
11
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio - Fundación Universitaria Konrad Lorenz

https://core.ac.uk/display/326432455?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Capítulo 11
Towards a
Distributed Systems
Model based on
Multi-Agent Systems
for Reproducing
Self-properties

271

Capítulo 11

Towards a Distributed Systems
Model based on Multi-Agent
Systems for Reproducing
Self-properties

nn Arles Rodríguez y Jonatan Gómez

Abstract

In this chapter, we introduce a preliminary model of a distributed system (some
algorithms and principles are modelled) which has been inspired by multi-agent
systems. Agents can communicate in a local fashion and establish a cooperation
process in order to compute some desired functions as a traditional distributed sys-
tem, producing an output that is transparent to an end user. Each agent can sense
new information, and acts following certain information in a decentralized way.
As a result, the output of the implemented functions achieves the same result as a
traditional distributed system by using local behaviours. Finally, we show that it is
possible to define crashes in the proposed model in a local, natural and easy way.
The purpose of doing this is to use this simulated model to introduce behaviours
to agents that allow the system to recover from failures by itself, in turn, achieving
self-* properties.

Key words: Distributed Systems, Multi-agent Systems, Model, Computation, Global
output, Local input, Autonomic Computing, Crash Failures, Self-* properties, De-
centralised control.

Diálogos en investigación en la Konrad Lorenz

272

Introduction

A distributed System is a collection of autonomous components connected through
a network, which coordinate their activities and share resources in order to offer
services to end users in a transparent and easy way (Tanenbaum & Steen, 2006).
However, distributed systems are complex to manage, expand, or maintain, since
they are prone to failures, their components have partial knowledge of the envi-
ronment, and can they fail, requiring adaptation to warrant completion of a deter-
mined task (Raynal, 2013).

Autonomic Computing faces complexity with the idea of a computer system that
adapts to changes without human intervention (Lalanda, Mccann, & Diaconescu,
2013). Autonomic Computing defines an autonomic system as a set of autonomic
elements which are responsible for managing a particular element (White, Han-
son, Whalley, Chess, & Kephart, 2004). An autonomic element manages its own
state and its interactions with an environment (White et al., 2004). The environ-
ment consists of signals and messages from other elements and the external world
(Kephart, Chess, Jeffrey, & David, 2003). From the Self-management goal, some self-*
properties emerge: adapting to the addition or deletion of components (Self-
configuration) (Kephart et al., 2003), detecting and recovering from failures with-
out disruption to the system operation (Self-healing) (Nami & Bertels, 2007), finding
improvements in the efficiency of a system (Self-optimization) (Lalanda et al., 2013),
and anticipating and preventing threats (Self-protection) (Lalanda et al., 2013).

Distributed systems and autonomic elements can be modelled as multi-agent
Systems (Lalanda et al., 2013). Agents are designed as autonomous adaptive entities
that observe their internal and external states, act based on their local perceptions,
and can model multiple feedback loops(Jun et al., 2004). Additionally, cooperative
agents are able to control a computer network, just based on the agent’s (local) in-
teractions, or are able to model some autonomic elements. In this way, an agent has
the ability to manage resources in a network by analysing the capabilities of each
element and by defining it as a managed element (Guo, Gao, Zhu, & Zhang, 2006).

In this chapter, we address the problem of modelling a distributed system as a
multi-agent system and propose a failure model over the agents as a starting point
to model self-* properties. The proposed model is different from traditional distrib-
uted systems simulation because it is focused on modelling local behaviours and

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

273

interactions between processes in a local way instead calculating network usage or
CPU as packet level simulators (Bhardwaj & Dixit, 2010) or flow level simulators
(Casanova, Legrand, & Quinson, 2008; Fujiwara & Casanova, 2007; Velho & Leg-
rand, 2009).

Through the modelling agents, it is expected to have a more natural and be clos-
er to a living system version of a distributed system. This is be possible, because
agents perform some computations in the same way as distributed systems do, but
they can present failures at a local level that can be repaired by adding behaviours
proper to biological systems, or social dynamics to the agents. The idea is that
agents will perform the task of an autonomic manager and the network managed
resource at the same time.

The remaining part of this paper is organized as follows: the next section presents
some background regarding the distributed systems definition taken, then, the fol-
lowing section deals with the design of the agent’s environment and the commu-
nications protocol. The fourth section shows the computed functions and their
design. The fifth section presents some experiments regarding the computation of
some functions (routing tables, max, and min) and a failures definition. Finally,
some conclusions are drawn.

2. Distributed systems generalities

A distributed system can be seen as a “natural” object based on the collective work
of processes connected through a communication system (network). The idea of
this paper is to have a collection of agents that represent processes in which, each
process can carry out a well-designed simple task, communicate the result to other
processes, and obtain a complex output as a result of the collective work (Tel, 2009).

Distributed systems can be modelled as a set of processes ∏ = …{ }p p pj1 2, ,� ,� , where
pi is able to communicate with pj and use a communication channel (Satzger,
Pietzowski, & Ungerer, 2011). A basic communication protocol is based on sending
and receiving messages and can be defined in each node as a buffer. This buffer
contains messages that have been sent to the process, but not yet received (Satzger,
2008). Figure 1 presents the two main communication primitives (Fischer, Lynch,
& Paterson, 1985; Satzger, 2008): Send m q,() sends a message m M∈ where M

Diálogos en investigación en la Konrad Lorenz

274

is a fixed universe, to a process q and Receive q() cleans the buffer of process q
and delivers messages to the process if the message is delivered or returning null
marker ' '∅ otherwise. Additionally, communication channels are bidirectional and
the ability to send messages between processes or nodes determines the network
topology (Satzger, 2008).

There are two known types of communication in distributed systems: synchronous
and asynchronous (Kshemkalyani & Singhal, 2008). On the one hand, a distributed
system is synchronous if the Send primitive is blocked until the corresponding
Receive primitive has been performed and completed. On the other hand, a dis-
tributed system is asynchronous if there are no timing assumptions regarding mes-
sage delay, clock drift, or time taken to execute a Send primitive, and the control
returns back to the invoking process after the data is copied in the buffer of the
process that receives. Asynchronous Simulation of Distributed Systems is simpler
and easier to replicate than synchronous models because it does not include timing
assumptions (Chandra & Toueg, 1996).

Fig. 1. Communication Primitives

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

275

3. Model based on multi-agent systems

Multi-agent systems define agents capable of independent actions with the abil-
ity of interacting with others. Agents are required to cooperate, coordinate and
negotiate in order to achieve their tasks (Balaji & Srinivasan, 2010). To model a
distributed system, each process pi is defined as an agent. Each agent (process)
senses information from its environment (network) and acts in this environment
by using actuators (Russell & Norvig, 2004). This multi-agent model is based on
the Algorithmic Framework to Compute Global Functions on a Process Graph of
Raynal, 2013. Based on this proposal, the following rules are defined for the agents:

•	 No centralized control: Agents obey rules of behaviour and do the same task in
a local way by communicating with their neighbours.

•	 Communication Channels are FIFO: Messages received first are processed first
by each agent.

•	 Local communication and variables: Each agent receives and sends messages
only to its neighbours. Each agent pi has its own local inputs inputi and local
outputs outi.

3.1. The Agent’s Environment

A Network is a graph that stores processes, identities, and the channels that define
the neighbours of each process in the form of vertices and edges. Additionally,
network stores a message queue for each process to model FIFO communication
channels and implements the agent’s architecture, which is the way agents ini-
tialise sense and act in the environment (Fig 2). In this way, a network is defined
as a dynamic and non-deterministic environment because agents have partial con-
trol over the network; they can change in the way that processes and channels can
crash and therefore produce unexpected results (Russell & Norvig, 2004).

A Distributed System can be scalable in terms of size if more resources can be
added to the system in an easy way and in terms of geographical distribution if dif-
ferent resources or network topologies are supported (Tanenbaum & Steen, 2006).
A model is scalable if it is capable of implementing different network topologies
and resource failures, and complex behaviours are simulated with precision in a
fast way (Casanova et al., 2008).

Diálogos en investigación en la Konrad Lorenz

276

Fig 2. Network Visualisation

Scalability is also required for failure detection and healing models because these
processes require, at least, the establishment of monitoring relationships by ex-
changing messages, and cooperation between nodes can be necessary to guarantee
scalability (Satzger, 2008). Based on these ideas, a model must support differ-
ent network configurations. A graph library called JUNG (White, 2005) is used to
represent the network in the model. This library allows the generation of random
graphs by using different algorithms from the literature.

JUNG is a Java framework used to generate different random network configura-
tions (White, 2005). This framework implements a random generator of graphs
that approximate its behaviour to power laws (Eppstein & Wang, 2002). It is chosen
because some researchers observed that computer networks and internet topology
exhibit a power law distribution (Eppstein & Wang, 2002; Faloutsos, Faloutsos, &
Faloutsos, 1999). Additionally, by using power laws, it is possible to analyse the
average-case behaviour of network protocols (Faloutsos et al., 1999).

Serialization implements the data transfer behaviours of Distributed Systems. Data
structures and objects can be sent from an agent to another by serialization, and
receiving processes can deserialize and create a semantic clone of the object.

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

277

3.2. Agent’s Model

Agents by now are reactive. This means that each agent operates to respond to
changes and to satisfy its design objectives (Russell & Norvig, 2004). An agent
program defines the main thread of an agent, which determines the next action
to execute according to its local knowledge. The main thread of each agent looks
like algorithm 1 (Alg. 1). While an agent is alive (status != Action.DIE) this
agent senses from the network; after that it chooses an action based on its percep-
tions, and finally the action has an effect on the environment.

Alg. 1. Main thread of an agent

In this work, each agent i computes a result outi based on its local input inputi.
From an external point of view, there is a vector of inputs INPUT such that
∀ []() =i iINPUT i input and a vector of outputs OUTPUT(). This design is based on
An Algorithmic Framework to Compute Global Functions on a Process Graph by Raynal, 2013.
The idea is that agents cooperate and coordinate to compute OUTPUT F INPUT= ().
In this way, processes can compute the same output � ,� ,�min max sorting(), or different
outputs (out outi j≠)) that give global information (e.g. routing tables of a network)
for experimental purposes, or a user can request information locally from each
process like in a real distributed system in a transparent way.

A key point of this proposal is the communication between agents and the time
of each simulation. Each simulation step in an agent loop is a round (Alg. 1.). In
each round, an agent shares its local knowledge and gets new information from
neighbours. Additionally, based on the new information, it updates and computes
the function F, and determines the new local information to broadcast to its neigh-
bours. The process stops when there is no new information to share or if the agent
fails � status ACTION DIE=(). .

Agent perceptions are in a collection called � ,�� ,�� ,�� ,�� ,��perceptions round hasMsg neighbors ch ch min out= eessage{ }
� ,�� ,�� ,�� ,�� ,��perceptions round hasMsg neighbors ch ch min out= eessage{ }. round is an agent’s internal counter of iteration;

round = -1;
while(status != ACTION.DIE){
	 Percept p = network.sense();
	 Action action = program.compute(p, round);
	 Network.act(this, action);
	 round++;
}

Diálogos en investigación en la Konrad Lorenz

278

hasMsg is a boolean flag that is true if the message buffer of the agents has messag-
es; neighbours return a list with the identities of the neighbours for communication;
chin and chout are the list of input and output channels respectively, and message
represents new information received from a neighbour.

An agent has the following actions: Initialise, Send, Receive and Die. Initialise sets pa-
rameters for a determined algorithm like agents identities (pi) and custom informa-
tion (inputi, newi); Send defines propagation of new information that an agent has
received previously from its neighbours; Receive computes a determined algorithm
with the local information received and calculates what the new information is for
sharing in the next round. Finally, Die allows each agent be able to return its local
output outi and terminate its execution thread. In contrast to the model of Raynal,
2013, the actions Send and Receive are executed given some conditions instead of
run sequentially in each agent program as shown in Alg. 2. In the first round, each
agent performs Initialize. An agent always performs Receive when it receives a
new message; in other cases, the agent does Send.

Alg. 2. Actions definition

Each agent has some variables to control its internal status and to store the new in-
formation that it gets from its neighbours. infi stores all the information learned from
neighbours, newi stores the new information learned on each round, and outi stores
the output of the local function. Fig. 3. shows the agent’s design. In the next subsec-
tions, details regarding an agent’s actions and information management are drawn.

Action compute(Percept p, int round) {
 Action act = null;
	 double probFailure = 0.1;
 //process can fail with a probability of 0.1
 if (Math.random() < probFailure) {
 return new Action(“Die”);
 }
 if (round == -1) { //round -1 means initialize
 act = new Action(“Initialize”);
 } else if ((boolean) p.getAttribute(“hasMsg”) == true) {
 act = new Action(“Receive”);
 } else {
 act = new Action(“Send”);
 }
 return act;
}

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

279

Fig. 3. Agents Design.

3.3. Initialisation

An agent i performs initialisation at the start (in the first round) by assigning values
for each local input inputi depending of the function F. In the first round, inputi
and newi can have the same value. For organization purposes, these variables are
defined as a collection structure with each element defined as the pair� ,�p valuei i

, where pi is the agent id and valuei is the local value. After setting variables, the
round number is increased.

Each agent i has collections of input channels Ch ini_ = {Ch in Ch in Ch inj k n_ ,� _ ,��..., _ }
and output channels Ch outi_ = {Ch in Ch in Ch inj k n_ ,� _ ,��..., _ } to reach its neigh-
bours � ,� ,� ,�j k n… . These variables are loaded in the initialization method as a percep-
tion and stored as local variables. In this chapter, experiments use bi-directional
channels, but this design allows for the definition of one-directional too. There is
another collection called Ch in ri_ _ that stores the list of channels that have not
sent messages to this agent in a given round. In the first round � _ _ � _Ch in r Ch ini i= .
In this model, � _ _Ch in ri ≠ ∅ means that there is pending information from some
neighbour in some round or that it is the initialisation round.

Diálogos en investigación en la Konrad Lorenz

280

3.4. Send and Die

An agent spreads new information to its neighbours by Send. This action allows
agents to choose the information to send to a neighbour j by using the output chan-
nel � _Ch out j . New information to be sent to channel j is the difference between the
new information newi and the received information from the same channel (agent)
in the last round (Recv j[]) (Eq. 1 from Raynal, 2013).

			 Send j new Recv ji[] = []\ 				 (Eq. 1.)

Each message is encoded as a collection M from msg chan=  , where from is the
id of the agent sender, msg is the serialized content of the message, and chan is the
channel from which msg was sent. Send a message is to store each msg in the FIFO
queue mailbox that the network has for each neighbour. Send j[] = ∅means that
there is no new information to share with this process by channel j, so j is removed
from Ch outi_ after an agent sends ∅. Once the newi is sent by all the channels
newi = ∅. Finally, the round number is increased by one.

After the round number is increased and messages are sent to all the neighbours,
Ch in Ch inr i_ � _= . This means that an agent has shared information and now is the
moment for receiving information from all its neighbours. In the opposite way,
messages are sent, if and only if, Ch inr_ = ∅. This means that only new informa-
tion is shared when all the neighbours have reported information to the agent or
the agent has been initialized.

Additionally, the logic expression Ch in Ch outi i_ _≠ ∅ ∧ ≠ ∅ which represents that
there is no new information to be sent or received is evaluated. If this condition is
true, the agent returns the outi to a control board that stores the results of all the
agents and finally ends the agent process. Die is an action that sets the agent status
in Action.DIE and it stops the main thread of the agent.

Failures are defined in this work with the action Action.DIE as shown in Alg. 2.
A failure probability probFailure ∈[]0 1, is defined. For example, a probFailure = 0 1.
means that an agent would stop in one of ten actions.

3.5. Receive

This action allows agents to receive new information from others and to compute lo-
cal outputs. First, each agent decodes the received message msg from msg chan=  
and evaluates the difference between the information received by the channel chan,

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

281

defined as Recv[chan] with the information sent using chan. As Raynal, 2013 re-
marks, there are five possible scenarios:

•	 if Send chan Recv chan[] = [], agents that are connected by channel chan has the
same information at this point. So chan must be removed from Ch ini_ and
Ch outi_ .

•	 if Recv chan[] = ∅, chan must be removed from Ch ini_ .

•	 if Send chan Recv chan[] ⊆ [] the agent that sent the message has more informa-
tion, so chan must be removed from Ch outi_ .

•	 If Recv chan Send chan[] ⊆ [] the agent that sent the message has less informa-
tion, so it must be removed from Ch ini_ .

•	 In other examples, case agents learn from each other them because they have
complementary information.

After evaluating the channels, each agent proceeds to do its task. This task is the
computation of the function F which takes the message msg received, processes
msg, produces an output and stores its result in outi out F msgi = ()(). Once F is
computed, newi and infi are determined by Eq 2 and Eq 3 like in Raynal, 2013.
These equations mean that new information is the union between the new infor-
mation received by the neighbours in this round newi and the difference between
the received information and all the information that an agent has learned infi .
Finally, the channel from msg which was received is removed from Ch inr_ .

			 new new Recv j infi i i= ∪ []()\ 				 (Eq. 2)

				 inf new infi i i= ∪ 				 (Eq. 3)

4. Experiments and results

The purpose of the experiments is to execute a function F in a network with fail-
ures and compare the output with the global expected output. Network is gener-
ated using the Eppstein Algorithm of JUNG (Eppstein & Wang, 2002; S. White,
2005). Parameters to generate a Network are the number of nodes n, the number of
edges e, the function to compute F, and l the number of iterations to approximate
a power law topology.

An experiment is a combination of parameters performed 30 times as follows:
F min n e l probFailure= = = = = − − −,� ,� ,� ,� ,� ,� ,�50 150 1000 0 10 10 106 5 44 310, − and 10 1− . The idea
of these experiments is to see how crashes can affect correctness and communica-
tion. Network used in experiments as shown in Fig 4b.

Diálogos en investigación en la Konrad Lorenz

282

4.1. Implemented functions

In this work functions max, min, sorting values and routing tables are implemented. Defi-
nition of functions are local and executed as F in the Receive action of each agent.
Agents take infi and newi and assign values to outi. Implementing each algorithm
is easy because they only imply to change the value (or type) of newi, infi and outi
and establish a predicate.

Table 1 presents a description of the different functions computed. Declarations of
variables of type collection are written as var type� � []∈ . Identity of process i (pi) is
a String p Stringi ∈(). \ and ∪ are difference and union of collections respectively. In
the case of max and min, the algorithm is performed over the data of Integer type,
so there is classic calculation of max and min having each process in a network a
value. The same case happens with sorting where an Integer value of each process
is extracted and added to an Integer collection Integer[] and this collection is sorted.

Table 1. Functions F Implemented.

Function Parameter Definition

Max

Input type inf p Integer new p Integeri i i i∈ ∈< > < >, , ,[] []

Predicate
aux p Integer cu ch new infi i i< > ∪, [] Re= [] ()\

out max aux infi i= (),

Output type out p Intergeri i∈< >,

Min

Input type inf p Integer new p Integeri i i i∈ ∈< > < >, [], , []

Predicate
aux p Integer cu ch new infi i i< > ∪, [] Re= [] ()\

out min aux infi i= (),

Output type out p Integeri i∈< >,

Sorting

Input type inf p Integer p Integernewi i ii∈ ∈< > ><, ,[], []

Predicate
aux p Integer Recu ch new infi i i< > ∪, [] = [] ()\

out sort aux infi i= ()

Output type out p Integeri i∈< >, []

Routing Tables

Input type inf p p new p pi i i i i i∈ ∈< > < >, [], , []

Predicate
aux p p Recu ch new infi i i i< > ∪, [] = [] ()\

out put ch out get ch auxi i⋅ ⋅ ()()(), 

Output Type out ch pi i∈< >, [] []

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

283

In the case of routing tables, inputs are agents’ identities and the outputs are channels
that an agent pi can use for communicating with its neighbours. get and put are meth-
ods that return or insert a collection of data associated to a channel e j (in this case, the

list of agents reachable from channel e j). For example, the input for the process p6 - it

is the red process in the network of Fig. 4a - is inf p p6 6 6= ,� ,new p p6 6 6= ,� , the val-

ue computed of this output is: out e p e p p e p p p e p p6 29 10 14 9 11 11 4 1 0 3 8 7= = { } = { } = { } =� ,� ,� ,� ,� , ,� ,� ,, , , ,� ,� , .p p p e p p p14 5 13 0 12 3 2{ } = { }{ }

out e p e p p e p p p e p p6 29 10 14 9 11 11 4 1 0 3 8 7= = { } = { } = { } =� ,� ,� ,� ,� , ,� ,� ,, , , ,� ,� , .p p p e p p p14 5 13 0 12 3 2{ } = { }{ } This output can be interpreted as: p6 reaches p10

by using channel e29, by e14 process reaches p9 and p11, etc.

Fig. 4. Processes Networks

4.2. Results

Table 2 presents the result of the experiments performed. Each row represents the
average and the standard deviation of agents which have a correct output (Agents
Right), agents with a wrong output (Agents Wrong) and agents that do not report
an answer (Agents without Response). As shown in Fig 4b, the network used for
experiments is not fully connected, so it is expected to have 47 processes commu-
nicating among themselves in order to achieve the global task. Table 2 shows how
the model computes F in an accurate way if probFailure = 0. A value of 3 in the
column Agents without Response represents the agents p p1 29,� and p12 which have
no input or output channels and do not send a response to the control board (in
the Network of Fig. 4b).

Diálogos en investigación en la Konrad Lorenz

284

For a greater value in the probFailure column, more agents with wrong answers
and agents without response are observed. In the experiments performed, it is ob-
served that the main effects of a crash are wrong answers more than problems in
communication. Agents without results represent agents that crash without receiv-
ing a message because each time an agent receives a message, it reports its output
to the control board. Additionally, it is observed (by now empirically) how the
crash of a process increases execution times because this implies that other agents
remain waiting for a response for a long time until they crash (given a probFailure).
Lower values in the probFailure column imply less processes with failures and
more process waiting for answers from its crashed neighbors. Another interesting
point is that there are few experiments where all the agents give wrong answers.

Table 2. Summary of experiments for crash (F min n e l probFailure= = = = = − − −,� ,� ,� ,� ,� ,� ,�50 150 1000 0 10 10 106 5 44 310, −

F min n e l probFailure= = = = = − − −,� ,� ,� ,� ,� ,� ,�50 150 1000 0 10 10 106 5 44 310, − and 10 1−)

probFailure Agents Right Agents Wrong Agents without Response

0 47 ± 0 0 ± 0 3 ± 0

10-6 46.55 ± 1.5 0.45 ± 1.5 3 ± 0

10-5 42.27 ± 4.09 4.10 ±4.20 3.63 ± 0.72

10-4 24.29 ± 9.53 18.39 ± 9.67 7.32 ± 1.78

10-3 16.33 ± 9.99 22.63 ± 9.79 11.03 ±3.01

10-1 2.13 ±3.21 25.03 ± 3.93 22.83 ± 4.22

As Raynal, 2013 proves, this communication mechanism allows information to be
shared by all the network from process to process in the next rounds. In this case,
computation terminates in maximum D + 1 rounds, with being D the diameter
of the communication graph. The Result is D + 1 because it includes the sending
Send ch() = ∅ when there is no new information to share, and in this case, the
channel is deleted from Ch in_ and Ch out_ . Each process is sending and receiving
a message by a number of channels e in each round, so the maximum number of
messages is 2 1e D +(). Therefore, an achievement of this work is that the model
proposed computes with the same number of rounds as a Distributed System for
the communication protocol implemented without failures.

Conclusions

A model that represents behaviours of Distributed Systems in a multi-agent envi-
ronment for testing self-* properties has been proposed. This approach defines an
asynchronous decentralized protocol that models the perceptions and actions of

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

285

the agents to interact with others and compute functions as a distributed system.
In the original implementation of the communication protocol of Raynal, 2013 all
the actions are defined together as a program for the process pi. Each process must
explicitly wait to receive a message from the other channels before starting a new
round. By abstracting each process as an agent, it is possible to add more actions
than an agent requires or even modify the agent program, because synchronization
is achieved between the send and the receive events by storing the nodes that have
not reported information in a given round.

One of the promising things of the communication protocol used is the possibility
of modelling different functions in an easy way. As Table 1 presents, it is possible
to define function F as a simple predicate and to set different input and output
types without changing the protocol. In the processing of this actions it is possible
to simulate what happen if an agent’s response is incorrect (Satzger, 2008).

FIFO communication channels are easy to implement in an environment like the
one proposed in this paper. The message queue model allows agents to share in-
formation in an effective way and serialization allows agents to send and receive
different types of data over the network without modifying the environment. By
having one buffer FIFO in the environment (for each agent) and another message
buffer inside each agent, it is possible to emulate known types of failures of Dis-
tributed Systems like omission failures where a node can fail to send or receive
messages or requests which can imply a loss of communication channels (Satzger,
2008; Tanenbaum & Steen, 2006).

Our model is designed in a way that custom agent programs can be defined in or-
der to add more behaviours to the agents and additional properties can be added
to the environment in an easy way, just like in the crash failure presented in this
paper. Even the communication protocol can be redefined in order to adapt it to
other networking models, and in the same way new perceptions and actions can
be added. As future work, we hope to define different kinds of tasks in the same
network to achieve self-organization and to add parameters like the quality of the
network connection to the channels.

In the experiments performed, crash failures were introduced in the behaviour
of the agents. The introduction of this type of failure allows for the observing of
how failures are propagating into the system and how a crash influences a wrong
answer or failures in the communication. As future work, we will define more ex-
periments regarding the crashing of a process and other types of failures (response,
omission). Once these experiments are defined, the idea is to evaluate what kind of

Diálogos en investigación en la Konrad Lorenz

286

local behaviours can be added to agents in order to allow for the adaptation of the
system by itself and to give agents self-* properties. Additional metrics like time
in rounds versus probFailure or message consumption are part of the future work.

By modelling decentralized control approaches based on local interactions, it is
possible to see how different random networks compute good local results and
how the agents without channels die because they have no other process for
communication and cooperation. Source code and executable files are available at
https://github.com/arleserp/DSSimulator.

References

Balaji, P. G., & Srinivasan, D. (2010). An introduction to multi-agent systems. Studies
in Computational Intelligence, 310, 1–27. http://doi.org/10.1007/978-3-642-
14435-6_1

Bhardwaj, R., & Dixit, V. S. (2010). An overview on tools for peer to peer network simu-
lation, 1(19), 70–76.

Casanova, H., Legrand, A., & Quinson, M. (2008). SimGrid: A generic framework for
large-scale distributed experiments. Tenth International Conference on Compu-
ter Modeling and Simulation (Uksim 2008), 126–131. http://doi.org/10.1109/
UKSIM.2008.28

Chandra, T., & Toueg, S. (1996). Unreliable failure detectors for reliable distributed sys-
tems. Journal of the ACM (JACM), 43(2). Retrieved from http://dl.acm.org/
citation.cfm?id=226643.226647

Eppstein, D., & Wang, J. (2002). A steady state model for graph power laws. 2nd Int.
Worksh. Web Dynamics, 8. Retrieved from http://arxiv.org/abs/cs/0204001

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the
Internet topology. ACM SIGCOMM Computer Communication Review. http://
doi.org/10.1145/316194.316229

Fischer, M. J., Lynch, N. a., & Paterson, M. S. (1985). Impossibility of distributed con-
sensus with one faulty process. Journal of the ACM, 32(2), 374–382. http://
doi.org/10.1145/3149.214121

Towards a Distributed Systems Model based on Multi-Agent Systems for Reproducing Self-properties

287

Fujiwara, K., & Casanova, H. (2007). Speed and accuracy of network simulation in the
simgrid framework. In Proceedings of the 2nd international conference on Per-
formance evaluation methodologies and tools. Retrieved from http://dl.acm.
org/citation.cfm?id=1345279

Guo, H., Gao, J., Zhu, P., & Zhang, F. (2006). A self-organized model of agent-enabling
autonomic computing for grid environment. Intelligent Control and Automa-
tion, 2006. WCICA 2006. The Sixth World Congress on, 1, 2623–2627. http://
doi.org/10.1109/WCICA.2006.1712837

Jun, H., Ji, G., Zhongchao, H., Beishui, L., Changyun, L., & Jiujun, C. (2004). A new
rational model of agent for autonomic computing. 2004 IEEE International
Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583), 6,
5531–5536. http://doi.org/10.1109/ICSMC.2004.1401074

Kephart, J. O., Chess, D. M., Jeffrey, O., & David, M. (2003). The vision of autonomic
computing. Computer, 36(1), 41–50. http://doi.org/10.1109/MC.2003.1160055

Kshemkalyani, A., & Singhal, M. (2008). Distributed computing: principles, algorithms,
and systems. Cambridge University Press. http://doi.org/CBO9780511805318

Lalanda, P., Mccann, J. A., & Diaconescu, A. (2013). Autonomic Computing: Principles,
Design and Implementation. Springer.

Nami, M. R., & Bertels, K. (2007). A survey of autonomic computing systems. Autono-
mic and Autonomous Systems, 2007. ICAS07. Third International Conference
on, 26. http://doi.org/10.1109/CONIELECOMP.2007.48

Raynal, M. (2013). Distributed Algorithms for Message-Passing Systems. Berlin, Heidel-
berg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-38123-2

Russell, S., & Norvig, P. (2004). Inteligencia Artificial. Un enfoque moderno. 2da Edi-
ción. http://doi.org/M-26913-2004

Satzger, B. (2008). Self-healing Distributed Systems. Augsburg University. Retrieved
from http://www.infosys.tuwien.ac.at/staff/bsatzger/publications/pdf/satz-
ger_diss.pdf

Diálogos en investigación en la Konrad Lorenz

288

Satzger, B., Pietzowski, A., & Ungerer, T. (2011). Autonomous and scalable failu-
re detection in distributed systems. International Journal of Autonomous
and Adaptive Communications Systems, 4(1), 61. http://doi.org/10.1504/
IJAACS.2011.037749

Tanenbaum, A., & Steen, M. Van. (2006). Distributed systems: Principles and paradig-
ms. Prentice-Hall. Retrieved from http://dl.acm.org/citation.cfm?id=1202502

Tel, G. (2009). Introduction to Distributed Systems. Cambridge Press. Retrieved from
http://dl.acm.org/citation.cfm?id=517021

Velho, P., & Legrand, A. (2009). Accuracy study and improvement of network simula-
tion in the SimGrid framework. Proceedings of the Second International ICST
Conference on Simulation Tools and Techniques. http://doi.org/10.4108/ICST.
SIMUTOOLS2009.5592

White, S. (2005). Analysis and visualization of network data using JUNG. Journal Of
Statistical Software, VV(Ii), 1–35. Retrieved from http://www.citeulike.org/
group/206/article/312257

White, S. R., Hanson, J. E., Whalley, I., Chess, D. M., & Kephart, J. O. (2004). An
architectural approach to autonomic computing. Autonomic Computing,
2004. Proceedings. International Conference on, 2–9. http://doi.org/10.1109/
ICAC.2004.1301340

	_GoBack
	_GoBack

