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1. Introduction and basic definitions

In a metric space (X, d), a geodesic path joining x € X and y € X is a map ¢ from a closed interval
[0, 7] C R to X such that c(0) = x, c(r) = yand d(c(¢),c(s)) = |s — t| foralls, t € [0, r]. In particular,
the mapping c is an isometry and d(x, y) = r. The image of geodesic path (joining x and y) under c is
called a geodesic segment joining x and y which is denoted by [x, y] whenever such a segment exists
uniquely. For any x, y € X, we denote the point z € [x,y] by z = (1 — ¢)x @ ay, where 0 < o < 1if
d(x,z) = ad(x,y) and d(z,y) = (1 — a)d(x, ).

A metric space (X, d) is called a geodesic space if any two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x,y € X. A
subset C of X is called convex if C contains every geodesic segment joining any two points in C.

A geodesic triangle A (x1, x2, x3) in a geodesic metric space (X, d) consists of three points of X (as
the vertices of A) and a geodesic segment between each pair of points (as the edges of A). A compar-
ison triangle for A(x1, x2,x3) (denoted by A)isa triangle A)(x1,%2,%3) := (X1, %2, %3) in Fuclidean
plane R? such that dp2 (xi» xj) = d(x;, x;) for i,j € 1,2,3. A point x € [x1, x] is said to be compar-
ison point for x € [x1,x,] if d(x1,x) = dg2(x1,x). The comparison points on [x;,x3] and [x3,x]
are defined in same way. Let A be a geodesic triangle in X and A its comparison triangle in R,
Then A is said to satisfy CAT(0) inequality if for all x,y € A and all comparison points %, 7 € A,
d(x,y) < dga(x,y).

A geodesic metric space X is called a CAT(0) space if all geodesic triangles satisfy the above com-
parison axiom (i.e. CAT(0) inequality). Some well known examples of CAT(0) spaces are complete
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and simply connected Riemannian manifold having non-positive sectional curvature, pre-Hilbert
spaces, R-trees, Euclidean buildings and the complex Hilbert ball with a hyperbolic metric.

Let x,y € X in a CAT(0) space X. For each t € [0, 1], there exists a unique point z € [x, y] such
that

d(x,z) =td(x,y) and d(y,z) = (1 — t)d(x,p). (1)
For convenience, from now on, we will use the notation (1 — t) @ ty for unique point z satisfying (1).

For details as regards spaces please see [9,11,12]. Some results are recalled here for CAT(0) space X.

Lemma 1.1 ([6]): Let X be a CAT(0) space. Then, for all x,y,z € X and t € [0, 1],

i) dQ=10x®ty,z) < (1 —t)d(x,z2) + td(y,2),
(i) d*((1 —x®y,2) < (1 — )d*(x,2) + td* (v, 2) — t(1 — Hd>(x, ).

Let x; € X and A; € [0,1] for i =1,2,...,n such that > I | ; = 1. Following the definition
of unique point (1 — a)x @ ay on a geodesic segment [x,y], we build the following notations:
@12:1 Aixi = )qle)»le @ MATZAZxZ' By induction, we can write

n
@)\-x—(l—)\) M x1 ® r2 O B An_lx @D Anx,
N it n 1-)»,,1 1—)»,12 1_)\-11 n—1 nin-.

In view of Lemma 1.1, we can have the following:

Lemma 1.2 ([20]): Let X be a CAT(0) space with x,x; € X and A; € [0,1] fori = 1,2, ..., n such that
Y Ai=1. Then

(1) dEBL, rixi»x) < iy d(xi,x);
(i) AL, rixix)* < Y1) Aid? (xi x) — Midjd*(xi, %)) forij € {1,2,...,n}.

Kirk and Panyanak [8] specialized the concept of A-convergence to CAT(0) spaces and showed
that many Banach space results involving weak convergence have precise analogs in this setting.

Let {x,} be a bounded sequence in a CAT(0) space X. For x € X, we set r(x,{x,}) =
limsup, _, . d(x, x,). The asymptotic radius r{x,} of {x, } is given by r({x,,}) = inf{r(x, {x,}) : x € X}
and the asymptotic center A({x,}) of {x,} is the set A({x,,}) = {x € X : r(x, {xn}) = r({xa})}.

Lemma 1.3 ([6]): If {x,} is a bounded sequence in a CAT(0) space X with A({x,,}) = {x} and {u,} is
a subsequence of {x,} with A({u,}) = {u} and the sequence {d(x,, u)} converges, then x = u.

Lemma 1.4 ([5]): IfKis a closed convex subset of a CAT(0) space X and if {x,} is a bounded sequence
in K, then the asymptotic center of {x,} is in K.

Lemma 1.5 ([10]): Let K be a closed convex subset of a complete CAT(0) space X and T : K — K
be a total asymptotically non-expansive mapping. If {x,} is a bounded sequence in K A-converging to x
and lim,__, oo d(x,, Tx,) = 0, then x € K and Tx=x.

Lemma 1.6 ([17]): Suppose that {a,},{b,} and {5,} are sequence of non-negative real numbers such
that any1 < (1 +8p)an + by foralln > 1. If Y 021 8, < 00 and Y .2, b, < 00, then lim,_ o0 ay
exists.

Definition 1.1 ([8]): A sequence {x,} in CAT(0) space is said to A-convergent to x € X if x is
the unique asymptotic center of {x,} for every subsequence {u,} of {x,}. In this case, we write
A —lim, x,, = x and call x is the A-limit of {x,}.
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Definition 1.2 ([7]): Let K be a closed convex subset of a complete CAT(0) space X. A bounded
sequence {x,} in K is said to converge weakly to q € K if and only if ®(q) = inf,ex @ (x), where
& (x) = limsup,,_, o, (x4, %).

Let we recall some basics for nonlinear mappings on metric spaces. Let (X, d) be a metric space
and K be its non-empty subset. Then T : K — K is said a:

(a) Contraction if there exists a k € [0, 1) such that d(Tx, Ty) < kd(x, y), forall x,y € K.

(b) Non-expansive if d(Tx, Ty) < d(x,y), forall x,y € K.

(c) Asymptotically non-expansive if for a sequence u, C [0, 00) with lim,_, « t, = 0 such that
d(T"x, T"y) < (1 4 uy)d(x, y)forallx,y € Kand n > 1.

(d) Uniformly L-lipschitzian if there exists L > 0 such that d(T"x, T"y) < Ld(x,y) for all x,y € K
andn > 1.

(e) Semi-compactif for sequence {x,}in K with lim,_, », d(x,, Tx,) = 0, there exists a subsequence
{%n;} of {x,,} such that {xn} > peK.

Every contraction mapping in non-expansive and every non-expansive mapping is asymptotically
non-expansive mapping. But the converse of each may not be true.

In 2007, Agarwal et al. [1] introduced a new iteration process for non-expansive mappings, which
they called ‘S-iteration process’. The sequence {x,} in this process is given by

Xpt1 = (1 —oty) Ty + anT)’n
Yn = (I —=Buwxn+ Bulx, n>1, 2)

where {&,}°°; and {B,};°, are real sequences in [0, 1]. They showed that S-iteration procedure
is independent of Ishikawa (and hence of Mann) but converges faster that both of these iterative
procedures.

In 2012 R. Chugh et al. [4] introduce the following iterative process:
X1 = (1 — an)yn + anTyn,
yn=0=Bu)Txn+ BnTzy, n=1,
zn = (1 = Yn)xn + ¥nTxn, 3)
where {0, }02 1, {Bn}oc 1> {va)52 | are real sequences in [0, 1]. It is called the CR iterative scheme. If we
take o, = 0 the iterative process (3) reduces to S-iteration (2).

On the other hand, Schu [16] defined the modified Mann iterative procedure which is a general-
ization of Mann iterative procedure. For CAT(0) spaces it can be written as

Xpp1 = (1 —ap)x, @ anTnxn n>1, 4)

Tan and Xu [18] generalized Ishikawa iteration procedure in a similar way.
Changet al. [3] defined the concept of total asymptotically non-expansive mapping in a framework
CAT(0) space as follows:

Definition 1.3: Let (X, d) be a CAT(0) space, K be a non-empty closed convex subset and let T :
K — K be a mapping. T is said to be total asymptotically non-expansive mapping if there exist non-
negative real sequences {{t,,},{v,}, with ,, — 0, v, — 0 and strictly increasing continuous function
¢ : [0,00) — [0, 00) with £(0) = 0 such that

A(T"x, T"y) < d(x,y) + val (d(x,9) + tin (5)

forallx,y € Kandn > 1.
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It follows from the above definitions that each non-expansive mapping is an asymptotically non-
expansive mapping with k, =1 Vn > 1 and that each asymptotically non-expansive mapping is
a total asymptotically non-expansive mapping with v, =k, — 1, u, = 0,v, > 1,{(t) =t V£ > 0.
Moreover, each asymptotically non-expansive mapping is a uniformly L-Lipschitzian mapping with
L = sup,,.., {k,} However, the converse of these statements is not true, in general.

They [3] further studied the iterative approximation of fixed point for total asymptotically non-
expansive mappings using a modified Krasnoselskii-Mann iteration process. Iterative approximation
of fixed points of total asymptotically non-expansive mappings has also been studied by [2,13,14,19].

Thakur et al. [19] proposed a modified hybrid-Mann iteration process for iterative approximation
of fixed points of total asymptotically non-expansive mappings in CAT(0) spaces. The sequence {x,}
in this iteration is given by

n
Xpt1 =T Yn

yn =1 —an)xy ®a,T"x, n>1, (6)

where {0,}32 | is a real sequence in [0, 1].

Pansuwan and Sintunavarat [13], propose a modified hybrid-Ishikawa iteration process as follows:

Xnp1 = T"yn,
yn=1—anz, ®a,T"z, n=>1,
zZn = (1 = B)Xn ® BT " xp, (7)

for all n € N, where {«,}7° | and {8}, ; are real sequences in [0, 1].

Motived and inspired by Chugh et al. [4], Kumam et al. [10], Pansuwan and Sintunavarat [13]
and Saluja and Postolache [15] and some others, we propose: Consider K to be a non-empty closed
convex subset of a complete CAT(0) space X and T : K — K be a total asymptotically non-expansive
and uniformly L-lipschitzian mapping with F(T) # . We introduce and study a three-step scheme
with perturbations. The scheme is defined as follows:

X = T((1 = ot — ))yn ® 0 T"n ® o),
Yn = (1_,371 —ﬁ;)T”xn@IBnTnzn@,BLE; nzl,
Zn= (1= Yn— V))%n ® YuT"xn ® y, €, ®)

where {€,}, {€,} and {e;/} are bounded sequences in K and {a,}0° |, {Ba}02 1> {¥n)ooys {250,
{B,}52, and {y,}°° | are appropriate real sequences in [0, 1].

In this paper, we will establish strong and A-convergence theorems of modified three-step
sequence with perturbation for total asymptotically non-expansive mapping in the frameworks of
CAT(0) spaces. Our results can be particularize to case «;, = 0 and we obtain results for modified
hybrid-S-iteration process [10].

2. Main results

We will prove the following useful lemmas of proposed iteration with perturbations (8) for a total
asymptotically non-expansive mapping in CAT(0) spaces. Moreover, we also prove strong and A-
convergence theorems under mild conditions.

Lemma2.1: Let K be a non-empty closed convex subset of a complete CAT(0) space X. Let T : K — K
be a total asymptotically non-expansive mapping with Y oo | fty < 00, Y oo vy < 00 and F(T) # (.
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Let {x,} be the sequence defined by (8) such that

(Cl) Y o), <00,y o2 B <ocandy o2y, < o0
(C2) There exists a constant My > 0 such that ¢ (r) < Myr,r > 0.

Then limy,—, o d(Xp, p) and limy,—, o d(xy, F(T)) exist for all p € F(T).
Proof: Letp € F(T). Trivially from (C2), for all x € K,
d(T"x,p) < (1 + vaMD)d(x, p) + fin. ©)
From (8), (9) and Lemma 1.1 we have

d(zn,p) = d (1 = ¥n — ¥,)%n @ YuT"%n @ yy€p, p)
< (= yn — y)dGump) + ¥n [+ vaM1)d(xn p) + ] + vid(epr, p)
< (1= yn— v+ MDA p) + v [+ vaM1)d(xp, p) + pn] + v,d(e,, p)
= (1= y,) (1 + vaM)dCn, p) + Yultn + vyd(ey, p)
< (14 vaM)d(n, p) + pn + vad(€y, p). (10)
Again using (8), (10) and Lemma 1.1, we have

d(ynp) = d((1 = Bn = BT %0 ® BuT"20 ® Breyp)
< (1= Bu— By [(1 4+ vaMD)d(xn, p) + fin]
+ Bu [(1 + vaM1)d(z4, p) + wn] + Byd(e,, p)
< (1= Bu— By [(1 + vaMDd(xn, p) + 11
+ B [+ 1uM) [(1 4 vaM)d s p) + fn + vid (€l )] + 12n]
+ Brd(e,p) (11)
ie.
Ay p) < (1= Bu — B (1 + vM1)*d(ns p) + (14 vuM) (A = By — Br) it
+ Ba (L + vuM1)2d(n, ) + Bubtn(1+ vaM1) + Buptn
+ Buyy (1 + vaM1)d(e,, p) + Brd(e,, p)
= (1= B+ vuM)d(xn, p) + (1 + vaM1) (1 — B
+ Butn + Ba(1 4+ vaM1)y,d(e, p) + Bd(e,, p)
< (1+ vaMD2d(xn, p) + 2 + vaM) pn + 1+ v M)y, (e, p) + Bhd(e),p).  (12)

Setwy, = (1 —ay — &))yn ® @y T"yy @ o),€,. Now using (12) and Lemma 1.1, we get

dwn,p) = d ((1 — aw — a;)yn ® anT"yy ® ;€0 p)
< (1= o)y + agvpMy) [(1 4 vaM1)*dCens p) + (2 4 vaMi)
+(1 4+ vaMD)y,d(e, p) + Bud(€y p)] + cnptn + ayd(en, p)
< (14 vuM)*dn, p) + [(1+ vaM1) (2 + vaM)) + ] i
+ (14 vuM)2yd(el, p) + (1 + v, M) BLd(€l, p) + otd(€n, p). (13)
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From (5), (8) and (13) we have
d(xn+l>P) = d(Tn(Wn),P) <1+ Van)d(WmP) +un <1+ An)d(xnap) + By + €ns

where A, = 4Mjv, + 6M2v2 + AM;v3 + Mjvi, B, = (3 + 5v,M; + 4v2M? + v3M; + (1 + vy
M)y and &, = (1 + v, M)y d(€l,p) + (1 + v, M1)*Bd(€), p) + (1 + vuMy)et,d(€p, p). Since
{€x}, {€,} and {€]/} are bounded sequences in K, we can put

My = sup {d(enx),d(e),x),d(e,x)}.

n>1,xeK

Then M; is a finite number and there exists some positive constant D such that ¢, < D(y,, + B;, +
;). Taking infimum over all p € F(T), we get

d(xpt1,p) < (1 + Ap)d(xy, F(T)) + By + D(y, + B, + o))

Since Y 07| tn < 00, > oo vy < 00, it follows that Y o2 | A, < 00, > 72| B, < 00. From (C1) and
Lemma 1.6, lim,_, oo d(xy, p) and limy,—, o d(x4, F(T)) exist. |

Theorem 2.1: Let X, K, T, {x,} satisfy the hypothesis of Lemma 2.1. Then the sequence {x,} defined
by (8) converges strongly to a fixed point of T if and only if liminf,_, o d(x,, F(T)) = 0, where
d(x, F(T)) = inf{d(x,p) : p € F(T)}.

Proof: The necessity is obvious. To prove the converse, suppose that lim inf,,_, o d(x,, F(T)) = 0.
Thus by hypothesis lim,_, oo d(x4, F(T)) = 0. Next, we show that {x,} is Cauchy sequence in K. with
help of inequality 1 + x < €*,x > 0. From Lemma 2.1, d(x,+1,p) < (1 + An)d(xy, p) + By + €n, i,
for any integer m > 1,

Axntms P) < A+ Apgm—1)dXntm—1,P) + Bugm—1 + Entm—1
< e d(xyim—1,P) + Bum—1 + Entm—1

= gAmtm-1 [eA”Jr’”*zd(anrm—z,P) + Buym—2 + 8n+m72i|

+ Butm—1 + Entm—1

<.
n+m—1
< (eZI?inAk) A p) + (eZJﬁnAk) Z By
k=n
n+m—1
+ (e Z‘i,,t%) Z £k
k=n
n+m—1 n+m—1
=Gd(xwp)+G Y Bi+G Y e (14)
k=n k=n

where G = eXten Ak,

Since lim;_, o0 d(x4, F(T)) = 0, without loss of generality, we may assume that a subsequence {x, }
of {x,} and subsequence {p,, } C F(T) suchthatd(x,,,ps,) — 0ask — oo.Thenforanye > 0, there
exists ke > 0 such that

o o
€ € €
d(Xpy> Pry) < et kE B < 5C and kg &k < e (15)
=n =n

forall k > k..
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For any m > 1 and for all n > ny, by (14), we have
d(xn—i-m: Xn) < d(xn+m>Pnk) + d(xn’pnk)

oo o0
< Gdxnpu) +G Y B+ G &

k=ny, k=n

o0 o0
+ Gd(n pui) + G Y B+ G Y e

k=ny, k=n

oo [e9]
< 2Gd(xn puk) +2G Y B +2G ) e

k=ny, k=n

<265 +265 1265 =« (16)
~ 776G 6G 6G

This proves that {x,} is a Cauchy sequence in K. Thus, the completeness of X implies that {x,} must
be convergence. Assume that lim,_, o X, = ¢. Since K is closed, therefore g € K. Next, we show that
q € F(T). Since limy,_, oo d(x4, F(T)) = 0, we get d(gq, F(T)) = 0, closedness of F(T) gives that q €
F(T). Thus {x,} converges strongly to a point in F(T). This completes the proof. n

Lemma 2.2: Let K be a non-empty closed convex subset of a complete CAT(0) space X. Let
T:K — K be a uniformly continuous and total asymptotically non-expansive mapping with
Y o M < 00, 02 vy < 00 and F(T) # (. Let {atn}, { Bn} and {yn} be sequences in (0, 1) such that,
liminf, oo an(l — oty — ),) > 0, liminf, 00 Bn(1 — By — B),) > 0 and liminf,— 00 Yu(1 — yu —
v;) > 0. Let {x,} be the sequence defined by (8) such that

(Cl) Y olia), <00, 00, Bl <ooandy 2y, < 0o.
(C2) There exists a constant My > 0 such that £ (r) < Myr,r > 0.

Then limy,_, oo d(Txy, x,,) = 0.

Proof: Foranyp € F(T), it follows from Lemma 2.1 thatlim,_, o, d(xy, p) exists. Let lim,,_, o d(x,, p)
= g, for some g > 0. We claim that lim,,—, oo d(TXy, x,,) = 0.

Since {x,} is bounded, there exists R > 0 such that {x,}, {yn}, {z,} C Br(p) for all n > 1 Using (8)
and Lemma 1.2,

11

d*(znp) =d* (1 = Y — Y %0 ® v T"x0 @ Vy€ps D)

< Yud*(T"%n, p) + (1 = ¥ — yi)d* (n, p) + v’ (€], p)
— V(1 = ¥n — Y& (T" %0, %)

< ¥ [+ vuMDA @ p) + 1] + (1= v — v & Cennp) + vyd? (e P)
— Va1 = yu — Y@ (T"xy, Xn)

< ¥n(1 + vaM)*d (%, p) + Vattn (L + v M)A, p) + fn)
+ (1= v — v A+ vaM)* & (xn, p) + v, d(€)), p)
— Yu(L = yu = V)@ (T"xy, X)
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= (1 — ¥+ vuM1)2d* (X, ) + Yuttn(R(L + vuM1)d(Xn, p) + in) + vod* (€l p)

—Vn(1 — vy — V;;)dz(Tnxn,xn)

< d* (% p) + PV + Quitn + vad> (€, p) — Yu(1 — yu — ¥ d* (T" %, xn),

where P, = M (2 + v,M1)d?(x,, p) and Q, = 2(1 + v,M1)d(xy, p) + . This implies that

dz(zmp) =< dz(xmp) + Ppvn + Quuiy + Védz(f,qyp)-

From (17) we have,

Yn(1 — yYn — Vn/)dz(Tnxnaxn) < dz(xmp) + Ppvy + Quuin — dz(zmp) + J/r/lM2~

(17)

(18)

Since Y 02| iy < 00, D pey Vp < 00, 3 oo ¥, < coand d(xy, p) < Rforalln, wehave y,(1 — y, —

YA (T"xy, xy) < 00. By liminf,— 00 ¥4 (1 — ¥ — ¥,)) > 0, it follows that
lim d(T"x,,x,) = 0.
n—oo

Again from (8) and Lemma 1.1, we have

& s p) < & ((1 = Bu — BT %0 ® BuT"20 @ Bryess )

< Bud®(T"zu, ) + (1 — B — B> (T" %, p) + B’ (€7, p)
— Bu(1 = B — B> (T"xy, T"2)

< B [(1 + vaMD)d(z, p) + 1]
+ (1= B — B [(1+ vaM)d (s p) + 1tn]” + B (€} p)
— Bu(1 = By — B d* (T"xp, T"2,)

= Bu(1 + vuM1)*d* (20, ) + B [214nd(zns p) + 115
+ (1= Bu— B [+ vaM1)* (0, p) + Quitn + 147]
+ Brd(€psp) — Bu(l — Bu — B> (T"xn, T"2y),

where Q) = Q, — iy
Substituting (18) into (20), we have

& s p) < Bu(l + vaM1)? [d (xns P) + Pyvn + Quitn + vod* (€, p) |
+ Bn [21nd(zn, p) + 2]
+ (1= Ba = B [+ vuM1)?d (n p) + Qi + 147]
+ Brd* (€}, p) — Bu(l — Bu — Br)d*(T" x4, T"2p)
< (1 + vaM1)?d* (xn, p)

(19)

(20)
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+ (14 vaM1)? [Ppvn + Qyuan + vpd* (e, )]
+ 20 d(zn, p) + Quitn + i
+ Brd (€1, p) — Bu(l — Bu — B (T"xn, T"zy)
= (1 4 v, M)*d* (%, p) + (1 4 v, M)*P,vy,
+ (1 + vaM1)> Q) + 24nd(zns p) + Qlin + 15
+ ¥+ v, M) d (€, p) + B d* (€1, p)
— Bu(1 = Bu — B> (T"xn, T"zy)
< d* (X, p) + RV + Sultn
+ yp(L+ vaM)?d (e, p) + Brd’ (€, p)
— Bu(1 = B — B> (T"xy, T"zp), (21)
where R, = P, + (1 + v,M;)?P, and S, = Q, + (1 + v,M1)*Q), + 2d(zy, p). This implies that
Bu(L = Bn — Br)d*(T"xn, T"2n) < d* (x> p) — &> (Vs ) + Ruvy + Suitn + An,

where A, = B + v, (1 + v,M)>.

Since Y 02 My < 00, Y poq Uy <00, D opo Br <00, > o2y, <oo and d(x,,p) <R and
d(zy, p) < Rfor all n, we have 8,(1 — B8, — ,8,’1)d2(T”xn, T"z,) < oo. This implies by lim inf,,_, 5 B
(1 — B, — B;) > 0that

lim d(T"x,, T"z,) = 0. (22)
n—oo
In a similar way, we can obtain that
nlLHOIO d(Tnynayn) =0. (23)

By using (5) and (8), we get
d(T”yn,an) = d(T")/m ann) <=1+ Van)d(yn’ Wn) + Un
<1+ Van)[and(ynx Tnyn) + a;d()’m €] + MHn- (24)
From (23), we get limy,—, oo d(T"yp, xn+1) = 0. Note that
d()/n; Tnxn) <d ((1 — Bn — ,B;I)Tnxn ® ﬁnTnzn @ /3;/16;17 Tnxn)
< Bnd(T"z, T"xn) + B,My — 0, asn — 00. (25)

By (19) and (25), we have d(x,,yn) < d(xn, T"x,) + d(T"xy, yn) — 0 as n — oo. By triangular
inequality, d(x, Xn+1) < d(Xp, ¥n) + AW, T"yn) + A(T" Y0, Xu41) — 0,as n — o0. By (19) and uni-
form continuity of T, we have

d(xn, Txn) < d (s Xn11) + d@ng 1, T 1)
+d(T" o, T ) + (T o, Tx)
< Q2+ vt MDA 1, %) + A1, T )
+ d(T"  xg, Txn) + [t
— 0, asn— oo. (26)

This completes the proof. [
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Theorem 2.2: Let X, K, T, {x,} satisfy the hypothesis of Lemma 2.2. Then the sequence {x,} defined
by (8) A-converges to a fixed point of T.

Proof: We first show that wa ({x,}) € F(T). We denote wa ({x,}) := U(A{u,}) where the union is
taken over all subsequence {u,} of {x,}. Let u € wa({x,}) then there exists a subsequence {u,} of
{xn} such that A({u,}) = {u}. By Lemma 1.4 there exists a subsequence {v,} of {u,} such that A —
lim, v, = v € K. By Lemma 1.5, {v,,} € F(T). Now by Lemma 2.1lim,_, d(x,, F(T)) exists, so by
Lemma 1.3, we have u=v, i.e, wa ({x,}) € F(T).

To show that {x,} A — convergent to point in F(T), it is sufficient to show that wa ({x,}) consists
of exactly one point.

Let {u,} be subsequence of {x,} with A({u,}) = {u}, and let A({x,}) = {x} for some u €
wa ({x4}) € F(T) and {d(x,, v)} converge. By Lemma 1.3, we have x = v € F(T). Thus wa ({x,,}) =
{x}. This shows that {x,} is A — convergent to a point of F(T). [ |

Theorem 2.3: Let X, K, T, {x,} satisfy the hypothesis of Lemma 2.2. If T is semi-compact for some
m € N, then the sequence {x,} converges strongly to a point of F(T).

Proof: By Lemma 2.2 and the uniformly continuity of T, we have lim,_, o, d(x,, T™x,) = 0. By the
semi-compactness of T™, there exists a subsequence {xn;} of {x,} such that Xp; = p € K. Lemma 2.2
guarantees that limnj_><>o d(xnj, Txnj) = 0andsod(p, Tp) = 0.By Lemma2.1,lim,_, o, d(xy, p), thus
p is the strong limit of the sequence {x,} itself. |

3. Numerical examples

In this section, we provide the numerical examples to illustrate its performance and to compare
propose iteration with existing methods.

Example 3.1: Let X := R be a usual metric space with the metric d, which is also a complete CAT(0)
space, and C = [1,999]. We see that C is a bounded closed convex subset of X. Define a mapping

Tx = v x2 — 8x + 40.

It easy see that T is a continuous uniformly L-Lipschitzian and a total asymptotically non-expansive
mapping with F(T) = {5}.

Let oy = B, = nL_H and y, =1 for all n» € N and without perturbations. By using Wolfram
Mahtematica 10, we computed the iterates of (4), (6)-(8) (and moreover (8) with «,, = 0, hybrid S-
iteration) for an initial point x; = 999. The convergence behaviour of all iterations for approximating
the fixed point 5 are given in Figures 1 and 2.

In Figures 3, and 4, we give the convergence behaviour of the iterates of and for some initial point
under the different control conditions.

Example 3.2: Consider X = R? equipped with the Euclidean norm. Let x = (x1,x;) € R?, then the
squared distance of x from the origin is

IxI2 = < + 3.
Consider K as the closed unit disk:
K = {(xl,xz) e R? :x% —i—x% < 1} R
which is bounded, closed, and convex in X. We define mapping Roty : K — K by:

cos(0) —sin(@)] |:x1:|

Rote<x1’XZ>=[sm(e> cos(®) | |x2
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1000 |-

600 -
400 -

200 -

— Modified H-CR iteration

—— Modified H-S iteration

— Modified H-Ishikawa iteration

—— Modified H-Mann iteration

— Modified Mann iteration

[
L )

o4

Figure 1. Convergence behaviour for Ex. 1in case an = By = ;47 and y, = 1foralln e N.

Iterate Mann H-Mann H-Ishikawa H-S H-CR
a5l 999. 999. 999. 999. 999.
o 997.006 993.018 989.03 985.042 983.049
T3 991.689 979.725 643.415  632.765 626.158
Ty 982.716  958.791 300.868  283.686 271.47
Z5 969.956  930.082 95.324 73.1034 56.1376
Tg 953.341  893.537 7.66672  5.00009 5.
T7 932.836 849.119 5.00023 5 5.

g 908.416 796.811 5.00006 5 5.

Figure 2. Convergence behaviour for Example 3.1in case ¢y = By = % and y, = 1foralln e N.

1000 [

800 -

600 -

200 -

—— Modified H-CR iteration

—— Modified H-S iteration

—— Modified H-Ishikawa iteration

—— Modified H-Mann iteration

— Modified Mann iteration

Figure 3. Convergence behaviour for Example 3.1incase oy = 8 =1 —

1

T andy, = 1 foralln e N.

n+1

For 6 = 7, our algorithm is the following:

271
X = n
(n+1) (—1)"2_5

Wn) = (1- an)y(n) + oy (

>
9

[SIERNEY

) W(n)

_n
2

[STERNSTEY

))’(n)

2 2
(=)"2"2 2~
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1000 -
ol — Modified H-CR iteration
[ Modified H-S iteration
600 |
I — Modified H-Ishikawa iteration
400 ;
r —— Modified H-Mann iteration

2001 — Modified Mann iteration

Figure 4. Convergence behaviour for Example 3.1in case o, = 8, = ﬁ — — _andy, = -2 foralln e N.

ny/n+2 n+1
272 2-
Z(n)

(-7 27

[STENNNTE
[STEE ST

X + B 24 2
WP (—pym2mE 2m
) x(n).

It is easy to see that Roty is non-expansive, since for all (x1,x2), (y1,¥2) € K and Ry is total
asymptotically non-expansive mapping. Clearly, zero is the only fixed point of the mapping
Roty.

Yy = (1 — Byn) <

(TR

2

-
(-7 2

[STESE TR

Z(n) = (I —vn) X(n) + Vn (

Leta, =1— \/nl? and B, =y, = n+r1 for all n € N and without perturbations. By using Wol-

fram Mahtematica 10, we computed the iterates of (8) for an initial point x(;) = (250,250) for
6 = %, % and {7. The convergence behaviour of all iterations for approximating the fixed point (0, 0)
are given in Figures 5 and 6.

350
300
250 — ==
4
200
I A
T 14
150
I JT
100 8
50

Figure 5. Convergence behaviour for Ex. 2.
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Error 0=7 0=z 0=
22, 353553 353.553 353.553
| 312.684 342.933 350.055

)
\|x§3;u 200.42  308.158 338.135
\|x§4)u 68.5979  246.782 315.054
\|x§5) | 6.66271 168.598 280.081
\|x§6) | 2.65704 93.4380 235.044
ng) | 1.89049  40.062 184.281
ngs) | 1.75554 13.4935 133.676

la)l 175554 438678  88.9765
l220)l 163583 176351 54.0581
l22, )l 1.23427 0.921586 29.9896
l22,5)]l 0.666829 0.600032 15.3399
27, 0.293425 0.461712 7.39926
22,4l 0.167443 0.400777 3.48589
I35l 0.130935 0.377136  1.6708

Figure 6. Convergence behaviour for Ex. 2.

1000 [
800 L
600 - — Without perturbation

400 |- — With perturbation

200

Figure 7. Convergence behaviour for Example 3.3.

L _ _1_ =
Jn+l Jn+2 and y, = n+1 for
alln € N (see Figure 9), where we consider a version with perturbation givenby a, = 8, = y,, = n™>

Example 3.3: Here we reconsider Example 3.1, in case o, = B, =

3
ande, =€), =€) = (”J;# — 16 (Figures 7 and 8).

Example 3.4: Here we reconsider Example 3.2, with same a, = 1 — —-—— and 8, = y,, = — forall

Jn+l n+1
n € N and with perturbations given by ), = B, =y, =n> and e, = €, = €| = (”';—,11)”3 — 16. By
using Wolfram Mahtematica 10, we computed the iterates of (8) for an initial point x(;) = (250, 250)
for & = %, % and {5. The convergence behaviour of all iterations for approximating the fixed point
(0, 0) are given in Figure 9, where we compare pertubed and no perturbed ones.
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Iterate Hybrid CR Perturbed Hybrid CR
1 999. 999.

T 986.26 954.314

3 961.306 928.714

T4 924.316 891.707

11 332.015 299.626

Z12 200.602 168.44

13 59.5073 29.2372

x14 5. 5,

Figure 8. Convergence behaviour for Example 3.3.

e U —— 6= 41 perturbed
300 |- T

o Vs ™y = e 6= ” perturbed
250

[ T
e S\ N N N 6= Y perturbed
150 |- — ==

[ 4
100

[ ==

[ 14

50 [
[ _ T
T B B - U= g
2 4 6 8 10 12 14

Figure 9. Convergence behaviour for Example 3.4.
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