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Abstract
Global trends in pesticide use can increase aquatic pollution and affect resident fisheries. Crabs exposed to organophosphate 
pesticides, such as chlorpyrifos, may increase production of reactive oxygen species (ROS), affecting the pro-oxidant/anti-
oxidant balance. Zichiopsis collastinensis crabs were exposed to environmentally relevant concentrations of chlorpyrifos 
(0.1 and 0.5 µg L−1). Effects on the oxidative stress enzymes catalase, superoxide dismutase, glutathione S-transferases, 
glutathione reductase, and on thiobarbituric acid reactive substances and hydrogen peroxide concentrations were evaluated 
at four intervals during 96 h exposures. Exposures caused decreased GST activity and increased H2O2 levels in gills. There 
were modifications of GST, CAT and SOD activities in the hepatopancreas after 12 h of exposure, and an increase of H2O2 
levels at every exposure interval observed. The present study proved that chlorpyrifos lead to oxidative stress in Z. col-
lastinensis. However other enzymatic/non-enzymatic responses should be further investigated in order to be included as part 
of a battery of biomarkers, together with H2O2 levels, which is a parameter highly recommended to be taken into account.
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Modern farming methods include the intensive use of ferti-
lizers and pesticides to increase crop production. In grain-
exporting countries there is a massive and widespread use of 
these compounds, which consecutively reach nearby rivers 
and lakes (Etchegoyen et al. 2017). Chlorpyrifos, one of the 
most used pesticides, acts upon the pests by the inactivation 
of acetylcholinesterase (AChE) causing hyperstimulation of 
nicotinic and muscarinic receptors, disrupting neurotrans-
mission and finally leading to death (Ghedira et al. 2009).

A well-documented effect of organophosphate pes-
ticides such as chlorpyrifos is the increase in the oxygen 

consumption of crustaceans. The increase of oxygen con-
sumption rates, at individual or tissue levels, is a quick 
response and it is known to induce oxidative stress (they 
modify the prooxidant/antioxidant balance), as the gener-
ation of the so-called reactive oxygen species (ROS) is a 
consequence of the aerobic metabolism (Lushchak 2011). 
To prevent cell damage, aerobic organisms have developed 
antioxidant defense mechanisms capable of intercepting 
and inactivating ROS, such as the enzymes superoxide dis-
mutase, catalase, peroxidases, and glutathione S-transferases 
(Ocampo et al. 2014).

All these molecules may act as early warning systems to 
be applied in biomonitoring studies, showing fast responses 
when organisms are exposed to natural pulses of pesticides 
in freshwater ecosystems. The use of native species is rec-
ommended as opposed to exotic species, as they may provide 
more relevant results (Van der Oost et al. 2003). Many of 
the current studies on crabs have exposed test organisms to 
chemical concentrations well above those measured in the 
environment. Thus, quick responses of the exposure to low 
chlorpyrifos concentrations, more related with those found 
in the environment, remain still unknown.
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In this work we evaluated the effects of two chlorpyri-
fos concentrations (0.1 and 0.5 µg L−1), which are within 
the range of concentrations found in aquatic environments 
of Argentina and other countries (from 0.13 to 0.47 µg 
L−1, and even higher; Alvarez et al. 2019; Etchegoyen 
et al. 2017; Schulz 2001) in enzymatic and non-enzy-
matic parameters related with oxidative stress in gills and 
hepatopancreas of the freshwater crab Zilchiopsis col-
lastinensis. The main goal was to find quick responses 
that may be useful later in biomonitoring programs. The 
effects in six parameters related to oxidative stress; the 
enzymes catalase (CAT), superoxide dismutase (SOD), 
glutathione S- transferases (GST), glutathione reductase 
(GR), and H2O2 levels and lipid peroxidation (thiobarbi-
turic acid reactive substances—TBARS) were evaluated 
in the crab Z. collastinensis exposed in a time-response 
experimental design (12, 24, 48 and 96 h of exposure).

Materials and methods

Test organisms and experimental design

Zilchiopsis collastinensis adult crabs were collected on 
the Paraná River floodplain (31°30′S, 60°41′W; Santa Fe, 
Argentina), away from cities and crop areas. The carapace 
width of the crabs used was 49.13 ( ± 3.01) mm. Addition-
ally, the largest specimen was not more than 1.5 times 
larger than the smallest one. Crabs were maintained in 
laboratory for one month at 25 ± 1ºC with a 12:12 light/
darkness photoperiod, and fed with fresh fish muscle 
ad libitum. After acclimation, 72 crabs (the same propor-
tion of males and females) were exposed individually to 
0 (C0) 0.1 (C1) and 0.5 (C2) µg chlorpyrifos L−1 in 6 L 
aquaria under the same light and temperature conditions. 
The pesticide used was Clorpi® (Red Surcos, Argentina), a 
commercial product containing 48% of chlorpyrifos, since 
commercial products are used in pesticide applications. 
No food was added during the experiment. Six individuals 
per treatment were extracted after 12, 24, 48 and 96 h of 
exposure. Water samples were taken at initial time from 
every aquarium and chlorpyrifos concentrations were 
measured by gas chromatography fitted with a standard 
electron capture and flame photometric detectors, accord-
ing to Goncalvez and Alpendurada (2002), with minor 
modifications. Pesticide solutions were renewed after 48 h 
to maintain the chlorpyrifos concentrations (only in 96 h 
exposure aquaria), although chlorpyrifos degradation time 
(DT50) surpasses 80 days in distilled water (ATSDR 1997). 
Crabs were cryo-anaesthetized and samples of hepatopan-
creas and gills were taken and preserved at − 80ºC until 
analysis.

Biochemical parameters determinations 
and analysis

For enzymatic activity measurements tissues extracts prepara-
tion was carried out according to Wiegand (2000) in ice cold 
phosphate buffer 0.1 M, pH 6.5, 1 mM ethylenediaminetet-
raacetic acid (EDTA), 14 mM dithioerythritol (DTE) and glyc-
erol 20% in an Potter–Elvehjem tissue homogenizer. After that, 
the homogenates were centrifuged in cold conditions (4º C) 
at 10,000 g for ten minutes. The obtained supernatant of each 
sample was stored at − 80ºC until enzymatic determinations. 
Enzymatic activities were determined by spectrophotometry 
using a Shimadtzu UV-210A (DOBLE-BEAM) at 25ºC. The 
activity of the soluble (cytosolic) glutathione-S-transferases 
(GST) was determined at 340 nm, according to Habig et al. 
(1974). This reaction quantifies the conjugation rate of reduced 
glutathione with the substrate 1-chloro-2, 4-dinitrobenzene 
(CDNB). Glutathione reductase (GR) activity was measured 
at 340 nm quantifying the reduction of nicotinamide adenine 
dinucleotide phosphate (NADPH), according to Tanaka et al. 
(1994). CAT activity was assayed at 240 nm based on the 
decomposition of H2O2 according to Claiborne (1985), and 
SOD was assessed at 560 nm by the inhibition of nitro blue 
tetrazolium (NBT) reduction (Scebba et al. 1998). Total pro-
tein content in the homogenate was measured following the 
Bradford method (Bradford, 1976), at 595 nm, using bovine 
albumin as standard protein. Enzymatic activities were 
expressed as nanokatals mg protein−1.

Hydrogen peroxide content (H2O2) was quantified accord-
ing to Bellincampi et al. (2000). Levels of H2O2 were assessed 
at 560 nm and calculated using a standard curve, based on the 
oxidation of Fe+2 by H2O2 followed by the reaction of Fe+3 
with xylenol orange. Lipid peroxidation was determined by 
measuring the formation of thiobarbituric acid reactive sub-
stances (TBARs) (Oakes and Van Der Kraak 2003). The super-
natant was measured spectrophotometrically (abs: 532 nm). 
Levels of TBARS were expressed as nmol mg−1 of fresh tissue 
using a molar extinction coefficient of 1.56 × 105 M−1 cm−1.

Because enzyme activities and H2O2 and TBARS levels 
did not differ within treatments between males and females, 
data were pooled in order to test statistical differences among 
treatments. Comparisons between control and exposed crabs at 
each time were made by one-way ANOVA followed by Tukey 
post hoc, after normality and variance homogeneity were veri-
fied by Shapiro–Wilk and Levene test respectively (Zar 1996).

Results and Discussion

Measured chlorpyrifos concentrations in water were 
0.095 ± 0.013 (C1) and 0.532 ± 0.070 (C2) µg chlorpyrifos 
L−1. Mortality of crabs was not observed throughout the 
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experiment. However, the exposure to these environmentally 
relevant chlorpyrifos concentrations causes several effects at 
subcellular levels in gills and hepatopancreas, indicating an 
oxidative stress condition.

Activity of GST, GR, CAT and SOD in gills among 
control crabs remained consistent throughout the experi-
ment. Activity of affected enzymes would be expected to 
be modified in gills with exposure to chlorpyrifos, but only 
GST activity significantly decreased at 12 h with exposure 
to C1 (Fig. 1). The levels of H2O2 were similar through the 
experiment in control crabs. However, there was a rapid 
increase in H2O2 levels after 12 h in crabs exposed to C1. 
After 96 h exposure there was an increase in H2O2 levels 

in gills of crabs exposed to both concentrations (p < 0.05). 
The lipid peroxidation (TBARS levels) decreased in time 
in control crabs (p < 0.05), but there were no changes in 
exposed crabs when compared with the corresponding 
controls at any time (p > 0.05) (Fig. 2). Gills are the first 
organ in contact with the pollutants present in the water. 
They are highly vulnerable to toxic chemicals both for 
their large surface area as well as gills detoxification sys-
tem is not as robust as that of hepatopancreas (Abdalla 
et al. 2019). This could explain the general lack of enzy-
matic responses in Z. collastinensis gills acutely exposed 
to chlorpyirifos. We observed a rapid decrease in GST 
activity and an increase in H2O2 levels when crabs were 

Fig. 1   Glutathione-S-transferases, glutathione reductase, catalase 
and superoxide dismutase activities (nkat mg protein−1) (Mean + SE) 
in gills of Zilchiopsis collastinensis crabs exposed to 0.1 and 0.5 µg 

chlorpyrifos L−1 after 12, 24, 48 and 96  h of exposure. * = Statisti-
cally significant differences with their respective control group 
(p < 0.05)

Fig. 2   Hydrogen peroxide (H2O2) and thiobarbituric acid reactive 
substances (TBARS) levels (Mean + SE) in gills of Zilchiopsis col-
lastinensis crabs exposed to 0.1 and 0.5 µg chlorpyrifos L−1 after 12, 

24, 48 and 96  h of exposure. * = Statistically significant differences 
with their respective control group (p < 0.05)
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exposed to the low concentration, but not when they were 
exposed to a higher concentration. The prooxidant/anti-
oxidant balance seems to be reached in gills in the first 
hours, but at the end of the exposure H2O2 levels were 
again increased. Exposure intensity and the duration of 
stress may modify this prooxidant/antioxidant balance by 
inducing the inhibition of enzymes and/or increasing the 
ROS production, resulting in the increase of hydrogen per-
oxide levels (Thomaz et al. 2009). 

In hepatopancreas the GST and CAT activities were simi-
lar in control crabs through the experiment. The exposure 
to 0.1 µg chlorpyrifos L−1 caused an increase in GST and 
CAT after 12 h (p < 0.05). There were no differences in GR 
levels among control crabs through the experiment, but an 
increase in GR levels in crabs exposed to 0.1 µg chlorpyrifos 
L−1 after 48 h was observed. The activity of SOD did not 
change in control crabs, however, there was a decrease in 
those exposed to 0.1 µg chlorpyrifos L−1 after 12 h (p < 0.05) 
(Fig. 3). The levels of H2O2 generally increased through the 
experiment in control crabs, but these increases were statis-
tically significant only at 24 and 96 h (p < 0.05). Moreover, 
H2O2 levels were higher in crabs exposed to both chlorpy-
rifos concentrations after 12, 24, 48 and 96 h of exposure 
than in control crabs (p < 0.05). The TBARS levels did not 
change in control crabs through the experiment and there 
were no differences between control and exposed crabs at 
any time (Fig. 4). 

The hepatopancreas of decapod crustaceans is a dynamic 
organ mainly related to food digestion and storage of energy 
reserves. Also, this is the main organ of detoxification. 
The exposure of crabs to xenobiotics produces not only an 
increase in the general oxygen consumption but also in the 
oxygen consumption of hepatopancreas, as observed in the 
crab Neohelice granulata exposed to microcystin (Pinho 
et al. 2003). We hypothesized that this increase in oxy-
gen consumption might increase ROS production, and we 
observed the increase of H2O2 from 12 to 96 h, evidencing 
the oxidative stress caused by chlorpyrifos. Furthermore, 
after 12 h of exposure the antioxidant defense mechanisms 
were activated, which was evidenced by the increase in CAT 
and GST activities, although SOD activity decreased. Higher 
GST activities were also observed in Carcinus maenas crabs 
obtained from polluted sites compared with those from 
unpolluted areas, both in gills and hepatopancreas (diges-
tive glands). Quick increases in CAT were also observed 
in the crab Charybdis japonica after the exposure to cad-
mium, although SOD levels also increased (Pan and Zhang 
2006). According to these authors, antioxidant enzymes 
can increase in low concentrations of the stressor (in that 
case, cadmium) or short-time exposure, but decrease with 
time. As in our case, antioxidant enzyme activities attained a 
peak level in short time, suggesting an increase of ROS pro-
duction and improving the ability of organisms to elimi-
nate them. The decrease of antioxidant enzymes activities 

Fig. 3   Glutathione-S-transferases, glutathione reductase, catalase and 
superoxide dismutase activities (nkat mg protein−1) (Mean + SE) in 
hepatopancreas of Zilchiopsis collastinensis crabs exposed to 0.1 and 

0.5 µg chlorpyrifos L−1 after 12, 24, 48 and 96 h of exposure. * = Sta-
tistically significant differences with their respective control group 
(p < 0.05)
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suggested, in turn, that the organism ability to scavenge ROS 
was dropping (Pan and Zhang 2006).

In other crustaceans, like Daphnia magna exposed 
to 0.025 µg chlorpyrifos L−1 for 96 h, GST activity also 
increased (Ferrario et al. 2018). In the shrimp Palaemon-
etes argentinus exposed to 0.0945 µg chlorpyrifos L−1 dur-
ing 96 h, no effects on CAT but an increase of glutathione 
peroxidase and decrease of GST have been reported (Ber-
trand et al. 2016). On the other hand, in the common yabby 
(Cherax destructor) exposed to 0.5 µg chlorpyrifos L−1 for 
96 h, the activity of GST in hepatopancreas did not show 
changes with respect to a negative control (Pham et al. 
2017).

However, it is noteworthy that exposure of crabs to C2 
(0.5 µg chlorpyrifos L−1) did not lead to changes in enzy-
matic activities in hepatopancreas (neither in gills, but this 
lack of response was addressed above). Two hypotheses 
could explain this pattern: the action of non- enzymatic 
antioxidant responses that were not addressed in the present 
work (vitamins C and E, glutathione, ascorbate, urate and 
retinyl esters; Valavanidis et al. 2006) or the unleashing of 
responses at other scale (i.e. differentially expressed antioxi-
dant genes; Li et al. 2018).

The high levels of H2O2 observed in the hepatopan-
creas were remarkable. Hydrogen peroxide is generally 
metabolized by CAT. Thus, if H2O2 levels increase, an 
increase in CAT activity is expected, as intent to reduce 
these H2O2 levels. However, after 24 h CAT activities were 
similar to control, denoting the breakdown of the enzyme. 
A general increase in H2O2 levels may induce lipid per-
oxidation which is one of the main processes induced by 
oxidative stress (Storey 1996). Aquatic organisms contain 
high amounts of lipids with polyunsaturated fatty acids 
residues, a substrate for oxidation by peroxides (i. e. per-
oxidation; Lushchak 2011). Even if increased H2O2 lev-
els might increase lipid peroxidation, our results did not 
show this relation: observed increases in H2O2 levels did 
not have a correlate in TBARS levels. Increases in H2O2 
levels without lipid peroxidation were also observed in P. 

argentinus exposed to chlorpyrifos (Bertrand et al. 2016). 
In another study previously reported, the exposure to 
chlorpyrifos caused increases in TBARS even after 1 day 
of exposure (Narra 2014). However, crabs were exposed to 
70 µg chlorpyrifos L−1, 1/3 of the median lethal concentra-
tion, which was significantly higher than the concentra-
tions used in the present work and generally higher than 
concentrations found in the environment (Narra 2014). We 
hypothesize that, if a concentration of 0.1 µg chlorpyrifos 
L−1 (plausible to be detected in the environment) main-
tains the observed high levels of H2O2 in hepatopancreas, 
it could lead to oxidative damage in biomolecules beyond 
the longest monitored time in the present study (96 h), 
eliciting the loss of cellular function (Del Río et al. 2005) 
and consequent pathological conditions as described in 
different organisms (Valavanidis et al. 2006).

Oxidative stress parameters in crustacean species have 
been used as a tool for ecotoxicological assessments. How-
ever, attention should be paid to the species used and the 
potential exposure concentrations, focusing always on those 
of environmental relevancy. Crabs of Z. collastinensis spe-
cies could be a useful tool in biomonitoring because the 
sublethal concentrations modify the oxidant/antioxidant 
balance, mainly increasing ROS production (H2O2 levels). 
However, other enzymatic/ non- enzymatic responses should 
be further investigated in order to be included as part of a 
battery of biomarkers, together with H2O2 levels, which is 
a parameter highly recommended to be taken into account. 
Finally, long term bioassays are recommended to corrobo-
rate a possible oxidative damage from a continued exposure 
scenario.
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