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Functional filler-reinforced composite materials play critical roles in thermal 22 

management in various engineering applications. In this study, an in-house coded 23 

spatially-varying relaxation parameter Lattice Boltzmann Method (SVRP-LBM) 24 

solver has been developed for predicting the effective thermal conductivity (ETC) of 25 

simulated composite materials. A randomly dispersed filler generator (RDFG) 26 

incorporating Monte Carlo random sampling method has been developed for 27 

reconstructing the microstructure of composite materials. The artificial composite 28 

materials with functional fillers of different geometries and particle size are studied. 29 

The SVRP-LBM is validated against FVM perditions and theoretical models. The 30 

spatially-varying relaxation parameters method has been used to reflect materials with 31 

different thermophysical properties, including the interfacial contact resistance 32 

between the matrix-filler interfaces. It is demonstrated that the lowest relaxation 33 

parameters should be around 1.0 in order to achieve a higher accuracy of LBM 34 

predictions. The effects of filler geometry and particle sizes on the ETC are also 35 

assessed. The shape and orientation of the anisotropic filler have strong effects on the 36 

ETC. After the geometry of the filler in the numerical models being adjusted 37 

accordingly to the real fillers, the predictions show good agreement with experimental 38 

data. All in all, the SVRP-LBM solver has shown good capability and accuracy for 39 

predicting the ETC of composite material. 40 
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Effective thermal conductivity 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 



Citation:  
Ke, X.; Duan, Y., A spatially-varying relaxation parameter Lattice Boltzmann Method (SVRP-LBM) for predicting 

the effective thermal conductivity of composite material. 2019, 169, 109080. 

https://doi.org/10.1016/j.commatsci.2019.109080 

3 
 

Nomenclature 58 

Letters 

c𝑠  Pseudo sound speed (m/s) 

𝑐𝑖  Discrete lattice speed at direction i (m/s) 

d Dimensionless LBM diffusion coefficient 

𝑓𝑖   Distribution function 

𝑓𝑖
𝑒𝑞

  Equilibrium distribution function 

i D2Q9 LBM velocity direction (i=0~8) 

k Thermal conductivity (W/m∙K) 

keff Effective thermal conductivity (W/m∙K) 

q Heat flux (W/m
2
) 

𝑟  Position vector (m) 

t Time (s) 

𝑡𝐿𝐵𝑀  Dimensionless LBM time step 

𝑤𝑖  Weighting factor at direction i 

A Composite cross-sectional area (m
2
) 

Cp Specific thermal capacity (J/kg∙K) 

𝐷𝑑𝑖𝑓𝑓  Thermal diffusivity (m
2
/s) 

L Composite thickness (m)  

N Total number of lattice 

T Temperature (K) 

∆T  Temperature difference (K) 

Greek symbols 

𝜌 Density (kg/m
3
) 

𝜏  Dimensionless relaxation time 

𝜉 Average particle size (mean value) 

𝜎2  Variance 

𝜑   Filler volume fraction  

𝜑𝑛  Volume fraction of phase n (n=1, 2, 3 … ) 

𝜔  Dimensionless relaxation parameter 

𝛺𝑖  Collision operator at direction i 

 59 

 60 

  61 
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1 Introduction 62 

In recent decades, there has been rapid progress in the synthesis and processing of 63 

composite materials enhanced with functional fillers [1-3]. These functional filler-64 

reinforced composite materials are widely used for thermal management in various 65 

applications, such as energy storage [4], electrolyte fuel cell [5], small electronic 66 

devices [6, 7], and thermal insulation in buildings [8]. As these materials play more 67 

and more important roles in our everyday life, there have been increasing demands for 68 

better scientific understanding of the heat transfer process within these materials at 69 

microscopic and mesoscopic scales [9]. 70 

Thermal conduction is the main heat transfer mechanism that occurs in composite 71 

materials [10, 11]. The thermal conductivity of composite material plays critical roles 72 

in assessing its thermal performances, such as thermal insulation and heat dissipation 73 

[11-13]. The effective thermal conductivity (ETC) is the most commonly used 74 

parameter for characterising the thermal performance of composite materials [11, 14]. 75 

The ETC of a composite material is determined by many factors, including the 76 

thermophysical properties of both the matrix and filler materials, volume fractions, 77 

geometries and distributions of the functional fillers [10, 13, 15]. Both experimental 78 

methods and modelling methods can be used to assess the ETC values. The 79 

experimental methods include steady-state methods, such as guarded hot plate method, 80 

axial flow method, and heat flow meter method; and transient methods, such as flash 81 

method, transient hot-wire method, and transient plane source method [16]. The 82 

modelling methods include theoretical modelling and numerical modelling. The 83 

theoretical models for composite materials can be categorized into two classes, the 84 

effective medium approximation (EMA) and the micromechanics method. The EMA 85 

methods include the Maxwell-Eucken model [17] and its extensions, while the 86 

micromechanics method includes Mori–Tanaka (M-T) model [18] and Benvensite’s 87 

model [17]. A summary of these existing theoretical models for predicting ETC of 88 

polymer-based composite material can be found in Zhai et al. [14].  89 

Owing to the recent development of computational techniques, numerical 90 

simulation methods have attracted growing attention as powerful tools to predict the 91 

ETC of composite materials at multiple scales [14]. The finite-difference methods 92 

(FDM) and finite volume method (FVM) are widely used for the macroscale (>1mm) 93 

thermal performance modelling [19, 20]. In comparison, the Lattice Boltzmann 94 

Method (LBM) shows better precision and faster time evolution when dealing with 95 

heat transfer at mesoscales (1μm to 1mm) [21-23]. However, when the nanomaterials 96 

(1nm to 1μm) are used as functional fillers, such as 2D graphene sheets, molecular 97 

dynamic (MD) models are often used to reconstruct their nanoscale features [24]. For 98 

functional composite materials, the scales of the fillers, such as metals [1, 25], 99 

functional ceramics [6, 7], and graphite [2, 26], are normally around few micrometres, 100 

making the LBM a better method to simulate the thermal performance of these 101 

materials.  102 
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The Lattice Boltzmann Method (LBM), originated from the lattice gas automata 103 

(LGA) method and developed based on the Boltzmann kinetic equation is a powerful 104 

mesoscopic approach. The method can cooperate with the complex geometry 105 

boundary conditions and various interactions between particles [14, 21]. Wang et al. 106 

[27] used LBM to predict the ETC of a random open foam porous material. Lu et al. 107 

[28] studied the conjugate heat transfer phenomena at the solid-liquid interfaces using 108 

LBM. Fang et al. [29] used LBM to predict the thermal conductivity of braided fabric 109 

composites. And, Li et al. [7] used the same method to study the effects of fillers size 110 

on the ETC of thermal interfacial material for the heat dissipation in LED.  111 

Despite the recent progress in using LBM to predict the ETC of composite 112 

materials, tuning of relaxation parameters in order to achieve stable and accurate 113 

simulations remains as a challenge [30]. In general, the choice of suitable relaxation 114 

parameter (ω) is crucial for the accuracy and stableness of the LBM simulation [23, 115 

30]. Wang et al. [31] suggested that the ω should be between 0.5 to 2 to ensure 116 

stableness for the simulation of the conjugate heat transfer at the solid-liquid 117 

interfaces. Walther et al. [23] suggested that for the ionic diffusion process in two-118 

phase materials with large diffusivity ratios, stable LBM simulation results can only 119 

be achieved when the ω for both materials is within 0.1 and 1.0. However, the effect 120 

of ω values on simulation accuracy has not yet been discussed.  121 

The Monte Carlo random sampling method has been applied for generating of 122 

microstructures which is representative of laboratory synthesised materials [22, 32]. 123 

Zhou et al. [22] used randomly dispersed fillers with uniformly distributed filler sizes. 124 

This treatment has its limitation to represent the actual microstructure of composite 125 

materials, as particle distributions similar to the normal distribution were often 126 

observed in experiments [6]. Deng et al. [33] used statistical self-similarity fractal 127 

geometry to reconstruct the self-similar random porous structure; however, the fixed 128 

filler location was adapted which was not ideal to represent the composite materials 129 

reinforced by randomly dispersed fillers. It remains unclear how the distribution of 130 

particle sizes will affect the thermal performance of a composite. The shape of the 131 

particles impacts the macroscale thermal properties of the composite material, and 132 

should not be neglected [10]. Moreover, the effects of the orientation of fillers need to 133 

be better understood, if the filler particles possess the anisotropic shape. In addition, 134 

the heat conduction occurred at the interfaces between the functional filler and the 135 

matrix material also plays critical roles in the overall thermal performance of the 136 

composite material [34-36]. The main physical phenomenon to consider here is 137 

interfacial contact resistance due to imperfect contact (or roughness) between the 138 

surfaces that leads to large phonon scattering and temperature differences [37]. It 139 

would be necessary to test the ability of the LBM solver to reflect this physical 140 

phenomenon. 141 

In this study, an in-house coded spatially-varying relaxation parameter Lattice 142 

Boltzmann Method (SVRP-LBM) solver has been developed for predicting the ETC 143 

of various composite materials. The paper is organised as follows: a brief introduction 144 

https://www.sciencedirect.com/topics/engineering/boundary-condition
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to the LBM method and randomly dispersed filler generator are included in section 2. 145 

Section 3 is contributed to discuss the benchmark study as well as the effect of the 146 

spatially varying relaxation parameters on the stableness and accuracy of the LBM 147 

simulation. In section 4, the effect of the random features of the fillers, distribution of 148 

filler size and location and orientation of the anisotropic fillers, the thermal 149 

conduction behaviours between the filler and matrix interfaces are discussed, as well 150 

as validation of the SVRP-LBM solver with respect to the real composite materials.  151 

 152 

2 Methodologies 153 

2.1 Governing equations 154 

The heat conduction in the lattice domain is governed by equation (1),  155 

ρCp 
𝜕𝑇

𝜕𝑡
=𝑘𝛻2𝑇 (1) 

where ρ, Cp and k are the density, specific thermal capacity, and thermal conductivity 156 

of the material, respectively. 157 

2.2. Lattice Boltzmann method 158 

In this paper, the single-relaxation-time D2Q9 LBM is used. We will give a brief 159 

introduction to the methodology in this section. For readers’ interested in this method, 160 

please refer to [30, 38] for more information.  161 

The kinetic LB equation can be written as,  162 

𝜕𝑓𝑖(𝑟,𝑡)

𝜕𝑡
 + 𝑐𝑖 ∙

𝜕𝑓𝑖(𝑟,𝑡)

𝜕𝑟
 = Ω𝑖 (2) 

where 𝑓𝑖(𝑟, 𝑡) represents the probability distribution function in direction i (i=0~8, 163 

Figure 1) at location 𝑟 at time t.  Ω𝑖 is the collision operator. 164 

 165 

  166 

Figure 1 Schematic diagram of D2Q9 velocity directions model. 167 
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 168 

In this study, the Bhatnagar-Gross-Krook (BGK) collision approximation is used, 169 

which can be written as [39],  170 

 Ω𝑖= −  
1

𝜏
 [𝑓𝑖(𝑟, 𝑡) − 𝑓𝑖

𝑒𝑞(𝑟, 𝑡)] (3) 

Δ𝑟 = ∆𝑡 ∙ 𝑐𝑖 (4) 

where 𝑓𝑖
𝑒𝑞

 is the equilibrium distribution function and 𝜏 is the relaxation time. 𝑐𝑖  is 171 

the lattice speed at direction i. 172 

The discretization of equation (2) to (4) can be written as following,  173 

𝑓𝑖(𝑟 + ∆𝑡 ∙ 𝑐𝑖, 𝑡 + ∆𝑡) − 𝑓𝑖(𝑟, 𝑡)= − ω ∙[𝑓𝑖(𝑟, 𝑡) − 𝑓𝑖
𝑒𝑞(𝑟, 𝑡)] (5) 

ω =
∆𝑡

𝜏
 (6) 

where ω is the relaxation parameter. 174 

The bulk properties of density and temperature are obtained by equation (7),  175 

𝑇(𝑟, 𝑡)= ∑ 𝑓𝑖(𝑟, 𝑡)
8
0  (7) 

where T represents the macroscopic temperature. 176 

The macroscopic temperature distribution correlates with the mesoscopic 177 

equilibrium distribution function via equation (8) and (9),  178 

𝑓𝑖
𝑒𝑞 = 𝑤𝑖 ∙ 𝑇(𝑟, 𝑡) (8) 

𝑤𝑖 ∙=

{
 
 

 
 

4

9
     𝑖 = 0

      
1

9
     𝑖 = 1~4

     
1

36
    𝑖 = 5~8

 (9) 

where 𝑤𝑖 is the weighting factor for direction i (Figure 1). 179 

The discrete lattice velocity 𝑐𝑖 is defined as,  180 

𝑐𝑖 ∙=

{
 
 

 
 0     𝑖 = 0                                                                          

(𝑐𝑜𝑠𝜃𝑖 , 𝑠𝑖𝑛𝜃𝑖) ∙ 𝑐𝑠,    𝜃𝑖 = (𝑖 − 1)
𝜋

2
     𝑖 = 1~4          

     √2(𝑐𝑜𝑠𝜃𝑖 , 𝑠𝑖𝑛𝜃𝑖) ∙ 𝑐𝑠,    𝜃𝑖 = (𝑖 − 5)
𝜋

2
+
𝜋

4
     𝑖 = 5~8

 (10) 

where 𝑐𝑠 is the pseudo sound speed. 181 

According to the Chapman-Enskog Expansion [38], the relaxation parameter ω is 182 

related to the thermal conductivity and thermal diffusivity (𝐷𝑑𝑖𝑓𝑓) of the material via 183 

equations (11) and (12),  184 
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𝑘

𝜌𝐶𝑝
 = 

𝑐𝑠
2∙∆𝑡

2
(
1

𝜔
− 

1

2
) (11) 

𝐷𝑑𝑖𝑓𝑓 = 
𝑘

𝜌𝐶𝑝
 (12) 

where 0<ω<2. 185 

In this study, spatially varying relaxation parameters (SVRP) are used to reflect the 186 

heterogeneous thermophysical properties of composite materials at mesoscale [31]. 187 

For composite materials composed of two materials, their thermophysical properties 188 

are related to the relaxation parameters as: 189 

𝐷1

𝐷2
 = 

𝑘1

𝑘2
 ×  

(ρC𝑝)2

(ρC𝑝)1
 = 

(
1

𝜔1
−
1

2
)

(
1

𝜔2
−
1

2
)
 (13) 

 190 

After the system reaches its equilibrium final state, the effective thermal 191 

conductivity (ETC) is then calculated using equation (14),  192 

𝑘𝑒𝑓𝑓 = 
𝐿∙∫𝑞∙𝑑𝐴

∆𝑇∙∫𝑑𝐴
 (14) 

where q is the steady state heat flux, ∆T is the temperature difference along the heat 193 

flux direction over a distance of L, and A is the cross-sectional area. 194 

2.2 Boundary conditions 195 

The insulated boundaries are treated as adiabatic. The isothermal boundary 196 

condition follows the Zou and He bounce-back rule [40], which can be expressed as:  197 

𝑓𝛼 − 𝑓𝛼
𝑒𝑞

 = −(𝑓𝛽 − 𝑓𝛽
𝑒𝑞) (15) 

where α and β represent the two opposite directions. 198 

Equation (16) is used to approximate the heat flux at the constant heat flux 199 

boundary condition.  200 

𝑞′ = −𝑘𝑝ℎ𝑎𝑠𝑒 ∙
𝜕𝑇

𝜕𝑟
 (16) 

 201 

2.3 Randomly dispersed filler generator (RDFG) 202 

In this study, a randomly dispersed filler generator (RDFG) has been developed to 203 

mimic microstructures of artificial composite materials. In the RDFG, the scale of the 204 

fillers are governed by the normal distribution 𝑓(𝑥|𝜇, 𝜎2) , which expressed by 205 

equation (17). Meanwhile, the location of the fillers in the domain follows the 206 

uniform distribution. Overlapping of the located fillers is not allowed in this practice. 207 

The contact between the fillers (sharing of the same node) is only allowed when the 208 

total filler fraction is higher than 0.3. 209 
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𝑓(𝑥|𝜉, 𝜎2)= 
1

√2𝜋𝜎2
𝑒
−
(𝑥−𝜉)2

2𝜎2  (17) 

 where ξ is the average particle size and σ2 is the variance, 210 

For the RDFG developed in this study, the average particle size and variance are 211 

provided by the users as initial inputs, as well as the total filler volume fraction. For 212 

any given number of total fillers, the scalers following the normal distribution as 213 

shown in equation (17) will be generated, randomly allocated to the lattice domain 214 

and output as black (filler) and white (matrix) images. The total filler volume fraction 215 

will be calculated by counting the percentage of black pixels in the entire lattice 216 

domain. To achieve a designated total volume fraction, an initial filler number is 217 

estimated using the average particle size provided by the user, which will be adjusted 218 

stepwise until reaching the designated total filler volume. Since the least 219 

increment/decrement possible is depending on the smallest fillers generated following 220 

the normal distribution, a deviation below 1.0 % is considered acceptable by the 221 

RDFG. 222 

Figure 2 gives a view of four simulated artificial composite materials 223 

microstructure generated using RDFG with different input parameters, according to 224 

the scanning electron microscopy (SEM), or transmission electron microscopy (TEM) 225 

images reported in the literature [41-44]. Figure 3 and Figure 4 show examples of 226 

simulated microstructure of composite material consist of fillers (spherical or 227 

elliptical) with varying sizes. And, sizes of the particles in each composite follow the 228 

normal distribution.  229 

 230 

          231 

 232 

Figure 2 (a) to (d), schematics of the generated composite material microstructure 233 
with fillers of different sizes, geometries and volume fractions using the described 234 
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RDFG computational method (200x200), and comparison with the microstructure of 235 

real composite materials. (e) SEM image of Cu/D composite, adapted from [41] with 236 
permission from Elsevier; (f) BSE image of carbon fibre reinforced bulk metallic 237 
glass composite, reproduced from [42], with the permission of AIP Publishing; (g) 238 
TEM image of a typical PC/PBT/Talc composite, adapted from [43] with permission 239 

from Elsevier; (h) TEM image of PLA/talc composite, adapted from [44] with 240 

permission from John Wiley and Sons;  241 

 242 

Figure 3 Schematic diagram of the microstructure with spherical fillers of normally 243 

distributed particle sizes. 244 

 245 

Figure 4 Schematic diagram of the microstructure with elliptical fillers of normally 246 
distributed particle sizes. The values of semi-major axis of the ellipses were used for 247 

plotting the particle size distribution.  248 

 249 
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3 Benchmark Studies 250 

3.1 Comparison with the finite volume method  251 

Before applying the in-house developed LBM in the further application, the code is 252 

first validated against a simulation based on the finite volume method (FVM) in this 253 

section. It is worth to mention that the LBM code and RDFG are developed using 254 

Python 3, while the FVM is a Fortran code. In the FVM code, the heat conduction 255 

equation is discretized using the 2
nd

 order central differencing scheme. Two codes are 256 

applied to simulate the heat conduction via a plate which is made from two materials, 257 

Material I and II. The geometry of the validation case is illustrated in Figure 5. Both 258 

materials possess different thermal conductivities and diffusivities. The dimensionless 259 

conductivity and diffusivity of Material I are k1=1.0 and D1=0.05, respectively, while 260 

these two properties (dimensionless) of Material II are k2 =10.0, D2 =0.25. The 261 

Material II occupies the bottom left quarter, while elsewhere is filled with Material I. 262 

The dimensionless temperature on the west and south wall are set as T=1, while the 263 

dimens ionless  temperatu re  on  the  o ther  two  wal l s  a re  se t  a s  T=0. 264 

 265 

Figure 5 Schematic diagram of 2-D problem with dimensionless boundary conditions 266 
and thermophysical properties of different materials. The length along x-axis and y 267 

axis both have been set to 1(dimensionless). 268 

 269 

For the LBM simulation, a lattice domain of 200⨯200 is used. The relaxation 270 

parameter  ω1 and ω2 of material I and II are determined according to equation (13). 271 

The ω1 and ω2 in the current case are set as 1.67 and 1.00, respectively. In the FVM 272 

simulation, the domain is discretized using the 80⨯80 mesh. The mesh independent is 273 

achieved in the FVM simulation. 274 

The temperature outputs at the equilibrium state of both LBM and FVM 275 

simulations are compared in Figure 6. The temperature contours (Figure 6a) of both 276 

simulations show good agreement between two methods. To exam the results with 277 

more details, the vertical temperature profile at x = 0.265 and x = 0.760 are compared 278 

in Figure 6b. At x = 0.265, where the line crosses only the region of Material I, the 279 
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temperature profiles by both methods overlap with each other. At x = 0.760, where 280 

the line crosses Material I and Material II, there shows an observable difference 281 

between the outputs of two methods. However, differences only appear around the 282 

interfaces between two materials. This inconsistency lies in the fundamental 283 

difference of two methods in the treatment of heat transfer around the interfaces. In 284 

the FVM, the heat transfer around the interfaces of two materials is approximated 285 

using the information from the cells at both sides of the interface because of the 286 

numerical scheme. In the LBM, different relaxation parameters are assigned to the 287 

lattice nodes within different materials, and no special treatment at the interfaces is 288 

made. But such difference is deemed to be ignorable as suggested in [45]. 289 

 290 

 291 

Figure 6 (a) Comparison between the LBM (solid lines) and FVM (dashed lines) 292 

prediction at the equilibrium steady state. (b) Comparison between the LBM (solid 293 

lines) and FVM (dashed lines) at x=0.265 and x=0.760. 294 

 295 

3.2 Sensitivity study of relaxation parameters for high diffusivity ratios  296 

In this section, the effects of the relaxation parameters on the accuracy and 297 

efficiency of the LBM simulation are discussed. As suggested by equation (13), the 298 

relaxation parameters 𝜔1 and 𝜔2 are related to the diffusivity ratio of two materials 299 

(𝐷1/𝐷2 ). Figure 7 shows the correlations between 𝜔1 and 𝜔2 when the 𝐷1/𝐷2  ratio 300 

ranges from 0.001 to 1000. As illustrated in the figure, the values of 𝜔1 and 𝜔2 are 301 

positively correlated for a fixed 𝐷1/𝐷2 ratio. When 0.01< 𝐷1/𝐷2  <100, it is easy to 302 

set one relaxation parameter to 1 while letting the other relaxation parameter to be 303 

slightly above 1 (over-relaxation). In the cases of large diffusivity ratios (𝐷1/𝐷2  > 304 

100 or 𝐷1/𝐷2  < 0.01), one of the relaxation parameters has to be closer to the lower 305 

(0.0) or upper limit (2.0) of the allowed value, regardless of the other relaxation 306 

parameter, which might cause significant numerical instability [23]. 307 

 308 
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 309 

Figure 7 Relation between 𝜔1 and 𝜔2 when the diffusivity ratio D1/D2 ranges from 310 

0.001 to 1000. 311 

 312 

The LBM time step is related to the real-time scale via equation (18) and (19) [23, 313 

38].  314 

𝑡

𝑡𝐿𝐵𝑀
 = 

𝑑×𝐿2

𝐷×𝑁2
 (18) 

𝑑 = 𝑐𝑠
2(
1

𝜔
−
1

2
) (19) 

, where t,  D and L represent the real-time, diffusion coefficient (m
2
/s) and length 315 

scale, while tLBM, d and N represent the dimensionless LBM time step, LBM diffusion 316 

coefficient and total number of lattice. 317 

Figure 8 shows the correlations between the chosen relaxation parameters and the 318 

time evolution scale per LBM time step at the diffusivity ratio (D1/D2) of 100, whilst 319 

N is 200, L is 10
-3

 m, and D2 is 1.0x10
-6

 m
2
/s. As shown in the figure, the time 320 

evolution per LBM time step will always decrease as the selected relaxation 321 

parameter values increases, while the absolute value of the time evolution per 322 

iteration is dependent on the thermal property of the material and the resolution of the 323 

lattice. 324 
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 325 

Figure 8 Relation between relaxation parameter ω1 and ω2 at the diffusivity ratio 326 

(D1/D2) of 100 (black line with diamond markers), and the time evolution per LBM 327 

time step (t/tLBM) under the corresponded chosen relaxation parameter ω1 and ω2 (grey 328 

line with star markers). 329 

 330 

 331 

Figure 9 Schematic diagram of a periodically dispersed spheres model with boundary 332 

conditions 333 

 334 

A case with periodically distributed spherical particles in the lattice domain is 335 

created to investigate the effect of the relaxation parameters on the simulation 336 

accuracy. A view of the geometry can be found in Figure 9. The conductivities of the 337 

spherical fillers and the main matrix are 1 W/m∙K and 100 W/m∙K, respectively. The 338 

heat flux on the left wall is set as 2000 W/m
2
 and the temperature on the right wall is 339 

fixed at 20.0 °C while the other two walls are treated as adiabatic. The volume 340 

fraction of the fillers shown in Figure 9 is 20.6%. 341 
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Figure 10 compares the predicted ETCs of the simulated composite using different 342 

relaxation parameters for these two materials. The least numbers of LBM time steps 343 

required for each case to reach the equilibrium final states are also plotted in Figure 344 

10, together with the correlated real-time evolution based on the correlation shown in 345 

Figure 8. The predicted ETCs using different relaxation parameters are compared to 346 

the prediction using the Maxwell-Eucken model (equation (22)). More discussions 347 

about the Maxwell-Eucken model will be included in the next section. As the 348 

relaxation parameters increase, the accuracy of the LBM prediction (in comparison 349 

with theoretical values) increases, as well as the number of LBM time steps required 350 

for reaching the equilibrium state. The correlated real-time evolution at initial 351 

equilibrium decreased from 0.110s to 0.004s, as 𝜔1 increased from 0.005 to 0.660. 352 

However, after 𝜔1 being increased from 0.660 to 0.790, the ETC remains similar, 353 

while the total number of iteration required for reaching the equilibrium final state 354 

increases by approximately three times. The slight increase in the correlated time 355 

evolution when 𝜔1 is set to 0.79 is likely due to the nearly tripled LBM time steps 356 

required for the equilibrium state. The result here suggests that for a system with high 357 

diffusivity ratios, when the lower ω value approaches 1, the accuracy of the prediction 358 

increases as well as the LBM time steps required for the equilibrium state. In practical, 359 

a trade-off between prediction accuracy and simulation time needs to be considered.  360 

 361 

Figure 10 Evolution of calculated effective thermal conductivity (keff) versus LBM 362 

time steps, comparing the use of different relaxation times.  363 

 364 

3.3 Comparison with Maxwell-Eucken model 365 

The Maxwell-Eucken model, derived from the effective electric resistivity of a 366 

sphere containing N spherical particles based on the theory of electric potential 367 

satisfying the Laplace equation, is one of the most commonly used effective medium 368 

approximation (EMA) approach for predicting the ETCs of composites [46]. The 369 

Maxwell-Eucken model can be expressed as  370 
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 371 

𝑘𝑒𝑓𝑓 =𝑘1 ∙
2𝑘1+𝑘2+2𝜑2∙(𝑘2−𝑘1)

2𝑘1+𝑘2−𝜑2∙(𝑘2−𝑘1)
 (22) 

, where k1 and k2 represent the thermal conductivities of the matrix and periodically 372 

dispersed spherical fillers, and 𝜑2represent the volume fraction of the filler.  373 

The Maxwell-Eucken model is particularly effective for predicting the ETC of 374 

composite materials reinforced by low volume fraction well-dispersed particles. A 375 

view of the simulated case is included in Figure 9. The spherical fillers in the lattice 376 

domain distribute periodically and non-interacting. The volume heat capacity (ρC𝑝) of 377 

these artificial materials are set to be unity [21], which means D1/D2 = k1/k2. The 378 

thermal conductivity of the matrix is k1 while the thermal conductivity of the filler is 379 

k2. Under different k1/k2 ratios, k1 is varying from 0.01 W/m∙K to 100 W/m∙K, while 380 

k2 is fixed as 1 W/m∙K. Hence, the D1/D2 ranges from 0.01 to 100. The relaxation 381 

parameters chosen for each material are selected according to the observations in 382 

section 3.2. More LBM time steps are required for reaching the equilibrium state 383 

when the k1/k2 becomes much larger (or smaller) than 1. Figure 11 compares the 384 

ETCs of artificial composites containing periodically dispersed spheres using LBM 385 

and Maxwell-Eucken model under different k1/k2 ratios. Well agreement between the 386 

theoretical Maxwell-Eucken model prediction and LBM prediction. The deviations 387 

between the predictions and the theoretical models are below 2.0%, the accuracy of 388 

which is sufficient enough for this application [27, 47]. This proves that the LBM 389 

algorithm developed in this study is valid for predicting the ETCs of composite 390 

materials reinforced by periodically dispersed spherical fillers under a wide range of 391 

k1/k2 values. 392 

 393 

 394 

Figure 11 Predicted effective thermal conductivities of under different k1/k2.  395 

 396 
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3.4 Comparison with serial and parallel models  397 

Series and parallel models, with the interfaces of two materials either 398 

perpendicular or parallel to the heat flux direction (Figure 12a and c), are proposed to 399 

be used as the simplified representation of the complicated composite material 400 

microstructure [48]. The layers-in-series and the layers-in-parallel models are 401 

simplified representations of the highest and lowest estimated values in a two-phase 402 

composite material [1]. These two models also play very important roles in studying 403 

the interfacial effect between the two materials [28]. The theoretical models for 404 

predicting the ETCs of series and parallel models were derived based on circuit 405 

network of conductors [48], which can be expressed as equation (20) and (21), 406 

respectively.  407 

𝑘𝑒𝑓𝑓 = 
𝑘1∙𝑘2

φ2∙𝑘1+φ1∙𝑘2
 (20) 

𝑘𝑒𝑓𝑓 = φ1 ∙ 𝑘1 + φ2 ∙ 𝑘2 (21) 

, in which φ1  and φ2  represent the volume fraction of materials with thermal 408 

conductivity of k1 and k2. 409 

Again, ρC𝑝 of these artificial materials are set to be unity [21], and the relaxation 410 

parameters for each material are selected as in the previous section. The k2 value is 411 

kept at 1.0 while the k1 value varies from 0.01 to 100. Figure 12 (b) and (d) compares 412 

the predicted ETCs using the LBM solver and the theoretical models. The results by 413 

the LBM solver show good agreement with theoretical values. The deviations 414 

between numerical outputs and theoretical values are within 1.0% for both series and 415 

parallel geometries. This again approves the good capability of this in-house LBM 416 

solver.  417 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 12 Schematic diagram of (a) periodic series model , and (b) predicted effective 418 

thermal conductivities with different k1/k2 ratios; (c) periodic parallel model with 419 
boundary conditions, and (d) predicted effective thermal conductivities with different 420 

k1/k2 ratios. The k2 value is kept as 1 W/m∙K in all cases. 421 

4 ETC of composite with randomly distributed fillers 422 

4.1 Effect of shape and size of artificial representatives 423 

The RDFG is used to generate the simulated composite materials reinforced by 424 

randomly dispersed fillers. Firstly, the effects of filler geometry (orientation and 425 

shape) on the thermal conduction of simulated composite materials are discussed 426 

(Figure 13 and Figure 14). Then the effects of filler size variation on the ETC are 427 

studied using spherical fillers following different size distribution (Figure 15). 428 

To study the effects of orientations of anisotropic fillers, elliptical fillers with the 429 

aspect ratio of 3:1 and the minor axis value of 50 μm are generated, with their major 430 

axis either perpendicular (Figure 13A) or parallel to the heat flux direction (Figure 431 

13C). These two orientations are chosen to represent the two extreme scenarios of the 432 

elliptical filler geometry in a composite material [49]. For studying the effect of filler 433 

shapes, spherical fillers of diameter 50 μm (Figure 13B) are generated as the 434 

comparison with the elliptical fillers. Spherical fillers of larger diameters, 70 μm 435 

(Figure 13D), are generated to studying the size effect. Three total filler volume 436 

fractions, 6.4%, 13.0% and 26.3%, are considered for each type of filler. In all of 437 

these cases, the thermal conductivity of the matrix materials is 0.2 W/m∙K (k1) and the 438 

thermal conductivity of the fillers (k2) is 20.0 W/m∙K. The volume heat capacities 439 

(ρCp) of these artificial materials are set to be 1. The heat flux on the left wall (x=0) is 440 

2000 W/m
2
 and the temperature on the right wall (x = 1000 μm) is 20.0 °C while the 441 

other two walls (y=0 and y=1000 μm) are treated as adiabatic.  442 

The temperature contour plots of these simulated composite materials (with total 443 

volume fraction of 26.3±0.4%) at the equilibrium states are shown in Figure 13. As 444 

expected, the temperature fields are influenced by the conductivities of the local 445 
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materials, and the non-uniform microstructure leads to the variation of temperature 446 

distribution perpendicular to the heat flux direction. According to the Fourier’s law 447 

for heat conduction, the local temperature distribution within the sample matrix is 448 

positively correlated to the thermal conductivity of the material filled within the 449 

location. The local heat transfer would be more efficient (lower temperature gradient) 450 

within the highly thermal conductive filler materials than that within the matrix 451 

materials. This might explain the correlation between the filler geometry and the 452 

temperature distribution within the lattice domain as shown in Figure 13. Based on the 453 

temperature contours in the Figure 13, the highest temperature drop across the domain 454 

is observed in the case that the elliptical fillers are perpendicular to the heat flux 455 

direction (Figure 13A), while the lowest temperature gradient is observed from where 456 

the elliptical fillers are parallel to the heat flux direction (Figure 13C). In the case of 457 

spherical fillers, seeing Figure 13B and Figure 13D, a higher temperature gradient is 458 

shown in the lattice domain reinforced with smaller fillers.  459 

 460 

 461 
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Figure 13 Temperature contour plots at the equilibrium final state of simulated 462 

composite material reinforced by (A) elliptical fillers vertical to the heat flux direction, 463 

(B) spherical fillers with diameter of 50 μm, (C) elliptical fillers parallel to the heat 464 

flux direction, and (D) spherical fillers with diameter of 70 μm. The total filler 465 
volume fractions in all simulated materials were the same, 26.3±0.4%. 466 

 467 

The ETCs of simulated composite materials are plotted as a function of filler 468 

volume fraction (φ) in Figure 14. The ETC values are calculated according to 469 

equation (14). The results show that the predicted ETC values always increase as the 470 

simulated filler volume fraction increase, same as what normally been observed from 471 

polymer composite reinforced by conductive fillers [6, 7, 50]. At the same filler 472 

volume fraction, the shape of the filler and its orientation show the dominate effect on 473 

the ETC, seeing Figure 14A. For materials reinforced by elliptical fillers with a long 474 

axis perpendicular to the heat flux direction, the predicted ETCs are much higher than 475 

that reinforced by spherical fillers. The lowest ETC is predicted as the composite is 476 

enforced by the elliptical filler with the long axis parallel to the heat flux direction. 477 

The differences between predicted ETC values between using elliptical fillers and 478 

spherical fillers increase as the filler volume fraction increases. The higher ETC of the 479 

composite containing elliptical fillers parallel to the heat flux direction is likely due to 480 

the enhanced thermal conductive path along the heat flux direction [16]. When the 481 

elliptical fillers are perpendicular to the heat flux, the thermal conductive path is 482 

enhanced along the y-axis (the major axis of the filler), however, the ETC is measured 483 

along the heat flux direction (x-direction). Since the minor axis of the elliptical filler 484 

is set to equal to the diameter of the spherical fillers, therefore at the same filler 485 

volume fraction, the filler volume density along the heat flux direction is higher in 486 

spherical filler geometry (Figure 13B) than that in the vertical elliptical fillers (Figure 487 

13A). This might explain the lower ETC in the vertical elliptical fillers geometries 488 

than that in the dispersed spherical filler geometry.  489 

Figure 14B compares the effect of filler scale on the ETC. The sphere filler is 490 

adopted in this study. The results show that simulated composite materials with larger 491 

particle sizes have higher ETC as predicted by LBM. This result is in good agreement 492 

with experimental observations [6, 50]. The similar trend was also reported by Zhou 493 

et al. [22] and Li et al. [7] using LBM methods, although different interfacial 494 

treatments between the filler and the composite matrix are applied in our study. As 495 

discussed previously, the efficiency of heat transfer within the sample domain would 496 

be slowed down when the heat flux goes from the highly conductive filler to the low 497 

conductivity matrix. Comparing with large filler particles, the small particles have 498 

higher specific surface area. Therefore, at the same total filler volume fraction, the 499 

number of lattice nodes experiencing this “slow down” process would be higher in 500 

simulated composite with smaller filler sizes.  501 

 502 
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 503 

 504 

Figure 14 Comparison of effects of A) particle shapes and orientations, B) particle 505 
sizes on the predicted effective thermal conductivities using LBM at different filler 506 

volume fractions, where k1/k2=0.01, k1=0.2 W/m∙K. 507 

 508 

Although the (diameter) size of the functional fillers is in positive correlation with 509 

the thermal conduction efficiency in composite materials containing uni-sized fillers, 510 

as suggested in Figure 14B and also supported by experimental observations [6, 50], 511 

this positive correlation is nonlinear and controlled by varies factors [51]. One of 512 

them is the varying filler size. Figure 15 compares the temperature contours in three 513 

composite materials reinforced by spherical fillers with varying sizes. It should be 514 

noted that the total filler volume fraction is fixed as 26.3±0.8%. The distribution of 515 

the filler size follows the normal distribution, as defined in equation (17). In these 516 

three cases, the average filler diameters are the same (50 μm), but the standard 517 

deviations are 10.7 μm, 19.5 μm and 28.3 μm, respectively. Figure 15E shows the 518 
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fitted filler size distribution curve. Similar to that shown in Figure 13, the temperature 519 

field is influenced by the local microstructures, where much significant heterogeneous 520 

temperature distribution can be observed from the materials containing fillers of 521 

larger variance. Figure 15D summaries the predicted ETC of these three 522 

microstructures in comparison with fillers of uniform diameters (50μm). Although the 523 

average diameters are the same, the filler size variations result in enhancement of 524 

ETC of the matrix. As suggested by Li et al. [7], the filler size effect is particularly 525 

significant on ETC at higher filler volume fraction (>20%). This is because the 526 

composite containing fillers of larger size variation might be able to achieve more 527 

efficient filler packing, thus enhancing the thermal conduction path and improving the 528 

thermal conductivity. This matches with experimental observations where hybrid 529 

fillers can often achieve better enhanced ETC due to the enhanced thermal conduction 530 

path through the sample [50, 52].  531 

 532 

Figure 15 Temperature contour plots at the equilibrium final state of simulated 533 

composite material reinforced by spherical fillers of the different size distribution, (A) 534 

σ=10.7, (B) σ=19.5, (C) σ=28.3. For all these three simulated materials, the mean 535 
filler diameter is 50 μm and the total filler volume fractions are 26.3±0.8%. (D) The 536 
predicted ETC values and (E) the fitted filler size distribution curves, for each 537 

simulated microstructure.  538 
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 539 

4.2 Thermal conduction between the filler and matrix interfaces  540 

In this section, the thermal conduction between the filler and matrix interfaces in 541 

composite material with/without the presence of contact resistance is studied. When 542 

simulating the effect of contact resistance in composite materials, it is often practical 543 

to use one or two lattices to represent the interfacial region [7], without having to 544 

reflect the actual geometry of the rough interfaces. This suggests that instead of using 545 

the thermal conductivity of air at the interfacial region, the ETC at the near interfacial 546 

region (matrix-gap-filler) should be used. Since the interfacial contact resistance is 547 

affected by various properties of the materials used, such as surface roughness, 548 

particle sizes and geometries [53], the ETC value of the interfacial region can be 549 

estimated either by either using theoretical ETC models [22, 45] or fitting of 550 

experimental data [7].  551 

However in this study, for the purpose of demonstrating the capability of this 552 

SVRP-LBM solver to reflect the interfacial contact resistance, a simplified 2-D 553 

geometry shown in Figure 16 is used, and the interfacial region is considered to be 554 

filled with dry air. Three different types of interfacial treatments are studied, the 555 

geometry CR=0 represents the perfect contact between filler and matrix interfaces, 556 

while geometry CR=1 and CR=2 represent the scenarios of different contact 557 

resistances due to the imperfect contact between the filler and matrix interfaces. The 558 

comparison of temperature profiles at steady states between these three geometries 559 

will be able to demonstrate the ability of this SVRP-LBM code to take into account 560 

the effect of interfacial contact resistance where applicable. 561 

 562 

 563 

Figure 16 Schematic diagram of a 2-D geometry for study the effects of interfacial 564 
contact resistance at the matrix-filler interfaces. Three different interfacial geometries 565 
are used, replacing 0 (CR=0), 1 (CR=1) and 2 (CR=2) lattices at the matrix-filler 566 
interfaces with air, where k1=0.2 W/m∙K (thermal conductivity of artificial matrix), 567 
k2=20 W/m∙K (thermal conductivity of artificial filler) and k3=0.026 W/m∙K (thermal 568 
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conductivity of dry air at 25 °C ). The LBM lattice number of 404x50 is used for 569 

CR=0 and CR=2, while lattice number of 402x50 is used for CR=1.  570 

 571 

The predicted ETC values of geometry CR=0, CR=1 and CR=2 are 0.39 W/m∙K, 572 

0.36 W/m∙K, 0.34 W/m∙K respectively, consistent with experimental observations 573 

where higher contact resistance resulted in lower thermal conductivities [36, 53, 54]. 574 

Figure 17 shows the temperature profiles of these three geometries at steady state 575 

along the heat flux direction. Among these three geometries, the temperature 576 

gradients within the same material (matrix or filler) are the same at steady state, 577 

following the Fourier’s law for heat conduction. However, across the entire lattice 578 

domain, the temperature differences between the heat source and the isothermal side 579 

are higher in geometry CR=1 and CR=2 than CR=0. This is primarily due to the 580 

significant temperature drop in the air-filled region. Figure 17B-1 and Figure 17B-2 581 

show more detailed comparison of the multi-phases regions between the filler-matrix 582 

interfaces. The simulation results show a larger temperature drop in geometry CR=2 583 

than geometry CR=1 due to the wider air gap, reflecting a higher contact resistance. 584 

  585 

 586 

Figure 17 Temperature profiles of geometry CR=0, CR=1 and CR=2 at steady state 587 
along the heat flux direction. (A) Horizontally cross the entire geometry; and selected 588 

regions (B-1) from 150 μm to 550 μm; (B-2) from 1450 μm to 1550 μm. 589 

 590 
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For the experimentally prepared composite materials, a larger air gap in between 591 

the matrix-filler interfaces can be caused by higher surface roughness. The absolute 592 

temperature drop at the matrix-to-filler (Figure 17B-1) and the filler-to-matrix (Figure 593 

17B-2) interfaces are the same. This is because the three geometries described in 594 

Figure 16 are isotropic in the y-axis direction. At the interfacial region, the heat flux 595 

flow along the x-axis direction from the matrix-to-filler and from filler-to-matrix are 596 

the same. However, in the case of actual composite materials, the geometries can be 597 

much more complex with non-isotropic local microstructures. The heat flux entering 598 

and leaving the filler particle might not be the same, leading to different temperature 599 

differences [33]. The results shown in Figure 17 prove that this SVRP-LBM solver 600 

has the ability to reflect the effect of interfacial contact resistance in composite 601 

materials, although geometry configurations need to be considered according to 602 

different materials. 603 

 604 

4.3 ETCs of real composite material  605 

Before further discussion, we would like to highlight here that the experimental 606 

data used in this section for case studies were measured using the guarded hot plate 607 

method according to ASTM D5470-17 [55]. This method measures the ETC via 608 

monitoring the temperature changes through a thin layer of the composite materials, 609 

which is suitable to be simulated via a 2D geometry [22]. The accuracy of this 610 

experimental method is about ±2% when the thermal conductivity of the measured 611 

material is above 0.1 W/mK [47].  612 

Figure 18 compares the measured ETC [25] and LBM predictions of solder 613 

composite reinforced by copper spheres at different filler volume fractions. The 614 

thermal physical properties of the matrix and the fillers are listed in Table 1. The 615 

random composite microstructure is again simulated using the RDFG method. The 616 

average filler diameter matches with the actual experimental value (500 μm). No filler 617 

size variation is applied according to [25]. Different numbers of fillers are included in 618 

the lattice domain in order to simulate filler volume fractions varying from 0.016 to 619 

0.296. As shown in Figure 18, the LBM predicted ETC agrees well with the 620 

measurements, as well as the theoretical predictions using the Maxwell-Eucken model. 621 

It suggests that the LBM algorithm developed in this study can accurately predict the 622 

ETC of real composite material reinforced by well-dispersed sphere fillers. 623 

 624 

 625 

 626 

 627 

 628 
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Table 1  Thermophysical properties of materials chosen for case studies.  629 

 

Thermal 

diffusivity 

coefficient 

D 

(m
2
/s) 

Thermal 

conductivity 

K 

(W/(m∙K) 

Density 

ρ∙ 

(kg/m
3
) 

Specific 

thermal 

capacity 

Cp (J/(kg∙K) 

Ref 

Copper 116.00×10
-6

 398.00 8940 384 [25] 

Solder 34.80×10
-6

 78.10 7360 305 [25] 

Silicon rubber 0.10×10
-6

 0.15 980 1590 [6] 

Al2O3 8.74×10
-6

 30.00 3900 880 [6] 

 630 

 631 

Figure 18 Comparison between experimental data and LBM predicted values of 632 

solder composite reinforced with copper spheres [25].  633 

 634 

Figure 19 shows the measured ETC of silicon rubber reinforced by Al2O3 fillers of 635 

four different particle sizes sourced from the experimental data shown in [6, 12], and 636 

the corresponded LBM results using either spherical or elliptical fillers. The 637 

calculation using different empirical models are presented in the figure. The thermal 638 

physical properties used for simulations can also be found in Table 1. The mean 639 

diameter sizes of both spherical and elliptical fillers are set as equal to the mean 640 

particle size reported in [6, 12] (d=75 μm, 35 μm, 10 μm or 3 μm). A relative standard 641 

deviation (σ/ξ) of 0.1 is applied to all LBM cases to reflect the filler size variation, as 642 

approximated from particle size distribution reported in the literature [6]. The aspect 643 

ratio of the elliptic filler is fixed as 3:1. 644 

As illustrated in the Figure 19 (A-C), when the average filler sizes are larger than 645 

10 μm and the filler volume fraction is higher than 0.1, both the Maxwell-Eucken 646 

model and the LBM model with spherical filler under-predict the ETC. Moreover, the 647 
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predicted ETC using spherical fillers follows the Maxwell-Eucken prediction at lower 648 

filler volume fraction (<0.2), while at higher filler volume fraction, the LBM 649 

predictions using spherical fillers are slightly higher than the Maxwell-Eucken 650 

prediction. The same phenomenon has been observed from the mass diffusion process 651 

in porous media, where the LBM prediction is always higher than the Maxwell-652 

Eucken model prediction in high porosity media [56]. The positive contribution of the 653 

particle size variation as discussed in section 4.1 may be one of the reasons. 654 

When using ellipses fillers with an aspect ratio of 3:1, positioned parallel to the 655 

heat flux direction, the predicted ETC using the elliptical fillers showed good 656 

agreement with the experimental results when the average filler sizes are above 10 μm. 657 

The scanning electron microscope (SEM) images of the Al2O3 filler particles used for 658 

preparing this composite material showed plate-shaped geometry [12, 57]. The shape-659 

effect of the filler, as discussed in the previous section, might explain the good 660 

performance of the LBM model with ellipses filler, which might also explain the 661 

under-prediction of the Maxwell-Eucken model and the LBM model with spherical 662 

filler. 663 

Additionally, Xu et al [58] proposed a reconstructed Maxwell-Eucken model to fit 664 

the experimental data, contributing the higher ETC to the contact resistance between 665 

the particles. The reconstructed model fitted to these experimental data has also been 666 

plotted in Figure 19. In comparison with the reconstructed Maxwell-Eucken model, 667 

the LBM prediction using elliptical fillers also shows better agreement with 668 

experimental data (for filler size above 10 μm). The reconstructed model proposed by 669 

Xu et al. [58] is based on the assumption that every two particles will be connected 670 

together (with additional contact resistance between the two particles), which shares 671 

some similarities with the elliptical fillers.  672 

In the cases of the smallest filler (ξ=3 μm Figure 19D), the LBM model with 673 

elliptical fillers leads to over-prediction of ETC; while the use of spherical fillers 674 

results in closer predictions. For commonly used non-spherical filler particles, such as 675 

Al2O3, ZnO, TiB2, SiC and talc, the same material with very small particle sizes often 676 

possess the sphere-like feature [12, 43, 57], while larger particles often possess the 677 

non-spherical feature This is similar to that has been observed from carbon nanotube 678 

(CNT) reinforced composite, where larger CNT showed higher aspect ratio and led to 679 

higher ETC [59, 60]. This further supports the assumptions that the geometry effect 680 

could be one of the main factors that led to the greater enhanced ETCs of larger Al2O3 681 

particles reinforced composite materials at high filler volume fraction. 682 

 683 
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       684 

       685 

Figure 19 Experimental data, LBM prediction and empirical model output of ETCs of 686 

silicon rubber reinforced with Al2O3 fillers [6, 12].  687 

 688 

5 Conclusion 689 

The in-house coded spatially-varying relaxation parameter Lattice Boltzmann 690 

Method (SVRP-LBM) solver has been validated for predicting the effective thermal 691 

conductivity (ETC) of various composite materials, including simulating the 692 

interfacial contact resistance. It is found that higher prediction accuracy can be 693 

achieved when the lowest chosen relaxation parameter approaches 1.0, for composite 694 

materials with large thermal diffusivity ratios. The predictions also showed good 695 

agreement with experiments data when choosing the right representative filler 696 

geometries.  697 

The effects of filler geometry (orientation and shape) and filler size variation on 698 

the thermal conduction behaviour of simulated composite material are assessed using 699 

SVRP-LBM solver. The predicted ETC increases as the filler volume fraction 700 
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increases. At the same filler volume fraction, the elliptical fillers parallel to the heat 701 

flow direction achieved the highest ETC, possibly attributed by the enhanced thermal 702 

conduction path along the heat flux direction. Higher filler size variance can result in 703 

higher ETC, likely due to the improved filler packing efficiency.  704 

The SVRP-LBM solver developed in this study can be used to design filler 705 

reinforced composite material with targeted ETC and local temperature distribution 706 

requirement. As the initial development of a predictive design tool for functional 707 

composite materials, an extension of this method to the three-dimensional solver and 708 

quantification of uncertainties brought by the random location effect will further 709 

improve the accuracy of this model, which will be discussed in future studies.  710 
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