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Abstract 16 

Subarachnoid hemorrhage (SAH) is a devastating disease with high rates of mortality and disability 17 

and a poor clinical prognosis. It has been the focus of much attention in both basic and clinical 18 

medical research. Here, we investigate therapeutic drugs and effective targets for early prediction of 19 

SAH. First, we demonstrate that LCN2 can be used to effectively intervene in or treat SAH from a 20 

cell signaling pathway perspective. Next, three potential genes that we explored are validated by 21 

manual review of experimental evidence. Finally, we demonstrate that the ensemble learning model 22 

for early SAH prediction performs better than the classical logistic regression, support vector 23 

machine, and naive-Bayes models. 24 

1 Introduction 25 

Subarachnoid hemorrhage (SAH) is the fastest developing and most critical hemorrhagic 26 

cerebrovascular disease, accounting for 5% of cerebrovascular diseases (Macdonald, 2014), and is 27 

associated with high rates of mortality and disability and poor clinical prognosis (Suarez et al., 2006). 28 

Although there have been significant advances in diagnostic methods, surgery, and endovascular 29 

techniques in recent years, the mortality rate of SAH remains as high as 15% (Macdonald et al., 30 

2008). 31 

The total length of the article is about 3300, including 4 figures in total. 
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Recent research has shown that early brain injury (EBI) may be the main cause of poor prognosis in 32 

SAH patients. Therefore, current SAH studies focus on exploring therapeutic drugs and targets for 33 

reduction of EBI after SAH and the early prediction of SAH (Sozen et al., 2011).  34 

Lipocalin 2 (LCN2) is an acute secretory protein that regulates the pathophysiological processes of 35 

various organ systems in mammals and participates in the intrinsic immune protection of the central 36 

nervous system (CNS) (Flo et al., 2004;Ferreira et al., 2015). Studies of acute white matter injury in a 37 

mouse SAH model and the role of LCN2 in injury (Egashira et al., 2014) indicate that LCN2 plays an 38 

important part in SAH-induced white matter injury. Since above evidences suggest that LCN2 is 39 

closely related to SAH, we propose our first research question: is specific intervention for LCN2 40 

(Warszawska et al., 2013) a promising SAH treatment strategy?  41 

On the other hand, most previous studies (Chu et al., 2011;Ni et al., 2011;Zhang et al., 2017a) have 42 

only explored biomarkers for SAH prediction and treatment in a narrow molecular range, rather than 43 

taking a genome-wide approach. We propose our second research question: could we use a genome-44 

wide approach to find potential biomarkers for SAH based on the effects of LCN2 treatment?  45 

Previous studies have usually predicted SAH based on diagnostic imaging (Frontera et al., 46 

2006;Ramos et al., 2019) and clinical automation data (Roederer et al., 2014), which may not provide 47 

enough predictive power. Thus, we propose our third research question: could we use key genes to 48 

build a more powerful early prediction model for SAH? 49 

In this paper, we propose a new research plan to answer the above three research questions. First, we 50 

use SAH intervention experiments to screen out candidate genes that are susceptible to LCN2, then 51 

employ Fisher’s exact test (Xie et al., 2011;Li et al., 2017;Xia et al., 2017;Zhang et al., 2019b) to 52 

choose signaling pathways from among the candidates under different experimental conditions. 53 

Second, we use e-Bayes (Carlin and Louis, 2010), SVM-RFE (Duan et al., 2005), SPCA (Zou et al., 54 

2006), and statistical tests (Zhang et al., 2016;Zhang et al., 2018;Xiao et al., 2019b;Zhang et al., 55 

2019b;Zhang et al., 2019d;Zhang et al., 2020) to investigate key genes from experimental data by 56 

considering both SAH and LCN2 as factors. Third, we integrate the logistic regression (LR), support 57 

vector machine (SVM), and naive-Bayes algorithms (Xia et al., 2017;Zhang et al., 2017a;Zhang et 58 

al., 2019a) into an ensemble learning model (Gao et al., 2017;Zhang et al., 2019b) to build a model 59 

for early SAH prediction.  60 

First, manual review of the experimental evidence (Osuka et al., 2006;Majdalawieh et al., 61 

2007;Hanafy et al., 2010;Hao et al., 2014;Kwon et al., 2015;Yu et al., 2018) demonstrates that we 62 

could intervene or treat SAH by targeting LCN2 from a cell signaling pathway perspective. Next, we 63 

explore three key genes that are sensitive to both SAH and LCN2 treatment, again using manual 64 

review of the experimental evidence (Huang et al., 2016;Sabo et al., 2017;Yu et al., 2018) to cross-65 

validate the relationships between SAH and these key genes. Finally, we show that our SAH early 66 

prediction ensemble-learning model outperforms the classical LR, naive-Bayes, and SVM models. In 67 

summary, we consider that this work provides a novel strategy for the future study of clinical 68 

treatment of SAH and related diseases. 69 

2 Materials and Methods 70 

2.1 Experimental configuration 71 
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All experimental procedures were approved by the Ethics Committee of Southwest Hospital and 72 

were performed in accordance with the guidelines of the National Institutes of Health Guide for the 73 

Care and Use of Laboratory Animals. 74 

2.1.1 Intervention experiment for SAH 75 

The original chip data for this experiment were provided by the Department of Neurosurgery, 76 

Southwest Hospital, PLA Military Medical University. SAH and sham-operated models were 77 

established; details are given in the Supplementary Material. Each experimental group included five 78 

mice, and the white matter area of the cerebral cortex was taken for gene chip testing. A total of 10 79 

original chip samples were obtained from the SAH intervention experiments; these were divided 80 

equally into two groups as follows. 81 

(1) SAH disease group: brain tissue in the white matter region of the cerebral cortex of SAH mice.  82 

(2) Control group normal-1: brain tissue in the white matter region of the cerebral cortex of normal 83 

mice. 84 

The chip was an Affymetrix GeneChip Mouse Gene 1.0 ST Array. Raw data included sample RNA 85 

extraction (white matter brain cells from the SAH model and from normal mice), sample RNA 86 

quality detection (total RNA>1 ug), cDNA synthesis, sense strand cDNA fragmentation, biotin 87 

labeling, chip hybridization, chip elution, and chip scanning. The raw data are available at 88 

http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8407. 89 

We then carried out mass analysis and used the R Bioconductor package to perform quality control 90 

for each original chip (the SAH disease group and the control group normal-1). In the output gray 91 

scale image (Figure S1) for each chip sample, each chip name and the four corner patterns were very 92 

clear, and the contrast between light and dark was moderate.  93 

The right panel of Figure 1A shows the Relative Log Expression (RLE) boxplot for these 10 chips. 94 

The center of each sample was close to the position RLE=0. This indicates that the expression levels 95 

of most genes in the sample were consistent. In addition, Figure S2 describes a normalized unscaled 96 

standard errors (NUSE) detection(Marta and Marc, 2014). Since Figure S2 shows that the center of 97 

each sample is close to the position NUSE=1, we consider that the samples are too stable to have 98 

obvious batch effect. Then, we used Robust Multi-chip Analysis (RMA) (Irizarry et al., 2003) for 99 

data preprocessing, including background and perfect match probes (PM) correction, normalization, 100 

and summarization, to obtain the probe expression data matrix (Table S1). Finally, clustering 101 

analysis(Liu et al., 2019;Xiao et al., 2019a;ZHANG et al., 2019c;Wu and Zhang, 2020) (Figure S3) 102 

shows that the major differences between the chip of each group comes from SAH. 103 

2.1.2 Intervention experiment for LCN2 104 

Here, in order to interfere with the expression of LCN2, 2 μL of specific short interfering RNAs 105 

(siRNAs) was delivered into the lateral ventricle with a Hamilton syringe. The injection was 106 

performed 48 h before SAH and three groups were used, as described below. We detail the 107 

procedures in the Supplementary Material. 108 

 (1) SAH-siRNA-LCN2: the SAH model was established and treated with intrathecal injection of 109 

LCN2 siRNA, and two samples were taken on the first and third days after surgery.  110 
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(2) SAH-siRNA-NC: the SAH model was established and treated with intrathecal NC siRNA, and 111 

two samples were taken on the first and third days after surgery, which helped us to remove the 112 

interference factors associated with the siRNA vector.  113 

(3) Control group normal-2: the brain tissue of the white matter region of the cerebral cortex without 114 

any treatment.  115 

The total number of samples in all experiments was 25 (Table 1). RNA sequencing was performed on 116 

the samples and the raw data are available at https://www.ncbi.nlm.nih.gov/sra/PRJNA575372.  117 

Table 1 118 

2.2 Workflow of the study 119 

Figure 1  120 

The workflow of the study is illustrated in Figure 1. First, we designed the intervention experiment 121 

for SAH detailed in section 2.1.1, which allowed us to obtain the differential genes under different 122 

experimental conditions. Based on these differential genes, we could identify the key signaling 123 

pathways.  124 

As targeting LCN2 could result in changes in these related signaling pathways (causing remission or 125 

promotion of SAH), we consider that LCN2 plays an important part in the entire biological cell 126 

process for SAH.  127 

Next, we used an intervention experiment for LCN2 to obtain gene expression levels for diseased and 128 

normal mouse brain cells at different time points. Then, we employed commonly used dimensional 129 

reduction algorithms to explore three key genes under the impact of both SAH and LCN2 treatment.  130 

Finally, we used these three key genes as classifiers to develop an ensemble learning model for early 131 

SAH prediction, the predictive power of which was much better than that of the classic LR, naive-132 

Bayes, and SVM models.  133 

3 Results  134 

3.1 Signaling pathway analysis 135 

3.1.1 Differentially expressed gene selection 136 

We used e-Bayes, one of the most commonly used methods for differential expression analysis 137 

(Edwards et al., 2005), to screen the differential genes by setting Fold change ≥ 1.5 and p-value <138 

0.05. Table S2 lists 2942 differentially expressed genes, accounting for 10.16% of the total number 139 

of genes (28,944). Among them, there were 1016 and 1926 genes with upregulated and 140 

downregulated expression (Figure S4), respectively. 141 

3.1.2 Pathway analysis  142 

We used Eq. 1 and the data in Table S3 to explore related signaling pathways by carrying out 143 

Fisher’s exact test (Xia et al., 2017) using Kobas 3.0 (Wu et al., 2006;Xie et al., 2011;Ai et al., 2018) 144 

for the differentially expressed genes from Table S2. 145 

https://www.ncbi.nlm.nih.gov/sra/PRJNA575372
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𝒑𝑭(𝒏𝒇, 𝒏, 𝑵𝒇, 𝑵) = 𝟐 ∗ ∑
(

𝒏
𝒙

) (
𝑵 − 𝒏
𝑵𝒇 − 𝒙)

(
𝑵
𝑵𝒇

)

𝒏𝒇

𝒙=𝟏

 

 

(1) 

 146 

Here, 𝑁 is the number of genes in the sample and 𝑛 is the number of genes contained in the 147 

pathway. 𝑁𝑓 is the number of differentially expressed genes and 𝑛𝑓 is the number of differentially 148 

expressed genes included in the pathway.  149 

The Fisher’s exact test assumes 𝐻0: 𝑝1 = 𝑝2; the alternative hypothesis is 𝐻1: 𝑝1 ≠ 𝑝2. 𝑝1is the 150 

probability that the differentially expressed gene will fall in the pathway, and 𝑝2 is the probability 151 

that the non-differentiated gene does not fall in the pathway. The p-value (𝑝𝐹) of Fisher’s exact test 152 

was obtained by Eq. 1. 153 

Table S2 lists 70 signaling pathways for which the p-value was less than 0.001. LCN2 is a protein 154 

involved in MAPK signaling pathways that protects the CNS as part of the innate immune system 155 

(Warszawska et al., 2013). Previous studies have shown that LCN2 activates phosphorylation of p38 156 

MAPK, which phosphorylates the Ser168 and Ser170 sites of NFATc4 and inhibits nuclear 157 

translocation of NFATc4 (Olabisi et al., 2008). NFATc4 is a key factor in remyelination and closely 158 

related to SAH, indicating that white matter damage after SAH is associated with remyelination (Kao 159 

et al., 2009;Guo et al., 2017).  160 

Therefore, we hypothesize that LCN2 could promote the phosphorylation of transcription factor 161 

NFATc4 and inhibit its nuclear transcription by activating p38 MAPK, thereby preventing 162 

remyelination and causing white matter damage after SAH. 163 

3.1.3 LCN2 intervention experimental results analysis 164 

To prove our hypothesis, we designed a LCN2 intervention experiment (Figure 1B) to test whether 165 

LCN2 could affect SAH from the perspective of the differential expressed genes and the related 166 

signaling pathways.  167 

First, we used the DESeq2 (Varet et al., 2016) method to select differentially expressed genes from 168 

SAH-siRNA-LCN2 and normal-2, SAH-siRNA-NC and normal-2, and SAH-siRNA-LCN2 and 169 

SAH-siRNA-NC groups on days 1 and 3, respectively(Table 1). The results are shown in Table 2, 170 

Table S4, and Figure S5. 171 

Table 2 172 

Next, we used Kobas 3.0 (Wu et al., 2006;Xie et al., 2011;Ai et al., 2018) to carry out Fisher’s exact 173 

test for the differential genes in Table 2, to identify related signaling pathways (Table S5). Next, we 174 

used the manually reviewed evidence (Osuka et al., 2006;Majdalawieh et al., 2007;Hanafy et al., 175 

2010;Hao et al., 2014;Kwon et al., 2015;Yu et al., 2018) to cross-validate the SAH-related signaling 176 

pathways in Table S5. Table 3 lists the cross-validated SAH-related signaling pathways.  177 

Table 3 178 
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As shown in Table 3, all the experimental groups had SAH-related signaling pathways except the 179 

transcriptional misregulation in cancer signaling pathway (Lee and Young, 2013) in the SAH-180 

siRNA-LCN2 (3 day) vs SAH-siRNA-NC (3 day) experimental group. However, as one of the 181 

proteins from this pathway, Gzmb (Table S5), is closely associated with post-ischemic brain cell 182 

death (Chaitanya et al., 2010), we consider that it could be a new target for secondary brain injury 183 

inhibition (Armstrong et al., 2017). Therefore, we conclude that specific intervention for LCN2 is a 184 

promising SAH treatment strategy. 185 

3.2 Feature selection 186 

After demonstrating the impact of LCN2 on SAH, we chose potential biomarkers for SAH using a 187 

genome-wide approach. Figure 1C shows the workflow used to choose key genes that were not only 188 

related to both SAH and LCN2 but were also insensitive to treatment at different time points. Figure 189 

1C shows the following three modules.  190 

(1) SAH intervention experiment module  191 

Owing to the large number of differential genes (Table S2), it was necessary to further narrow down 192 

the scope of the screening. First, we used the e-Bayes method (Edwards et al., 2005) to filter the 193 

probe expression data matrix (Table S1) by the e-Bayes function of R’s limma package (Smyth, 194 

2005). The differential probes were obtained by setting the filter parameters to Fold change ≥ 2 and 195 

p-value < 0.05. 196 

Second, we used SVM-RFE (Duan et al., 2005) (Eq. 2) to rank the genes in the probe expression data 197 

matrix, and then carried out the t-test and F-test (Zhang et al., 2017b) for the top 100 genes. 198 

{
𝑫𝑱(𝒊) = (𝟏/𝟐)𝜶𝑻𝑯𝜶 − (𝟏/𝟐)𝜶𝑻𝑯(−𝒊)𝜶

𝑯 = 𝒚𝒊𝒚𝒋𝑲(𝒙𝒊, 𝒙𝒋)
 

(2) 

where 𝑦𝑖 and 𝑦𝑗 represent the classification labels of probes 𝑥𝑖 and 𝑥𝑗, respectively; 𝐾(𝑥𝑖 , 𝑥𝑗) is the 199 

kernel function, 𝑖, 𝑗 = 1,2, … , 𝑛;  𝛼 is obtained by training the SVM classifier; 𝐷𝐽(𝑖) is the sort 200 

function; and H is the matrix.  201 

We then combined the results of these two methods to obtain the significant probes for both the e-202 

Bayes and SVM-RFE methods.  203 

Finally, we used the transcription cluster annotation file (version: MoGene-1_0-st-v1) downloaded 204 

from the Affy (Gautier et al., 2004) website to extract the gene ID for these probes, resulting in 47 205 

key genes (Table S6).  206 

(2) LCN2 intervention experiment module 207 

We performed t-tests and F-tests (Zhang et al., 2017b) for the key genes (Table S6) in the SAH-208 

siRNA-LCN2 (1 day) vs normal-2 and SAH siRNA-LCN2 (3 day) vs normal-2 groups (Table S4). 209 

There were 15 and 13 statistically significantly differential genes for the SAH-siRNA-LCN2 (1 day) 210 

vs normal-2 group (Table S7) and the SAH-siRNA-LCN2 (3 day) vs normal-2 group (Table S8), 211 

respectively. Taking the intersection of the results from these two experimental groups gave nine key 212 
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genes, Tk1, Cyr61, Nupr1, Dcn, Lum, Olig1, Pcolce2, Slc6a9, and Kcnt2, which were sensitive to 213 

both SAH and LCN2 intervention, regardless of treatment, at different time points. 214 

(3) Dimensional reduction module  215 

Next, we employed the SPCA algorithm (Zou et al., 2006;Li et al., 2017) to perform dimensional 216 

reduction for the nine key genes. This resulted in five candidate genes (Tk1, Cyr61, Olig1, Slc6a9, 217 

and Pcolce2). However, manual review of the experimental evidence indicated that only Cyr61 (Yu 218 

et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 2016) were closely related to SAH, 219 

cerebral hemorrhage, and brain injury. Therefore, we considered these three genes (Figure 2, Table 220 

S9) to be potential biomarkers for SAH. 221 

Figure 2 222 

3.3 Ensemble learning model 223 

3.3.1 Early SAH prediction model 224 

This study used three classification algorithms, LR (Hosmer Jr et al., 2013), SVM (Suykens and 225 

Vandewalle, 1999), and naive-Bayes (Wang et al., 2007) to develop the SAH prediction model, using 226 

the selected key genes as the respective classifiers. These three classic methods were then integrated 227 

into a novel ensemble learning model to improve the predictive accuracy.  228 

Figure 3 shows the workflow of the SAH prediction model, based on our previous studies (Li et al., 229 

2017;Xia et al., 2017;Zhang et al., 2019b). The key equations of the model are as follows.  230 

𝑫𝒕(𝒊) =
𝟏

𝒏
 

(3) 

𝜺𝒕 =
number of incorrectly classified samples

total number of samples
 

(4) 

𝜶𝒕 =
𝟏

𝟐
𝒍𝒏

𝟏 − 𝜺𝒕

𝜺𝒕
 

(5) 

𝑫𝒕+𝟏(𝒊) =
𝑫𝒕(𝒊)

𝒔𝒖𝒎(𝑫)
{
𝒆𝒙𝒑(−𝜶𝒕) , 𝒊𝒇 𝒉𝒕(𝒙𝒊) = 𝒚𝒊

𝒆𝒙𝒑(𝜶𝒕) , 𝒊𝒇 𝒉𝒕(𝒙𝒊) ≠ 𝒚𝒊
 

(6) 

𝑯𝒎(𝒙) = 𝒔𝒊𝒈𝒏 ∑ 𝜶𝒕

𝑻

𝒕=𝟎

𝒉𝒕(𝒙) 

(7) 

𝑬𝑯𝒎,
= ∑ 𝑷𝑯𝒎

𝟑

𝒎=𝟏

 

(8) 
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𝒀(𝒙) = {
𝟏    𝑬𝑯𝒎

≥ 𝟎. 𝟓

𝟎    𝑬𝑯𝒎
< 𝟎. 𝟓

 
(9) 

Here, 𝐷𝑡(𝑖) is the weight distribution, t is the iteration time, 𝑖 is the index of the sample, and n is the 231 

number of the sample. ε𝑡 and α𝑡 are the error rate and weight of each weak classifier ℎ𝑡, respectively. 232 

For a sample set 𝑆 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛) }, 𝑥𝑛 are the samples and 𝑦𝑛 ∈ {0,1} are the 233 

labels; 𝑦𝑖=0 indicates that 𝑥𝑖 is not an SAH patient, and 𝑦𝑖=1 indicates that 𝑥𝑖 is an SAH patient. 𝐻𝑚 234 

is the homomorphic integration for each weak classifier ℎ𝑡; m is the index of the weak classifier, 235 

m=1,2,3; 𝑇 is the threshold of the iteration time; 𝑃𝐻𝑚
 is the predictive probability of disease; and 236 

𝐸𝐻𝑚
is the estimated probability of the model 𝐻𝑚. 𝑌(𝑥) is the result of the final classifier obtained by 237 

a voting method (Dietterich, 2000). 238 

Figure 3 239 

3.3.2 Predictive performance comparison 240 

Figure 4A compares the classification performance for the LR, naive-Bayes, SVM, and ensemble 241 

learning models, based on four commonly used classification measurements (Table S10) (Zhang et 242 

al., 2019b). The numerical values used in Figure 4A are listed in Table S11; these demonstrate that 243 

the ensemble learning method outperforms the other three methods with respect to accuracy, 244 

precision, sensitivity and specificity. The ROC chart plotted in Figure 4B compares the classification 245 

effects of LR, Naive Bayes, SVM, and ensemble learning models. The classification effect of 246 

ensemble learning models is also superior to the other three. 247 

Figure 4 248 

4 Discussion 249 

This study aimed to interrogate the potential therapeutic targets of SAH and use them as classifiers to 250 

develop a model for early prediction of SAH.  251 

To achieve this aim, we proposed the following three scientific questions. First, is specific 252 

intervention involving LCN2 a promising SAH treatment strategy? Second, could we choose 253 

potential biomarkers for SAH at a genome-wide level by considering the effects of LCN2? Third, 254 

could we use key genes to build an SAH early prediction model with strong predictive power? 255 

Regarding the first question, as the manually reviewed experimental evidence (Osuka et al., 256 

2006;Majdalawieh et al., 2007;Hanafy et al., 2010;Hao et al., 2014;Kwon et al., 2015;Yu et al., 2018) 257 

and the results in Table 3 all indicate that LCN2-related signaling pathways play an important part in 258 

the pathogenesis SAH, we propose that LCN2 could promote or alleviate SAH-related diseases, and 259 

could also be used to treat SAH in the future. 260 

To answer the second question, we used mathematical algorithms to explore five potential gene 261 

biomarkers (Tk1, Cyr61, Olig1, Slc6a9, and Pcolce2), considering the impact of both SAH and 262 

LCN2 treatment at different time points, and also used the manually reviewed experimental evidence 263 

to demonstrate that Cyr61 (Yu et al., 2018), Olig1 (Sabo et al., 2017), and Slc6a9 (Huang et al., 264 

2016) were closely related to SAH. Although Tk1 and Pcolce2 have not been reported to be 265 

associated with SAH, we will investigate their connections in future work.  266 
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Regarding the third question, although this study represents significant progress in SAH prediction, it 267 

had several drawbacks. For example, the SAH intervention experiment sample size was too small for 268 

us to demonstrate high predictive accuracy for the model. In future work, we will integrate more 269 

recent bioinformatics research algorithms (Zhang et al., 2016;Gao et al., 2017;Zhang et al., 270 

2017a;Zhang and Zhang, 2017;Zhang et al., 2018;Zhang et al., 2019a;Zhang et al., 2019d) and data 271 

into the system to overcome the problems. 272 

In summary, this study analyzed the impact of LCN2 on SAH and explored the key biomarkers of 273 

SAH under LCN2 treatment at different time points. An ensemble learning model was developed to 274 

predict SAH occurrence. The results demonstrate that LCN2 (Warszawska et al., 2013) can 275 

effectively intervene in or treat SAH from a cell signaling pathway perspective. Also, three key genes 276 

were identified and validated by manual review of the experimental evidence (Huang et al., 277 

2016;Sabo et al., 2017;Yu et al., 2018). Finally, the results showed that the ensemble learning model 278 

performed better for early SAH prediction than the classical LR, SVM, and naive-Bayes models. 279 
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TABLE AND FIGURES LEGENDS 463 

Figure 1. Workflow of the study. (A) SAH intervention experimental chip RLE box line diagram; 464 

the abscissa is log_2 (Median value of sample expression) and the ordinate represents each chip; (B) 465 

The volcano map of the comparison group SAH-siRNA-NC (1 day) vs normal-2. The abscissa is 466 

𝑙𝑜𝑔2(𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒) and the ordinate is −𝑙𝑜𝑔10(𝐹𝐷𝑅) ; The red point is the up-regulated gene, the 467 

blue point is the down-regulated gene, and the non-dispersive point is the non-differentiated gene; 468 

(C) Key gene screening workflow; (D) The accuracy for ensemble learning, LR, SVM and Naive-469 

Bayes. 470 

Figure 2. Venn plot for the key genes 471 

Figure 3. SAH predictive ensemble learning model  472 

Figure 4. Model performance. (A) Comparison of classification performance of LR, SVM , Naive-473 

Bayes and ensemble learning model; (B) ROC chart plotted for LR, SVM , Naive-Bayes and 474 

ensemble learning model. 475 

 476 

  477 
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Table 1. Experimental sample description after LCN2 intervention experiment. 478 

Sample Number of samples Description 

SAH-siRNA-

LCN2(1day) 

5 Mouse (SAH) brain cells, Intrathecal 

injection of LCN2 siRNA for 1 day 

SAH-siRNA-

LCN2(3day) 
5 

Mouse (SAH) brain cells, Intrathecal 

injection of LCN2 siRNA for 3 day 

SAH-siRNA-

NC(1day) 

5 Mouse (SAH) brain cells, Intrathecal 

injection of blank siRNA for 1 day 

SAH-siRNA-

NC(3day) 
5 

Mouse (SAH) brain cells, Intrathecal 

injection of blank siRNA for 3 day 

normal-2 5 
Mouse (normal) brain cells, blank 

control group-2 

 479 

  480 
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Table 2. Differential expressed genes for different experimental group. 481 

Experimental group 

Total 

number of 

genes 

Up-regulation 

of genes 

Down-

regulation of 

genes 

SAH-siRNA-LCN2(1day) VS normal-2 25342 1541 634 

SAH-siRNA-LCN2 (3day) VS normal-

2 
25055 1264 451 

SAH-siRNA-NC(1day) VS normal-2 25384 1159 556 

SAH-siRNA-NC(3day) VS normal-2 25564 1297 409 

SAH-siRNA- LCN2 (1day) VS SAH-

siRNA-NC(1day) 
25293 99 14 

SAH-siRNA- LCN2 (3day) VS SAH-

siRNA-NC(3day) 
25251 5 18 

 482 

  483 
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Table 3. Cross-validated SAH related signaling pathway. 484 

Experimental group Important pathways related to SAH 

SAH-siRNA-LCN2(1day) VS 

normal-2 

PI3K-Akt(Hao et al., 2014), Jak-STAT(Osuka et al., 2006), 

p53(Yu et al., 2018), TNF(Hanafy et al., 2010), Toll-like 

receptor(Kwon et al., 2015), NF-

kappaβ(Majdalawieh et al. , 2007) 

SAH-siRNA-LCN2 (3day) VS 

normal-2 

PI3K-Akt(Hao et al., 2014), Jak-STAT(Osuka et al., 2006), 

p53(Yu et al., 2018), TNF(Hanafy et al., 2010), Toll-like 

receptor(Kwon et al., 2015), NF-

kappaβ(Majdalawieh et al. , 2007) 

SAH-siRNA-NC(1day) VS 

normal-2 

PI3K-Akt(Hao et al., 2014), Jak-STAT(Osuka et al., 2006), 

TNF(Hanafy et al., 2010), Toll-like receptor(Kwon et al., 

2015), NF-kappaβ(Majdalawieh et al. , 2007) 

SAH-siRNA-NC(3day) VS 

normal-2 

PI3K-Akt(Hao et al., 2014), Jak-STAT(Osuka et al., 2006), 

TNF(Hanafy et al., 2010), Toll-like receptor(Kwon et al., 

2015), NF-kappaβ(Majdalawieh et al. , 2007) 

SAH-siRNA- LCN2 (1day) VS 

SAH-siRNA-NC(1day) 

TNF(Hanafy et al., 2010), Toll-like receptor(Kwon et al., 

2015) 

SAH-siRNA- LCN2 (3day) VS 

SAH-siRNA-NC(3day) 

Transcriptional misregulation in cancer(Lee and Young, 

2013) 

 485 
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Figure S1. Gray scale image for SAH intervention experiment. Ten original chip gray scale 

images of SAH intervention experiment; (A)-(E) are the gray scale images for five experimental 

group chips; (F)-(J) are the gray scale images for five control group chips. 
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Figure S2. SAH intervention experimental chip NUSE boxplot.  

 

Figure S3. Cluster graph for SAH intervention experiment.  
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Figure S4. Volcanic maps for SAH intervention experiment. The volcano map of the comparison 

group SAH vs normal-1. The abscissa is 𝑙𝑜𝑔2(𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒) and the ordinate is −𝑙𝑜𝑔10(𝐹𝐷𝑅). The 

red, green and non-dispersive points represent the up-regulated, down-regulated, and non-

differentiated gene, respectively.  
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Figure S5. Volcanic maps for LCN2 intervention experiment. The volcano map of the different 

group. The abscissa is 𝑙𝑜𝑔2(𝐹𝑜𝑙𝑑 𝑐ℎ𝑎𝑛𝑔𝑒) and the ordinate is −𝑙𝑜𝑔10(𝐹𝐷𝑅). The red, blue and non-

dispersive points represent the up-regulated, down-regulated, and non-differentiated gene, 

respectively. 
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1.2  Supplementary Tables 

Table S1. Probes expression data matrix. 

The experimental probe expression matrix for each group in the SAH intervention experiment. 

 

Table S2. SAH intervention experiment analysis results. 

The results of differentially expressed gene analysis and related signaling pathway analysis in SAH 

intervention experiments. 

 

Table S3. Fisher's exact Test for the signaling pathway. 

 
Differentially expressed 

gene 
Non-differentiated gene 

Total 

Included in pathway 𝑛𝑓 𝑛 − 𝑛𝑓 𝑛 

Not included in pathway 𝑁𝑓 − 𝑛𝑓 (𝑁 − 𝑛𝑓) − (𝑛 − 𝑛𝑓) 𝑁 − 𝑛 

Total 𝑁𝑓 𝑁 − 𝑁𝑓 𝑁 

 

Table S4. Differential genetic analysis results for LCN2 interventional experiments. 

Results of differential genetic analysis for each group of data in the LCN2 intervention experiment. 

 

Table S5. Signaling pathway analysis results for LCN2 intervention experiments. 

Results of signaling pathway analysis of each group of data in the LCN2 intervention experiment. 

 

TableS1, S2, S4 and S5 are available on https://github.com/charlotte5683/supplementary-of-

SAH.git. 

 

Table S6. 47 key genes for both e-Bayes and SVM-RFE methods. 

Gene name 

https://github.com/charlotte5683/supplementary-of-SAH.git
https://github.com/charlotte5683/supplementary-of-SAH.git
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Cyb5r1 Pcolce2 

Kcnt2 Tagln 

Ddr2 mt-Tr 

Igf1 mt-Ts2 

Lum Slc7a3 

Dusp6 Capn6 

Tk1 Tnfsf18 

Gm24564 Gm39701 

Pck2 Moxd1 

Tmem74 Dcn 

Zfp942 Aldh1l2 

Ttr Meg3 

Stk32a Ero1l 

Chac1 Enpp2 

Trib3 Mir99ahg 

Postn Olig1 

Slc7a11 Ankrd12 

Cyr61 Acta2 

Slc6a9 Fbln7 

Akap9 P2rx3 

Mir344-2 Cth 
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Trim66 Gabra2 

Nupr1 Cyb5r2 

Ednra  

 

Table S7. Significantly differential genes for SAH-siRNA-LCN2(1day) VS normal-2 group. 

SAH-siRNA-LCN2(1day) VS normal-2 group 

Olig1 Pck2 

Cyb5r1 Kcnt2 

Tk1 Nupr1 

Dcn Lum 

Ednra Pcolce2 

Slc6a9 Slc7a11 

Cyr61 Trib3 

Akap9  

  

Table S8. Significantly differential genes for SAH-siRNA-LCN2(3day) VS normal-2 group. 

SAH-siRNA-LCN2(3day) VS normal-2 group 

Tk1 Slc6a9 

Cyr61 Dusp6 

Aldh1l2 Olig1 
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Nupr1 Igf1 

Dcn Kcnt2 

Lum  

Pcolce2  

Tnfsf18  

 

Table S9. Input samples for the prediction model. 

Gene Name SAH_1 SAH_2 SAH_3 SAH_4 SAH_5 

Cyr61 5.8942628 5.96110867 5.93479255 6.02621404 5.73609078 

Olig1 7.0429023 7.56910104 7.21385307 7.27041593 7.43777252 

Slc6a9 9.4912445 9.20928367 9.54588542 9.43792448 9.01581096 

Gene Name Normal-1_1 Normal-1_2 Normal-1_3 Normal-1_4 Normal-1_5 

Cyr61 
7.3059794 7.56463002 7.19854145 7.74025933 7.38489239 

Olig1 
8.8771356 9.18547761 8.8943184 9.011647 8.88975631 

Slc6a9 
7.1622279 7.28458596 7.34258084 7.42990633 7.09533177 

 

Table S10. Model performance indicator. 

Index Formula Illustration 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
 

TP: actual illness and is recognized as 

disease 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

TN: not actually diseased and is 

recognized as a disease 
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Sensitivity 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

FP： not actually affected, but it is 

recognized as a disease 

Specificity 
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

FN: actual illness, but was identified as 

being unaffected 

 

Table S11. Model performance statistic. 

 LR SVM Naive-Bayes Ensemble 

Accuracy 0.612500±0.074789 0.518750±0.035013 0.497917±0.058101 0.789583±0.108943 

Precision 0.660069±0.155874 0.527778±0.139916 0.565625±0.135964 0.765104±0.141375 

Sensitivity 0.631944±0.160185 0.621528±0.167532 0.729167±0.127047 0.87500±0.105263 

Specificity 0.656250±0.227961 0.510417±0.252522 0.500000±0.252632 0.770833±0.178509 

 

2 Supplementary Note 

2.1 SAH intervention experiment 

The mouse endovascular perforation model of SAH was induced as reported previously(Yujie et al., 

2015;Amp and Wilkins, 2017). Briefly, mice were anesthetized with isoflurane. A sharpened 5-0 

monofilament nylon suture was inserted rostrally into the left internal carotid artery from the external 

carotid artery stump and perforated the bifurcation of the anterior and middle cerebral arteries. Sham-

operated mice underwent the same procedure without puncturing the artery. Tissues of white matters 

were taken for follow-up detection on day 3 after SAH. 

The processed datasets for this study can be found in the github: 

 https://github.com/charlotte5683/SAH.git 

ArrayExpress accession:  E-MTAB-8407  

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8407/ 

2.2 LCN2 intervention experiment  

According to methods described previously (Zuo et al., 2017), an intracerebroventricular injection was 

performed. Put simply, mice were placed on a stereotaxic apparatus (Rwdmall, Guangzhou, China) 

after anesthetized with 2% pentobarbital sodium (50 mg/kg, intraperitoneal). The bregma point was 

https://github.com/charlotte5683/SAH.git
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8407/
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then exposed and a small bone window was drilled into the bone of the left hemisphere. Then, 2 μL 

specific siRNAs was delivered into the lateral ventricle with a Hamilton syringe (Hamilton Company, 

Reno, NV, USA). The injection was performed 48 h before SAH. Tissues of white matters were taken 

for follow-up detection on day 1 and day 3 after SAH respectively. 

The processed datasets for this study can be found in the github: 

https://github.com/charlotte5683/LCN2.git 

NCBI SRA accession: PRJNA575372    

 https://www.ncbi.nlm.nih.gov/sra/PRJNA575372 

 

2.3 Code availability  

Code used for predictive model is available at https://github.com/charlotte5683/SAH-code . 
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