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Abstract—Metabolites are the final production of 

biochemical reactions in the rumen micro-ecological system 

and are very sensitive to changes in rumen microbes. 

Nuclear magnetic resonance (NMR) spectroscopy could both 

identify and quantify the metabolic composition of the 

ruminal fluid, which reflects the interaction between rumen 

microbes and diet. The main challenge of untargeted 

metabolomics is the compound annotation. Based on non-

linear and linear associations between microbial gene 

abundances and integrals derived from NMR spectra, 

combined with knowledge of enzymatic reaction from the 

KEGG database, this study developed a knowledge-driven 

network-based analytical framework for the inference of 

metabolites. There were 89 potential metabolites inferred 

from the integral co-occurrence network. The results are 

supported by dissimilarity network analysis. The coexistence 

of non-linear and linear associations between microbial gene 

abundances and spectral integrals was detected. The study 

successfully found the corresponding integrals for acetate, 

butyrate and propionate, which are the major volatile fatty 

acids (VFA) in the rumen. This novel framework could very 

efficiently infer metabolites to corresponding integrals from 

NMR spectra. 

Keywords—Metabolomics, NMR analysis, KEGG pathway, 

Mutual information, Rumen Microbe, Network analysis 

I. INTRODUCTION  

The rumen is the primary organ for microbial 
fermentation of ingested plant material for domestic 
ruminant livestock. Diet and feed quality are essential for 
rumen health which is critical to the growth and high-
quality of livestock production [1]. The metabolites in the 
ruminal fluid could reflect the health of interaction 
between rumen microbes and the diet [1]. Since health 
status, meat production and milk quality of cattle are 
directly dependent on rumen metabolites, the chemical 
composition analysis of ruminal fluid could offer valuable 
biochemical insights into the rumen-diet microbial 
interactions [1].  

   Quantitative metabolomics studies metabolites in 
cells, tissues, organs, or microorganisms and is widely 
applied in the host phenotype prediction, biomarker 
selection, clinical diagnosis, and drug discovery [2]. In 
metabolic analysis methods, Nuclear magnetic resonance 
(NMR) does not require elaborate sample preparation 

while could directly detect the composition of metabolites 
in the host [3]. The nucleus (i.e., 1H or 13C) with a non-zero 
nuclear magnetic moment is recorded to absorb the 
specific resonance frequency under the action of an 
external magnetic field, thereby predicting the molecular 
structure of the compound [4]. Non-targeted metabolomics 
can detect hundreds or thousands of metabolites from a 
single sample, however, identification and quantification 
of metabolites in non-targeted metabolomics results remain 
difficult. A statistical survey of the metabolomics platform 
published by Metabolomics Workbench and MetaboLites 
[5]  showed that metabolites were identified in non-
targeted metabolomics studies only accounted for 20%-
30% of the total detected metabolites [6]. There are as 
many as 2,500 metabolites in animals [10], and most of the 
database is limited. A survey reported that 246 rumen 
metabolites were present in the bovine ruminal fluid 
metabolome database (BRDB) [1], and the updated 
database now includes 335 metabolites. Due to the 
shortage of known correspondence between signal 
spectrum and compound, identification of metabolites in 
non-targeted metabolomics is still challenging [7]. This 
research constructed a framework for the identification of 
metabolites by the knowledge-driven network-based 
analytical methodology.  

The main contributions of this research are summarized 
below. 

• In contrast to the traditional methods in which identify 
compounds by matching their proton or NMR spectra of 
molecular structures in the spectral library [8], this study 
developed a novel approach to infer metabolites to spectral 
integrals using microbial gene abundances determined by 
whole metagenomic sequencing. The integrals are the 
relative intensity of signals in the NMR analysis, which is 
close to the ratio expected for a pure compound [9]. This 
study is an innovative attempt to annotate integrals by 
combining genomics information with the quantitative 
association and metabolic pathway knowledge. 
• This research also involves innovations in the 
application and integration of classical research methods. 
The current metabolomics methods [8] always identify 
metabolites through database matching and chemical 
structure comparisons. In this study, as same as the 
Euclidean distance dissimilarity network, the network-
based Markov clustering is firstly applied to mining This research is jointly supported by Ulster University and 
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integrals from the same compound. This study explored 
the linear and non-linear quantitative relationships between 
microbial genes and integrals, and integrated both 
associations for subsequent analysis through a novel 
ranking pipeline. 

II. METHODOLOGY 

The pipeline for integrated multi-omics inference 
methodology adopted in this research is illustrated in Fig. 
1. Based on the 128 integrals from non-targeted 
metabolomics by NMR technology and relative abundance 
of 1461 microbial genes identified in a metagenomics 
analysis, a network-based approach has been developed to 
infer integral-gene-compound association. By 
incorporating domain knowledge from KEGG pathways, 
the integrals network and integral-gene-compound network 
was further investigated in terms of biological relevance 
and topological structure. 

 

Fig. 1. Pipeline for the inference of metabolites based on the 

association between the integrals and microbial gene abundances. 

A. Microbial Multi-omics Data Description 

Data were from a 2×4×4 factorial experiment of diets, 
genotypes, and additives in beef cattle that were designed 
by Roehe et al. [11-13]. The experiment was conducted by 
the Beef and Sheep Research Centre of Scotland’s Rural 
College (SRUC, Edinburgh, UK). After removing the 
samples with missing metabolite data, a total of 36 rumen 
fluid samples was included in the study.  

Data used in this study include methane emissions, 
relative abundance of rumen microbial genes, and integrals 
associated with the rumen metabolites.  

1) Metagenomics data 

    There were 1461 microbial genes with a relative 
abundance higher than 0.001%. The reader is referred to 
[11], [14] for a detailed description of data generation. 

2) Metabolomics data  

    Integrals were derived from the peak of  1H NMR 
(Nuclear Magnetic Resonance) spectroscopy, which is in 
correspondence with the hydrogen atom of each signal in 
the NMR spectrum. The relative intensity of the signal in 
the NMR analysis reflects the relative content of each 
component in the sample. In this paper, 128 integrals 
obtained by NMR analysis were used. One integral was 
identified as acetate, and nine integrals were identified as 
possibly related to propionate and butyrate. The 
metabolites associated with the remaining 118 spectral 
integrals are still unknown. 

B. Markov clustering based on integral co-occurrence 

network 

    Before conducting network analysis, an exploratory 

study of the data was performed. The difference in the 

integral sample distribution was tested by the 

Kolmogorov-Smirnov two-tail test [36]. The x-y scatter 

plots exhibit the similarity between integrals.  

1) Construction of integral co-occurrence network 

The integral co-occurrence network was obtained by 
pipeline in Fig. 2 to reduce false-positive correlations [34].  

 

Fig. 2. Pipeline for construction of integral co-occurrence network. 

    As shown in Table I, this research score the association 

strength by linear correlations (i.e., Pearson correlation and 

Spearman correlation), similarity (i.e., Mutual information) 

and dissimilarity (i.e., Euclidean distance). 

 TABLE I  

SUMMARY OF QUANTITATIVE ANALYSIS METHODS 

Measurements Range Definition 

Pearson 

correlations 
[-1, +1] 

 

Spearman 

correlations 
[-1, +1] 

 
Mutual 

information 
[0, INF] I (x; y) =  

Euclidean 

Distance 
[0, INF] D (x, y) =  

a. is the covariance; is the standard deviation of X; is the standard 

deviation of Y. rx and ry are ranks of each observation;  

   P(x) and P(y) are the marginal 

probability mass functions of X and Y respectively. xi represents the Pearson correlation 

between the integral x and the integral i. 

 



 

2) Markov network clustering analysis 

The Markov Clustering algorithm (MCL) was 

performed on the integral co-occurrence network to 

identify natural clusters by mathematical bootstrapping 

procedures [16]. It carries out random walks within a 

network by the operation of expansion and inflation [17]. 

The specific implementation process is the correlation 

matrix pass through iterative rounds of matrix expansion 

and matrix inflation until the matrix stop changing. The 

matrix is finally interpreted as clustering results [18]. This 

study performed the Markov clustering based on the 

weights of each edge. The inflation parameter was 

manually adjusted to 3 when all the clusters obtained the 

average shortest path length less than or equal to 1. 

C. Construction of dissimilarity network based on the 

correlation coefficient between integrals 

1) Calculation of correlation coefficient between 

integrals (including methane emission) 

 

Different from mutual information, linear correlation 

measures could assign a positive or negative trait to a 

predicted relationship, which reflects whether a variable is 

consistently increasing with another variable or 

decreasing. Therefore, this study calculated Pearson 

correlations between the integrals (including methane 

emission levels). A 129 × 129 correlation coefficient 

matrix was constructed, each row representing the 

correlation of an integral with the other 127 integrals and 

methane emission observed in the samples. 

 

2) Construction of the dissimilarity network  

Euclidean distance (Table 1)  as an important indicator 

for comparing species distributions in biological research 

was used to measure the dissimilarities between 

correlation coefficient distributions [19]. Following the 

similar processes used in the construction of the integral 

co-occurrence network, a dissimilarity-based network was 

generated in which nodes are integrals and edges represent 

Euclidean distances between integral correlation 

coefficient distributions. Only edges with a significant p-

value after multiple tests were included. 

D. Inference of the quantitative association between 

integrals and microbial gene abundance 

The quantitative associations between microbial genes 

and integrals were finally inferred by the pipeline 

illustrated in Fig. 3. 

E. KEGG data collection 

As one of the largest data sources and powerful tools for 
metabolic system analysis and network research, the 
KEGG (Kyoto Encyclopedia of Genes and Genomes) 
database [20] contains various pieces of biochemical 
information such as genome sequences, biochemical 
reactions and pathway data of various species. The 
database consists of several databases such as PATHWAY, 
GENES and LIGAND. The PATHWAY database contains 
detailed pathway information, including metabolic 
pathways (i.e., glucose metabolism, lipid metabolism and 
amino acid metabolism). It also stores genes, enzymes, 

metabolites, reactions, and relationship data between them 
by species and pathway. In this study, the metabolic 
pathways, metabolic modules, enzymatic reactions, 
enzymes related to these microbial genes, and 
corresponding metabolites were collected through the 
KEGG database API. 

There are 961 microbial genes (Fig.4) involved in 219 
metabolic pathways (excluding global metabolic 
pathways). Among these metabolic pathways, map03010 
(ribosome) contains 87 microbial genes, followed by 
map00680 (methane metabolism), which contains 67 
microbial genes. There were 386 microbial genes mapped 
to 164 modules, of which M00567 (methanogenesis) 
contained the most microbial genes, with a total of 39. 
Only 876 of the 1461 microbial genes were mapped to the 
corresponding 730 enzymes. Among them, 730 enzymes 
were mapped to the corresponding 1554 reactions and 
1870 corresponding compounds. 

 



 

Fig. 3. Pipeline for the calculation of rankings based on the association 

between the integrals and microbial genes.  

 

Fig. 4. KEGG data collection details. (The Orange square represents 

successfully collected data) 

F. Inference from KEGG compound to the corresponding 

integrals.    

The compounds of interest can be found in the 
information collected from the KEGG database [20] so that 
microbial genes involved in the corresponding reactions 
could be mapped. Compound-gene-integral networks can 
then be constructed with compounds, microbial genes, and 
integrals as nodes.  

There are two ways to generate edges of the network. 
The link between a compound and a microbial gene 
indicates whether they are involved in the same 
biochemical reaction found in the KEGG database. The 
weights of edges are represented by the ranking (1-128) 
between microbial genes and integrals calculated by the 
procedure depicted in Fig. 3. 

G. Software and tools     

 Correlation (Pearson, Spearman), similarity (mutual 
information), and dissimilarity (Euclidean distance) 
calculations were carried out with the CoNet app [21], 
which was also used to do data renormalization, multiple 
tests, p-value correction, bootstrapping, and Brown's p-
value voting process. MCL was performed by the 
Cytoscape plugin clusterMaker [23]. The network 
topological analysis and network visualization were done 
by Cytoscape 3.7.1 [22]. Rank and other data analysis were 
implemented through Matlab. The pathway was mapped 
by Pathview package in R software [24]. 

III. RESULTS 

A. Inference of integrals from the same metabolites 

Since each spectral integral corresponds to hydrogen 

atoms of each metabolite in each environment, it is highly 

probable that each metabolite is composed of more than 

one integral [6]. The first step in the study is to infer the 

association between integrals to find which integrals 

belong to the same metabolite. The formation of different 

peaks in NMR analysis depends on the structure of 

molecules, solvent, temperature, the strength of the 

magnetic field used in the NMR analysis, and other 

adjacent functional groups [35]. The hypothesis here is 

that the samples were all obtained in an experimental 

environment with indifferent solvents and temperatures. 

The molecular structures are the basis of signal peak 

formation. Therefore, integrals from the same compound 

should maintain consistent trends across all the samples, 

when the concentration of the corresponding compound 

changing.  

The distributions of the relative values of integrals 

across samples are significant (p<0.05) different. In 

contrast, integrals from the same compounds exhibit a 

similar trend, as the examples in Fig.5, which the 

distributions of Integral Bα and Integral Bβ belonging to 

the same compound and the Integral A from a different 

compound. In this study, a network based on Pearson 

correlation and mutual information between integrals was 

used to capture the association between the integrals of 

the same compound. 

 

1) The integral co-occurrence network based on 

Pearson correlation and mutual information 

 
The original network includes 128 integrals as nodes, 

and 4008 edges were calculated by Pearson correlation and 
mutual information. The final co-occurrence network 
consists of 1027 significant associations among 107 
integrals after filtering through multiple tests (Fig. 6). 
Twenty-one integrals have been filtered out in the final 
network. Because of the absence of close associations with 
other integrals, they should be from different metabolites. 
The network eventually consisted of a dense cluster and 
five integral pairs, as shown in Fig. 6. For instance, the pair 
of ButyrateCH3.1 and ButyrateCH2b.1 has been separated 
from the others, suggesting that ButyrateCH3.1 and 
ButyrateCH2b.1 are most likely to constitute one 
metabolite.   

 

Fig. 5. Distribution of integral relative values and scatter plot of the 

relationship between integrals. (Integral A represents the integral of 

compound A. Integral Bα, and Integral Bβ represent two integrals of 

compound B.) 

2) Markov clustering on integral network 
In an attempt to identify integrals which were obtained 

from the same metabolite,  Markov clustering was 
performed, and a total of 22 clusters were formed, 
including 61 nodes and 70 links between nodes (Fig. 7). 
The average shortest path of each cluster should be 1, 
which means that the members in each cluster are 
connected equally, and they are likely to be from the same 



 

metabolite. In this study, 128 integrals were inferred to be 
associated with 89 potentially independent metabolites. 
These results need to be further verified by experiments.  

 

Fig. 6. Co-occurrence network of integrals. (The nodes represent 

integrals, the edges represent linear correlations and similarity, the 

absence of edge represent no correlations after multiple tests). 

 

Fig. 7. Clustering results of a Markov clustering on the integral co-

occurrence network. (The nodes represent integrals, the edges represent 
linear correlations and similarity, the absence of edge represent no 

correlations after multiple tests).  

3) A dissimilarity network of correlation coefficient 

based on Euclidean distance 

In addition to the above relationship about the changing 
trend of the integrals across the samples, two other 
conditions can be used to judge whether the two integrals 
are from different compounds. If the two integrals are 
inversely correlated (i.e., a positive and a negative) to the 
third integral or the compound, then they should come 
from different compounds. Alternatively, the two groups 
of correlations have the same direction (i.e., Both positive 
or both negative), but the correlation coefficients are too 
different, then it is very likely that these two integrals are 
from different compounds. To further verify the integrals 
in both cases, this study calculated the Pearson correlation 
between all integrals (including methane emissions). Since 
methane emissions corresponding to the same batch of 
samples showed significantly different levels in the 
previous study [25], it is necessary to take the levels of 
methane emission into account when estimating correlation 
profiles between integrals. Then the distributions of 
correlation coefficients between the integrals were 
investigated. As illustrated in Fig. 8,   two spectral 
integrals belonging to the same compound (i.e., Integral Bα 
and Integral Bβ) exhibit a similar correlation distribution. 

In contrast, the integrals derived from different compounds 
(i.e., Integral A and Integral Bα, or Integral A and Integral 
Bβ) have significantly different distributions (p<0.05). 

 
Fig. 8. Distributions of correlation coefficients and scatter plots of the 

correlation coefficient between integrals. (Integral A is the only spectral 

integral from   Compound A. Both Integral Bα and Integral Bβ are from 

the same compound. 

    Thus, a dissimilarity network was constructed in which 

nodes denote integrals and links represent the Euclidean 

distance between correlation profiles associated with each 

integral. As shown in Fig. 9, the similarity network 

constructed exhibits a visible modular structure. A total of 

17 integrals was founded in the network forming six well-

separated clusters, suggesting these integrals are most 

likely from 6 different metabolites. The observation is 

mostly consistent with those obtained from the above 

clustering analysis of the co-occurrence network except for 

the cluster containing Integrals 22 and 39.  

 

Fig. 9. A Euclidean distance network based on the distribution of 

correlation coefficients between integrals. (Including methane emission.) 

B. Inference of the quantitative association between 

integrals and microbial gene abundance 

The means of the association between the microbial 

gene (j) and 128 integrals were calculated by Pearson 

correlation, Spearman correlation and mutual information, 

respectively. Different from mutual information values 

range from 0 to positive infinity, Pearson correlation and 



 

Spearman correlation generates a positive or negative 

value from -1 to 1 (Table I). Each box in Fig. 10 

represents the distribution of the mean of each measure, 

highlighting the distribution of the average values based 

on mutual information has lower variance. The standard 

deviation of mutual information is 0.027, followed by the 

standard deviation of Spearman correlation distribution is 

0.084, and the standard deviation of Pearson correlation 

distribution is 0.091.  

 

 

Fig. 10.  Comparison of non-linear and linear correlation distributions 

between microbial genes and integrals. (The standard deviations (SD) for 

Mean  range from 0.039 to 0.089,  the SD of Mean  range from 

0.044 to 0.199  and the SD of Mean   range from 0.048 to 0.179.)  

    Taking acetate as an example, we found that about 20% 

of microbial genes have a stronger linear correlation than 

nonlinear association measured by mutual information as 

depicted in Fig. 11.  

 

Fig. 11. A scatter plot of the associations between acetate and 1461 

microbial gene abundance based on three measures. 

This study used different measures to infer the 

maximum rank between each microbial gene and 128 

integrals. There are three types of quantitative relationships 

between microbial genes and integrals. They respectively 

are (I) Linear correlation is stronger than the non-linear 

correlation. (II) Non-linear correlation is stronger than the 

linear correlation.   (III) Non-linear and linear correlations 

are both strong. (IV) Both linear and nonlinear are both 

weak. Of the 187008 pairs of final rankings, 60.1% of the 

rankings came from linear correlation, and 38.9% of the 

rankings came from mutual information (Fig.12). 

Furthermore, 1840 final rankings are linear equal to 

nonlinear, accounting for 1% of the total (Fig.12), which 

including both the III type and IV type of association 

between microbial genes and integrals. Among microbial 

genes, 70% ranked in the range of 95-128, which indicates 

their close associations.   

The relationship between acetate and 67 microbial genes 

mapped to the methane metabolism pathway is shown in 

Fig. 13. Of these microbial genes, 43 had strong linear 

correlations with acetate, and 13 genes had non-linear 

correlations with acetate. The linear and nonlinear 

associations between 11 microbial genes and acetate were 

equally ranked. The microbial genes that were non-linearly 

associated with acetate were directly involved in the 

corresponding enzymatic reactions (Fig.13). 

 

 

Fig. 12. Composition of relationships in the final rankings. 

C. Inference of the integrals to the corresponding 

metabolites  

To infer the association between integrals and 

metabolites, we mapped 1461 microbial genes in the 

KEGG database to obtain information about the 

metabolites in the corresponding reactions. To demonstrate 

the feasibility of the study, we used acetate, with known 

spectral integral, as an example (Fig.14). Seven microbial 

genes (i.e., K00128, K00925, K01738, K01438, K01740, 

K12410, and K01895) associated with acetic acid 

(C00033) were found. In this study, the top 10 integrals of 

the seven microbial genes were selected to enter the 

network. ButyrateCH3.1 associated with six of the 

microbial genes, acetate associated with five of the 

microbial genes, and three integrals associated with the 

four microbial genes. The remaining integrals were 

associated with no more than two microbial genes. Acetate 

has strong non-linear rankings with three of the microbial 

genes (i.e., K01895, K00128 and K00925), and was 

strongly linearly associated with K01738. Notably, it has 

been observed that K01740 exhibits a strong link with 

acetate in terms of both linear and nonlinear association. 



 

 

 

Fig. 13. The final ranking relationship between acetate and microbial genes involved in the methane metabolism pathway (map00680). (Orange node 

represented acetate. Blue boxes represented microbial genes that are strongly linearly associated with acetate. Yellow box represented microbial genes had 

strong non-linear associations with acetate. Grey boxes represented the microbial genes had equally linear and non-linear associations with acetate. White 

boxes indicated that no microbial genes were mapped.) 

 

Fig. 14. Compound-Gene-Integral inference network of acetate (Nodes represent KEGG compounds, microbial genes, and integrals.  Edges of black dot line 

and solid blue line indicate non-linear and linear rankings respectively. Red edges represent non-linear and linear equal strong rankings. Black edges 

represent that microbial genes and compounds involved in the same enzymatic reaction.) 



 

 

Fig. 15. Compound-Gene-Integral inference network of butyrate and propionate. (Nodes represent KEGG compounds, microbial genes, and integrals.  Edges 

of black dot line and solid blue line indicate non-linear and linear rankings respectively. Red edges represent non-linear and linear equal strong rankings. 

Solid black edges represent that microbial genes and compounds involved in the same enzymatic reaction.)

    Similarly, propionate and butyrate, which are essential 

metabolites in the rumen, were also shortlisted (Fig.15). 

K00925 and K01895 are involved in the propionate 

reaction in the same way as acetate. It can be seen from 

Fig. 15 that PropionateCH3.1 is included in the top 30 

integrals, which should be propionate (C00163). 

PropionateCH3.1 only has a non-linear association with 

K00925. The rank of PropionateCH3.1 for  K01895 is 69. 

    Regarding butyrate, there was only K00929 directly 

involved in the corresponding reaction. ButyrateCH3.1 and 

ButyrateCH2b.1 were inferred as one metabolite. 

Moreover, they were identified as butyrate (C00246)   

using the experimental methodology and was also included 

in the network.  

IV. DISCUSSION AND CONCLUSION 

The identification of metabolites in non-targeted 
metabolomics usually relies on searching the spectral 
database and matching signal peaks by software (i.e., 
Chenomx) [26]. Because of the limitations of NMR 
technology and the imperfection of professional rumen 
metabolite databases, the annotation of NMR integrals in 
the quantitative metabolomics remains a challenging task 
[27]. This study developed a knowledge-driven network-
based analytical framework for the inference of rumen 
metabolites. 

Each compound in the NMR analysis can include more 
than one integrals which represent different hydrogen 
functional groups [26]. The first step in this study is the 
identification of the integrals belongs to same metabolite. 
The underlying traits of the integral value proved that 
although the digital distributions of the integrals are 
different, the integrals from the same metabolite have a 
significant correlation. 

The co-occurrence network method is widely used in 
research on complex biological networks [28]. The 
multiple testing and bootstrap steps of the co-occurrence 
network method have been proven to effectively reduce 
false associations caused by the relative abundance of 
genes [29]. Similar to relative gene abundance, relative 

integrals are also composition type data. This research 
combined the Pearson linear correlation and mutual 
information to construct an integral network to capture 
their associations. Then Markov clustering successfully 
generated integral clusters which could be different 
potential metabolites. Part potential compounds have been 
verified by traditional NMR spectral analysis software 
(i.e., ButyrateCH3.1 and Butyrate2b.1). 

Furthermore, this study found that the distributions of 
correlation between the integrals of same compound and 
other integrals are similar, and there is a functional 
relationship between the two groups of correlation 
coefficients. The dissimilarity network based on the 
Euclidean distance resulted in correlation coefficients 
between the integrals that are highly similar to Markov 
clustering. Although the analysis needs further verification 
by experiments, the analysis of two different procedures 
strongly supports each other by similar results of the 
integral clusters. The dissimilarity network seems to be 
more stringent than the co-occurrence based Markov 
clustering because it only produces a limited number of 
integral pairs. 

Metabolites are produced under the synergy of microbial 
genes and are affected by the host, diet and environment, 
and are quickly consumed by secondary metabolic 
utilization [32]. The close connection between biochemical 
processes leads to a complicated relationship between 
metabolites and microbial genes. This study showed there 
are coexisting linear and non-linear relationships between 
metabolites and microbial genes. The research results 
found that the association between microbial genes and 
metabolites are different in the overall numerical range. 
For example, the maximum of correlations between 
K03294 and all integrals is smaller than the case of 
K00145. However, this does not indicate that most 
integrals have closer biological relationships with K00145 
than K03294. May be due to changes in the rumen 
environment caused by the functions of specific microbial 
genes, such as changing the overall metabolic biochemical 
response by influencing the pH [31] by dietary 
intervention. The challenges of the analysis were that 



 

microbial genes do not directly act on metabolites, and the 
production, transformation, and absorption of metabolites 
often occurs very rapidly [30].  It is necessary to take the 
overall situation between microbial genes and integrals 
into account when comparing the linear and nonlinear 
associations [33]. The ranking method proposed in this 
study well balanced the differences between linear and 
non-linear correlation calculations.  

    Combinations of label-free metabolic profiling and 
multi-omics analysis lead to an increased resolution in the 
bottlenecks of metabolic identification. The inferential 
analysis framework has great potential to improve the 
efficiency of the identification of metabolites using NMR. 
Limitations of existing microbial gene and metabolite 
databases were discussed in this study. There are at least 
50% microbial genes in our data found corresponding 
biochemical reactions and compounds. After verification 
by traditional spectroscopy, three primary rumen volatile 
fatty acids were successfully identified by this study. 
While encouraging results have been obtained, it is worth 
noting that the identification of metabolites using spectral 
integrals could be used as an additional measure for 
metabolite identification before getting more experimental 
verification. 
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