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A location-constrained crowdsensing
task allocation method for improving
user satisfaction
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Abstract
Mobile crowdsensing is a special data collection manner which collects data by smart phones taken by people every day.
It is essential to pick suitable workers for different outdoor tasks. Constrained by participants’ locations and their daily
travel rules, they are likely to accomplish light outdoor tasks by their way without extra detours. Previous researchers
found that people prefer to accomplish a certain number of tasks at a time; thus, we focus on assigning light outdoor
tasks to workers by considering two optimization objectives, including (1) maximizing the ratio of light tasks for different
workers and (2) maximizing the worker’s satisfaction on assigned tasks. This task allocation problem is a non-
deterministic polynomial-time-hard due to two reasons, that is, tasks and workers are many-to-many relationships and
workers move from different places to different places. Considering both optimization objectives, we design the global-
optimizing task allocation algorithm, which greedily selects the most appropriate participant until either no participant
can be chosen or no tasks can be assigned. For the purpose of emulating real scenarios, different scales of maps, tasks,
and workers are simulated to evaluate algorithms. Experimental results verify that the proposed global-optimizing
method outperforms baselines on both maximization objectives.
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Introduction

The smart phones, wearable devices, and mobile social
networking techniques have made mobile crowdsensing
(MCS) and computing (MCSC)1 a popular research
area in recent years. MCSC leverages cross-space, het-
erogeneous crowdsourced data for large-scale sensing
and computing. Participatory MCS is considered as an
effective way to intensively collect professional data for
data requester through publishing tasks and recruiting
workers. A participatory task is a data collection cam-
paign composed of active sensing actions, requiring a
certain degree of human collaboration from workers
and their direct involvement, such as going to a place
in the city and taking a picture, answering a survey,
and tagging a place.2,3 Location-constrained tasks

usually require workers to be at the outdoor scene,4–8

but there are not always participants who are at the
task’s place at the time of need and would like to accept
tasks. Therefore, we have to ask people to go to places
specified in tasks and accomplish different data-
sampling tasks, which is usually referred to as location-
constrained multi-task allocation.

1Foshan University, Foshan, China
2Northwestern Polytechnical University, Xi’an, China
3De Montfort University, Leicester, UK

Corresponding author:

Huihui Chen, Foshan University, 8 Jiangwan 1st Road, Foshan 528225,

China.

Email: ddchh@163.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work

without further permission provided the original work is attributed as specified on the SAGE and Open Access pages

(https://us.sagepub.com/en-us/nam/open-access-at-sage).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/326445421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1177/1550147719883987
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147719883987&domain=pdf&date_stamp=2019-10-21


The task provider specifies the 2W2H (including
Where, When, How and How many) requirement of
the MCS task4,9 on the MCS platform and expects
plenty of high-quality data.2 There are two basic meth-
ods for task allocation, that is, push-based task alloca-
tion and pull-based task allocation. The former method
uses MCS platform to broadcast tasks to participants
and some of them will accept to take the tasks. The lat-
ter method allows participants to query tasks and select
tasks by their own on the MCS task platform. In this
article, we marry the advantages of these two methods
for the light task allocation. First, participants use the
pull-based method to share their current locations and
submit a task query (including the destination, her or
his expected task number, and the rough duration of
MCS working). Then, the MCS platform computes per-
sonalized suitable tasks for those participants according
to their queries by using proposed task allocation meth-
ods in this article and uses the push-based method to
publish suitable tasks to participants who are chosen to
be workers. The task allocation component of the MCS
platform is a black box for both workers and task pro-
viders, and reasonable task allocation results will
attract more task providers and more participants,
which is very important for the healthy MCS system.

There are two challenges to address the location-
constrained multi-task allocation problem, including
(1) people have different outdoor schedules and tasks
must be attractive for them to become workers; (2)
workers constantly change their locations during per-
forming different tasks, hence the task allocation pro-
cess should be based on a dynamic worker set. There
are two types of tasks for workers, namely, light tasks
and heavy tasks. A light task refers to a task that a
worker can perform it without making a detour.
Otherwise, it is a heavy task if a worker has to make
detour to perform the task. A task can be one worker’s
light task but another worker’s heavy task. To address
the first challenge, we lower workers’ labor intensity by
only allocating light tasks to workers and ensure them
expected rewards by assigning multiple tasks expected
by them,10–12 which also improve their satisfaction.
Although workers’ locations continually change, tasks’
locations are stationary. As a result, to address the sec-
ond challenge, we utilize the stationary locations of
tasks to create the light task relationship matrix for
every worker candidate and globally optimize workers’
tasks with this matrix.

In this article, the proposed framework addresses
the trade-off between the task allocation ratio and the
worker satisfaction, and our main contributions consist
of the following:

We analyze the light task allocation problem of
MCS and propose two optimization objectives, that

is, (1) maximizing the mean satisfaction degree of
workers and (2) maximizing the ratio of allocated
tasks.
We design the personal light task relationship matrix
which is used for two local-optimizing task alloca-
tion strategies, namely, (1) worker-first: searching
maximum light tasks for each worker and (2) task-
first: searching maximum suitable workers for each
task.
We propose a global-optimizing task allocation
algorithm, and the participant who can take the
maximum suitable tasks will be prior chosen to be a
worker. In this way, tasks are allocated as many as
possible and workers will get their expected number
of tasks leading to satisfied experience with task
allocation.
We conduct experiments with different sizes of data
sets and prove that both the ratio of allocated tasks
and the mean satisfaction of workers can be
increased by proposed optimal algorithms.
Comparing to baseline and local-optimizing task
allocation methods, the global optimizing algorithm
shows higher evaluation results in both the task allo-
cation ratio and the satisfaction degree of workers.

The remaining of this article is organized as follows.
Section ‘‘Related work’’ introduces related work.
Section ‘‘Problem formulation’’ formulates the light
task allocation problem and defines two optimization
objectives. Section ‘‘Algorithms’’ describes four task
allocation algorithms, including three local-optimizing
allocation algorithms and one global-optimizing task
allocation algorithm. Section ‘‘Evaluation’’ presents
experiments and discuss the results, followed by conclu-
sions in section ‘‘Conclusion.’’

Related work

There has been a significant amount of MCS applica-
tions in regard to utilizing user-contributed or crowd-
sourced data. Different domains require different
human inputs and different sensor readings, thus hybrid
multiple-task management platforms are developed,
where different tasks may have different temporal and
spatial requirements. A task may be taken by one or
multiple workers, depending on the application domain
and the task requirements. Similarly, a worker may take
multiple tasks. Participants’ mobility is always consid-
ered by different location-constrained task allocation
methods. In order to economically assign the right tasks
to the right participant, some work pay attention to
predicting and utilizing worker mobility,13–17 while
some works focus on high-performance task allocation
methods.15,18,19
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Location-based MCS tasks

Location-constrained tasks exist in the physical world,
and people are rewarded for their labors to go to a spe-
cific place and accomplish the tasks.3,4,15,20 Two kinds
of rewards are commonly seen. First, people are
morally encouraged after they accomplish tasks, for
instance, people upload photos of sidewalk issues
through SeeClickFix App (https://seeclickfix.com/,
accessed 2 November 2017). Second, people are paid
by data consumers. For instance, FlierMeet paid
money to participants for their contributed photos of
fliers.3 No matter which incentive mechanism is used,
saving the cost of data collection is always considered
as a key problem of every MCS application.

A lot of applications need the location information
of the data. Different location accuracy are used for
data sampling by different MCS applications.
According to the location accuracy requirement, a spa-
tial area is usually divided into a lot of grids and the
data will be valid if the participant gets them in the
task-specified grid, named grid-based sampling.

Some applications require low-accuracy location
information, and then, the grid size will be a little
larger, for example, 0.01–1 km2. If the grid is very large,
then any people in the same grid can be chosen to per-
form data-sampling task; therefore, these applications
can recruit a large number of participants with the low
labor cost because most participants can stay where
they are and perform task, such as most MCS-based
noisy monitoring systems and air quality monitoring
systems.14 The task allocation of these applications will
not request high-precision location information of
users, for example, global positioning system (GPS)
points, but only use the low-precision and low-power-
consumption location information, for example, cell
tower localization. For a multiple-task allocation sys-
tem, the participant recruitment is influenced by the
grid size. First, if the grid are very large, then a lot of
participants do not need to go to different grids and
they can perform many different tasks in the same grid
or some closed grids. Second, participants are unevenly
distributed and a larger grid can easily contain partici-
pants. Third, packaged multi-tasks are more attractive
for participants than single task.10 In this article, we
adjust the grid size and investigate the consequent effect
on the task allocation.

Sometimes, for the purpose of protecting user’s pri-
vacy, the task allocation system will not require users’
high-precision locations, so the task allocation server
uses the rough location of participants to allocate tasks.
Some location-constrained applications must recruit
more participants to collect adequate data. In order to
lower the cost of recruiting participants, MCS-based
applications normally leverage highly effective task
allocation algorithms. Task allocation and completion

rates are severely affected by limited resources, so Liu
et al.15 investigated two situations, that is, scarce parti-
cipants and adequate participants, and proposed two
optimal task allocation algorithms based on the
Minimum Cost Maximum Flow theory. The optimiza-
tion objective of Liu et al.15 and Guo et al.17 is to mini-
mize the total distance that workers go to different
tasks’ locations and maximize the number of accom-
plished tasks.

People are inclined to take tasks that can be easily
performed on their ways to somewhere, so several stud-
ies leverage human mobility prediction to assign
tasks.13–15,21 Wang et al.13 considered the original task
allocation problem as the form of matching discovered
mobility patterns with MCS task sequences, with the
goal of minimizing the sensing cost. Ji et al.14 also con-
sidered human mobility and proposed a urban MCS
framework that maximizes the coverage of collected
data in a spatio-temporal space, based on human mobi-
lity of participants recruited by a given budget. These
works leveraged previous mobility data of participants
to predict the following routes of them, which protect
participants’ privacy but need to recruit redundant
workers to obtain adequate samples due to some failure
task assignments. Zhao et al.6 investigated the task
assignment of spatial crowdsourcing under destination-
aware task assignment and aimed at finding an optimal
assignment of tasks to workers such that the total num-
ber of accomplished tasks is maximized. In this article,
we also consider human mobility. We require partici-
pants’ exact planned routes with either low or high
location accuracy and their expected task numbers in
order to precisely allocate tasks to the most suitable
participants who will get expected numbers of tasks
without making a detour.

Location-constrained task allocation

The location constraints of tasks are set by most MCS
systems, which guide recent studies to consider the spa-
tial relationships between participants and tasks and
maximize the spatial coverage of participants.11,19,22

Reddy et al.23 proposed a greedy participant selection
method to improve coverage of a limited geographic
scope. CrowdRecruiter22 selects the near-minimal set of
participants, which meets coverage ratio requirement in
each sensing cycle of the task. It predicts the call and
coverage probability of each mobile user based on his-
torical records and then computes the joint coverage
probability of multiple users as a combined set. No
matter what constraints are given, the common objec-
tive of some studies is to maximizing the spatial cover-
age of selected participants.19,22,20 Time-to-live of tasks
were also focused in some work, such as minimizing
the total time cost of performing tasks through utilizing
the social network11,24 and minimizing the delay of
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performing tasks to ensure the data quality through
utilizing the participant’s start position and the task’s
valid duration. The task allocation is always related to
the incentive strategy and the budget, so research has
been undertaken to limit or minimize the budget of
participant recruitment.25 In this article, tasks’ loca-
tions are geographic points and their distribution has
no regular patterns, so the spatial coverage is actually
the ratio of allocated tasks. On one hand, considering
lowering the incentive budget, we lower the cost
through performing light tasks. On the other hand,
considering satisfying participants, tasks are assigned
as many as possible to the same participant. Therefore,
different from recent work, our proposed methods will
satisfy two optimization objectives for location-
constrained MCS task allocation.

Problem formulation

This section presents the location-constrained light task
allocation problem for MCS on the multiple workers
and multiple-task platform.

The multi-task allocation problem

Location-constrained tasks usually require workers to
be at the scene, but it is impossible to always recruit
workers at the exact venue defined by the task.
Therefore, we have to ask workers to go to some speci-
fied places to take pictures, and this process is called
task assignment.

In order to introduce the problem, two kinds of par-
ticipants are defined. If a participant shares her location
and submits a task query, then the participant becomes
a worker candidate (candidate for short). Consequently,
if a worker candidate gets works, then the worker can-
didate becomes a worker.

A worker (or a candidate) is denoted by w and has
three parameters he, s, di. W denotes the workers’ set.
For the jth worker, ej denotes the expected task number
of wj. sj denotes the start point (i.e. the current location)
of wj. dj denotes the destination where wj is originally
going.

Each worker’s expected number of tasks (i.e. e) is set
by himself/herself or is calculated according to the his-
torical task accomplishment records, which reflect
workers’ task accomplishment expectation and
limitation.

A task is denoted by a three-tuple ti = hli, ri,Hii. li
denotes the task location, ri denotes the required num-
ber of workers, and Hi is a set that denotes recruited
workers of this task. Some MCS applications may
require data sampled at different places, and we con-
sider that this application will publish multiple tasks
located at different places in this article.

Given a candidate set W and a task set T , the matrix
A= ai, j(jT j3 jW j) denotes the task allocation result,
where ai, j = 1 means that the task ti 2 T is allocated to
the worker wj 2 W . Thus, tasks assigned to the worker
wj compose Bj = ftmjam, j = 1, tm 2 Tg and workers
recruited by the task ti compose Hi = fwmjai,m = 1,
wm 2 Wg. Therefore, the process of task allocation is to
compute the matrix A.

The general task assignment problem can be formu-
lated to an optimization problem as shown in equation
(1), where the extra movement (i.e. detour) is minimized

A= argmin
XjW j
j= 1

mj � uj

� �( )

s:t:

8wj 2 W jBjjł ej

� �
, 8ti 2 T jHij= rið Þ

ð1Þ

where uj denotes the distance of the jth worker’s origi-
nal route and mj denotes the minimal distance for fin-
ishing all tasks.

The problem in equation (1) is the multi-task assign-
ment problem and is non-deterministic polynomial-time
(NP)-hard. The frequently used notations are shown in
Table 1.

Fast light task searching method

Searching the shortest route is a NP-hard problem, so
the Manhattan distance is used to explain the fast light
tasks finding method as follows.

Task-performing route: At the beginning, the worker
wj plans to go to dj from sj. If this worker gets some
tasks, then she must visit different places and gets
data, for example, taking a photo. Assume that the
shortest path for accomplishing tasks in Bj is

Table 1. Frequently used notations.

Notation Explanation

W The worker and candidate set, wj 2 W.
Bj The task set of the worker/candidate wj.
sj The start or current location of wj.
dj The destination of wj.
ej The maximum number of tasks taken by

wj, jBjjł ej.
T The task set, ti 2 T
Hi The worker set of the task ti.
li The GPS coordinates of the sensing task ti.
ri The maximum number of workers required by

ti, jHijł ri.
A The task allocation result, ai, j 2 A.
ai, j ai, j = 1 means ti is assigned to wj, otherwise,

ai, j = 0.

GPS: global positioning system.
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denoted by Qj = fqj, 1, . . .g, where qj,m is the identi-
fier of a task, which means that the worker wj will
move from sj to lqj, 1

, lqj, 2
, . . . , lqj, jAj , dj in sequence.

Task rectangles: Key points (denoted by pi) of a
worker’s task-performing route include the starting
point, all locations of the tasks to be taken, and the
destination point. Based on two consecutive key
points fpi, pjg, a rectangle whose opposite vertexes
are pi and pj and edges are parallel to either east-
west axis or south-north axis can be created. This
rectangle is denoted by P(pi, pj) and is called task
rectangles. Task rectangles of one worker are
linked by task location points. For example, the
task-performing route is p1 � p2 � p3 � p4, and
then, task rectangles are P(p1, p2), P(p2, p3), and
P(p3, p4).

No-detour working area: The area will be called a
worker’s no-detour working area if there is always a
no-detour travel route shorter than the Manhattan
distant from the starting point to the destination.
According to the constraint of a light task, we can
consider any task covered by the no-detour working
area as a light task. According to the definition of
the task rectangle, we can find that the no-detouring
area consists of all task rectangles.

In this article, we only assign light tasks to worker,
so the worker is supposed to be able to always find the
shortest route in each task rectangle; therefore, task
rectangles of a worker will not overlap to each other.
As shown in Figure 1, the dark areas present no-detour
working areas (area for short). At beginning, the area

Figure 1. The different task allocation results and the corresponding no-detour working areas: (a) |Bk| = {}, (b) |Bk| = {t1}, (c) |Bk| =
{t2}, (d) |Bk| = {t1, t4}, (e) |Bk| = {t1, t3}, (f) |Bk| = {t2, t3}, (g) |Bk| = {t1, t3, t5}, (h) |Bk| = {t2, t3, t5}, (i) |Bk| = {t1, t4, t5}, (j) |Bk| = {t3}, (k)
|Bk| = {t4}, and (l) |Bk| = {t4}.
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is composed of the task rectangle P(sk , dk) (see Figure
1(a)), so any covered task can be assigned to wk , that
is, ft1, t2, t3, t4, t5g. Since the worker must visit all task
places, once he or she gets a new task, the area must
change. For example, as shown in Figure 1(b), the area
will be changed to P(sk , l1) and P(l1, dk) after the task
t1 is assigned. It is easy to see whether the worker takes
different tasks, then the area will be different (see
Figure 1(c), (k), and (l)), and the light task set changes
along with the task allocation process. After task t1 is
assigned to the worker, the light task set changes to
ft3, t4, t5g (see Figure 1(b)), and after the task t4 is
assigned, it changes to ft5g (see Figure 1(d)). We con-
tinuously select light tasks for different workers
until the task number reaches the expected number of
each worker. Figure 1 shows differences in both no-
detour working areas and task allocation results if
using different task allocation sequences. For example,
Figure 1(b), (e), and (g) is for the sequence of selecting
tasks ft1, t3, t5g, and Figure 1(c), (f), and (h) for the
sequence ft2, t3, t5g, and Figure 1(b), (d), and (i) for the
sequence ft1, t4, t5g. As the light task set changes and
there are multiple task selection solutions for each
worker, this will lead to a large number of solutions for
multiple workers, which brings challenges for comput-
ing the optimal task allocation result.

Optimization objectives of task allocation

Location-constrained light task allocation (light task
allocation for short here after) is a specific problem of
the multi-task allocation problem. It only assigns each
worker light tasks. There are two objectives of light task
allocation. On one hand, since using light task alloca-
tion will not bring extra distance to workers, we do not
need to consider minimizing the distance of trips but
focus on how to allocate more tasks. On the other hand,
in order to improve workers’ experiences, tasks should
be intensively assigned to workers, so the number of
assigned tasks should be as much close to a workers’
expected number as possible.

Musthag and Ganesan26 revealed that a small frac-
tion of agents (\10% of all agents), whom they
referred to as super-agents, performed more than 80%
of the tasks and earn more than 80% of the total earn-
ings. Thus, super-agents’ experiences are very impor-
tant. The satisfaction degree of jth worker is reflected
by the degree of jth worker’s task number reaching
his or her expected task number, denoted by fj calcu-
lated by equation (2). The two objectives of the task
allocation can be formally defined as (1) to maximize
the task allocation ratio (written in short as MAX-I)
and (2) to minimize the difference between the expected
number and the real number of assigned tasks, that is, to
maximize the satisfaction degree (written in short as
MAX-II)

fj =
jBjj
ej

ð2Þ

Given a candidate set W and a task set T , the matrix
A= ai, j(jT j3 jW j) denotes the task allocation result, and
ai, j is valued as equation (3)

ai, j = 1, if ti is assigned to wj

ai, j = 0, otherwise:

�
ð3Þ

The objective is formulated as equation (4)

Maximize

PjT j
i= 1

PjW j
j= 1

ai, j

jT j3 jW j 3

PjW 0j
j= 1

fj

jW 0j

8>>><
>>>:

9>>>=
>>>;

s:t:

XjW j
j= 1

ai, j ł ri,
XjT j
i= 1

ai, j ł ej

ð4Þ

Notice that if jW 0j\jW j, then jW 0j in different work
allocation results may be different, and two objectives,
that is MAX-I and MAX-II, might conflict. For exam-
ple, a worker Tom requires three tasks, and only one
task can be assigned to him as well as only Tom can be
chosen as this task’s worker. If Tom is chosen, then the
number of allocated tasks increases but the mean satis-
faction degree decreases. Therefore, we focus on maxi-
mizing the satisfaction degree meanwhile avoiding not
to lower the task allocation rate.

Location-constrained light task allocation problem
can be considered as a multi-dimensional and dynamic
knapsack problem. A worker’s original route can be
regarded as the capacity of the bag and tasks are items.
Since a worker must go to the task places, items’
weights change. If items in the bag are different, then
weights of outside items are different. Therefore, the
light task allocation problem is NP-hard.27 In the next
section, we describe three local-optimizing task alloca-
tion methods and one global-optimizing task allocation
method based on the greedy algorithm to address this
problem.

Algorithms

In the case of there are multiple tasks and multiple
workers, then two priority strategies can be used,
including the worker-first strategy and the task-first
strategy. The worker-first strategy will assign tasks to
each worker based on the workers’ requests and prefer-
ences, while the task-first strategy will select workers
for each task based on a task’s requirements. No mat-
ter which strategy is used, if only considering one
worker or one task during each selection round, the
result could be locally optimal. To address multiple
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workers and multiple tasks scenarios, we propose a
global-optimizing method in this section.

Local-optimizing task allocation methods

Worker-first local-optimizing algorithm. Using an enumera-
tive method, we can find the optimal solution. Before
introducing the enumerative method, we define the
directed no-detouring relationship, dubbed as no-
detouring subsequence, between task pairs. Given a
worker wi and her two light tasks tj and tk , if
u(si, lj, di)=u(si, lj, lk , di) where the function u calcu-
lates the distance of a route, then tk is tj’s no-detouring
subsequence task.

Each task can have zero or multiple no-detouring
subsequence task. Given the available task set T ,
the process of finding tasks for a worker wk based on
worker-first strategy consists of (1) the enumerative
forest generation and (2) the task allocation. The enu-
merative forest generation algorithm is shown in
Algorithm 1, which utilizes the no-detour subsequence
relationships between tasks and the depth-first search-
ing to enumerate all task allocation instances. First, we
create a directed graph based on no-detouring subse-
quence relationships between tasks. Second, through
deep-first traversing, a forest can be generated based
on this graph.

An instance of the enumerative forest generation is
shown in Figure 2. As shown in Figure 2(a), for the kth
worker, the initial task rectangle is P(sk , dk) and all
tasks covered by this rectangle are initially this worker’s
light tasks, for example, ft1, t2, . . . , t5g. The directed
graph based on tasks’ no-detouring subsequence rela-
tionships is shown in Figure 2(b). Figure 2(c) shows the
traversing results, that is, a forest.

If there is a branch whose length is larger than or
equal to ek in the enumerative forest, ek nodes (denoting
ek tasks) on this branch compose an optimal task set of
the worker wk . Otherwise, if all branches are shorter

than ek , then nodes (i.e. tasks) on the longest branch
compose the optimal task set. Meanwhile, from top to
down, tree nodes compose the task-performing route.
As shown in Figure 2(c), if ek ø 3, then three task sets
ft2, t3, t5g, ft1, t3, t5g, and ft1, t4, t5g can be the optimal
task set for wk .

Cheng et al.20 proposed a greedy algorithm, which
iteratively assigns workers to spatial tasks that can
always achieve high ranks, which is a worker-first algo-
rithm. In this article, given a candidate set, the worker-
first local-optimizing (WF-LO) algorithm generates the
enumerative forest of one candidate at one time and
assign maximum tasks to this candidate who then
becomes a worker. Candidates are considered and
assigned tasks one by one. Here, the optimal task set is
only optimal for one worker. As each task requires lim-
ited number of workers, tasks assigned to one worker
will influence another’s task assignment.

Native task-first algorithm (TF-N). The location of a task is
fixed, any worker whose no-detour working area covers
this task can be chosen for this task, called a valuable
candidate. The TF-N algorithm selects suitable workers
for one task at a time.

Given a task tk , assuming that the present task
sequence (the route has been planned according to
tasks’ locations) of the worker wi is qi, 1 � qi, 2 � � � �, the
rule to judge whether the task tk can be assigned to this
worker or not is that whether the point lk is in the no-
detour working area that computed according to
si � lqi, 1

� lqi, 2
� � � � � di. If the point lk is in the rectan-

gle formed by lqi, j
and lqi, j+ 1

, then task tk is inserted into
the task sequence between qi, j and qi, j+ 1. The task-
performing route will be si � lqi, 1

� lqi, 2
� � � � qi, j�

lk � qi, j+ 1 � di. The worker selection of one task might
influence another task’s valuable worker set. As shown
in Figure 1(b), tasks t3, t4, and t5 can select the worker
wk . If wk is chosen by t3 (see Figure 1(e)), then t4 cannot
choose wk any more. Considering the objective MAX-
II, we propose the task-first local-optimizing (TF-LO)
algorithm in the following.

Algorithm 1. Enumerate forest method.

1: //Creating a directed graph. All light tasks of wk in T are vertexes
and an edge from ti to tj means that tj is ti‘s no-detouring task.

2: V  All light tasks of wk;
3: E No detour relationships between elements in V;
4: G hV, Ei; //Create a directed graph.
5: //Traversing all vertexes and generating a forest.
6: R Finding all zero in-degree node in G;
7: for each r 2 R do
8: Create a tree Tr whose root node is r;
9: Tr  DFS(r, Tr,G); //See Algorithm 2.
10: end for

Algorithm 2. Function DFS (r, Tr , G).

Require: r, Tr,G;
Ensure: Tr ;
1: //Depth-First Searching and generating a tree.
2: C  All next nodes of r in the directed graph G;
3: for each c 2 C do
4: Create a new branch (r! c) on the tree Tr ;
5: Tr  DFS(c, Tr,G);
6: end for
7: return Tr .
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TF-LO. Given a task ti, TF-LO algorithm finds all
workers who can take this task and then chooses work-
ers whose allocated task number nears their expected
task numbers. This algorithm considers the second
objective MAX-II. The detailed process is shown in
Algorithm 3. For each worker wj who is able to take
the task ti, we compute the satisfied ratio ((jBjj+ 1)=ej)
by assuming that ti is assigned to this worker. All work-
ers’ satisfied ratios are sorted in descending order, and
the top ri � jHij workers are recruited by task ti.

Because the no-detour working area changes, only
one task can select this worker and then refresh the no-
detour working area for the next round of worker selec-
tion. Therefore, although the task location is stable to
simplify the task allocation, either using worker-first
strategy or using task-first strategy for multi-task allo-
cation must consider changes of tasks’ worker numbers,
workers’ task numbers, and worker’s locations during
the task allocation process, which is a very complex
problem. In the following, we propose a greedy-based
task allocation algorithm with global optimization.

Global-optimizing task allocation methods

Light task packaging. For one worker, we can find the
optimal task package with the enumerative method,
however, for multiple workers, it is hard to enumerate
the optimal task allocation solution. Tasks that can be
assigned to the same worker are considered as a task
package. As shown in Figure 2(c), according to the
enumerative forest and the task number parameter (i.e.
ei), there are multiple task-packaging possibilities, for
example, ft2, t5g and ft1, t3, t5g.

Given n tasks T = ft1, t2, . . . , tng and m candidates
W = fw1,w2, . . . ,wmg, a candidate’s task package set

is denoted by a matrix _Di = fDi, 1,Di, 2, . . .g, where

Di, j = fdi, j, k jk = 1, 2, . . . , ng is a n-dimensional row

vector. di, j, k = 1 means task tk is assigned to worker wi

in the jth task package. Since different workers have
different trip plans, their task packages are also differ-
ent. We select one task package from each worker’s
task packages and obtain a task allocation solution,
which is denoted by K =(k1, k2, . . . , km) where

1 ł ki ł j _Dij, and then, the corresponding task alloca-

tion result is denoted by P=

D1, k1

D2, k2

. . .
Dm, km

2
664

3
775.

For instance, assume that n= 4, m= 3,
ei = 2 (i= 1, 2, 3), rj = 2 (j= 1, 2, 3, 4), and workers’

task packages are D1, D2, and D3, respectively, as
follows

D1 =

t1 t2 t3 t4

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 1 0

1 1 0 0

2
666666666664

3
777777777775
,D2 =

t1 t2 t3 t4

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 1 0

0 0 1 1

2
66666666666664

3
77777777777775
,

D3 =

t1 t2 t3 t4

0 0 0 0

1 0 0 0

0 1 0 0

1 1 0 0

2
6666664

3
7777775

Algorithm 3. Task-first global-optimizing algorithm.

1: for each ti in T do
2: for each wj in W do
3: cj  0;
4: if jBjj\ej and ti is a light task for wj then
5: cj  jBj j+ 1

ej

;

6: end if
7: end for
8: while jHij\ri do
9: p The index of the largest element in fc1, . . . , cjWjg;
10: Hi  Hi +wp; //Task ti is assigned to wp.
11: Bp  Bp + ti; //Task ti recruits wp.
12: cp  0;
13: end while
14: end for

Figure 2. The instance of no-touring task allocation: (a) light
tasks covered by the initial task rectangle, (b) directed graph,
and (c) forest.
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There are jD1j3 jD2j3 jD3j= 168 theoretical task
allocation solutions. Subjecting to both worker number
constraints of tasks (i.e. ri) and task number constraints
of workers (i.e. ej), some task allocation solutions will
be abandoned and the available task allocation solu-
tions will be less. For example, either P1 or P2 is an
optimal results of this instance

P1 =

t1 t2 t3 t4

w1 0 1 1 0

w2 0 0 1 1

w3 1 1 0 0

2
664

3
775, K1 =(5, 7, 4)

P2 =

t1 t2 t3 t4

w1 1 1 0 0

w2 0 0 1 1

w3 1 1 0 0

2
664

3
775, K2 =(6, 7, 4)

The number of theoretical task allocation solutions
is
Qm

j= 1 j _Djj by using the enumeration method, which
is inefficient to feedback candidates’ task queries.
Therefore, we use greedy-based algorithm to choose
task packages, which is introduced in the following.

Worker-first globally optimized algorithm. For the purpose
of both greedily assigning more tasks and satisfying
most workers, we propose worker-first globally opti-
mized (WF-GO) algorithm, which searches the most
suitable worker rather than assigning the sequential
candidate proper tasks like WF-LO.

WF-GO uses the backtracking to satisfy both
MAX-I and MAX-II at the same time. First, all task
packages of each worker is created and then sorted in
descending order of package sizes (which refers to the
task number in the package). Second, every candidate
is assessed to determine their selection. In the ith assess-
ment round, the task number limitation of a candidate
wk is ek � i+ 1, and the assessment judges whether the
candidate has an available task package whose size is
equal to the task number limitation. Here, a task pack-
age is available only if all tasks in this package are able
to recruit this candidate based on the intermediate
result of current task allocation. Finally, some candi-
dates become workers in each round of candidate
assessment. The worker-searching process will stop
once either all tasks are allocated or all remaining can-
didates have no available task packages.

Evaluation

Experiment setup

Datasets and simulations. We use the dataset of individ-
ual Divvy bike sharing trips to imitate workers’ trips,
including the origin, destination, and timestamps for
each trip (https://data.cityofchicago.org/browse?q=
divvy, accessed12 October 2018); 386,809 trips of

3 months are used to evaluate our methods. The map is
divided into g 3 g grid cells.

For the same task set and the same worker set, if an
area is divided into different numbers of grids, the den-
sity of workers and also the density of tasks will be dif-
ferent. The sensing coverage, denoted by ssCovr, is used
as an index to reflect the ratio of grids that can be vis-
ited by workers. ssCovr is computed by equation (5)

ssCovr=
1

jW j 3

PjW j
i= 1 u di, sið Þ

g 3 g
ð5Þ

ssCovr can influence the task allocation evaluation.
Experimental results shows that if g = 10,
ssCovr ’ 0:05; if g = 20, ssCovr ’ 0:03; and if g = 30,
ssCovr ’ 0:02. Although workers’ current locations and
destinations are uniform random values, we find that
ssCovr nearly remains the same for different worker
sets when jW jø 1000. In order to avoid being inter-
fered by those biased random numbers, each experi-
ment uses 1000 simulated task sets. Statistical results
presented in the following are obtained based on
experimental results of these 1000 datasets.

Baselines and metrics. Greedy algorithms are usually
used by researches to efficiently allocate tasks.20,27,28

We provide the following baseline methods for com-
parative studies.

Naive Greedy Allocation—TF-N algorithm.28 Much
work without optimization.
Local-optimizing Greedy Allocation—TF-LO algo-
rithm and WF-LO algorithm.20,27

We use two evaluation metrics, namely, task alloca-
tion ratio and satisfaction degree. Given the task set T

and the candidate set W , allcRatio denotes the task allo-
cation ratio and is computed by equation (6). The satis-
faction degree of the worker is used to reflect whether
the task number reaches this worker’s expectation. The
mean satisfaction degree (denoted by satDegree) of a
worker set was computed by equation (7), where the
worker set (denoted by W 0) is a sub-set of the candidate
set W

allcRatio=

PjT j
i= 1

jHij

PjT j
i= 1

ri

ð6Þ

satDegree=
1

jW 0j 3
XjW 0 j
j= 1

jBjj
ej

ð7Þ

where W 0 � W and 8wj 2 W 0(jBjjø 1).
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Experimental results

Task allocation ratio. Figures 3 and 4 show the experi-
mental results of the task allocation ratio, from which
we can draw the following finding: (1) when the candi-
date number increases, the task allocation ratio also
increases, which is in line with the common knowledge;
(2) comparing to WF-LO, the task allocation ratio of
using WF-GO increases and the increment shown in
Figure 4 even reaches 10% when the worker number is
small; (3) when g increases, the sensing coverage ssCovr

decreases, thus the task allocation decreases; and (4)
when the candidate number increases, the task alloca-
tion ratio differences among WF-LO, WF-GO, TF-N,
and TF-LO become smaller.

According to experimental results and the above
findings, we can conclude that if the candidate number
is relatively small, using WF-GO can obtain higher task
allocation ratio, and if there are adequate candidates,

that is,
PjW j

j= 1 ej �
PjT j

i= 1 ri, using any method can

obtain high task allocation ratio. For example, as
shown in Figure 4(b), if worker number is less than 60,

WF-GO is the best method. In order to evaluate the
performance of the WF-GO method when the candi-
date number is small, we increase the task number but
stabilize the worker number. The experimental result as
shown in Figure 5 proved that more tasks can be

Figure 3. The experimental result of the task allocation ratio
when jTj= 10, 8j(ej = 3), and 8i(ri = 3). X-axis labels show that
the number of workers gradually far exceeds task need: (a)
g = 10 and (b) g = 20.

Figure 4. The experimental result of the task allocation ratio
when jTj= 20, 8wj(ej = 10), and 8i(ri = 10). X-axis labels show
that the number of workers gradually far exceeds tasks need:
(a) g= 10 and (b) g= 20.

Figure 5. The experimental result of the task allocation ratio
when g = 50, jWj= 20, 8j(ej = 10), and 8i(ri = 10). X-axis
labels show that the number of tasks is gradually higher than the
number of tasks that workers can accomplish.
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allocated by the WF-GO method through optimally
utilizing the limited candidate resource.

We also evaluate the proposed methods for maxi-
mizing the satisfaction degrees of workers, which is pre-
sented in the following.

Satisfaction degree. Constrained by no-detouring, candi-
dates cannot be chosen to be workers if their routes do
not pass any task’s location. Given the same candidate
set and the same task set, the smaller worker number
means that the task is centrally allocated as well as the
task number is closer to the worker’s expectation.

We vary both the worker number and the task
number, respectively, for the purpose of simulating
situations of either adequate candidates or scarce can-
didates. Figures 6 and 7 show the experimental results
of the satisfaction degree evaluation. As can be seen
in Figure 6, when the participant number increases,
the satisfaction degree of WF-GO increases. When
more candidates are available, through using WF-
GO, we globally select the most suitable candidate
one by one, thus both the satisfaction degree (see
Figure 6) and the task allocation ratio (see Figure 4)

are raised. In addition, TF-N, TF-LO, and WF-LO
do not consider the whole candidate set and some
candidates might nearly never be chosen.

When the task number increases and candidates will
be in shortage, as shown in Figure 7, every worker has
more options of choosing tasks and the satisfaction
degree of using WF-GO is still the highest. When the
task number increases, candidates easily obtain plenty
of light tasks, so the satisfaction degrees of all methods
increase. In the case of a lack of candidates, TF-N and
TF-LO have a similar result of the satisfaction degree.

As the satisfaction degree is related to the expected
task number, we adjust this number and show the
experimental result in Figure 8. On one hand, with
enough candidates, the allocation ratios of all methods
are nearly 100%. On the other hand, if all candidates
expect more tasks, the mean satisfaction degree will
decrease. As such, the advantage of using WF-GO
becomes greater than the others. To conclude, we

Figure 6. The experimental results of satisfaction degrees
when jTj= 20, 8j(ej = 10), and 8i(ri = 10). X-axis shows the
number of workers gradually far exceeds tasks need: (a) g = 10
and (b) g = 20.

Figure 7. The experimental results of satisfaction degrees
when g= 50, jWj= 20, 8j(ej = 10), and 8i(ri = 10). X-axis
labels show tasks are gradually more than that workers can
accomplish.

Figure 8. The satisfaction degree comparison under adjusting
the worker’s expected task number when g= 50, jWj= 10, 000,
jTj= 100, and 8j(ej = 20). Here, the number of workers is
greater than tasks’ demand.
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recruit less workers through using WF-GO which will
save the labor cost. In this way, workers will get their
expected number of tasks leading to satisfied experience
with task allocation.

Conclusion

Task allocation is an important step for the MCS appli-
cations with a limited labor budget. Constrained by the
spatial and temporal situation of both candidates and
tasks, a task allocation method must consider the spa-
tial and temporal relationship between candidates and
tasks to maximize the number of allocated tasks as well
as minimizing the gap between the number of assigned
tasks and the number of required tasks for every worker
(i.e. satisfying workers). We define two optimization
objectives for this task allocation problem and develop
two greedy-based task allocation algorithms to both
worker-first and task-first methods. Experiments are
conducted and results show that global-optimizing
algorithms increase both the task allocation ratio and
the worker satisfaction degree. How to minimize work-
ers’ detour distances and lower the total payment will
be our future research effort.
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