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Andrik Rampuna,b,∗, Karen López-Linaresc,f,∗, Philip J. Morrowa,
Bryan W. Scotneya, Hui Wange, Inmaculada Garcia Ocañac, Grégory
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Abstract

This paper presents a method for automatic breast pectoral muscle seg-
mentation in mediolateral oblique mammograms using a Convolutional Neu-
ral Network (CNN) inspired by the Holistically-nested Edge Detection (HED)
network. Most of the existing methods in the literature are based on hand-
crafted models such as straight-line, curve-based techniques or a combination
of both. Unfortunately, such models are insufficient when dealing with com-
plex shape variations of the pectoral muscle boundary and when the bound-
ary is unclear due to overlapping breast tissue. To compensate for these
issues, we propose a neural network framework that incorporates multi-scale
and multi-level learning, capable of learning complex hierarchical features to
resolve spatial ambiguity in estimating the pectoral muscle boundary. For
this purpose, we modified the HED network architecture to specifically find
‘contour-like’ objects in mammograms. The proposed framework produced
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a probability map that can be used to estimate the initial pectoral muscle
boundary. Subsequently, we process these maps by extracting morphological
properties to find the actual pectoral muscle boundary. Finally, we devel-
oped two different post-processing steps to find the actual pectoral muscle
boundary. Quantitative evaluation results show that the proposed method is
comparable with alternative state-of-the-art methods producing on average
values of 94.8 ± 8.5% and 97.5 ± 6.3% for the Jaccard and Dice similarity
metrics, respectively, across four different databases.

Keywords: Breast mammography, Pectoral Muscle Segmentation,
Computer Aided Diagnosis, Convolutional Neural Networks, Deep learning

1. Introduction1

Mammography is a standard breast imaging procedure to screen women2

for early signs of breast cancer. Unfortunately, with relatively small number3

of radiologists compared to the vast number of mammograms to be analysed,4

visual inspection is an extremely demanding and time consuming task. The5

use of computer-aided diagnosis (CAD) is considered crucial to reduce the6

workload and to help the clinician making decisions in the diagnosis and7

prognosis of health conditions.8

According to (Kwok et al., 2004; Gupta and Undrill, 1995; Karssemeijer,9

1998; Saha et al., 2001; Eklund and Cardenosa, 1992; Bassett et al., 1993;10

Heywang-Kobrunner et al., 2001; Shi et al., 2018; Rampun et al., 2018b), ac-11

curate segmentation of the pectoral muscle is important for mammographic12

analysis because: (a) the pectoral muscle region and the breast region may13

have similar intensity or texture appearance and including the pectoral mus-14

cle region into breast density quantification may lead to inaccurate breast15

density estimation; and (b) in mammogram-pair registration and compari-16

son the pectoral muscle boundary is one of the crucial landmarks and thus17

its correct estimation leads to accurate mammogram pair registration. Ad-18

ditionally, from a clinical point of view, a good quality mediolateral oblique19

(MLO) mammogram should display the pectoral muscle to the level of the20

nipple detection and its orientation should not be more than 70◦ from the21

y-axis of the image (this is not always the case in the dataset used). Hence22

segmenting the pectoral muscle is essential as a pre-processing step for breast23

cancer CAD systems.24
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In breast cancer CAD systems three anatomical landmarks need to be ex-25

tracted automatically, namely the breast border, the nipple and the pectoral26

muscle (Chandrasekhar and Attikiouzel, 2000, 1997; Kwok et al., 2001).27

The majority of mammograms are digital (full field digital mammograms28

(FFDM)), which makes separating the breast boundary from the air back-29

ground less complicated. However, nipple and pectoral muscle segmentation30

remain challenging due to their significant variability. The main challenges31

are depicted in Figure 1: A) the pectoral boundary is invisible due to dense32

tissues (and the breast and pectoral regions have a similar appearance); B)33

the appearance of the axillary fold in the pectoral muscle can have a signifi-34

cant effect (false positive) when finding the actual pectoral muscle contour;35

C) the curvature of the pectoral muscle boundary can be convex, concave,36

a straight line or a mixture of these; D) the majority of the lower part of37

the pectoral muscle boundary is obscured due to overlapping fibro-glandular38

tissue. The pectoral muscle region tends to be a ‘triangular-shaped’ region39

located in the top left corner of a mammogram as depicted in Figure 1C.40

Figure 1: Different challenges in estimating the pectoral muscle boundary. Invisible pec-
toral muscle boundary (A), multiple axillary fold (B), non-linear (or irregular) shape of
the pectoral muscle boundary (C) and the lower part of the pectoral muscle boundary is
obscured (D). PM indicates pectoral muscle region.

2. Literature Review41

Although many methods have been developed for pectoral muscle segmen-42

tation, due to a lack of ground truth the majority of studies are evaluated43
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using the Mammographic Image Analysis Society (MIAS) database (Suck-44

ling et al., 1994). In early studies, straight-line based methods (Karssemeijer,45

1998; Aylward et al., 1998) using the Hough transform in conjunction with46

a gradient magnitude and a set of threshold values were used to estimate47

the pectoral muscle boundary. Unfortunately, these studies are unreliable in48

complex cases when the appearance of the pectoral muscle boundary is non-49

linear (or irregular), where the Hough transform fails to estimate a straight50

line. To compensate for the limitations of such methods, Chakraborty et al.51

(2012) developed a straight-line estimation technique based on texture and52

morphological features to find the initial boundary, followed by an itera-53

tive tuning procedure to produce a smooth curve. Although this approach54

improved the previous methods, it is sensitive to the pectoral muscle’s mor-55

phological properties, which can significantly affect the initial detection of56

the pectoral boundary.57

Later, Kwok et al. (2004) and Ferrari et al. (2004) developed methods58

by combining straight-line and contour-based methods. Kwok et al. (2004)59

estimated the initial pectoral muscle boundary based on a straight-line ap-60

proximation technique, followed by a ‘cliff detection’ method to refine the61

initial boundary iteratively. Ferrari et al. (2004) proposed an approach based62

on a multiresolution technique using Gabor wavelet filters, which overcame63

the limitations of the straight-line based techniques used in (Kwok et al.,64

2004; Karssemeijer, 1998; Aylward et al., 1998; Chakraborty et al., 2012).65

There were 48 Gabor filters used to enhance the appearance of the edges66

within the region of interest containing the pectoral muscle. Subsequently,67

the magnitude value for each pixel was propagated using ‘edge-flow’ in the68

direction of the phase. Although both methods showed promising results,69

only a small number of images were used to evaluate the performance of the70

methods.71

Adaptive thresholding-based methods were proposed by several authors72

(Czaplicka and W lodarczyk, 2012; Mustra and Grgic, 2013) to directly seg-73

ment the entire pectoral region. From our own experience, using an adaptive74

thresholding approach can only work if the majority of the pectoral region75

appears to have significant variation in intensity or texture appearance. In76

cases where the pectoral muscle boundary is overlapping with fibro-glandular77

tissues, the segmentation results are affected significantly. Another alterna-78

tive solution proposed in the literature is a region-growing based technique79

(Chen and Zwiggelaar, 2010). However, such an intensity-based technique80

can be very sensitive to noise and could easily over-segment the muscle when81
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the pectoral muscle and the breast have similar intensities. Another disad-82

vantage of using this technique is that it stopped when there was a sharp83

intensity change and hence it can lead to under-segmentation when an axil-84

lary fold was visible in the image.85

Curve fitting-based techniques (Mustra and Grgic, 2013; Bora et al.,86

2016; Vikhe and Thool, 2017; Chen et al., 2015) have also been used as a part87

of the segmentation or post-processing step to estimate the pectoral muscle88

curve. Mustra and Grgic (2013) manually selected initial points for polyno-89

mial fitting to estimate the actual muscle boundary, which they assumed to90

be concave or convex. Bora et al. (2016) estimated the initial boundary using91

the Hough transform technique based on texture gradient. Subsequently, a92

smooth pectoral boundary was obtained using Euclidean distance regression93

in conjunction with polynomial modelling. A similar approach was developed94

by Vikhe and Thool (2017) whose method used curve fitting by the Least95

Square Error (LSE) to refine the rough initial boundary points estimated via96

thresholding. Chen et al. (2015) refined the initial boundary determined97

via shape-based region growing using a cubic polynomial function, whereas98

Yoon et al. (2016) used quadratic curve fitting using the random sample99

consensus algorithm. Unfortunately, such techniques require the user to de-100

cide the degree of the curve and were limited to boundaries with ‘curve-like’101

shapes only.102

Recently, Taghanaki et al. (2017) proposed a geomerty-based method sup-103

porting different types of pectoral muscle boundaries. The initial boundary104

was first estimated using a straight line based on the detection of a maximum-105

inscribed circle (MIC) followed by a restricted region growing method to ex-106

tract the actual boundary. The main limitation of their method was that107

it assumed each mammogram contained a pectoral muscle, whereas in a108

real clinical environment there are many cases where the pectoral muscle is109

absent. A robust pectoral muscle segmentation algorithm must not only be110

able to find the boundary accurately, but also determine whether it was truly111

present. To eliminate user interaction, prior knowledge of the existence of112

pectoral muscle and the limitations of curve-fitting based techniques, Ram-113

pun et al. (2017b) proposed a method based on edge features such as length114

(L̂), eccentricity (Ec), orientation (θ), intensity and extent (Ex) to select115

initial candidates. Subsequently, a majority voting approach was used to se-116

lect the best edge as the initial pectoral muscle boundary and ‘grown’ based117

on the most similar intensity among its neighbouring pixels. However, this118

method was less accurate in cases where the lower part of the pectoral muscle119
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boundary overlapped with the fibro-glandular tissues or had a convex shape.120

The use of deep learning in the field of medical image analysis is becom-121

ing a methodology of choice and is one of the most popular topics in pat-122

tern recognition and machine learning. The main focus for most computer123

scientists is designing network architectures to suit their problem domain124

instead of developing feature extraction methods, which may require spe-125

cialised knowledge (Litjens et al., 2017; Moeskops et al., 2016). Despite a126

large number of studies in the literature using deep learning in the medical127

imaging domain, based on the surveys conducted by Litjens et al. (2017)128

and Hamidinekoo et al. (2018), there are only two works that focus on pec-129

toral muscle segmentation in mammograms (Dubrovina et al., 2016) and in130

Magnetic Resonance Imaging (MRI) (Moeskops et al., 2016). Dubrovina131

et al. (2016) used a CNN not only for pectoral muscle segmentation, but132

also for tissue classification and nipple segmentation. On the other hand,133

Moeskops et al. (2016) used a CNN to segment different organs (e.g. breast,134

brain and heart) in different modalities. In both studies the networks were135

trained on mini patches extracted from the pectoral muscle region, which136

means that their networks were modelled based on the structural appear-137

ance of the pectoral muscle and did not take the contextual information into138

account. Although both authors reported satisfactory results, the probability139

maps generated by their proposed networks contained many false positives.140

Despite of the promising results reported in the studies described above,141

the following limitations have been identified:142

1. The majority of the studies (Kwok et al., 2004; Ferrari et al., 2004;143

Karssemeijer, 1998; Aylward et al., 1998; Chen and Zwiggelaar, 2010;144

Chakraborty et al., 2012; Rampun et al., 2017b; Taghanaki et al., 2017;145

Bora et al., 2016; Vikhe and Thool, 2017; Chen et al., 2015; Yoon146

et al., 2016) tried to manually model the curve structure of the pectoral147

muscle either using straight-line techniques, curve-based techniques or148

a combination of these two. In other words, the majority of the existing149

methods are hand-crafted models that require specific knowledge and150

were insufficient in dealing with the large variation of pectoral muscle151

boundaries.152

2. The majority of the studies (Kwok et al., 2004; Ferrari et al., 2004;153

Karssemeijer, 1998; Aylward et al., 1998; Chen and Zwiggelaar, 2010;154

Chakraborty et al., 2012) used only a small number of images for eval-155

uation and only a small number of them (Taghanaki et al., 2017; Bora156
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et al., 2016) were evaluated across different datasets.157

3. None of the methods can automatically identify whether the pectoral158

muscle is truly present in the image. A fully automated CAD system159

should be able to recognise cases where the pectoral muscle region is160

absent.161

4. Many studies (Mustra and Grgic, 2013; Chen and Zwiggelaar, 2010;162

Chakraborty et al., 2012; Bora et al., 2016) required user interaction,163

such as seed initialisation and setting the degree of the polynomial164

function.165

5. For deep learning-based methods (Dubrovina et al., 2016; Moeskops166

et al., 2016), networks were trained on patches and based on the in-167

formation from the region’s surface (which increased false positives),168

whereas our proposed network was trained based on the information169

along the region’s boundary using the whole image.170

To overcome these limitations, we have proposed a pectoral muscle seg-171

mentation method using a CNN in conjunction with morphological post-172

processing steps. Our motivation in using a CNN derived from the HED173

network (Xie and Tu, 2015) was to learn and model the characteristics of174

the pectoral muscle boundary automatically, without the need to model its175

complex geometrical appearance variation manually. The original HED net-176

work (Xie and Tu, 2015) was designed for edge detection purposes in natural177

images, which captures fine and coarse geometrical structures (e.g. contours,178

spots, lines and edges), whereas we were interested in only capturing the main179

boundary structures in mammograms, as most pectoral boundaries appear as180

‘contour-like’ objects. Although contours can be detected using edge-based181

approaches such as Canny and Sobel operators, these methods usually fail182

when the fibro-glandular tissue overlaps with the pectoral muscle (Rampun183

et al., 2017b). To compensate for this problem, we modified the HED archi-184

tecture (Xie and Tu, 2015) so that unnecessary details could be ignored and185

‘contour-like’ objects can be found.186

Most pectoral muscle boundaries have unique appearances such as having187

sharp intensity changes, and being morphologically smooth and continuous.188

Modelling these characteristics manually (as proposed in (Rampun et al.,189

2017b; Dubrovina et al., 2016; Moeskops et al., 2016; Taghanaki et al., 2017))190

was difficult and restricted the model’s capability in dealing with the vari-191

ations of contour appearance; fortunately the HED network (Xie and Tu,192

2015) can be used to learn these characteristics automatically, and with few193
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modifications it can be used to learn boundary cues. Furthermore, our moti-194

vation for training the proposed network based on contour appearance rather195

than the structure appearance of the pectoral muscle is two-fold: (a) overlap-196

ping structure information in both breast and pectoral muscle regions makes197

learning the pectoral muscle structure more difficult, yielding a large number198

of false positives, as visually shown in studies by Dubrovina et al. (2016),199

Moeskops et al. (2016), and our own experiment in Section 6.3; (b) usually200

there are only three types of possible contours in a mammogram: the auxil-201

iary fold, pectoral muscle boundary and breast boundary. By learning these202

cues only, the learning process became simpler because we have narrowed it203

down to specific problems. Therefore, this contributed to not only generat-204

ing a small number of false positives, but also simplified the post-processing205

step.206

The contributions of our study are:207

1. We have proposed a contour based CNN method that has learned the208

boundary representation rather than the appearance of the pectoral209

muscle region (as the current deep learning based methods for pectoral210

muscle segmentation in the literature have (Dubrovina et al., 2016;211

Moeskops et al., 2016)). Our approach not only reduced false positives212

but simplified the subsequent post processing steps.213

2. We modify the original HED network by making it shorter (hence214

faster), having used an element-wise fusing operation instead of con-215

catenation (hence more accurate in locating the pectoral muscle bound-216

ary), and we introduced a weighted softmax loss function to deal with217

data imbalance between classes.218

3. We conduct extensive experimental evaluation covering both full field219

digital mammograms (FFDM) and scanned film mammograms (SFM)220

using four different datasets (Mammographic Image Analysis Society221

(MIAS) (Suckling et al., 1994), Breast Cancer Digital Repository222

(BCDR) (Lopez et al., 2012), InBreast (Moreira et al., 2011), and223

Curated Breast Imaging Subset of Digital Database for Screening Mam-224

mography (CBIS-DDSM) (Lee et al., 2017)), which to the best of our225

knowledge has been the largest validation study to date.226

4. The proposed method has been fully automated and does not need any227

user intervention (such as seed initialisation, and selection of smooth-228

ing and curve parameters) and can recognise cases where the pectoral229

muscle was absent in the image.230
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3. Materials231

Table 1 provides an overview of the four datasets used in our study, which232

cover both scanned-film mammograms (SFM) and full field digital mammo-233

grams (FFDM), to evaluate the robustness of the proposed method when234

dealing with different image types. Moreover, the majority of the existing235

methods in the literature have used the MIAS dataset (SFM), so including236

this dataset in our study enables us to make quantitative and qualitative237

comparisons. The following image formats were used: .png (MIAS), .jpeg238

(CBIS-DDSM) and .tiff (InBreast and BCDR) for view images were used239

and no additional pre-processing was done. Similar to the existing studies,240

only MLO view images were used which tend to include the pectoral muscle,241

whereas in the Craniocaudal (CC) view in most cases the pectoral muscle is242

absent.243

Table 1: Summary of the datasets used in this study.

Database # images Image Size Format # Pectoral

MIAS (Suckling et al., 1994) 322 Various SFM 321

InBreast (Moreira et al., 2011) 208 2560× 3328 FFDM 201

BCDR (Lopez et al., 2012) 100 3328× 4048 FFDM 100

CBIS-DDSM (Lee et al., 2017) 457 Various SFM 457

Regarding ground truth generation, for the MIAS (Suckling et al., 1994)244

dataset, each contour for the pectoral muscle boundary was annotated by a245

clinician supervised closely by an expert radiologist. For the InBreast (Mor-246

eira et al., 2011) dataset annotations were provided by an expert radiologist,247

and for the BCDR (Lopez et al., 2012) and CBIS-DDSM (Lee et al., 2017)248

databases, pectoral muscle boundaries were provided by an experienced ob-249

server and verified by an expert radiologist.250

Regarding the implementation, the proposed CNN was trained, validated251

and tested on an Intel Xeon E5-1650 v3 processor, using Nvidia Corpora-252

tion’s Deep Learning GPU Training System (DIGITS) based on Caffe, with253

a Nvidia’s Quadro M6000 (12Gb) graphics card. The post-processing meth-254

ods were developed under the MATLAB environment version 9 (2016a) on a255

Windows 10 operating system with an Intel CORE i7 vPro processor.256
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4. Methodology257

The first subsection introduces a definition of the contour from a pectoral258

muscle perspective and we explain how we generate it for CNN training.The259

technical aspects of the proposed method are explained in the subsequent260

subsections, which cover two main steps: 1) initial pectoral contour delin-261

eation based on a CNN and 2) refinement of this contour using prior knowl-262

edge of the boundary shape and whole pectoral muscle segmentation in the263

post-processing steps.264

4.1. Pectoral Muscle Contour265

In this study we refer to a contour as a boundary between two regions of266

interest (i.e. the pectoral muscle region and the breast region). Let C be a267

smooth contour containing a set of continuously connected pixels, where c1268

and cend are the starts and end points, respectively. Therefore, the pectoral269

muscle contour is defined as:270

C = {c1(x, y), ..., ci(x, y), ..., cend(x, y)} (1)

where c is a pixel with coordinates (x, y) in a 2D image I (with M (rows) ×271

N (columns)) and i is the ith pixel on C. Note that the conditions for x and272

y must be Zx = {x ∈ Z|0 ≤ x ≤ M − 1} and Zy = {y ∈ Z|0 ≤ y ≤ N − 1},273

respectively. In eq. (1), each pixel ci(x, y) in C is unique so that the boundary274

does not intersect itself. Since the pectoral muscle contour always starts at275

the x-axis and end at the y-axis of the image, we further restrict C to the276

following conditions:277

c1(x, y) = (0, 0 ≤ y < N) (2)

cend(x, y) = (0 ≤ x < M,N − 1) (3)

where 0 ≤ y < N and 0 ≤ x < M indicate that C must intersect with the278

y-axis (at x = 0) and with the x-axis (at y = N − 1), respectively.279

Figure 2 shows a step by step procedure for generating the pectoral muscle280

contours for training the CNN. Firstly, we applied the Canny edge detection281

technique to the whole pectoral muscle mask to get the pixels located along282

the contour. Secondly, in order to enrich contour information with neigh-283

bouring pixels, the edge is dilated using a line-shaped structuring element284

(ε) with the following properties: neighbourhood (η = 5) and orientation285
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(θ = 90◦). The ‘Edge’ (E) sub-image in Figure 2 is the superimposed red286

square region in the pectoral muscle mask image. The ‘Dilated Edge’ (DE)287

sub-image in Figure 2 is the dilated edge derived from sub-image E, and the288

right-most image is the contour and its neighbouring pixels.289

Figure 2: Contour generation to capture the pectoral muscle boundary and its surrounding
neighbourhood pixels.

For training, we consider pixels with values ‘1’ in the image of the pectoral290

muscle contour mask (Ipm) as objects (e.g. class one) and pixel values equal to291

‘0’ as non-objects (e.g. class two) which can be obtained using the following292

equation293

Itr(+) = Ipm × I (4)

where Itr(+) is the training image containing grey-level pixels located within294

Cd as its centre pixel and × is an element wise multiplication. Therefore, our295

training samples for class one (T +) which were the objects (or the contours)296

were defined as297

T + = {I1tr(+), I
2
tr(+), I

3
tr(+)...I

d
tr(+)} (5)

where d is the dth Itr(+) in T +. The training samples for class two (T −)298

which were the background (or the non-contour) were defined as299

Itr(−) = (Ipm)′ × I (6)

T − = {I1tr(−), I2tr(−), I3tr(−)...Idtr(−)} (7)

where (Ipm)′ is the binary image complement of Ipm.300
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4.2. Network Architecture301

The proposed network architecture was inspired by the Holistically-Nested302

Edge Detection (HED) network presented in (Xie and Tu, 2015). The HED303

network automatically learns rich hierarchical image representations that are304

essential to resolve ambiguities in edge and object boundary detection and305

allows us to train and make predictions from the whole image end-to-end306

(holistically), using a per-pixel labeling cost. It incorporates multi-scale and307

multi-level learning of deep image features using auxiliary cost functions at308

each convolutional layer, and its multiple stages with different convolutional309

strides can capture the inherent scales of organ contours (Roth et al., 2018).310

Hence, HED-based CNN architectures have been successfully employed in311

medical image analysis for pancreas localization and segmentation (Roth312

et al., 2018), retinal blood vessel segmentation (Fu et al., 2016), aneurysm313

segmentation (López-Linares et al., 2017) and pathological lung segmenta-314

tion (Harrison et al., 2017).315

While the HED network aimed to find all possible edges in an image, our316

network aimed to find ‘contour-like’ appearances between the breast and the317

pectoral muscle regions. Our network was composed of a single-stream deep318

network divided into four blocks of convolution and pooling layers producing319

a different number of feature maps. Multiple side connections are inserted320

after the last convolution layer of each block to extract output feature maps321

at different scale levels. The size of these maps became smaller along the322

network, and thus deconvolutional layers with larger receptive fields were323

needed to recover the original image size. To ensure that all the maps had324

the same size as the original image after deconvolution, a cropping operation325

was applied. Cropped feature maps were element-wise fused in order to get326

the final prediction, as shown in Figure 3. Lastly, to overcome the problem of327

imbalance between foreground (contour) and background pixels, a weighted328

softmax loss function was employed, such as in (Badrinarayanan et al., 2015).329

Therefore, in contrast to the original HED network (Xie and Tu, 2015)330

our architecture has five main modifications:331

1. We have modified the network to have 3 pooling layers and 4 side-332

output maps. The final layers of the original HED network reduced the333

resolution of the input image and provided a very coarse feature map.334

The effect of this resultant coarse map on the final segmentation was335

undesirable, as the very thick contour loads to a loss of accuracy when336

detecting the pectoral boundary. With the removal of these layers, we337
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also obtained a faster network.338

2. We have reduced the padding introduced in the first convolutional layer.339

In the original HED network, a large padding was needed as it is a340

deeper network, whereas our network was shorter.341

3. The cropping offset was calculated to have the resulting image centered342

before fusing and to avoid cropping relevant information.343

4. Instead of minimizing multiple loss functions, one per side-output map,344

and a global fused loss function obtained by concatenating the fea-345

ture maps at different scales, we compute a unique loss function from346

the element-wise fusing of side-output feature maps. By applying an347

element-wise fusing operation, the strongest activations are kept, and348

the global loss is computed taking into account the information from349

feature maps at different scales in a combined manner.350

5. We introduce a weighted softmax loss function, which accounts for351

the imbalance between contour and background pixels in the global352

loss function, whereas in the original HED network it was addressed353

independently at each side-output loss function.354

The combination of feature maps at different detail levels provided the355

ability to obtain a global object boundary where weak edges were omitted,356

but whose precision was improved when fusing it with finer-detailed feature357

maps. Figure 4 depicts feature maps before and after fusing for two example358

images.359

The proposed network architecture was trained and validated with T +
360

and T − from three databases (e.g. MIAS, BCDR and CBIS-DDSM) and361

the network model was used to find each pectoral muscle boundary from362

each image in the fourth database (e.g. InBreast). Note that each database363

contains patients collected from different institutions, ensuring no images364

from the same patient appear in the training and testing datasets. From365

the training dataset, we randomly split approximately 10% of the images for366

validation taking into account that both left and right mammograms of the367

same patient are included in the same set (i.e. train or validation) to avoid368

a possible bias due to the similarity between both breasts. All images were369

resized to 256× 256 using bilinear interpolation, and data augmentation was370

applied to the training set in the form of θ = 90◦, 180◦ and 270◦ rotations.371

All images (including the augmented ones) that come from the same patient372

were separated either in the training or validation set to ensure no bias due373

to similarity between breast/contour structures. The process was repeated in374
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Figure 3: CNN for pectoral muscle contour segmentation, depicting also the input image
and corresponding likelihood map. C: convolutional layer (kernel,stride,padding); P: max-
pooling layer (kernel,stride,padding); Deconv: deconvolutional layer; Fuse: element-wise
fusing; ReLu: Rectified Linear Unit Activations. The number of feature maps at different
stages were included next to the connection lines.

a round robin basis for the other databases. Table 2 summarizes the number375

of images used for training, testing and validating in each of our experiments.376

Following the studies of (Xie and Tu, 2015), (López-Linares et al., 2017)377

and (Roth et al., 2018), the network weights were initialised from the weights378

of the original HED network trained on natural images, which helped in379

dealing with over-fitting and accelerated convergence. We used the stochastic380

gradient descent optimizer, with a learning rate of 0.01, step-wise learning381

rate decay policy and momentum of 0.9. A batch size of 16 images was382

employed and the network was trained for 100 epochs since otherwise the383

network started over-fitting due to the small number of pixels labeled as384

foreground. The function to be minimized was a Softmax function, which385

provides the probability distribution over classes:386

L =
1

N

N∑
n=1

−log

(
efn∑k=2
k=1 e

fk

)
(8)
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Figure 4: Side feature maps after deconvolution and cropping obtained for two example
images from different datasets: BCDR (right) (Lopez et al., 2012) and MIAS (left) (Suck-
ling et al., 1994). In both examples, the left column represents feature maps from finer to
coarser, while the right column shows the input image, the fused response and the final
likelihood map.

where fk denotes the k -th element (k ∈ [1, K] , K is the number of classes387

(i.e. in our case K=2)) of the vector of class scores f, and N is the number388

of training images.389

As explained in (Badrinarayanan et al., 2015), when there was large390

variation in the number of pixels in each class in the training set there was391

a need to weight the loss based on each class. Thus, a weight was assigned392

to each class in the loss function; in our case, we set a weight of 10 for the393

contour and a weight of 1 for the background. These values were selected394

experimentally considering the reduced number of contour pixels with respect395

to the background. Setting an even larger weight value produced additional396

over-fitting, and thus the value was limited to 10.397

4.3. Estimating the Pectoral Muscle Boundary398

Since the output of the network was a prediction map (or likelihood map),399

it was necessary to process the map to obtain the estimated pectoral muscle400

boundary (hence obtaining the pectoral muscle region). The majority of the401
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Table 2: Number of training, validation and testing images employed for each of our
experiments.

Training/val. DB Testing DB # Training # Validation # Testing

BCDR+InBreast+(CBIS-DDSM) MIAS 2729 303 321

BCDR+MIAS+(CBIS-DDSM) InBreast 3165 351 201

MIAS+InBreast+(CBIS-DDSM) BCDR 3528 392 100

MIAS+InBreast+BCDR (CBIS-DDSM) 2243 249 457

existing studies (Kwok et al., 2004; Ferrari et al., 2004; Eklund and Car-402

denosa, 1992; Bassett et al., 1993; Heywang-Kobrunner et al., 2001; Rampun403

et al., 2017b) developed their post-processing techniques based on the MIAS404

dataset, and therefore some of the rules were derived from a smaller training405

set by the previous authors. We further studied this problem by investigating406

more datasets and, based on our extensive study, we developed more robust407

post-processing techniques which are able to handle more cases such as when408

the contour is disconnected. For this purpose, we developed post-processing409

techniques based on previous studies (Kwok et al., 2004; Ferrari et al., 2004;410

Eklund and Cardenosa, 1992; Bassett et al., 1993; Heywang-Kobrunner et al.,411

2001; Rampun et al., 2017b). The techniques were based on the following412

hypotheses:413

1. The pectoral muscle was located either in the left or right upper corner414

of the mammogram. However, in this study we always assume that the415

pectoral muscle is located in the left upper corner of I (after all right416

breasts in the MLO view mammograms were automatically flipped to417

the left using a method from Rampun et al. (2017b).418

2. After the right breast image was flipped to the left, the orientation (θ)419

of the pectoral muscle boundary should be in the range of 20◦ and 90◦420

as suggested in (Eklund and Cardenosa, 1992; Bassett et al., 1993;421

Heywang-Kobrunner et al., 2001).422

3. The appearance of the pectoral muscle boundary was called an ‘open423

contour’, where the start and end points of the contour must not be424

the same.425

4. In the probability map generated by the proposed network, the pectoral426

muscle contour tended to have the longest length compared to non-427

pectoral contours.428
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Figure 5: An overview of the post-processing approach to estimate the actual pectoral
muscle boundary.

Figure 5 shows an overview of the post-processing approach used to es-429

timate the actual pectoral muscle boundary. Note that these heuristic rules430

were applied identically across the different datasets. The CNN’s prediction431

map (Imap) was dilated using a ‘line’ shaped structuring element with η = 5432

and θ = 90◦, resulting in Iεmap. We set a constant threshold value and ap-433

plied binary thresholding to segment Ib. To select the best threshold value434

we tested values over the range [0.1, ..., 0.7] at intervals of 0.03 and found that435

0.1 and 0.13 produced the best results in terms of Jaccard and Dice metrics436

(see Section 6.5). If there is no segmented region (e.g.
M,N∑

x=1,y=1

Ib(x, y) = 0)437

we assumed that the pectoral muscle region is absent in I. Otherwise we438

searched for the longest region (Lr) in Ib and determined whether Lr inter-439

sected at the x and y axes. Finally, if Lr intersected both axes, the first440

post-processing step was selected, otherwise it defaulted to the second post-441

processing step. To illustrate this process graphically, Figure 6 shows a step442

by step representation for the flow chart in Figure 5.443

As can be observed in Figure 6, applying εη=5
θ=90◦ (these values were de-444

termined empirically) to Imap resulted in a connected and solid contour in445

the Iεmap. Image Ib was generated by thresholding Iεmap. Finally, in ILr
b we446

retained the longest region (Lr) with an orientation within 20◦ ≤ θ ≤ 90◦,447

which was based on the second hypothesis in this study and previous studies448

(Kwok et al., 2004; Ferrari et al., 2004; Eklund and Cardenosa, 1992; Bas-449

sett et al., 1993; Heywang-Kobrunner et al., 2001; Rampun et al., 2017b).450

The ILr
b located in the top row in Figure 6 shows it intersects both x- and451

y-axes, whereas the ILr
b located in the bottom row in Figure 6 shows it inter-452

sects only the y-axis. To account for these two options, two post-processing453
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Figure 6: A graphical representation for the flow chart in Figure 5. Note that the ILr

b was
an image that contained the longest region with 20◦ ≤ θ ≤ 90◦.

approaches are proposed in the following subsections.454

4.3.1. Post-processing Option One455

Figure 7 shows an overview of the first post-processing option. Cend456

was determined by taking a pixel that has the smallest and largest y and457

x coordinate values, respectively. C1 was determined by taking a pixel that458

has the smallest and largest x and y coordinate values, respectively. The459

initial boundary (Cb) contains the furthest pixel of each row in Lr from the460

y-axis. We applied a simple ‘moving average’ on Cb to get the final boundary461

Cf . Finally, to get the pectoral muscle region, we created a binary mask and462

filled in the region inside Cf (on the left side) by replacing each pixel with463

‘1’.464

Figure 7: An overview for post-processing option one. The process starts from left to the
right.

4.3.2. Post-processing Option Two465

Figure 8 shows an overview of the second post-processing option. Firstly,466

we determined C1 and Cend, then get yu and yb by shifting 20 pixels of467

18



yz to the left (yu) and right (yb) horizontally to identify associate contour468

candidates. Next, we removed false positives (yellow circle in image 8.2) by469

retaining the first connected pixels found in each column of the image and all470

remaining pixels are deleted. Subsequently, we determinded Cb by taking the471

furthest pixel located within yu and yb followed by connecting a gap (or gaps)472

between contours using the straight line (red line in image 8.3) interpolation473

technique. We relocated each point based on the highest probability within474

a small 5× 5 neighbourhood in the probability map. Finally, we applied the475

‘moving average’ technique on Cb to get Cf (see image 9.6). Similar to the476

first post-processing step, to segment the pectoral muscle region we created477

a binary mask and filled in the region on the left side of Cf by replacing each478

pixel with ‘1’.479

Figure 8: An overview for post-processing option two.
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5. Experimental Results480

The proposed method was evaluated based on 1087 MLO mammograms481

(of which 1079 mammograms contained a pectoral muscle boundary) from482

four different datasets: MIAS (Suckling et al., 1994), InBreast (Moreira483

et al., 2011), BCDR (Lopez et al., 2012) and CBIS-DDSM (Lee et al., 2017).484

Note that the segmentation evaluation is based on the pectoral muscle region485

obtained at the end of the post-processing step.486

To evaluate the performance of the proposed method we used the follow-487

ing metrics: the Jaccard (J̈) coefficient, which measureed the ratio of the488

number of overlapping elements to the number of union elements from seg-489

mented region (A) of the proposed method and ground truth region (B); the490

Dice (D̈) coefficient, which measured the ratio of twice the common number491

of overlapping elements to the total number of elements from both A and492

B; and accuracy, which measured the ratio of the number of pixels classified493

correctly to the total number of pixels. Furthermore, we used sensitivity (S̈)494

and specificity (S̄) to measure the proportions of true positives (TP ) and495

true negatives (TN), respectively, and correctness (C̈), which measured the496

ratio of the number of true positives to the false positives (FP ) and true497

positives. Finally, true positives, true negatives, false negatives and false498

positives rates are denoted as TPR, TNR, FNR and FPR, respectively.499

Further details of these metrics can be found in (Rampun et al., 2017b).500

5.1. Quantitative Results501

Table 3 shows the average quantitative results for the MIAS, InBreast,502

BCDR and CBIS-DDSM databases, which indicated that the proposed method503

yields very good results across the different evaluation metrics. The best re-504

sults are obtained when estimating the pectoral muscle region in the BCDR505

database, with J̈ = 96.9% and D̈ = 98.8% and a small FPR = 0.1± 0.8.506

For the MIAS database, we achieve J̈ = 94.6% and D̈ = 97.5%, whereas507

for the InBreast database the proposed method produces values of J̈ = 92.6%508

and D̈ = 95.6%. On a larger number of images (CBIS-DDSM) the Jaccard509

and Dice coefficients obtained are J̈ = 95.1% and D̈ = 98.1%, respectively.510

Regarding S̈, the method achieves at least 95.2% with an average S̈ = 97.8%511

for the four different databases. To summarise the results, on average our512

approach yields J̈ > 94%, D̈ > 97%, Ä > 99%, S̈ > 97%, S̄ > 99% and513

C̈ > 97% across various datasets, which is comparable with the existing514

methods. Furthermore, the method also produces small FPR = 0.3 ± 1.3515
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Table 3: Average quantitative results from MIAS, BCDR, InBreast and CBIS-DDSM
databases. All metrics are presented as percentages with standard deviation (%± σ).

Metric MIAS InBreast BCDR CBIS-DDSM Mean

J̈ 94.6± 9.8 92.6± 10.6 96.9± 4.1 95.1± 9.4 94.8± 8.5

D̈ 97.5± 7.5 95.6± 8.4 98.8± 2.2 98.1± 7.1 97.5± 6.3

Ä 99.3± 1.4 99.6± 2.2 99.9± 1.1 99.5± 1.3 99.6± 1.5

S̈ 98.2± 7.6 95.2± 8.6 99.6± 1.4 98.3± 7.6 97.8± 6.3

S̄ 99.5± 1.2 99.8± 1.8 99.9± 1.0 99.6± 1.4 99.7± 1.4

C̈ 96.5± 6.7 96.3± 9.2 99.7± 1.3 97.2± 6.5 97.4± 5.9

FPR 0.6± 1.8 0.3± 2.1 0.1± 0.8 0.4± 0.6 0.3± 1.3

FNR 3.2± 2.9 5.7± 6.5 1.9± 1.3 3.8± 2.5 3.6± 3.3

and FNR = 3.6 ± 3.3, which indicates that the majority of the estimated516

pectoral muscle regions were very close to the ground truth. Most of the517

pectoral muscle boundaries in the InBreast database were more complex and518

obscured than in the other datasets, which was probably the reason of the519

lower J̈ . In contrast, the pectoral muscle contours in the BCDR database520

were mostly visible and less complex, and thus the evaluation results are521

higher. Note that the standard deviations for the MIAS, InBreast and CBIS-522

DDSM datasets were much larger than for the BCDR dataset due to a few523

cases that are over- or under-segmented. Overall, the experimental results524

indicated that the proposed CNN model is robust and not limited to features525

from either SFM or FFDM only. In terms of the ability to generalise across526

different datasets/images types, Table 3 shows that promising quantitative527

results were achieved in each individual dataset with very small FPR and528

FNR when training the network using a mixture of SFM and FFDM images.529

To further evaluate its generalisation, we conducted an additional experiment530

by training the proposed CNN based on FFDM images only (e.g. InBreast531

and BCDR datasets) and tested it on SFM images (e.g. MIAS dataset only).532

We achieved the following results: J̈ = 91.1 ± 10.5, D̈ = 95.4 ± 9.6, Ä =533

98.9± 2.2, S̈ = 96.5± 8.5, S̄ = 99.1± 2.1, C̈ = 93.5± 10.6, FPR = 0.8± 2.1534

and FNR = 3.8 ± 3.9. These results show that the proposed CNN can535

find a ‘contour-like’ object regardless of the type of images (e.g. FFDM536

or SFM) which illustrates the ability of the proposed method to generalise537

across different datasets. The pectoral muscle segmentation pipeline takes538
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approximately 2.5± 1.2 seconds per image.539

5.2. Qualitative Results540

Figure 9 shows examples of estimated pectoral muscle boundaries from541

images of the different datasets used in this study.

Figure 9: Examples of segmentation results (red line) with their corresponding ground
truth. From left (first and sixth columns) to right this shows the original image, probability
map, Cf superimposed on the ground truth image, Cf superimposed on the original image
and evaluation results.

542

It can be observed that the proposed method can estimate the pectoral543

muscle boundary under a variety of different conditions.For example, images544

9.3, 9.7, and 9.9 show that the axillary fold appeared in the pectoral mus-545

cle region, which could lead to incorrect estimation of the pectoral muscle546

22



boundary due to more than one estimated contour in the Imap. In fact, in547

image 9.7 and 9.8, the modified HED ignores the axillary fold boundary,548

resulting in one single boundary in the Imap. Nevertheless, the proposed549

method handled the majority of cases based on the hypothesis that the pec-550

toral muscle tends to have the longest length. On the other hand, images551

9.2, 9.4 and 9.10 showed that the lower part of the pectoral muscle contour552

was obscured, but the proposed network delineated it as shown in each of553

their corresponding Imap. In image 9.12, the middle part of the pectoral554

muscle contour was obscured due to the overlapping fibro-glandular tissues555

from the breast region. However, this part is delineated in Imap, resulting in556

high quantitative results across different evaluation metrics. In cases where557

a few parts of the estimated contour were disconnected, such as in the Imap558

from images 9.5, 9.6 and 9.11, the post-processing step played an important559

role in connecting these contours. Many of the cases with clear or obvious560

pectoral muscle contours, such as in image 9.1, tended to have a well defined561

contour in the Imap.562

5.3. Validation Accuracy and Loss Curves563

Figure 10 shows an example of the validation accuracy and loss curves for564

one of the networks trained on BCDR, InBreast and CBIS-DDSM datasets. It565

can be observed that constant accuracies were achieved on both background566

and foreground (pectoral boundary) from the 50th to the 100th iterations,567

which is similar in this regard to the value of the validation loss function.568

6. Discussion569

Figure 11 shows segmentation results for four cases representing the main570

challenges explained in Section 1 when finding the pectoral muscle bound-571

ary: invisible boundary, presence of the axillary fold, complex shape and572

obscured boundary. In image 11.1 the pectoral muscle boundary is invisi-573

ble due to dense tissue overlapping with the pectoral muscle region. It can574

be observed that after performing a thresholding operation on Iεmap and the575

post-processing step, we found a small region (possible contour) which was576

invisible in the original image. All candidate contours were connected using577

the post-processing, resulting in Cf as shown in the fourth (ground truth)578

and fifth (original image) columns and giving J̈ = 90.3% and D̈ = 94.9%.579

For image 11.2 it can be observed that the Iεmap generated showed an accu-580

rate initial estimate for the pectoral muscle contour. The post-processing581
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Figure 10: Validation accuracy and loss curves of the proposed network during training
for an example network trained with the BCDR, InBreast and CBIS-DDSM datasets.

technique retained the longest contour and connected it with the contour lo-582

cated within yb and yz, which produces an accurate estimate with J̈ = 98.2%583

and D̈ = 99.1%. In this case the proposed method was not affected by the584

presence of multiple axillary folds. For image 11.3, where the shape of the585

boundary is more complex, a high probability distributed along the contour586

can be observed; by processing Ib with the simple post-processing step, eval-587

uation results achieve J̈ = 91.2% and D̈ = 95.3%. When the pectoral muscle588

contour was obscured as shown in image 11.4, the proposed method manages589

to find the lower and upper parts of the contour. By connecting these con-590

tours using the post-processing technique, the estimated Cf has evaluation591

results of J̈ = 90.6% and D̈ = 95.1%.592

6.1. Comparative Study593

A direct comparison is difficult due to the differences in evaluation tech-594

niques and the number of images employed. However, for comparison, we595

have summarised our results and present some of the existing methods in the596

literature in Tables 4 and 5. Note that we cover only those studies based on597

the datasets used in our study. Although there are many methods developed598

in the literature, the majority of them were evaluated qualitatively by expert599

radiologists (Kwok et al., 2004; Chen and Zwiggelaar, 2010) or have been600

evaluated using their own private datasets. It can be observed in Table 4 that601

our proposed method outperformed our previous method (Rampun et al.,602
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Figure 11: Segmentation results for cases shown in Figure 1. The second and the third
column are the Iεmap and Ib, respectively. From left to right this shows the original image,
probability map, Cf superimposed on the graound truth image, and Cf superimposed on
the original image.

2017b) across three datasets (MIAS, BCDR and InBreast) in all evaluation603

metrics. The main reason for this was that our previous model considered604

only intensity and geometry information, whereas the proposed approach in605

this study took texture (both local and global) and the geometry information606

into account, hence making it more flexible and robust. Furthermore, like the607

majority of the methods in the literature our first geometry model presented608

in (Rampun et al., 2017b) was developed based on the assumption that the609

pectoral muscle was either a straight line, concave, convex or a combina-610

tion of these. Although in general this assumption was correct, the model611

developed might be restricted to certain shapes. In contrast, deep learning612

did not make such assumptions, which made the the model presented in this613

work more flexible and robust. Oliver et al. (2014), whose method used614

an atlas, intensity and texture information in probability functions, achieved615

much lower results (D̈ = 83%) based on 84 images in the MIAS dataset.616
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Taghanaki et al. (2017) achieved over 96% D̈ and J̈ across three datasets.617

However, it should be noted that their results were based on the number of618

pixels overlapping with the entire image. In our case, we calculated both619

metrics based on the number of pixels overlapping with the pectoral muscle620

region only. Moreover Taghanaki et al. (2017) did not use all images from621

the MIAS and InBreast datasets.622

Table 4: Jaccard and Dice qualitative comparison. The ∗ indicates that the evaluation
metrics were computed based on the number of pixels overlapping with the entire image.

Authors Dataset (#) Results
Jaccard (%) Dice (%)

Proposed method MIAS (All) 94.6 97.5
InBreast (All) 92.6 95.6
BCDR (100) 96.9 98.8

CBIS-DDSM (457) 95.7 98.1

Rampun et al. (2017b) MIAS (All) 92.1 97.8
InBreast (All) 84.6 89.6
BCDR (100) 85.8 91.9

Oliver et al. (2014) MIAS (149) - 83

Taghanaki et al. (2017)∗ MIAS (298) 97 98
InBreast (197) 97 98.5

IRMA (All) 96.6 98.1

In terms of the false negative and false positive rates obtained with623

the MIAS dataset, our method produced FNR=3.2% and FPR=0.6%, re-624

spectively, which indicated that we quantitatively outperform recent studies625

(Vikhe and Thool, 2017; Chen et al., 2015; Yoon et al., 2016; Liu et al.,626

2014). Although the studies of Camilus et al. (2010) and Ferrari et al.627

(2004) reported small false positives, their proposed methods produced large628

false negatives of 5.58% and 5.77%, respectively. In a qualitative evaluation,629

Kwok et al. (2004) used a five level assessment scale (exact, optimal, ade-630

quate, sub-optimal and inadequate) and reported 83.9% of the segmentations631

to be adequate or better. Chen and Zwiggelaar (2010), whose method was632

tested based on 240 mammograms from the EPIC (European Prospective633

Investigation on Cancer) dataset and used a four level assessment (accurate,634
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Table 5: True positives rate and true negatives rate qualitative comparison.

Authors Dataset (#) Results
FPR (%) FNR (%)

Proposed method MIAS (All) 0.60 3.20
InBreast (All) 0.30 5.70
BCDR (100) 0.10 1.90

CBIS-DDSM (457) 0.40 3.80

Vikhe and Thool (2017) miniMIAS (All) 0.93 5.07

Chen et al. (2015) miniMIAS (All) 1.02 5.63

Liu et al. (2014) miniMIAS (All) 3.34 4.57

Yoon et al. (2016) miniMIAS (All) 4.51 5.68

Bora et al. (2016) miniMIAS (200) 1.56 2.83

Ferrari et al. (2004) miniMIAS (84) 0.58 5.77

Camilus et al. (2010) MIAS (84) 0.64 5.58

nearly accurate, acceptable and unacceptable), reported that 93.5% of their635

pectoral segmentations are at least acceptable.636

6.2. Visual Comparison637

Figure 12 shows visual comparisons with some of the existing studies in638

the literature taken from the MIAS and InBreast datasets. The segmentation639

results of the other studies were taken from the authors’ papers. We have also640

presented a quantitative comparison for a few cases where numerical results641

were available from the authors’ papers (Kwok et al., 2004; Ferrari et al.,642

2004; Rampun et al., 2017b). Note that for improved visual representation,643

we have coloured the estimated pectoral muscle boundaries from the authors’644

papers. For image pdb151lx it can be observed that the proposed method645

quantitatively outperforms our previous method (Rampun et al., 2017b) by646

at least 10% for both metrics. For this image the methods developed by647

Kwok et al. (2004) and Chen et al. (2015) under segmented the lower part648

of the pectoral muscle region. The method of Kwok et al. (2004) under649

estimated the boundary and was reported as inadequate by their expert650

radiologist. Rampun et al. (2017b) under segmented the lower part of the651
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pectoral muscle resulting in J̈ and D̈ < 10%, lower than with our proposed652

method.653

For pdb065lm, the estimated pectoral boundary of Kwok et al. (2004) was654

assessed as ‘inadequate’ by an expert radiologist. In comparison, quantita-655

tive results of Rampun et al. (2017b) reported J̈ = 86.7% and D̈ = 92.9%,656

whereas our method produces J̈ = 90.6% and D̈ = 95.9%. For pdb112rl,657

Ferrari et al. (2004) reported FNR = 16.2% and FPR = 2.3% and our pro-658

posed method yields FNR = 1.6% and FPR = 0.5%. In fact, our proposed659

method estimates the pectoral muscle boundary closer to the ground truth660

(J̈ = 92.6% and D̈ = 96.2%) than the method in (Rampun et al., 2017b)661

(J̈ = 91.0% and D̈ = 95.3%). In contrast, Ferrari et al. (2004) and Rampun662

et al. (2017b) reported good results for a case where the pectoral muscle con-663

tour was well defined, as can be observed in pdb003ll. For the case pdb170ls,664

the method of Kwok et al. (2004) failed to find the contour boundary due665

to dense tissue overlapping with the pectoral muscle boundary. Our pro-666

posed method outperforms the results in (Rampun et al., 2017b) by at least667

7% and 4% for metrics J̈ and D̈, respectively. For pdb028rl, where ‘blotch668

like’ tissue appeared on the contour, the method proposed in (Ferrari et al.,669

2004) and our approach estimate the pectoral muscle boundary very close to670

the ground truth, whereas with the technique presented in (Rampun et al.,671

2017b) the upper part of the pectoral muscle boundary is over estimated.672

For a comparison with recent studies in the literature, we use images673

pdb156rl, pdb183ll, pdb277lm (MIAS), InBreast1 and InBreast2 (InBreast).674

One of the major limitations of the current methods in the literature (Kwok675

et al., 2004; Ferrari et al., 2004; Taghanaki et al., 2017; Bora et al., 2016;676

Vikhe and Thool, 2017; Chen et al., 2015) was their inability to deal with677

complex curves due to the geometrical architecture of the model. This can678

be seen in image InBreast1 where both of the methods of Taghanaki et al.679

(2017) and Rampun et al. (2017b) failed to estimate the pectoral boundary680

close to the ground truth, whereas our proposed method achieves J̈ = 89.8%681

and D̈ = 94.6%. In a case of multiple layered pectoral muscle (InBreast2 ),682

the method proposed in this study yields J̈ = 93.5% and D̈ = 96.6%, which683

clearly outperforms our previous method (Rampun et al., 2017b), whereas684

the method of Taghanaki et al. (2017) over-segmented the upper end of685

the pectoral region. For pdb277lm Bora et al. (2016) over-segmented the686

lower part of the pectoral muscle region and our previous method (Rampun687

et al., 2017b) outperforms the proposed method in this study (one of the few688

cases where this happened). For images pdb183ll and pdb156rl, the method689
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explained in this paper yields more accurate segmentation results than the690

methods developed by Vikhe and Thool (2017), Chen et al. (2015) and691

Rampun et al. (2017b).692

29



F
ig

u
re

12
:

Q
u

al
it

at
iv

e
an

d
q
u

an
ti

ta
ti

ve
co

m
p

a
ri

so
n

s
w

it
h

so
m

e
o
f

th
e

cu
rr

en
t

st
u

d
ie

s
in

th
e

li
te

ra
tu

re
.

T
h

e
im

a
g
e

w
it

h
a

b
lu

e
re

gi
on

re
p

re
se

n
ts

th
e

gr
ou

n
d

tr
u

th
(G

T
)

w
h

er
e

th
e

b
lu

e
a
re

a
is

th
e

p
ec

to
ra

l
m

u
sc

le
re

g
io

n
.

30



6.3. Learning Region’s Structure693

Figure 13 shows a comparison of the probability maps obtained when694

training the proposed CNN with the whole pectoral muscle region versus695

the maps extracted using the proposed contour-based approach. It can be696

observed that learning the region’s structure tended to produce more false697

positives. Figure 14 shows example patches extracted from different regions

Figure 13: A visual comparison of the probability maps using region-based versus contour-
based approaches taken from the MIAS database.

698

in the mammogram. We used a 3D mesh to visualise each of the patches. It699

can be qualitatively assessed that P5, P6 and P7 are dissimilar in comparison700

to the other patches. Learning directly the region’s structure (as performed701

by the studies of Dubrovina et al. (2016) and Moeskops et al. (2016)) yielded702

more false positives because some parts of the pectoral muscle were similar703

to the breast region. For example, P1 (a patch from the pectoral muscle)704

was similar to P8 (a patch from the breast region). This is also the case for705

P2 and P4. In contrast, P5, P6 and P7 (patches extracted from the pectoral706

muscle boundary) were quite distinct, which made our predictive model more707

accurate in finding the muscle boundary.708
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Figure 14: A 3D mesh visualisation for patches extracted from the breast region (blue
boxes), pectoral muscle (green boxes) and boundary regions (red boxes).

6.4. Effects of Post-processing709

Figure 15 shows visual comparison of the proposed post-processing method710

against Canny (Canny, 1986), Prewitt (Parker, 1997) and Sobel (Parker,711

1997) operators when applied to the probability map. It can be observed712

that the post-processing method made a substantial contribution to the final713

results. The Canny operator (Canny, 1986) tended to capture more details,714

which could lead to a more complicated post-processing step. Although the715

Prewitt (Parker, 1997) and Sobel (Parker, 1997) operators captured fewer716

details of the probability map, further post processing steps were still re-717

quired to connect and remove unwanted contours.718

From the examples shown in Figure 15, all three operators (Canny, Pre-719

witt and Sobel) were insufficient in finding the actual pectoral muscle bound-720

ary and it was essential to use our proposed post-processing steps to: (a)721

remove false positives (see step three in Section 4.3.2), (b) select the pectoral722

contour in a case of multiple contours detected in the probability map, (c)723

recover the missing parts of the contour in the probability map, (d) connect724

the missing lines or pixels of the contour and (e) smooth the final estimated725

pectoral muscle boundary.726

6.5. Effects of Threshold Values727

Figure 16 shows the performance evaluation of the proposed method using728

different threshold values when extracting initial candidates from the Imap.729
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Figure 15: A visual comparison between contour detection using Canny, Prewitt, Sobel
and the proposed post processing method.

The metrics J̈ and D̈ were chosen as evaluation metrics for all datasets. The730

training and testing sets are as described in Table 2 where each database731

was tested on a round robin basis. For this purpose, we tested 21 different732

threshold values from 0.1 to 0.7 with an interval 0.03. It can be observed that733

results for both metrics were consistent from 0.1 to 0.58. The evaluation re-734

sults across different datasets decreased when using a threshold value larger735

than 0.58. As can be observed, the performance of the proposed method736

reduced after a threshold value of 0.58. Choosing a higher threshold value737

(e.g. 0.8 or 0.9) further deteriorated the performance due to loss of bound-738

ary/important cues in the binary image. Selecting a maximum threshold739

value (e.g. 1) removed all boundaries hence producing an empty binary im-740

age. On the other hand, choosing a smaller interval value (e.g. 0.01) did not741

make a significant difference in terms of performance. This is because the742

effect of a small interval value is only a small number of pixels resulting in743

very similar binary images.744

6.6. Visual Heat-maps Comparison745

Figure 17 shows visual likelihood map comparisons between the original746

HED and the proposed network (modified HED). It can be observed that our747

network was more precise in locating the boundary of the pectoral muscle,748
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Figure 16: Performance evaluation using different threshold values for the J̈ and D̈.

whereas the original HED can only approximately estimate the location. For749

example, regions with high probability of being a contour (dark red) were750

larger in the original HED heat-maps than in the modified HED heat-maps,751

which made it more difficult to estimate the pectoral boundary in the post-752

processing step. Moreover, this suggested that the number of false positives753

(the number of pixels with dark red colour) in the heat-maps generated by the754

original HED is much higher. In contrast, only pixels (and their neighbouring755

pixels) located along the contour have high probability in the heat-maps756

generated by our proposed network. This can be explained when the original757

HED captured more finer and coarser details, yielding a coarser side-output758

in each convolution layer. As a result, the original HED network generated759

a blurry/coarser final output when fusing all the side-outputs from each760

convolution layer.761

6.7. HED versus modified HED762

This section presents a quantitative comparison between the performance763

of the original HED and our proposed network. Table 6 shows the exper-764

imental results across different metrics used in this study. The resulting765

probability maps produced by both networks fed into the post-processing766

pipeline developed in our study. These quantitative results clearly show that767
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Figure 17: Visual heat-maps comparison between the modofied HED (second column) and
the original HED (third column). Dark red colour indicates higher probability of being an
object (e.g. a contour).

our proposed network outperformed the original HED. Note that the stan-768

dard deviations produced by the original HED are much higher due to cases769

where the detected boundary was far away from the actual boundary. Figure770

18 shows some examples of probability maps produced by both networks. It771

can be observed that i) the original HED network was unable to find the772

pectoral boundary when it is obscured (e.g. first and second rows), ii) the773

original HED tended to produce a jagged boundary whereas our proposed774

network produced a smooth boundary (e.g. third and fourth row), iii) the775

original HED was unable to find accurate location of the pectoral boundary776
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when it overlaps with breast tissue (e.g. sixth row), iv) the original HED un-777

der estimated the locations of the pectoral muscle boundaries in most cases778

(think boundary), and v) the proposed network produced more accurate lo-779

cation, clearer probability map and more robust.780

Table 6: Quantitative comparison between the original HED and our proposed network.
All metrics are presented as percentages with standard deviation (%± σ).

Metric HED (Xie and Tu, 2015) Proposed Network

J̈ 79.3± 11.5 96.9± 4.1

D̈ 84.1± 9.3 98.8± 2.2

Ä 85.5± 8.4 99.9± 1.1

S̈ 86.2± 8.6 99.6± 1.4

S̄ 87.9± 8.2 99.9± 1.0

C̈ 86.4± 9.3 99.7± 1.3

FPR 8.9± 9.1 0.1± 0.8

FNR 10.9± 9.3 1.9± 1.3

6.8. Choice of evaluation metrics781

The metrics used to evaluate the performance of our proposed method782

are standard metrics used in most studies in the literature. We chose these783

metrics to enable us to make a quantitative comparison with existing studies.784

Many studies used visual evaluation by a radiologist which is subjective (e.g.785

perfect, accurate, adequate and poor). Some studies used only FPR and786

FNR or D̈ and J̈ or Ä or S̈. We used as many metrics as possible in our787

study so that we can compare the performance of our study across different788

studies available in the literature. The D̈ and J̈ metrics are more sensitive in789

comparison to the other metrics such as Ä or S̈. However, these metrics are790

less sensitive to visual error. Segmentation results of the other studies (e.g.791

studies of Rampun et al. (2017b); Taghanaki et al. (2017)) also qualitatively792

show that these metrics are less sensitive to visual error.793

6.9. Cross validation794

Quantitative results presented in this paper represent a single training795

instance. We did not perform a cross-validation exercise during the train-796

ing and validation phase mainly due to i) the number of training images is797
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Figure 18: A visual comparison between probability maps produced by the original HED
and our proposed network.

sufficient (in our case over 2200 to 3500), hence cross validation is unneces-798

sary, ii) cross-validation is extremely time consuming. In our case, a single799

training instance takes 7 hours on an Intel Xeon E5-1650 v3 processor, us-800

ing Nvidia Corporation’s Deep Learning GPU Training System (DIGITS)801

based on Caffe, with a Nvidia’s Quadro M6000 (12Gb) graphics card. Doing802

cross-validation, for example 3-fold cross validation of 10 runs in each fold,803
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would be 7 × 30 = 210 hours, which is approximately 9 days. If we repeat804

this for all four datasets on a round robin basis it will take 36 days and805

iii) even without cross-validation we already achieve very promising results806

across different datasets.807

6.10. Up-sampling resulting contour808

Once we find the boundary, which is a set of x - and y-coordinates, it809

can up-sample using an image up-sampling technique. For example, if the810

original image is down sampled by a factor of 4 then each pectoral boundary811

coordinate should be up sampled by a factor of 4 so that a close boundary812

can be projected on the original image (similar to Oliver et al. (2014)). In813

other words, the coordinates of the resulting contours can be projected on814

an original space based on the ratio between the original and down sampled815

resolutions. Obviously, the projection would not be 100% accurate, but this816

should not affect the breast density estimation greatly as the majority of817

dense tissue appears within the mamae corpus (or mammary gland) rather818

than within the pectoral muscle boundary (Rampun et al., 2018a, 2017a).819

This is similar to other tasks such as microcalcification or lesion detection820

as they dont usually appear close to the pectoral muscle boundary (Rampun821

et al., 2018c).822

6.11. Study Limitations and Future Work823

The main limitations of our study are i) firstly, since all images were down824

sampled to 256× 256, direct quantitative comparison to studies which have825

used a full image resolution is difficult. However, there are many previous826

non-CNN methods which have down-sampled the original size of the image827

and made quantitative evaluation based on the down-sampled image, with828

several examples are the studies of Mustra and Grgic (2013); Kwok et al.829

(2004); Oliver et al. (2014); Rampun et al. (2017b). Secondly ii) image830

down sampling may affect the actual representation and accuracy of the831

pectoral muscle boundary in a full image resolution. However down sampling832

is necessary to accommodate memory and processing time requirement.833

Figure 19 illustrates a possible future direction of this work. Probability834

maps generated by the region-based approach may contain additional infor-835

mation and could be used as a ‘secondary reference’ to find contours which836

are invisible in the Imap generated by the contour-based approach. For ex-837

ample, approximately 50% (red ellipse) of the contour in the right image was838

invisible. However, this path could be found in the middle image (probability839
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map generated by the region-based approach). Our preliminary observation840

suggested that region-based approaches tend to generate many false positives,841

which affects the post-processing step. However, if these could be reduced,842

it will have the potential to be a secondary source of information when re-843

trieving invisible contour paths in Imap. Another possible future direction of844

our study would be to generalise the network for generic object segmentation845

purposes in images.

Figure 19: Illustration of combining probability maps generated by region-based (middle)
approach and contour-based approach (right).

846

7. Summary and Conclusions847

In summary, we have presented a contour based approach for breast848

pectoral muscle segmentation in mammograms inspired by the Holistically-849

Nested Edge Detection (HED) network of (Xie and Tu, 2015), automatically850

learning rich hierarchical image representations that were essential to resolve851

ambiguities in edge and object boundary detection. Once the probability map852

(Imap) is generated, we first processed it using a morphological operation to853

connect any small gaps between contours to generate Iεmap. Subsequently,854

we applied a thresholding operation on Iεmap to obtain a binary image (Ib).855

Finally, Ib was post-processed based on the axes intersections of the longest856

region (Lr) in Ib and a simple ‘moving average’ was employed to smooth857

the final contour (Cf ). The main attractive feature of the proposed method858

is the fact that we treat the segmentation problem as an object detection859

task by training our network to recognise ‘contour-like’ objects in a mam-860

mogram rather than training the network to differentiate two regions (e.g.861

pectoral muscle region versus breast region) which is the more conventional862
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approach in image segmentation. As a result, the proposed method is ro-863

bust and capable of reducing false positives/negatives resulting in a more864

accurate segmentation. In comparison to non-CNN methods, our proposed865

method is fully automated both in terms of its execution (some of the exist-866

ing methods require user interaction such as seed initialisation and choosing867

the degree for the polynomial curve) and modelling the appearance of the868

pectoral muscle. This yields a more robust model which is able to handle869

variety in appearance/shape of the pectoral boundary including when it is870

obscured or invisible. Most non-CNN methods require extensive knowledge871

of the appearance of the pectoral muscle boundary model in a mammogram872

to successfully develop a robust geometrical-based model. Unfortunately,873

such models usually fail to deal with obscured and invisible pectoral muscle874

due to significant difference between the actual model and the actual ap-875

pearance of the pectoral boundary. For example, some boundaries cannot876

be represented or modelled geometrically. Furthermore, in a case where the877

pectoral muscle is unavailable (hence no pectoral muscle) in a mammogram,878

our method is able to detect this automatically whereas all the non-CNN879

methods in the literature assume that each mammogram contains a pectoral880

muscle region. Finally, this study conducted the largest experimental valida-881

tion in the literature covering four different databases collected from different882

institutions.883

In conclusion, we have proposed a contour-based approach by modifying884

the original HED network architecture to find the boundary of the pectoral885

muscle using a single-stream deep network divided into four blocks of convo-886

lution and pooling layers which are different from the patch-based approaches887

and region-based approaches (used by the studies of Dubrovina et al. (2016)888

and Moeskops et al. (2016)). Our network was designed and trained to specif-889

ically find ‘contour-like’ objects in mammograms. Experimental results based890

on four different datasets covering SFM and FFDM suggested that the pro-891

posed network can find ‘contour-like’ appearances between the breast and the892

pectoral muscle regions. In conjunction with the post-processing approaches893

used in this study, the probability maps generated by the proposed network894

can be enhanced to estimate the pectoral muscle boundary. Quantitative895

evaluation results showed that our method produced on average Jaccard and896

Dice values of 94.8± 8.5% and 97.5± 6.3%, respectively, from four datasets,897

namely MIAS, InBreast, BCDR and CBIS-DDSM. The proposed method898

outperformed some of the previous (Ferrari et al., 2004; Kwok et al., 2004)899

and current (Bora et al., 2016; Rampun et al., 2017b) methods quantita-900
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tively and qualitatively. However, an overall comparison was difficult due to901

differences in the number of images and evaluation metrics used in different902

studies. Finally, in the future, we plan to investigate a more robust way to903

generate a likelihood map by combining all probability maps generated from904

contour-based and region-based approaches.905
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