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ABSTRACT 

The exchange bias (EB) effect, especially in nanomaterials, is highly promising for use in 

antiferromagnet-based spintronics applications. NiO is a well known antiferromagnetic material 

with a high Néel temperature (525K) and can exhibit ferromagnetism/ ferrimagnetism by adding 

other magnetic transition elements. Our previous work has shown that the antiferromagnetic 

characteristics of conventional NiO insulating nanostructured material can be altered to have 

substantial ferrimagnetic characteristics by doping NiO with Mn or Co. Pulsed laser deposition 

(PLD) was used to grow heterostructures comprised of a nanostructured thin NiO film deposited 

on the surface of a MgO (100) and Al2O3 (111) substrates, followed by the deposition of a 

MnxNi1-xO thin film layer on top of the NiO layer. X-ray diffraction (XRD), scanning electron 

microscopy (SEM), and SQUID magnetometry were used to study the structural, morphological, 

and magnetic properties, respectively, of the thin film heterostructures. XRD and SEM 

characterizations show that the NiO/MnxNi1-xO bilayers were grown quasi-epitaxially on the 

MgO and Al2O3 substrates. The primary motivation of this study is to determine how the 

magnetic properties and the exchange bias effect may depend upon the interface morphology, 

structural characteristics and Mn concentration of the MnxNi1-xO layer in the heterostructures. 
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INTRODUCTION 

 

Nanoscale materials are highly useful for a number of important magnetic applications. 

Thin film heterostructures, on the scale of nanometers, are presently used for high density data 

storage (HDDS), magnetic random-access memory (MRAM), spin valves, semiconductor 

spintronics, antiferromagnetic spintronics, magneto-sensors and other devices
1,2,3

. The lattice 

mismatch causes lattice strain in the thin film heterostructures and lattice strain in the film 

increases with film thickness. Therefore, lattice strain in very thin film heterostructures is less 

evident and subsequently relaxed up to a certain critical thickness. Thus, thin film 

heterostructures in the nanoscale range have enhanced magnetic properties (e.g., coercivity, 

remanent magnetization, etc.) that are proving to be highly useful for the above-mentioned 

applications 
4
. 

The exchange bias phenomenon, as first proposed by Meiklejohn and Bean 
5
, is deemed 

to have high potential for application in magnetic-based devices. There is no precise theory to 

account for the effect: however, many models have been proposed to explain the physical origin 

of exchange bias. The strong coupling (also called the pinning effect) between the 

antiferromagnetic (AFM) and ferromagnetic (FM) or ferrimagnetic (FiM) spins at the interface is 

the generally accepted model of the exchange bias effect. Consider the interface between an 

AFM and FM layer, as shown in Figure 1.1, when the temperature is above the Néel temperature 

(TN), which characterizes the AFM to paramagnetic phase transition, and below the Curie 

temperature (TC), which characterizes the FM to paramagnetic phase transition. 
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Figure 1.1. The spin configurations of an FM–AFM couple before and after the field cooling 
4
. 

 

At this temperature, the FM spins are aligned along the orientation of the external 

magnetic field (H) and the AFM spins are disordered (Figure 1.1). After cooling the sample 

below TN, both FM and AFM spins are aligned along the magnetic field (Figure1.2). In this 

situation, two limiting cases are possible: 

1. For a large AFM anisotropy, shifting of the magnetic hysteresis loop can be observed. 

2. For a small AFM anisotropy, a coercivity enhancement (without any loop shift) can be 

observed. 

When the applied magnetic field is reversed in the case of large AFM anisotropy as 

shown in Figure 1.2, the FM spins begin to rotate and align along the magnetic field and the 

AFM spins remain fixed for all values of negative H. Due to the strong FM-AFM spin coupling 

at the interface, an extra amount of magnetic field (and therefore magnetic energy) is required to 

completely rotate the FM spins. This is manifested in the shift of the hysteresis loop along the 

negative H field axis. 
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Figure 1.2. The spin configurations of an FM–AFM couple at the different stages of a shifted 

hysteresis loop for a system 
4
. 

 

Conversely, the rotation of the FM spins will be easier and will require less magnetic 

energy to overcome a smaller amount of torque, due to the fixed orientation of the AFM spins at 

the interface, when the positive magnetic field is applied. Thus, one can observe a shift of the 

hysteresis loop to smaller positive values than without the exchange bias effect present; the 

average value of the shift along the positive and negative applied field axes is called the 

exchange bias field. 

On the other hand, both FM and AFM spins are rotated along with magnetic field for a 

system with small AFM anisotropy (Figure 1.3). As a result, no overall shift of the hysteresis 

loop is evident in this case. Due to the FM-AFM spin coupling at the interface, a larger magnetic 

field either for positive or negative values is required to rotate spins. Thus, one can observe an 
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overall enhancement of the hysteresis loop in case of an interface coupling having a small AFM 

anisotropy. 

 

 

Figure 1.3. The spin configurations of a FM–AFM bilayer, at the different stages for a system 

with small AFM anisotropy 
4
. 

 

The exchange bias plays a very important role in the primary components of spintronics 

devices (spin valves and magnetic tunnel junctions). The primary component structures are 

similar to the simple model structures shown above but are composed of two FM layers 

separated by either a non-magnetic metal layer or an insulating/semiconducting AFM layer: in 

the case of the FM-AFM couple, the exchange bias is used to pin one of the FM layers 
6,7,8

. The 

exchange bias effect is known to originate from the interaction between uncompensated interface 

spins 
4
. However, it most likely also depends upon interface defects (e.g. stacking faults, misfit 

dislocations, etc.), oxygen vacancies, spin-order disorder effects, and potentially other effects. 
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The creation and amount of interface defects depend on the nature of synthesis used to make thin 

film nanostructures, and, in some cases require considerable effort to control. 

Nickel oxide (NiO) has the rock salt structure and a Néel temperature of 523 K (in bulk 

form). This makes it highly useful for room-temperature applications in devices. Bulk NiO is a 

collinear antiferromagnetic material and its spins are oppositely oriented in alternate (111) 

crystallographic planes. Thus, bulk NiO exhibits no ferromagnetism and only possesses AFM 

properties. NiO is a wide band gap semiconductor: however, by introduction of appropriate 

impurities, it may be possible to narrow the band gap to make it more applicable for 

semiconductor-based spintronic devices. Thus, for the reasons outlined above, NiO and NiO-

based magnetic materials have a very promising role in spintronics based magnetic applications. 

Based on the previous work made in Dr. Mayanovic’s laboratory, it has been shown that Mn and 

Co can be incorporated to grow NiO@MnxNi1-xO and NiO@CoxNi1-xO core-shell nanoparticles, 

respectively 
9
. This work showed that the MnxNi1-xO shell material in particular exhibits 

substantial ferrimagnetic (FiM) properties, where the FiM phase arises due to having two types 

of magnetic spins of differing strengths so that only partial cancelation occurs in the case of 

AFM alignment, and the core shell nanoparticles were shown to exhibit strong exchange bias 

effects. Furthermore, FM/FiM properties have been observed by introduction of impurity 

magnetic transition elements in NiO 
10

. 

Thin film epitaxy is preferred for fabrication of thin devices without patterning 
11

. This is 

because for magnetic applications, there is nominal evidence that epitaxial registry at the 

interface between thin film layers is preferable in order to get a strong exchange bias effect 
4
. 

Nevertheless, there are many techniques that are used to deposit thin film layers, only some of 

which enable epitaxial deposition. These techniques can be divided into two categories: physical 
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vapor deposition (PVD) and chemical vapor deposition (CVD) techniques. The pulsed laser 

deposition (PLD) technique is one of the PVD methods in common use currently and is among 

the less expensive ones. Molecular beam epitaxy (MBE), which is a PVD method, and atomic 

layer deposition (ALD), which is a CVD method, are both excellent for fabrication of epitaxial 

thin film layers but are substantially more expensive for use than PLD. PLD is easier to control 

compared to other methods, since low process variables (laser power density, substrate target 

distance and ambient oxygen pressure) are of concern during deposition. Other advantages of  

PLD are: high deposition rate, high deposition temperature, high partial pressure, easy to couple 

with in-situ characterization, and versatility in types of materials that can be deposited. Some 

issues, such as creation of small droplets and deposition on large substrate areas, still need to be 

dealt with successfully during the PLD process 
11

. 

Figure 1.4 shows the basic principles of the pulsed laser deposition technique in which a 

laser beam hits the target material. First, the laser generates a plume of material that is projected 

toward and deposited on the substrate. The substrate is typically placed on a substrate heater to 

obtain the desired deposition temperature. To create vacuum, different sets of pumps are used. 

For example, a roughing pump and turbo molecular pump used jointly are capable of creating  

10
-6

 to 10
-8 

mbar vacuum. Various types of gas valves are also used to control the gas (O2, N2, 

etc.) flow into the chamber. Moreover, most of the PLD systems have rotating target holders in 

order to prevent the laser beam from causing damage to the target from over exposure at a select 

location. 

In this study, I wanted to test the hypothesis that nano-sized MnxNi1-xO thin films could 

be grown from a target of nominally similar composition onto NiO thin film layers using the  
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Figure 1.4. Schematic diagram of pulse laser deposition technique. 

 

PLD technique. Indeed, NiO/MnxNi1-xO bilayers were successfully deposited on top of MgO and 

Al2O3 substrates by using the PLD technique. Subsequently, XRD and SEM characterization was 

carried out on the thin film samples, which confirmed the NiO/MnxNi1-xO bilayer formation and 

that these films were grown quasi-epitaxially. Moreover, SQUID magnetometry was carried out 

on the bilayer samples verifying the AFM/FiM bimagnetic configuration of the thin film 

heterostructures. 
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SYNTHESIS AND CHARACTERIZATION OF NiO/MnxNi1-xO NANOSCALE 

HETEROSTRUCTURES GROWN ON MgO (100) SUBSTRATES 

 

Abstract 

The exchange bias effect in nanostructured materials has a significant role in the 

development of high performance spintronics and other spin-related devices. A complete 

understanding of the exchange bias effect still needs to be elucidated, which can be 

accomplished by relevant studies undertaken by researchers. In this regard, NiO/MnxNi1-xO 

nanoscale heterostructures were grown on MgO (100) substrates by using the pulsed laser 

deposition (PLD) technique. The interaction of the spins at the interface between the 

ferrimagnetic Mn-doped NiO and antiferromagnetic NiO layers triggers the exchange bias effect, 

which is the primary focus of this investigation. X-ray diffraction (XRD) measurements and 

scanning electron microscopy (SEM) characterization were made on the MgO/NiO/MnxNi1-xO 

heterostructures. XRD spectra and SEM images showed that NiO/MnxNi1-xO thin film layers 

were grown in the (200) preferred orientation and quasi-epitaxially on top of MgO (100) 

substrate. Moreover, a desired amount of manganese (Mn) was found to be present in the 

MnxNi1-xO layers of the MgO/NiO/MnxNi1-xO heterostructures, as is evident from the SEM-EDX 

results.  Magnetic measurements were also accomplished on the thin film heterostructures using 

the SQUID magnetometer. The magnetometry results show both an enhancement and a shift of 

the hysteresis loops due to the exchange bias effect. 
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Introduction 

The importance of  bimagnetic nanostructured materials for device related applications is 

substantial due to considerable progress in controlled synthesis and advanced characterization. 

These types of nanostructured materials have a wide range of applications in permanent magnets, 

magnetic recording, microwave absorption, biomedicine, and miniaturized magnetotransport 

devices 
1
.  

NiO@MnxNi1-xO core shell nanoparticles (CSNS), which is just one example of the 

bimagnetic nanostructured materials, were previously successfully grown and analyzed in Dr. 

Mayanovic’s lab 
2
. The main purpose of this study was to determine the role of Mn by 

substituting for Ni in the NiO-based shell of the resultant CSNS. It was shown from this study 

that use of the 0.08M concentration precursor MnCl2 led to formation of CSNS with formidable 

magnetic properties: the hysteresis data showed that at 5K, ~4787Oe coercivity and ~1729Oe 

exchange bias between FC and ZFC curves were obtained 
2
. 

Bilayer thin film heterostructures are interesting in that the antiferromagnetic (AFM) 

layer and the ferromagnetic (FM) or ferrimagnetic (FiM) layer share a planar, typically well-

oriented interface providing clear evidence of interphase magnetic exchange coupling for 

specific thin film orientations 
3
. This is typically considerably more complicated for bimagnetic 

heterostructured nanoparticulates because of multiple or lack of distinct orientations between the 

layers. Thus, NixM1-xO/NiO heterostructures show potential for device fabrication due to 

substantial exchange interactions evident in the NiO@MnxNi1-xO CSNS. Furthermore, it may 

ultimately be most interesting to exploit the nature of exchange between the substitutional 3d 

transition metal (TM) in NiO to optimize the magnetic properties of such heterostructured thin 

films. Given that the superexchange interaction between Ni
2+ 

ions is responsible for establishing 
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AFM ordering in NiO, Zhang et al. showed that a superexchange interaction is established 

between Ni
2+

 and Fe
2+

 ions, leading to a ferromagnetic interaction between them, in Fe-doped 

NiO thin films 
4
. The hypothesis of this study is that MgO(100)/NiO/MnxNi1-xO thin film 

heterostructures can be fabricated using PLD and that these exhibit magnetic properties 

consistent with an exchange bias interaction. 

 

Experimental Details 

Using pulsed laser deposition (PLD) technique, a NiO thin film layer was first deposited 

on top of  MgO substrates, which were cut and polished on the (100) plane as the deposition 

surface. The MgO (100) substrates were purchased from the MTI Corporation. Next, the MnxNi1-

xO thin film layer was deposited using PLD on the NiO layer, resulting in the formation of an 

MgO(100)/NiO/MnxNi1-xO heterostructure. The thin film layers were deposited using a Nd:YAG 

laser having a wavelength of 266 nm. Table 1 shows the conditions at which MgO/NiO/MnxNi1-

xO (A) heterostructures were grown within the PLD chamber. Using conditions shown in Table 

1, five thin film samples were prepared and characterized using XRD and SEM. From these five 

samples, the best sample was selected for further characterization. The approximate thickness of 

the NiO layers varied from 40-70nm and that of the MnxNi1-xO layers varied from 20-40nm. For 

such heterostructures, both the NiO and MnxNi1-xO targets were needed be prepared. To prepare 

the NiO target, NiO nanopowder was mixed with poly vinyl alcohol (PVA). The mixture was 

ground for two hours. After that, hydraulic pressing was used to make compact shaped circular 

disk. Finally, the NiO disk was annealed at 1000°C for 2 days. Conversely, the MnxNi1-xO target 

was prepared by mixing MnCl2 powder along with NiO nanopowder and PVA. After grinding 

and pressing the powder-PVA mixture, a circular disk was formed and finally sintered at 1000°C 
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for 1 day. SEM-EDX results confirmed that MnxNi1-xO target had the desired amount of 

manganese (~ 4.92 at%). All MgO (100) substrates were single crystal and deposition side was 

EPI polished; i.e., polished so as to be ready for epitaxial deposition. Prior to deposition of the 

thin films, the MgO substrates were first cleaned in acetone for 30 minutes and then annealed at 

500°C for 2 hours in a high vacuum chamber. The conditions for both layers were the same 

except for the Q-switch delay. For the NiO layer, a Q-switch delay of 50 was used and for the 

MnxNi1-xO layer, a value of 60 was used. After deposition, both bi-layers were annealed at 500°C 

for 3 hours in the presence of oxygen gas. 

The FESEM (FEI-Quanta 200) instrument was operated at 20 kV for SEM structural and 

morphological characterization. For imaging purposes, the samples were mounted with copper 

tape. For elemental analysis, the SEM-EDX was used. The Bruker D8 Discover instrument was 

used for XRD analysis, with an operating voltage and current of 40 kV and 40 mA, respectively. 

A characteristic X-ray source Cu tube with a Cu Kα, λ= 1.54184 Å was used for XRD 

measurements. The SQUID MPMS/XL magnetometer (Quantum Design, USA) was used to 

measure magnetic properties of the thin films. Capsules were used to pack the samples and then 

inserted into the SQUID magnetometer. The magnetization (M) vs temperature (T) data were 

measured in the 5 – 300 K. A 300 Oe applied field was used to freeze the spins for the field-

cooled (FC) magnetization vs temperature (M-T) data and the same field was used to measure 

both the FC and zero-field-cooled (ZFC) M-T data. Magnetic hysteresis curve measurements 

were measured from -6 to +6 KOe at 5K and at 300K. 
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Table 1. Deposition parameters for MgO/NiO/MnxNi1-xO (A) heterostructures. 

 NiO Deposition  MnxNi1-xO Deposition 

Name Temperature Pressure Pulses  Temperature Pressure Pulses 

A 500 °C 2.4e-2 mbar O
2
 40,000  500 °C 2.4e-2 mbar O

2 
40,000 

 

Results & Discussion 

Figure 2.1 shows the short range (2-theta; 42-45°) of the XRD scan containing the (200) 

peaks and measured from the a) MgO/NiO substrate and thin film layer and from the b) 

MgO/NiO/MnxNi1-xO heterostructure. Both MgO and NiO have the rock salt structure with space 

group Fm3 m. For the MgO/NiO substrate-thin film arrangement, the lattice mismatch between 

the film and substrate is 0.254% and the corresponding lattice constant of the NiO thin film is 

4.1792Å, as determined using Bragg’s Law. On the other hand, for the MgO/NiO/MnxNi1-xO 

heterostructure, the lattice mismatch between the NiO/MnxNi1-xO combined layers and the MgO 

substrate was found to be 0.245% and the corresponding lattice constant for the former is 4.1796 

Å. Due to the presence of manganese, the lattice constant for the MgO/NiO/MnxNi1-xO 

heterostructure is larger than that of the MgO/NiO heterostructure. Note that it is not possible to 

resolve the NiO vs MnxNi1-xO layer lattice constant because of the preferred orientation of the 

layers and having limited peaks in the XRD patterns. 
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Figure 2.1. Short range (2-theta; 42-45°) XRD scan measured from the a) MgO/NiO b) 

MgO/NiO/MnxNi1-xO heterostructures.  

 

Figure 2.2 shows an extended-range (2-theta; 20-105°) XRD scan for the 

MgO/NiO/MnxNi1-xO heterostructure. In the lower 2-theta range (40-50°), there is a single peak 

having various components. This is partially due to the fact that the overall peak has two 

contributions (as observed from the high resolution spectrum shown above); one is from the 

MgO substrate and other is from the NiO/MnxNi1-xO bi-layers 
5
. At the higher 2-theta range (90-

105°) in the XRD spectrum shown in Figure 2.2, we see a similar peak convolution in the overall 

peak shape but in this case, it is evident that the peaks from the NiO/MnxNi1-xO bi-layers and 

from the MgO substrate are resolved. Additionally, it is evident from the peak shape in both the 

low and higher 2-theta peaks that the MgO/NiO/MnxNi1-xO thin film heterostructure has both 

crystalline and amorphous portions. The sharp peak features provide evidence for crystallinity 

whereas the wide sections near the bottom of the peaks, particularly the shoulder appearing on 

the high 2-theta side, provide evidence for the amorphous component.   
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Figure 2.2. Long range (2-theta; 20-105°) XRD scan measured from the MgO/NiO/MnxNi1-xO 

thin film heterostructure.  

 

Figure 2.3 shows the SEM and SEM-EDX results (SEM micrograph, EDX spectrum & 

quantitative data; clockwise) for the MnxNi1-xO target. The SEM micrograph shows the 

compactness of the MnxNi1-xO target, due to the agglomeration of the fine powder particles. 

Manganese peaks can be seen in the EDX spectrum shown in Figure 2.3, indicating that 

manganese was successfully incorporated into the MnxNi1-xO target. Quantitative SEM-EDX 

analysis shows that 4.92 atomic percent (at%) manganese, 42.93 at% nickel and 52.15 at% 

oxygen are present in the target.  

Figure 2.4 shows the SEM micrograph, EDX spectrum and SEM-EDX quantitative data 

(clockwise) for the MgO/NiO/MnxNi1-xO heterostructure that was selected for the full 

characterization. From the SEM micrograph, it is evident that the thin film bi-layers are smooth 

in places but granular in others. The granular (blob) like regions occur from droplets of plasma 
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material being deposited in select location on either the substrate, or in case of the MnxNi1-xO 

thin film, on the NiO layer. Due to the relatively large amount of localized material in the  

  

 
 

 

Figure 2.3. SEM micrograph (left) and SEM-EDX (right) spectrum of the MnxNi1-xO target. 

 

 

droplets, the atomic diffusion during deposition is insufficient in distributing the material 

laterally on the depositing surface resulting in the blob-like appearance. Thus, because the 

deposition during PLD is somewhat but not completely controlled on an atom-by-atom basis, it 

is reasonable that the films should exhibit both crystalline/epitaxial and amorphous/disordered 

characteristics. The EDX spectrum shows that a nominal amount of manganese (0.13 at%) is 

present in the heterostructure, with the remaining content being nickel, oxygen and magnesium. 
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Figure 2.4. SEM micrograph (left) and SEM-EDX (right) spectrum of the MgO/NiO/MnxNi1-xO 

heterostructure. 

 

 

Full magnetization characterization using the SQUID PPMS was made on the select 

MgO/NiO/MnxNi1-xO thin film heterostructure sample. The magnetization vs applied field (M vs 

H) data measured from the MgO/NiO/MnxNi1-xO heterostructure at 5 K and at 300K are shown 

in Figure 2.5. As can be seen, the magnetization of the heterostructure increases rapidly with the 

increasing field and clearly reaches a saturation value. The standard “S” shape of the hysteresis 

curves is indicative of either FM or FiM character of the MnxNi1-xO layer; the NiO is AFM and 

typically exhibits only paramagnetic like characteristics in M vs H curves. The coercivity values, 

where M = 0 for negative (or positive) applied field, for zero-field cooled (ZFC) and field cooled 

(FC) hysteresis curves are as follows: for the ZFC case, the coercivity is 114 Oe and for the FC 

case, the coercivity is 186 Oe at 5 K. Conversely, the coercivity values for ZFC and FC are the 

same, specifically 62 Oe at 300K. Hasan et al. have established from DFT based calculations that 
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the rock salt structured MnxNi1-xO phase has FiM properties 
6
. Thus, we conclude that due to the 

presence of Mn, FiM ordering has been observed in the MgO/NiO/MnxNi1-xO heterostructure  
2
. 

In the exchange bias effect for a bimagnetic heterostructured system having a relatively large 

AFM anisotropy, the hysteresis loops shift either in the negative (FC) or positive (ZFC) H axis 

direction. The exchange bias field He values were calculated using the following expression: He 

= (HZFC+ -HFC+ - HFC- + HZFC-)/2, where the +/- signs stand for positive/negative H values when 

M=0 
2
. Thus, for the MgO/NiO/MnxNi1-xO heterostructure at 5K, the value of the exchange bias 

is ~33Oe. On the other hand, as the ZFC and FC hysteresis loops have essentially identical 

coercivities at 300K, the exchange bias effect is not evident under room temperature conditions. 

This is fairly typical for most magnetic materials unless they have very high magnetic 

anisotropies that persist to room temperature conditions. Otherwise, the random thermal 

fluctuations at ambient conditions disrupt the pinning of the uncompensated NiO-MnxNi1-xO 

interface spins that are thought to be responsible for the exchange bias effect. The relatively 

small He field value measured at 5 K is consistent with the lack of full epitaxy and presence of 

substantial disorder at the NiO-MnxNi1-xO interface, as is evident from the XRD results. A 

relatively high level of crystallinity is required to establish a high degree of pinning of the 

uncompensated spins at the NiO-MnxNi1-xO interface. Nevertheless, the most interesting feature 

is that the FiM properties of the MnxNi1-xO thin film layer persist to room temperature, as 

evidenced by the hysteresis loops measured at 300K. This is an important development for 

potential future practical applications of bimagnetic NiO/MnxNi1-xO thin film heterostructures 

since devices using such materials are expected to operate at room temperature conditions. 
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Figure 2.5. The zero field cooled (ZFC) and field cooled (FC) magnetization vs applied field (M 

vs H) data measured from the MgO/NiO/MnxNi1-xO heterostructureat a) 5 K and b) 300K. 

 

Figure 2.5 a) also shows a vertical shift (i.e., along the M axis) of the FC hysteresis curve, 

relative to the ZFC curve, from the M vs H measurements made at 5 K of the MgO/NiO/MnxNi1-

xO thin film heterostructure sample. The vertical shift is attributed to the frozen Ni spins (at 5 K) 

at the NiO-MnxNi1-xO interface stemming from the NiO layer. The frozen Ni spins that may act 

like those in a spin glass system and originate from disorder effects at the interface, such as 

misfit dislocations, vacancies, stacking faults, strain effects, etc. This is consistent with our XRD 

results showing nominal disorder/amorphous like features attributed to the MgO/NiO/MnxNi1-xO 

thin film heterostructure. 

 

Conclusions 

In conclusion, NiO and MnxNi1-xO bi-layers were grown quasi-epitaxially on MgO (100) 

substrates in the presence of oxygen. The MgO (200) and NiO/MnxNi1-xO (200) planes are 

parallel to each other as confirmed from XRD measurements. XRD results also confirm that 
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NiO/MnxNi1-xO thin film bi-layers have both crystalline and disordered and/or amorphous 

components. The SEM-EDX results confirm the presence of Mn in the MgO/NiO/MnxNi1-xO 

thin film heterostructure. SQUID magnetometry of the thin film heterostructure showed that a 

weak exchange bias (He = 33 Oe) persists at 5 K but that there is no exchange bias present at 

room temperature. Furthermore, the magnetic data are consistent with the MnxNi1-xO thin film 

layer of the heterostructure having FiM magnetic properties. Interestingly, the SQUID 

magnetometry data show that the FiM magnetism persists to room temperature. The 

magnetometry and XRD results are consistent with appreciable structural disorder at the NiO-

MnxNi1-xO interface. 
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SYNTHESIS AND CHARACTERIZATION OF NiO/MnxNi1-xO NANOSCALE 

HETEROSTRUCTURES GROWN ON Al2O3 (111) SUBSTRATES 

 

Abstract 

The exchange bias (EB) effect is especially useful in nanomaterials and shows promise 

for antiferromagnet-based spintronics applications. It is well established that antiferromagnetic 

characteristics of conventional NiO insulating material can be altered to ferromagnetic or 

ferrimagnetic characteristics by substitution with 3d transition elements. In this work, I have 

used the pulsed laser deposition (PLD) technique to develop quasi-epitaxial heterostructures on 

the (111) surface of the Al2O3 substrate. For quasi-epitaxial heterostructures, a ferrimagnetic 

MnxNi1-xO thin film layer was interfaced with an antiferromagnetic NiO thin film layer, which 

was first deposited on the Al2O3 substrate. X-ray diffraction (XRD) and scanning electron 

microscope (SEM) were carried out on the Al2O3/NiO/MnxNi1-xO heterostructures. The XRD 

and SEM results show that the MnxNi1-xO and NiO layers were grown quasi-epitaxially on the 

(111) surface of the Al2O3 substrate. Incorporation of Mn in the MnxNi1-xO layer was confirmed 

by using SEM energy dispersive spectroscopy (SEM-EDX). The magnetic properties of a select 

Al2O3/NiO/MnxNi1-xO heterostructure were analyzed using SQUID magnetometry. 

 

Introduction 

The exchange bias (EB) effect, which is a fundamental magnetic interfacial property has 

immense technical importance for magneto-electronic device applications 
1
. The EB effect was 

discovered more than fifty years ago by Meiklejohn and Bean 
3
. After decades of experimental 

and theoretical studies, the common acceptable theory of exchange bias is due to the spin-spin 
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coupling occurring at the interface between ferromagnetic (FM), or ferrimagnetic (FiM), and 

antiferromagnetic (AFM) layers. The exchange bias effect has been studied in a number of 

different systems; however, the most common systems are core-shell nanoparticles and layered 

thin films 
4
. 

For device applications, the dominant type of substrate used is the corundum-structured 

aluminum oxide (α-Al2O3): for the sake of simplicity, I will refer to this simply as alumina or 

Al2O3. Existing industry expertise enables high availability of low-cost alumina, which is 

particularly important for inexpensive production of light emitting devices (LEDs). This provides 

for alumina having high resistivity, good mechanical and dielectric strength, and excellent 

thermal and corrosion stability. These qualities also provide for some disadvantages; however, 

none of these are too serious for the intended magnetic applications. The two most obvious 

disadvantages of using alumina are the inefficiency to propagate electrical signal and draw heat 

away from the device 
5
. 

NiO is a conventional antiferromagnetic (AFM) material. Its AFM spins in the adjacent 

{111} planes align in the opposite direction 
2
. NiO is particularly desirable for use in bimagnetic 

heterostructured-based devices because its Néel temperature (in bulk form) is ~525 K (~252 °C), 

thus making it practical for room-temperature use. Previous studies have shown that NiO can be 

grown along its (111) crystallographic (planes) orientation on the Al2O3 substrate oriented along 

its (0001) planes (i.e., NiO (111) on Al2O3(0001)) 
6
. Thus, with this oriented growth and perfect 

crystallinity, NiO AFM spins are parallel to the Al2O3 [0001] orientation. Moreover, in the ideal 

case with perfect crystallinity, when NiO/MnxNi1-xO bilayers are grown on the top of Al2O3 

(0001) surface, the coupling between FiM (MnxNi1-xO) and AFM (NiO) spins should be stronger 

when compared to the coupling of FiM/AFM spins and enabling the exchange bias effect in 
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NiO@MnxNi1-xO core-shell nanoparticles. This is because of the canting effect of the spins, 

which is expected to be present in NiO@MnxNi1-xO core-shell nanoparticles having 

pseudospherical morphology, should be absent in ideal, well oriented thin film interfaces. Strong 

coupling between FM and AFM spins should enable a strong exchange bias effect and, 

potentially a perpendicular exchange bias effect where the spins couple in perpendicular 

orientation as opposed to parallel orientation. Because PLD does not enable perfect epitaxial 

growth (i.e., close to ideal crystallinity) of thin films, such as the atomic layer deposition (ALD) 

technique does, very strong exchange bias and magnetic properties for NiO/MnxNi1-xO bilayers 

grown on the top of the Al2O3 (0001) surface are not expected. Conversely, PLD is a much less 

expensive and practical technique to use then, for example, ALD for the potential fabrication of 

NiO/MnxNi1-xO bilayer-based devices in industry. Thus, the primary hypothesis of my study is to 

investigate whether NiO/MnxNi1-xO nanostructured bilayers grown on Al2O3 (0001) using PLD 

can produce favorable magnetic properties, including the exchange bias effect, for use in 

magnetic devices. 

 

Experimental Details 

Pulsed laser deposition (PLD) technique was used to create Al2O3(0001)/NiO/MnxNi1-xO 

heterostructures for this study. First, a NiO thin film layer was deposited on top of commercially 

purchased Al2O3(0001) substrates. Next, the MnxNi1-xO thin film layer was deposited on the top 

of NiO layer. A Nd:YAG laser having a wavelength of 266 nm was used for the PLD deposition. 

The following procedures were used to grow the thin film layers. First, the vacuum chamber was 

cleaned properly. Subsequently, targets were placed in the target holders inside the growth 

chamber: the fabrication of the NiO and MnxNi1-xO was described in Chapter 2. Next, the 
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substrate holder was cleaned using isopropanol alcohol whereas the Al2O3 (0001) substrate was 

cleaned using acetone and sonication for 30 minutes. Next, the substrate was placed in the 

substrate holder inside the PLD growth chamber. After that, 1.0e-5 mbar vacuum was created 

using rotary and turbo molecular pumps. Prior to deposition, the substrate heater was used to 

anneal the substrate at 500°C for 2 hours. Except for the Q-switch delay, identical conditions 

were used for both thin film layers. For NiO and MnxNi1-xO layers, a Q-switch delay of 50 and 

60 were used, respectively. Both thin film layers were deposited at 500°C in the presence of 

1.8e-2 mbar O2 partial pressure, a laser repetition rate of 10 Hz and a fixed amount of 40,000 

shots were used. After deposition, Al2O3(0001)/NiO/MnxNi1-xO heterostructures were annealed 

at 500°C for 3 hours in the presence of oxygen gas. Using the above mentioned conditions, a 

total of three samples were prepared and characterized using XRD and SEM. The thin film 

Al2O3(0001)/NiO/MnxNi1-xO heterostructure having the best structural, morphological and 

constitutional properties was used for further characterization. The approximate thickness of the 

NiO layers varied from 50-65nm and of the MnxNi1-xOlayers from 30-40nm. 

 

Results & Discussion 

The long range (2-theta; 20-85°) XRD scan measured from the Al2O3/NiO/MnxNi1-xO 

thin film heterostructure (i.e., the sample selected for an extensive characterization) is shown in 

Figure 3.1. It is clear from the XRD spectrum that the NiO/MnxNi1-xO thin film bilayers were 

grown along the (111) crystallographic orientation on top of the Al2O3 (0001) substrate. The 

overall peak at lower 2-theta range (35-40°) is due to the NiO/MnxNi1-xO (111) crystallographic 

planes of the thin film bilayers, the one in the middle 2-theta range (40-45°) is due to the Al2O3 

(0001) substrate and the overall higher 2-theta range (77-80°) peak is due to the NiO/MnxNi1-xO 
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(222) crystallographic planes. Moreover, all three peaks contain predominantly crystalline 

features with a small amount of amorphous portions. The sharp and narrow portions are 

attributed to the crystalline features whereas the widening at the bottom is attributed to the 

disordered or amorphous components. Thus, the Al2O3/NiO/MnxNi1-xO thin film heterostructure 

is predominantly crystalline. 

 

 
 

Figure 3.1. An XRD scan measured from the Al2O3/NiO/MnxNi1-xO thin film heterostructure.  

 

Figure 3.2 shows the SEM micrograph, the EDX spectrum and quantitative data for the 

Al2O3/NiO/MnxNi1-xO heterostructure that was selected for full characterization. It is clear from 

the SEM micrograph that the thin film bilayers have both mostly smooth and small granular, 

blob-like regions. The occurrence of granular (blob) like regions is due to droplets of plasma 

material being deposited on either the substrate, or on the NiO layer having relatively large 

amount of localized material and insufficient lateral atomic diffusion during deposition. Thus, 
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completely controlled atom-by-atom basis deposition is not possible during PLD deposition; it is 

obvious that the NiO and MnxNi1-xO films have both crystalline/epitaxial and 

amorphous/disordered characteristics.  

 

 
 

Figure 3.2. An SEM micrograph (left) of and the SEM-EDX (right) spectrum measured from the 

Al2O3/NiO/MnxNi1-xO heterostructure. 

 

 

However, the predominant features in the SEM micrograph film are comprised of the 

smooth regions which are crystalline/epitaxial in nature. This is consistent with the XRD results. 

The EDX spectrum shows that a significant amount of manganese is present in the 

heterostructure, at a quantity of 0.10 at%, whereas the nickel, oxygen and aluminum 

compositions are 2.78, 67.39, and 29.73 at%, respectively.  

After subtracting the diamagnetic contribution stemming from the substrate, the 

magnetization vs applied field (M vs H) data measured in the zero field (ZFC) and field cooled 
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(FC) condition from the Al2O3/NiO/MnxNi1-xO heterostructure, that was selected for full 

magnetization characterization, using the SQUID PPMS at 5 K (left) and at 300K (right), are 

shown in Figure 3.3. From Figure 3.3, it is clearly evident that the magnetization of the 

heterostructure increases rapidly with the increase of the applied field H. Moreover, the 

magnetization vs applied field clearly reaches a saturation value and has a standard “S” shape in 

all cases. The standard “S” shape of the hysteresis curves indicates that the MnxNi1-xO layer in 

the heterostructure has FM or FiM characteristics. On the other hand, the NiO layer in the 

heterostructure has AFM characteristic due to the presence of a small but nevertheless 

paramagnetic like characteristic in the M vs H curves. By definition, the coercivity is the value of 

the reverse magnetic field required to make the magnetization zero (M= 0).  For the ZFC case, 

the coercivity is 250 Oe and for the FC case, the coercivity is 370 Oe as measured at 5 K. 

Moreover, for the ZFC case, the coercivity is 150 Oe and for the FC case, the coercivity is 200 

Oe as measured at 300K. From the Hasan et al. study using DFT based calculations and our 

magnetic results, I conclude that MnxNi1-xO phase has FiM properties in the MgO/NiO/MnxNi1-

xO heterostructure due to presence of Mn 
1,7

. The exchange bias effect is the shift of the 

hysteresis loop either in the positive or negative applied field direction. In the case of the 

NiO/MnxNi1-xO bilayer, the shift occurs due to the stronger AFM anisotropy of the NiO layer, as 

compared to the FiM anisotropy of the MnxNi1-xO layer. The value of the exchange bias field can 

be calculated using the formula HE = (HZFC+ -HFC+ - HFC- + HZFC-)/2, where the +/- signs indicate 

positive/negative coercivity values. Thus, for the Al2O3/NiO/MnxNi1-xO heterostructure 

measured at 5K, the value of the exchange bias field is ~70Oe. Furthermore, the value of the 

exchange bias for the heterostructure at 300 K is ~19 Oe. The most notable aspect is that the 

exchange bias, although small, is nevertheless observable at room temperature for the 
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Al2O3/NiO/MnxNi1-xO heterostructure. The implications of this are that sufficiently strong NiO 

AFM anisotropy, along with FiM ordering, persist at room temperature resulting in the pinning 

of the uncompensated Ni and Mn spins at the NiO-MnxNi1-xO interface. The relatively small 

values for the coercivity and exchange bias is most likely due to that fact that the NiO/MnxNi1-xO 

thin film bilayers are not fully epitaxial and contain disordered regions. Although the crystalline 

components predominate throughout the NiO and MnxNi1-xO layers, the magnetization results 

are consistent with significant (proportionally) disordered regions at the NiO-MnxNi1-xO 

interface. The vertical shift at both temperature (5K and 300K) is attributed to the frozen Ni 

spins at the NiO-MnxNi1-xO interface, which most likely originate from the disordered regions of 

the interface. The vertical shift occurs because the orientation of the frozen Ni surface spins is in 

the same direction as the positive applied field, in the FC case, and these remain fixed (i.e., 

cannot be flipped) when the H field is reversed in the opposite direction. 

 
 

 

Figure 3.3. The magnetization vs applied field (M vs H) data measured in the zero field cooled 

(ZFC) and field cooled (FC) conditions from the Al2O3/NiO/MnxNi1-xO heterostructureat 5 K 

(left) and 300K (right). 
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Conclusions 

The XRD results show that the NiO/MnxNi1-xO bi-layers were grown along the (111) 

crystallographic planes oriented on top of Al2O3 (0001) substrate. From the SEM micrographs, it 

is evident that both thin film bi-layers have mostly smooth regions with smaller granular regions. 

The XRD and SEM data are consistent with the NiO/MnxNi1-xO thin film bi-layers being 

predominantly crystalline and containing lesser regions that are disordered and/or amorphous. 

Thus, the NiO/MnxNi1-xO thin film bi-layers were grown quasi-epitaxially on Al2O3 (0001) 

substrates in the presence of oxygen using the PLD technique. An extensive magnetic 

characterization, in terms of measurement of hysteresis curves in the FC and ZFC case, was 

made on a select Al2O3/NiO/MnxNi1-xO heterostructure at 5 K and 300 K. The magnetization 

data reveal that the exchange bias field is ~70Oe when measured at 5 K and ~19Oe when 

measured at 300 K. A vertical shift is observed between the FC and ZFC hysteresis curves for 

measurements made at 5 K and 300 K. The vertical shift is attributed to frozen Ni spins near the 

NiO-MnxNi1-xO interface of the heterostructure. The observed exchange bias effect at room-

temperature indicates that the FiM ordering of the MnxNi1-xO thin film and the AFM anisotropy 

of the NiO thin film, observed for an Al2O3/NiO/MnxNi1-xO heterostructure, also persist to room 

temperature and can potentially be useful for room temperature device applications. 
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SUMMARY 

 

In my thesis project, I have made a structural, morphological and magnetic study of 

MgO/NiO/MnxNi1-xO and Al2O3/NiO/MnxNi1-xO thin film heterostructures. From the XRD 

results, it is evident that the NiO and MnxNi1-xO thin film bilayers were grown along the (200) 

crystallographic plane orientation on top of the MgO (100) substrate and (111) crystallographic 

plane orientation on top of the Al2O3 (0001) substrate. XRD results also confirm that both 

heterostructures contain crystalline/epitaxial and amorphous/disorder portions. However, XRD 

results also show that the Al2O3/NiO/MnxNi1-xO heterostructure has greater crystallinity than the 

MgO/NiO/MnxNi1-xO heterostructure. This is most likely due to a higher level of crystallinity of 

the Al2O3 (0001) substrates compared to that of the MgO (100) substrates that were used in this 

study. SEM micrographs show that both heterostructures have smooth and granular regions. 

From the SEM micrographs, it is also clear that Al2O3/NiO/MnxNi1-xO thin film heterostructure 

is smoother compared to the MgO/NiO/MnxNi1-xO heterostructure. Thus, the Al2O3/NiO/MnxNi1-

xO thin film heterostructure is more epitaxial and has less disordered regions, which is consistent 

with the XRD results. Moreover, magnetic hysteresis results confirm that both heterostructures 

exhibit room temperature FiM properties, which can be useful for spintronics and other magnetic 

based device applications. Furthermore, both heterostructures show large AFM anisotropies and 

corresponding exchange bias effects at 5K. Nonetheless, the Al2O3/NiO/MnxNi1-xO 

heterostructure was found to possess a significant AFM anisotropy, FiM magnetization and 

corresponding exchange bias effect at room temperature. The coercivity and exchange bias field 

values are higher for the Al2O3/NiO/MnxNi1-xO thin film heterostructure compared to that of the 

MgO/NiO/MnxNi1-xO thin film heterostructure at 5 K. This is due to the fact that 
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Al2O3/NiO/MnxNi1-xO thin film heterostructure is more epitaxial/crystalline and has more 

regions of good interface matching compared to that of the MgO/NiO/MnxNi1-xO thin film 

heterostructure. For the MgO/NiO/MnxNi1-xO thin film heterostructure, a vertical shift (i.e., 

along the M axis) of the FC hysteresis curve relative to the ZFC curve was found to occur at 5K 

but not at 300 K. Conversely, the vertical shift of the FC hysteresis curve along the M axis 

relative to the ZFC curve occurred at both 5K and 300K for Al2O3/NiO/MnxNi1-xO thin film 

heterostructure. The vertical shift of hysteresis loop is attributed to the frozen Ni spin-glass-like 

spins at the interface between the NiO and MnxNi1-xO thin film layers. 
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