). The dependent variables can also be a mix of categorical and 

continuous variables. The structure of the RBF network algorithm includes the input 

layer, the RBF layer, and the output layer. Each of the approaches deals with the 

missing values by either excluding them list wise or imputing the continuous fields with 

the average of the minimum and maximum detected values while imputing the 

categorical fields with the most frequently appearing group (Modeler 2015). 

Some of the advantages of NNs includes a) its elasticity in resembling a great 

extent of functional forms of inputs and output is the main appealing aspect of neural 

networks, b) they have the capacity to be used and forecast even based on incomplete, 

noisy, and fuzzy data. Also, adequately complex neural networks can estimate arbitrary 

functions quite well, c) NNs are free of a priori hypothesis and do not inflict any 

functional relationship of inputs to the output. Hence, NNs are fairly reasonable to be 

used in the circumstances where an understanding of the functional relationship linking 

inputs to output is missing, or when a prior presumption regarding a form has to be 

circumvented. 



 

 

 

Figure 2: Basic structure of a Multi-Layer Perceptron NN model 

3.4. Performance Measures 

The predictive power of the employed models can be utilized various approaches 

depending upon the target variables characteristics whether beings are numerical or 

categorical. Because of the continuous output variable, linear regression, mean error, 

minimum error, maximum error, and mean absolute error are used as the tools for the 

predictive models’ power. 

Linear Regression: It one of the most essential tools for measuring a model 

performance with a continuous objective variable. It is utilized to evaluate the 

magnitude as well as the direction of the relationship between estimated (Pi) and real 

values (Yi) (Eq. 1). The values range between -1.0 (high indirect link) and +1.0 (high 

direct link) to display the orientation and the extent of the link. However, values around 

0.0 characterize a lacking association between the outcome and the real values. 
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where Yi shows the real value of the predicted variable of the ith observation, and Pi 

shows the outcome of the ith observation by the model. High correlation coefficient 

indicates a well performed predictive model. The threshold value for a model’s 

performance to be accepted is at least a correlation coefficient of 0.30 (Cohen et al. 

2013). 

Mean Absolute Error: It is one of the performance measures of a model when 

the outcome variable is continuous. It evaluates the absolute values errors and averages 

them. Basically, it assesses the average extent of error (Eq. 2). 
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where Yi characterizes the level of the outcome variable of the ith observation, and Pi 

characterizes the estimated level of the ith observation. 

Mean Error: It shows the mean errors of the observations. 

3.5. Variable Importance 

3.5.1. Sensitivity Analysis 

Sensitivity analysis is employed for determining the variables’ significance and also 

recognized as predictors’ importance. Sensitivity analysis of an estimation model is 

utilized to investigate the cause and effect relationship between the dependent and 

independent variables (Davis 1989). The relative significance of each variable when 

making predictions is known as sensitivity analysis. The level of importance determines 

the contribution level in making a prediction rather than determining if a prediction is 

accurate or not. The further significant the variable the further effect it has in predicting 

the outcome, and therefore sensitivity analysis is usually performed as a tool to identify 



 

 

those variables that should be ignored or dropped simplifying and improving the 

prediction model. Thus, taking into account that the least important variables can be 

excluded from the model is a crucial step using the predictor’s importance scores. 

To calculate the variance of predictive error, the predictor variables are dropped 

from the model one by one, while the performance of the remaining variables is closely 

observed. The predictor’s importance score is found calculating the variance reduction 

of the objective which is corresponding to predictors. The variance is increased by an 

important variable as opposed to the entire model that contains all variables (Modeler 

2015). The extent of sensitivity is formulated as: 

 
( ) )(/)X|( i YVYEVSi =  (3) 

Moreover, the predictors’ ranking is determined by this formula (Modeler 2015). 

In this formulation, Y  shows the dependent (target) variable while Xj (j = 1, 2, …, k) 

show independent variables, V(Y) shows unconditional output variance, “E” displays an 

integral over X-i (i.e., all factors excluding Xi), V shows integral over Xi. Finally, 

sensitivity is normalized as 
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It is used to find a variable’s predictor importance score. Si shows the order of the 

predictors with respect to their importance score (Saltelli et al. 2004). 

3.5.2. Sensitivity Analysis using Information Fusion 

No single way is available to obtain the best predictive model and its implementation. In 

this case, combining the obtained results of the predictive models is suggested 

(Batchelor and Dua 1995). A substantial number of studies have been published 



 

 

concerning the combination of various data sources. Because of these studies, 

information fusion, known as “data fusion” has emerged. However, various definitions 

are available in the literature, Starr and Desforges (1998) construed information fusion a 

method of joining data and information considering different sources. The objective is 

to extract as much valuable information as possible in order to improve the 

dependability or discriminant capability while minimizing the retained data size. The 

data/information shows the attained prediction and sources shows the prediction models 

when merging predictions while the combination of predicted values shows the fusion 

process (Seni and Elder 2010). Each employed model generates different variable 

importance values for each independent variable; when these prediction model 

outcomes are ultimately combined, the process becomes known as “information fusion-

based sensitivity analysis”. Fuller, Biros, and Delen (2011) support the aforementioned 

data combination process due to its accuracy and robustness. Delen, Oztekin, and 

Tomak (2012) defined the following steps to utilize the fusion-based sensitivity 

analysis: 

(1) the predictor importance values are generated by the included prediction models; 

(2) the obtained respective variable importance values in the first step are 

normalized with the given calculation 

 
)/()( minmaxmin PIPIPIPIPInew −−=

 (5) 

(3) Using the following expression, the normalized predictor significance scores are 

fused (joined) to establish a single form 

 mnmnfusedn PIwPIwPI ++= 11)(  (6) 

In this expression, PI shows the relative importance score, wi’s display the normalized 



 

 

weight scores, m is the number of estimation models, and finally, n is the number of 

variables. Once these steps are performed, the fused sensitivity values are illustrated 

graphically to demonstrate the relative importance of each variable, ranging from the 

most to the least important one. 

4. Data Analysis, Results, and Discussion 

The variables, explanations, and data types are given in Table 1. Exports to countries is 

the output variable while Colony, Common language, Distance, FTA, GDP in current 

USD, Immigrant, Same region, Trade openness, and Visa restriction are input variables. 

Colony, Common language, FTA, Same region, and Visa restrictions are binary 

variables and the remaining variables are continuous numerical variables. 

Table 1: List of variables used 

No Variables Explanation Data Type 

1 Exports to 

countries  

Exports to countries from Turkey Number 

2 Colony 1: Colonial relationship between countries 

exists 

0: Otherwise 

Binary nominal 

3 Common 

language 

1: Countries are sharing at least one 

common language; 0: Otherwise 

Binary nominal 

4 Distance The measure of proximity between a 

country and Turkey  

Number 

5 FTA  1: There is a free trade agreement ratified 

between a country and Turkey; 0: Otherwise 

Binary nominal 

6 GDP in current 

USD 

The gross domestic product of a country (in 

current USD) 

Number 

7 Immigrant Designates immigrant stock from a country 

to Turkey 

Number 

8 Same region 1: A country and Turkey are in the same 

region; 0: Otherwise. 

Binary nominal 

9 Trade openness The ratio of exports and imports to GDP Number 

10 Visa restriction 1: Consulate visa is required between 

countries and Turkey; 0: e-visas/sticker-

visas are granted prior to trip/at border-

crossing, or visa-free travel is allowed 

Binary nominal 

 



 

 

The descriptive statistics of the numerical variables are shown in Table 2 is 

using the obtained sample of 2,613 records. The average Exports to countries is 

17.47±2.82, the average Distance is 8.36±0.79, mean GDP (in current USD) is 

23.96±2.29, Immigrant is 4.70±3.19, and Trade openness is 0.86±0.55. These values are 

based on overall data. 

Table 2: Descriptive statistics (N = 2,613) 

Variables 

Minimu

m 

Maximu

m 

Mea

n 

Std. 

Deviation 

Skewnes

s 

Kurtosi

s 

Exports to 

countries 7.55 23.44 

17.4

7 2.82 -0.39 -0.29 

Distance 6.44 9.73 8.36 0.79 -0.43 -0.76 

GDP in current 

USD 18.15 30.49 

23.9

6 2.29 0.21 -0.38 

Immigrant 0.00 13.50 4.70 3.19 0.35 -0.77 

Trade openness 0.00 4.55 0.86 0.55 2.41 11.06 

 

We show the frequency analysis of binary variables in Table 3. The results 

indicated that 7.5% of the countries have a colonial relationship with Turkey, only 0.4% 

of the countries are sharing at least one common language, 21.6% of the countries have 

a free trade agreement with Turkey, 27% of the countries are located in the same region, 

and 44.6% of the countries’ citizens were required to obtain consulate visas to travel to 

Turkey. 

Table 3: Frequency analysis of categorical independent variables 

Variables Categories 

Frequen

cy 

Perce

nt 

Colony The colonial relationship between countries exists 195 7.5 

 Otherwise 2,418 92.5 

 Total 2,613 100 

Common 

language 

Countries are sharing at least one common 

language 10 0.4 

 Otherwise 2,603 99.6 

 Total 2,613 100 



 

 

FTA 

A free trade agreement between a country and 

Turkey exists 564 21.6 

 Otherwise 2,049 78.4 

 Total 2,613 100 

Same region Countries are sharing a common border 705 27 

 Otherwise 1,908 73 

 Total 2,613 100 

Visa restriction Visa is required 1,166 44.6 

 Otherwise 1,447 55.4 

 Total 2,613 100 

 

We summarized the predictive models involved in the study and corresponding 

performance measures in Table 4. We employed NNs and RFB kernel SVM, 

Polynomial kernel SVM, and Linear Kernel SVM. These models are appropriate since 

the target variable is a continuous type. 

We used ensembles algorithms to improve model accuracy. Thus, NN and SVM 

employed an ensemble employing boosting to achieve correct estimations by producing 

a sequence of models. Since we employed multiple models, we also performed 

ensemble node to combine these four models to obtain more accurate predictions gained 

from NN and SVMs and to eliminate the limitations in these models. 

Table 4: Performance of the models using boosting 

Predictive Model Performance Measures Training Testing 

NN Minimum Error -3.82 -3.70 

 Maximum Error 3.52 4.34 

 Mean Error 0.06 0.07 

 Mean Absolute Error 0.82 0.87 

 Standard Deviation 1.06 1.14 

 Linear Correlation 0.93 0.92 

SVM-RBF Minimum Error -5.48 -6.17  
Maximum Error 7.61 4.36  
Mean Error -0.04 -0.07  
Mean Absolute Error 0.95 0.91  
Standard Deviation 1.35 1.25  
Linear Correlation 0.88 0.90 

SVM-POLYNOMIAL Minimum Error -5.47 -4.72 

 Maximum Error 4.90 5.43 



 

 

 Mean Error -0.03 -0.01 

 Mean Absolute Error 0.82 0.83 

 Standard Deviation 1.20 1.20 

 Linear Correlation 0.91 0.91 

SVM-LINEAR Minimum Error -5.41 -6.79  
Maximum Error 7.83 4.23  
Mean Error -0.03 -0.06  
Mean Absolute Error 1.00 0.95  
Standard Deviation 1.39 1.30  
Linear Correlation 0.87 0.89 

Occurrences 
 

2,066 547 

NN: Neural Network, SVM: Support Vector Machine, RBF: Radial Based Function 

 

In order to calculate model performances, we employed the hold-out method. 

We used 2,066 records randomly as the training set while we used the remaining 547 

records for the testing partition. Then, we evaluated the performances of the estimation 

models relied on the error and correlation values. 

Consequently, the performance of the designated NN, RBF-SVM, Polynomial-

SVM, and Linear-SVM was illustrated in Figure 3. The linear correlation coefficients 

relied on the actual and estimated values of Exports to countries. The threshold of 0.30 

was chosen for the correlation coefficient (Sauro and Lewis 2009; Cohen et al. 2013). 

The correlations varied between 89% and 92% in the testing set exceeding the 30% 

threshold level. In addition, the mean error of the estimation models was ranged from -

0.07 to 0.07 and mean absolute errors ranged from 0.83 to 0.95. The latter error measure 

was without a threshold level, but it was used as the benchmark to choose the most 

appropriate model. The models were compared dependent on the parsimony (number of 

variables used), correlation, and relative error. For our problem, the prediction model 

that links the dependent variable (Exports to countries) to the independent variables the 

most was the NN since it had the largest correlation coefficient of 0.92, mean error of 

0.07, and mean absolute error of 0.87 using the test partition. 



 

 

 

Figure 3: Structure of the NN model 

In the training partition, however, the performance measures were as follows: 

the linear coefficients changed from 0.87 to 0.93; the mean error varied from -0.04 to 

0.06, and the mean absolute error ranged from 0.82 to 1.00. 

Exports to countries was estimated by several generated models, the 

reconciliation statistics including error summary statistics between predictions 

generated by these models was provided in Table 5. The performance measurements of 



 

 

agreement among the predicted Exports to countries using the proposed models of NN, 

RBF-SVM, Polynomial-SVM, and Linear-SVM were shown in Table 5. The correlation 

coefficient was 91% (dependent on the linear regression), which was extremely strong. 

Table 5: Agreement measurement among predictive models 

Performance Measures Training Testing 

Minimum Error -5.03 -4.96 

Maximum Error 5.20 4.43 

Mean Error -0.01 -0.02 

Mean Absolute Error 0.87 0.85 

Standard Deviation 1.19 1.17 

Linear Correlation 0.91 0.91 

Occurrences 2,066 547 

 

The gain chart was provided to show how the selected predictive models 

perform in predicting the Exports to countries graphically in Figure 4. The diagonal line 

plots the expected response for the whole data if the model was not employed. The 

steeper the curve, the bigger the gain was. The performance of the models relied on 

gains of the predictive models showed that the NN has the highest gain while the rest of 

the predictive models seem to have approximately the same gain percentage. 

 

Figure 4: Gain Chart ($N: NN; $S: RBF-SVM; $S1: Polynomial-SVM; $S2: 

Linear-SVM) 



 

 

Sensitivity analysis was performed for determining the variable importance. The 

predictor importance scores were based on calculations of testing partition. The variable 

importance values were used to focus on modeling efforts on the variables that matter 

the most and can be considered ignoring those that matter the least. The generated 

variable importance scores represented the relative importance of variables in building 

the model. Initially, the raw variable importance scores were provided in Table 6 

generated by each predictive model. The generated values specify the importance of all 

variables. 

Table 6: Raw variable importance scores 

Independent variables NN SVM-RBF SVM-POLYNOMIAL SVM-LINEAR 

Colony 0.02 0.14 0.12 0.05 

Common language 0.00 0.05 0.02 0.09 

Distance 0.14 0.17 0.15 0.14 

FTA 0.10 0.13 0.00 0.05 

GDP in current USD 0.28 0.17 0.15 0.32 

Immigrant  0.28 0.11 0.23 0.19 

Same region 0.10 0.15 0.26 0.06 

Trade openness 0.00 0.03 0.02 0.05 

Visa restriction 0.07 0.05 0.06 0.07 

Dependent Variable: Exports to countries 

The values of the variable importance were normalized since they were disparate 

in each predictive model and displayed in Table 7. 

Table 7: Normalized variable importance scores 

Independent Variables NN SVM-RBF SVM-POLYNOMIAL SVM-LINEAR 

Colony 0.07 0.77 0.46 0.00 

Common language 0.01 0.13 0.07 0.14 

Distance 0.51 0.95 0.58 0.34 

FTA 0.36 0.68 0.00 0.01 

GDP in current USD 1.00 1.00 0.59 1.00 

Immigrant  1.00 0.56 0.88 0.51 

Same region 0.36 0.81 1.00 0.05 

Trade openness 0.00 0.00 0.07 0.00 

Visa restriction 0.24 0.17 0.22 0.06 

Dependent Variable: Exports to countries 



 

 

 

After normalizing the variable importance scores, the scores of the independent 

variables from the raw scores were fused and ordered in Table 8. 

Table 8: Fused importance scores 

Ranking Independent Variables Fused Importance Score 

1 GDP in current USD 3.239 

2 Immigrant 2.670 

3 Distance 2.143 

4 Same region  2.003 

5 Colony  1.161 

6 FTA 0.945 

7 Visa restriction 0.627 

8 Common language 0.310 

9 Trade openness 0.062 

Dependent Variable: Exports to countries; WNN: 0.915; WSVM-RBF: 0.898, WSVM-Polynomial: 

0.906; WSVM-Linear: 0.888 

 

GDP in current USD with 3.239 fused importance score is the greatest 

significant factor in predicting the Exports to countries, Immigrant with 2.67 score was 

the second most significant factor, Distance with 2.143 was the third most significant 

factor, and Same region with 2.003 fused score was the fourth significant factor in 

predicting the Exports to countries as the results disclosed. In addition, Colony, FTA, 

Visa restriction, Common language, and Trade openness were the following lesser 

important factors confirmed by the fused variable importance scores. The fused 

importance scores in decreasing order were demonstrated in Figure 5. 



 

 

 

Figure 5: The ranked fused scores 

Moreover, we created the Pareto chart in Figure 6 for the input variables. The 

instance confirms the Pareto principle, which specifies that 80% of the consequences 

were coming from 20% of the causes. The sensitivity analysis values disclosed that 80% 

of all Exports to countries is GDP in current USD, Immigrant Stock, Distance, and 

Same Region related. 

Figure 6: Sensitivity analysis illustrated in a Pareto-chart 

The findings of the current study confirm the previous studies of Akman 2016, 

Baltagi, Egger, and Pfaffermayr 2003, Yasar, Lisner, and Rejesus 2012, Berthelon and 

Freund 2008. Visa restrictions, as other variables considered, have a significant impact 

on the export volume. The impact of Distance is strong and has been prevailing 

notwithstanding the changing nature of export items and the advances in technology, 

transportation, and infrastructure. The spatial factors such as Distance and Same region 



 

 

are very important but nothing that can be changed. The countries located in the same 

geographies need to design policies to develop bilateral trade. The status of the 

variables like GDP, Immigrant stock, and Trade openness can only change in the very 

long term. Assessing the impacts of these variables can be useful in establishing 

partnerships or signing FTAs. The EU is the largest FTA covering 34% of the global 

trade in 2017 (WTO, 2018) and Turkey has a favorable position in this context. The 

spatial closeness to the EU and active Customs Union agreement with the EU are 

contributing to the exports of Turkey. However, strict visa policies of the EU have the 

potential to reduce the impact of the Customs Union agreement. Further studies can 

focus on the interrelation of the Customs Union and visa policies of the EU elucidating 

on trade diversion and trade creation of visa regimes and FTAs respectively. 

Visa restrictions and FTAs emerge as factors that a country could design more 

efficient policies in a shorter term to boost the exports. FTAs obviously require 

engagement with other countries and bilateral approval. In practice, signing an active 

FTA can last decades. Visa policies for inbound visitors are designed by the countries 

independently and can be implemented in a short period. Therefore, the policy-makers 

need to consider the costbenefit analysis of the visa regimes since there are net gains as 

well as threats and costs. 

5. Conclusion 

Bilateral trade depends on macroeconomic, spatial, cultural and political factors. 

This study focused on the impacts of visa requirements on the exports of Turkey, a 

developing country that has adopted liberal visa policies in the last decade and increased 

the inbound mobility and export revenues considerably. The study is the first to employ 

data mining methodologies, SVM and NN, on deciphering impacts of visas on exports 

to the best of our knowledge. SVM and NN produced dependable and concrete results 



 

 

as our analyses and results prove. These methodologies are free from the limits of 

normality and linearity presumptions that might not hold for a number of empirical data. 

The study also modeled control variables like GDP per capita, Distance, Same region, 

Immigrant stock, Trade openness, Colony and Common language consistent with the 

body of the literature. 

The results indicate that all the variables included have substantial impacts on 

the bilateral trade attesting the previous studies. The findings prove visa restrictions 

have a significant impact on the exports as they divert inward bound mobility which is a 

crucial element of international trade transactions. The countries in pursuit of policies to 

boost the exports and support the national economy should consider the visa “trial” of 

bilateral trade. Applying more liberal visa regimes considering the “Janus-faced nature” 

of visas (Karaman 2016) which points at both costs, in terms of security and benefits, 

and profits in terms of revenues could be the best policy recommendation. 

The study has several limitations that can lead to further studies. First, we 

focused on the benefits of visa facilitation in the forms of export revenues. Future 

studies can deal with the cost direction of the visa issue in terms of terrorism risk, illegal 

immigration, screening and administrative costs employing suitable data and 

methodology. Second, the visa variable we used is the traditional visas that issued for 

ordinary travellers. However, as nations try to attract business people, tourists and 

skilled workers there are numerous special visa policies adopted by many countries. The 

impacts of the special program visas can be dealt with in further studies. Moreover, in 

the frames of the cooperation of the EU and Turkey, the impacts of the cross-purposes 

of the customs union as a type of FTA and the strict visa requisitions of the EU for 

Turkish citizens could be an interesting area of research. 
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