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Hybrid algorithmwith perturbations for total asymptotically
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ABSTRACT
In this paper, we establish strong and �-convergence theorems of the
modifiedhybrid-CR three steps iterationwithperturbations for total asymp-
totically non-expansive mapping in CAT(0) spaces. Our results improve
and extend the corresponding results from the current literature. We also
provide three examples to illustrate the convergence behaviour of the
proposed algorithm and numerically compare the convergence of the pro-
posed iteration scheme with the existing schemes.
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1. Introduction and basic definitions

In a metric space (X, d), a geodesic path joining x ∈ X and y ∈ X is a map c from a closed interval
[0, r] ⊂ R toX such that c(0) = x, c(r) = y and d(c(t), c(s)) = |s − t| for all s, t ∈ [0, r]. In particular,
the mapping c is an isometry and d(x, y) = r. The image of geodesic path (joining x and y) under c is
called a geodesic segment joining x and y which is denoted by [x, y] whenever such a segment exists
uniquely. For any x, y ∈ X, we denote the point z ∈ [x, y] by z = (1 − α)x ⊕ αy, where 0 ≤ α ≤ 1 if
d(x, z) = αd(x, y) and d(z, y) = (1 − α)d(x, y).

A metric space (X, d) is called a geodesic space if any two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each x, y ∈ X. A
subset C of X is called convex if C contains every geodesic segment joining any two points in C.

A geodesic triangle �(x1, x2, x3) in a geodesic metric space (X, d) consists of three points of X (as
the vertices of�) and a geodesic segment between each pair of points (as the edges of�). A compar-
ison triangle for �(x1, x2, x3) (denoted by �) is a triangle �)(x1, x2, x3) := (x1, x2, x3) in Euclidean
plane R

2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ 1, 2, 3. A point x ∈ [x1, x2] is said to be compar-
ison point for x ∈ [x1, x2] if d(x1, x) = dR2(x1, x). The comparison points on [x2, x3] and [x3, x1]
are defined in same way. Let � be a geodesic triangle in X and � its comparison triangle in R

2.
Then � is said to satisfy CAT(0) inequality if for all x, y ∈ � and all comparison points x, y ∈ �,
d(x, y) ≤ dR2(x, y).

A geodesic metric space X is called a CAT(0) space if all geodesic triangles satisfy the above com-
parison axiom (i.e. CAT(0) inequality). Some well known examples of CAT(0) spaces are complete
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and simply connected Riemannian manifold having non-positive sectional curvature, pre-Hilbert
spaces, R-trees, Euclidean buildings and the complex Hilbert ball with a hyperbolic metric.

Let x, y ∈ X in a CAT(0) space X. For each t ∈ [0, 1], there exists a unique point z ∈ [x, y] such
that

d(x, z) = td(x, y) and d(y, z) = (1 − t)d(x, y). (1)

For convenience, from now on, we will use the notation (1 − t) ⊕ ty for unique point z satisfying (1).
For details as regards spaces please see [9,11,12]. Some results are recalled here for CAT(0) space X.

Lemma 1.1 ([6]): Let X be a CAT(0) space. Then, for all x, y, z ∈ X and t ∈ [0, 1],

(i) d((1 − t)x ⊕ ty, z) ≤ (1 − t)d(x, z) + td(y, z),
(ii) d2((1 − t)x ⊕ y, z) ≤ (1 − t)d2(x, z) + td2(y, z) − t(1 − t)d2(x, y).

Let xi ∈ X and λi ∈ [0, 1] for i = 1, 2, . . . , n such that
∑n

i=1 λi = 1. Following the definition
of unique point (1 − α)x ⊕ αy on a geodesic segment [x, y], we build the following notations:⊕2

i=1 λixi = λ1
λ1+λ2

x1 ⊕ λ2
λ1+λ2

x2. By induction, we can write

n⊕
i=1

λixi = (1 − λn)

(
λ1

1 − λn
x1 ⊕ λ2

1 − λn
x2 ⊕ · · · ⊕ λn−1

1 − λn
xn−1

)
⊕ λnxn.

In view of Lemma 1.1, we can have the following:

Lemma 1.2 ([20]): Let X be aCAT(0) space with x, xi ∈ X and λi ∈ [0, 1] for i = 1, 2, . . . , n such that∑n
i=1 λi = 1. Then

(i) d(
⊕n

i=1 λixi, x) ≤ ∑n
i=1 d(xi, x);

(ii) d(
⊕n

i=1 λixi, x)2 ≤ ∑n
i=1 λid2(xi, x) − λiλjd2(xi, xj) for i, j ∈ {1, 2, . . . , n}.

Kirk and Panyanak [8] specialized the concept of �-convergence to CAT(0) spaces and showed
that many Banach space results involving weak convergence have precise analogs in this setting.

Let {xn} be a bounded sequence in a CAT(0) space X. For x ∈ X, we set r(x, {xn}) =
lim supn→∞ d(x, xn). The asymptotic radius r{xn} of {xn} is given by r({xn}) = inf{r(x, {xn}) : x ∈ X}
and the asymptotic center A({xn}) of {xn} is the set A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

Lemma 1.3 ([6]): If {xn} is a bounded sequence in a CAT(0) space X with A({xn}) = {x} and {un} is
a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)} converges, then x = u.

Lemma 1.4 ([5]): If K is a closed convex subset of a CAT(0) space X and if {xn} is a bounded sequence
in K, then the asymptotic center of {xn} is in K.

Lemma 1.5 ([10]): Let K be a closed convex subset of a complete CAT(0) space X and T : K −→ K
be a total asymptotically non-expansive mapping. If {xn} is a bounded sequence in K �-converging to x
and limn−→∞ d(xn,Txn) = 0, then x ∈ K and Tx= x.

Lemma 1.6 ([17]): Suppose that {an}, {bn} and {δn} are sequence of non-negative real numbers such
that an+1 ≤ (1 + δn)an + bn for all n ≥ 1. If

∑∞
n=1 δn < ∞ and

∑∞
n=1 bn < ∞, then limn→∞ an

exists.

Definition 1.1 ([8]): A sequence {xn} in CAT(0) space is said to �-convergent to x ∈ X if x is
the unique asymptotic center of {xn} for every subsequence {un} of {xn}. In this case, we write
� − limn xn = x and call x is the �-limit of {xn}.
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Definition 1.2 ([7]): Let K be a closed convex subset of a complete CAT(0) space X. A bounded
sequence {xn} in K is said to converge weakly to q ∈ K if and only if �(q) = infx∈K �(x), where
�(x) = lim supn→∞ d(xn, x).

Let we recall some basics for nonlinear mappings on metric spaces. Let (X, d) be a metric space
and K be its non-empty subset. Then T : K → K is said a:

(a) Contraction if there exists a k ∈ [0, 1) such that d(Tx,Ty) ≤ kd(x, y), for all x, y ∈ K.
(b) Non-expansive if d(Tx,Ty) ≤ d(x, y), for all x, y ∈ K.
(c) Asymptotically non-expansive if for a sequence un ⊂ [0,∞) with limn−→∞ un = 0 such that

d(Tnx,Tny) ≤ (1 + un)d(x, y)for all x, y ∈ K and n ≥ 1.
(d) Uniformly L-lipschitzian if there exists L> 0 such that d(Tnx,Tny) ≤ Ld(x, y) for all x, y ∈ K

and n ≥ 1.
(e) Semi-compact if for sequence {xn} inK with limn→∞ d(xn,Txn) = 0, there exists a subsequence

{xnj} of {xn} such that {xnj} → p ∈ K.

Every contraction mapping in non-expansive and every non-expansive mapping is asymptotically
non-expansive mapping. But the converse of each may not be true.

In 2007, Agarwal et al. [1] introduced a new iteration process for non-expansive mappings, which
they called ‘S-iteration process’. The sequence {xn} in this process is given by

xn+1 = (1 − αn)Txn + αnTyn
yn = (1 − βn)xn + βnTxn n ≥ 1, (2)

where {αn}∞n=1 and {βn}∞n=1 are real sequences in [0, 1]. They showed that S-iteration procedure
is independent of Ishikawa (and hence of Mann) but converges faster that both of these iterative
procedures.

In 2012 R. Chugh et al. [4] introduce the following iterative process:

xn+1 = (1 − αn)yn + αnTyn,

yn = (1 − βn)Txn + βnTzn n ≥ 1,

zn = (1 − γn)xn + γnTxn, (3)

where {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 are real sequences in [0, 1]. It is called the CR iterative scheme. If we
take αn = 0 the iterative process (3) reduces to S-iteration (2).

On the other hand, Schu [16] defined the modified Mann iterative procedure which is a general-
ization of Mann iterative procedure. For CAT(0) spaces it can be written as

xn+1 = (1 − αn)xn ⊕ αnTnxn n ≥ 1, (4)

Tan and Xu [18] generalized Ishikawa iteration procedure in a similar way.
Chang et al. [3] defined the concept of total asymptotically non-expansivemapping in a framework

CAT(0) space as follows:

Definition 1.3: Let (X, d) be a CAT(0) space, K be a non-empty closed convex subset and let T :
K → K be a mapping. T is said to be total asymptotically non-expansive mapping if there exist non-
negative real sequences {μn},{νn}, with μn → 0, νn → 0 and strictly increasing continuous function
ζ : [0,∞) → [0,∞) with ζ(0) = 0 such that

d(Tnx,Tny) ≤ d(x, y) + νnζ(d(x, y)) + μn (5)

for all x, y ∈ K and n ≥ 1.
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It follows from the above definitions that each non-expansive mapping is an asymptotically non-
expansive mapping with kn = 1 ∀n > 1 and that each asymptotically non-expansive mapping is
a total asymptotically non-expansive mapping with νn = kn − 1,μn = 0, νn ≥ 1, ζ(t) = t ∀t ≥ 0.
Moreover, each asymptotically non-expansive mapping is a uniformly L-Lipschitzian mapping with
L = supn≥1{kn} However, the converse of these statements is not true, in general.

They [3] further studied the iterative approximation of fixed point for total asymptotically non-
expansive mappings using a modified Krasnoselskii–Mann iteration process. Iterative approximation
of fixed points of total asymptotically non-expansive mappings has also been studied by [2,13,14,19].

Thakur et al. [19] proposed a modified hybrid-Mann iteration process for iterative approximation
of fixed points of total asymptotically non-expansive mappings in CAT(0) spaces. The sequence {xn}
in this iteration is given by

xn+1 = Tnyn
yn = (1 − αn)xn ⊕ αnTnxn n ≥ 1, (6)

where {αn}∞n=1 is a real sequence in [0, 1].
Pansuwan and Sintunavarat [13], propose amodified hybrid-Ishikawa iteration process as follows:

xn+1 = Tnyn,

yn = (1 − αn)zn ⊕ αnTnzn n ≥ 1,

zn = (1 − βn)xn ⊕ βnTnxn, (7)

for all n ∈ N, where {αn}∞n=1 and {βn}∞n=1 are real sequences in [0, 1].
Motived and inspired by Chugh et al. [4], Kumam et al. [10], Pansuwan and Sintunavarat [13]

and Saluja and Postolache [15] and some others, we propose: Consider K to be a non-empty closed
convex subset of a complete CAT(0) space X and T : K → K be a total asymptotically non-expansive
and uniformly L-lipschitzian mapping with F(T) 
= ∅. We introduce and study a three-step scheme
with perturbations. The scheme is defined as follows:

xn+1 = Tn((1 − αn − α′
n)yn ⊕ αnTnyn ⊕ α′

nεn),

yn = (1 − βn − β ′
n)T

nxn ⊕ βnTnzn ⊕ β ′
nε

′
n n ≥ 1,

zn = (1 − γn − γ ′
n)xn ⊕ γnTnxn ⊕ γ ′

nε
′′
n , (8)

where {εn}, {ε′
n} and {ε′′

n} are bounded sequences in K and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1, {α′
n}∞n=1,

{β ′
n}∞n=1 and {γ ′

n}∞n=1 are appropriate real sequences in [0, 1].
In this paper, we will establish strong and �-convergence theorems of modified three-step

sequence with perturbation for total asymptotically non-expansive mapping in the frameworks of
CAT(0) spaces. Our results can be particularize to case αn = 0 and we obtain results for modified
hybrid-S-iteration process [10].

2. Main results

We will prove the following useful lemmas of proposed iteration with perturbations (8) for a total
asymptotically non-expansive mapping in CAT(0) spaces. Moreover, we also prove strong and �-
convergence theorems under mild conditions.

Lemma2.1: Let K be a non-empty closed convex subset of a completeCAT(0) space X. Let T : K −→ K
be a total asymptotically non-expansive mapping with

∑∞
n=1 μn < ∞,

∑∞
n=1 νn < ∞ and F(T) 
= ∅.
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Let {xn} be the sequence defined by (8) such that

(C1)
∑∞

n=1 α′
n < ∞,

∑∞
n=1 β ′

n < ∞ and
∑∞

n=1 γ ′
n < ∞.

(C2) There exists a constant M1 > 0 such that ζ(r) ≤ M1r, r ≥ 0.

Then limn→∞ d(xn, p) and limn→∞ d(xn, F(T)) exist for all p ∈ F(T).

Proof: Let p ∈ F(T). Trivially from (C2), for all x ∈ K,

d(Tnx, p) ≤ (1 + νnM1)d(x, p) + μn. (9)

From (8), (9) and Lemma 1.1 we have

d(zn, p) = d
(
(1 − γn − γ ′

n)xn ⊕ γnTnxn ⊕ γ ′
nε

′′
n , p

)
≤ (1 − γn − γ ′

n)d(xn, p) + γn
[
(1 + νnM1)d(xn, p) + μn

] + γ ′
nd(ε

′′
n , p)

≤ (1 − γn − γ ′
n)(1 + νnM1)d(xn, p) + γn

[
(1 + νnM1)d(xn, p) + μn

] + γ ′
nd(ε

′′
n , p)

= (1 − γ ′
n)(1 + νnM1)d(xn, p) + γnμn + γ ′

nd(ε
′′
n , p)

≤ (1 + νnM1)d(xn, p) + μn + γ ′
nd(ε

′′
n , p). (10)

Again using (8), (10) and Lemma 1.1, we have

d(yn, p) = d
(
(1 − βn − β ′

n)T
nxn ⊕ βnTnzn ⊕ β ′

nε
′
n, p

)
≤ (1 − βn − β ′

n)
[
(1 + νnM1)d(xn, p) + μn

]
+ βn

[
(1 + νnM1)d(zn, p) + μn

] + β ′
nd(ε

′
n, p)

≤ (1 − βn − β ′
n)

[
(1 + νnM1)d(xn, p) + μn

]
+ βn

[
(1 + νnM1)

[
(1 + νnM1)d(xn, p) + μn + γ ′

nd(ε
′′
n , p)

] + μn
]

+ β ′
nd(ε

′
n, p) (11)

i.e.

d(yn, p) ≤ (1 − βn − β ′
n)(1 + νnM1)

2d(xn, p) + (1 + νnM1)(1 − βn − β ′
n)μn

+ βn(1 + νnM1)
2d(xn, p) + βnμn(1 + νnM1) + βnμn

+ βnγ
′
n(1 + νnM1)d(ε′′

n , p) + β ′
nd(ε

′
n, p)

= (1 − β ′
n)(1 + νnM1)

2d(xn, p) + (1 + νnM1)(1 − β ′
n)μ

+ βnμn + βn(1 + νnM1)γ
′
nd(ε

′′
n , p) + β ′

nd(ε
′
n, p)

≤ (1 + νnM1)
2d(xn, p) + (2 + νnM1)μn + (1 + νnM1)γ

′
nd(ε

′′
n , p) + β ′

nd(ε
′
n, p). (12)

Set wn = (1 − αn − α′
n)yn ⊕ αnTnyn ⊕ α′

nεn. Now using (12) and Lemma 1.1, we get

d(wn, p) = d
(
(1 − αn − α′

n)yn ⊕ αnTnyn ⊕ α′
nεn, p

)
≤ (1 − α′

n + αnνnM1)
[
(1 + νnM1)

2d(xn, p) + (2 + νnM1)μn

+(1 + νnM1)γ
′
nd(ε

′′
n , p) + β ′

nd(ε
′
n, p)

] + αnμn + α′
nd(εn, p)

≤ (1 + νnM1)
3d(xn, p) + [(1 + νnM1)(2 + νnM1) + αn]μn

+ (1 + νnM1)
2γ ′

nd(ε
′′
n , p) + (1 + νnM1)β

′
nd(ε

′
n, p) + α′

nd(εn, p). (13)
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From (5), (8) and (13) we have

d(xn+1, p) = d(Tn(wn), p) ≤ (1 + νnM1)d(wn, p) + μn ≤ (1 + An)d(xn, p) + Bn + εn,

where An = 4M1νn + 6M2
1ν

2
n + 4M3

1ν
3
n + M4

1ν
4
n , Bn = (3 + 5νnM1 + 4ν2nM2

1 + ν3nM
3
1 + (1 + νn

M1))μn and εn = (1 + νnM1)
3γ ′

nd(ε′′
n , p) + (1 + νnM1)

2β ′
nd(ε′

n, p) + (1 + νnM1)α
′
nd(εn, p). Since

{εn}, {ε′
n} and {ε′′

n} are bounded sequences in K, we can put

M2 = sup
n≥1,x∈K

{
d(εn, x), d(ε′

n, x), d(ε
′′
n , x)

}
.

Then M2 is a finite number and there exists some positive constant D such that εn ≤ D(γ ′
n + β ′

n +
α′
n). Taking infimum over all p ∈ F(T), we get

d(xn+1, p) ≤ (1 + An)d(xn, F(T)) + Bn + D(γ ′
n + β ′

n + α′
n).

Since
∑∞

n=1 μn < ∞,
∑∞

n=1 νn < ∞, it follows that
∑∞

n=1 An < ∞,
∑∞

n=1 Bn < ∞. From (C1) and
Lemma 1.6, limn→∞ d(xn, p) and limn→∞ d(xn, F(T)) exist. �

Theorem 2.1: Let X,K,T, {xn} satisfy the hypothesis of Lemma 2.1. Then the sequence {xn} defined
by (8) converges strongly to a fixed point of T if and only if lim infn→∞ d(xn, F(T)) = 0, where
d(x, F(T)) = inf{d(x, p) : p ∈ F(T)}.
Proof: The necessity is obvious. To prove the converse, suppose that lim infn→∞ d(xn, F(T)) = 0.
Thus by hypothesis limn→∞ d(xn, F(T)) = 0. Next, we show that {xn} is Cauchy sequence in K. with
help of inequality 1 + x ≤ ex, x ≥ 0. From Lemma 2.1, d(xn+1, p) ≤ (1 + An)d(xn, p) + Bn + εn, i.e,
for any integerm ≥ 1,

d(xn+m, p) ≤ (1 + An+m−1)d(xn+m−1, p) + Bn+m−1 + εn+m−1

≤ eAn+m−1d(xn+m−1, p) + Bn+m−1 + εn+m−1

≤ eAn+m−1
[
eAn+m−2d(xn+m−2, p) + Bn+m−2 + εn+m−2

]

+ Bn+m−1 + εn+m−1

≤ · · ·

≤
(
e
∑∞

k=n Ak
)
d(xn, p) +

(
e
∑∞

k=n Ak
) n+m−1∑

k=n

Bk

+
(
e
∑∞

k=n Ak
) n+m−1∑

k=n

εk

= Gd(xn, p) + G
n+m−1∑
k=n

Bk + G
n+m−1∑
k=n

εk, (14)

where G = e
∑∞

k=n Ak .
Since limn→∞ d(xn, F(T)) = 0, without loss of generality, wemay assume that a subsequence {xnk}

of {xn} and subsequence {pnk} ⊂ F(T) such that d(xnk , pnk) → 0 as k → ∞. Then for any ε > 0, there
exists kε > 0 such that

d(xnk , pnk) <
ε

6G
,

∞∑
k=n

Bk <
ε

6G
and

∞∑
k=n

εk <
ε

6G
(15)

for all k ≥ kε .
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For anym ≥ 1 and for all n ≥ nk, by (14), we have

d(xn+m, xn) ≤ d(xn+m, pnk) + d(xn, pnk)

≤ Gd(xn, pnk) + G
∞∑

k=nkε

Bk + G
∞∑
k=n

εk

+ Gd(xn, pnk) + G
∞∑

k=nkε

Bk + G
∞∑
k=n

εk

≤ 2Gd(xn, pnk) + 2G
∞∑

k=nkε

Bk + 2G
∞∑
k=n

εk

≤ 2G
ε

6G
+ 2G

ε

6G
+ 2G

ε

6G
= ε. (16)

This proves that {xn} is a Cauchy sequence in K. Thus, the completeness of X implies that {xn} must
be convergence. Assume that limn→∞ xn = q. Since K is closed, therefore q ∈ K. Next, we show that
q ∈ F(T). Since limn→∞ d(xn, F(T)) = 0, we get d(q, F(T)) = 0, closedness of F(T) gives that q ∈
F(T). Thus {xn} converges strongly to a point in F(T). This completes the proof. �

Lemma 2.2: Let K be a non-empty closed convex subset of a complete CAT(0) space X. Let
T : K −→ K be a uniformly continuous and total asymptotically non-expansive mapping with∑∞

n=1 μn < ∞,
∑∞

n=1 νn < ∞ and F(T) 
= ∅. Let {αn}, {βn} and {γn} be sequences in (0, 1) such that,
lim infn→∞ αn(1 − αn − α′

n) > 0, lim infn→∞ βn(1 − βn − β ′
n) > 0 and lim infn→∞ γn(1 − γn −

γ ′
n) > 0. Let {xn} be the sequence defined by (8) such that

(C1)
∑∞

n=1 α′
n < ∞,

∑∞
n=1 β ′

n < ∞ and
∑∞

n=1 γ ′
n < ∞.

(C2) There exists a constant M1 > 0 such that ζ(r) ≤ M1r, r ≥ 0.

Then limn→∞ d(Txn, xn) = 0.

Proof: For any p ∈ F(T), it follows fromLemma2.1 that limn→∞ d(xn, p) exists. Let limn→∞ d(xn, p)
= q, for some q ≥ 0. We claim that limn→∞ d(Txn, xn) = 0.

Since {xn} is bounded, there exists R> 0 such that {xn}, {yn}, {zn} ⊂ BR(p) for all n ≥ 1 Using (8)
and Lemma 1.2,

d2(zn, p) =d2
(
(1 − γn − γ ′

n)xn ⊕ γnTnxn ⊕ γ ′
nε

′′
n , p

)
≤ γnd2(Tnxn, p) + (1 − γn − γ ′

n)d
2(xn, p) + γ ′

nd
2(ε′′

n , p)

− γn(1 − γn − γ ′
n)d

2(Tnxn, xn)

≤ γn
[
(1 + νnM1)d(xn, p) + μn

]2 + (1 − γn − γ ′
n)d

2(xn, p) + γ ′
nd

2(ε′′
n , p)

− γn(1 − γn − γ ′
n)d

2(Tnxn, xn)

≤ γn(1 + νnM1)
2d2(xn, p) + γnμn(2(1 + νnM1)d(xn, p) + μn)

+ (1 − γn − γ ′
n)(1 + νnM1)

2d2(xn, p) + γ ′
nd

2(ε′′
n , p)

− γn(1 − γn − γ ′
n)d

2(Tnxn, xn)
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= (1 − γ ′
n)(1 + νnM1)

2d2(xn, p) + γnμn(2(1 + νnM1)d(xn, p) + μn) + γ ′
nd

2(ε′′
n , p)

− γn(1 − γn − γ ′
n)d

2(Tnxn, xn)

≤ d2(xn, p) + Pnνn + Qnμn + γ ′
nd

2(ε′′
n , p) − γn(1 − γn − γ ′

n)d
2(Tnxn, xn), (17)

where Pn = M1(2 + νnM1)d2(xn, p) and Qn = 2(1 + νnM1)d(xn, p) + μn. This implies that

d2(zn, p) ≤ d2(xn, p) + Pnνn + Qnμn + γ ′
nd

2(ε′′
n , p). (18)

From (17) we have,

γn(1 − γn − γ ′
n)d

2(Tnxn, xn) ≤ d2(xn, p) + Pnνn + Qnμn − d2(zn, p) + γ ′
nM2.

Since
∑∞

n=1 μn < ∞,
∑∞

n=1 νn < ∞,
∑∞

n=1 γ ′
n < ∞ and d(xn, p) ≤ R for all n, we have γn(1 − γn −

γ ′
n)d2(Tnxn, xn) < ∞. By lim infn→∞ γn(1 − γn − γ ′

n) > 0, it follows that

lim
n→∞ d(Tnxn, xn) = 0. (19)

Again from (8) and Lemma 1.1, we have

d2(yn, p) ≤ d2
(
(1 − βn − β ′

n)T
nxn ⊕ βnTnzn ⊕ β ′

nε
′
n, p

)
≤ βnd2(Tnzn, p) + (1 − βn − β ′

n)d
2(Tnxn, p) + β ′

nd
2(ε′

n, p)

− βn(1 − βn − β ′
n)d

2(Tnxn,Tnzn)

≤ βn
[
(1 + νnM1)d(zn, p) + μn

]2
+ (1 − βn − β ′

n)
[
(1 + νnM1)d(xn, p) + μn

]2 + β ′
nd

2(ε′
n, p)

− βn(1 − βn − β ′
n)d

2(Tnxn,Tnzn)

= βn(1 + νnM1)
2d2(zn, p) + βn

[
2μnd(zn, p) + μ2

n
]

+ (1 − βn − β ′
n)

[
(1 + νnM1)

2d2(xn, p) + Q′
nμn + μ2

n
]

+ β ′
nd

2(ε′
n, p) − βn(1 − βn − β ′

n)d
2(Tnxn,Tnzn), (20)

where Q′
n = Qn − μn.

Substituting (18) into (20), we have

d2(yn, p) ≤ βn(1 + νnM1)
2 [
d2(xn, p) + Pnνn + Q′

nμn + γ ′
nd

2(ε′′
n , p)

]
+ βn

[
2μnd(zn, p) + μ2

n
]

+ (1 − βn − β ′
n)

[
(1 + νnM1)

2d2(xn, p) + Q′
nμn + μ2

n
]

+ β ′
nd

2(ε′
n, p) − βn(1 − βn − β ′

n)d
2(Tnxn,Tnzn)

≤ (1 + νnM1)
2d2(xn, p)



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 413

+ (1 + νnM1)
2 [
Pnνn + Q′

nμn + γ ′
nd

2(ε′′
n , p)

]
+ 2μnd(zn, p) + Q′

nμn + μ2
n

+ β ′
nd

2(ε′
n, p) − βn(1 − βn − β ′

n)d
2(Tnxn,Tnzn)

= (1 + νnM1)
2d2(xn, p) + (1 + νnM1)

2Pnνn

+ (1 + νnM1)
2Q′

nμn + 2μnd(zn, p) + Q′
nμn + μ2

n

+ γ ′
n(1 + νnM1)

2d2(ε′′
n , p) + β ′

nd
2(ε′

n, p)

− βn(1 − βn − β ′
n)d

2(Tnxn,Tnzn)

≤ d2(xn, p) + Rnνn + Snμn

+ γ ′
n(1 + νnM1)

2d2(ε′′
n , p) + β ′

nd
2(ε′

n, p)

− βn(1 − βn − β ′
n)d

2(Tnxn,Tnzn), (21)

where Rn = Pn + (1 + νnM1)
2Pn and Sn = Qn + (1 + νnM1)

2Q′
n + 2d(zn, p). This implies that

βn(1 − βn − β ′
n)d

2(Tnxn,Tnzn) ≤ d2(xn, p) − d2(yn, p) + Rnνn + Snμn + λnM2,

where λn = β ′
n + γ ′

n(1 + νnM1)
2.

Since
∑∞

n=1 μn < ∞,
∑∞

n=1 νn < ∞,
∑∞

n=1 β ′
n < ∞,

∑∞
n=1 γ ′

n < ∞ and d(xn, p) ≤ R and
d(zn, p) ≤ R for all n, we have βn(1 − βn − β ′

n)d2(Tnxn,Tnzn) < ∞. This implies by lim infn→∞ βn
(1 − βn − β ′

n) > 0 that

lim
n→∞ d(Tnxn,Tnzn) = 0. (22)

In a similar way, we can obtain that

lim
n→∞ d(Tnyn, yn) = 0. (23)

By using (5) and (8), we get

d(Tnyn, xn+1) = d(Tnyn,Tnwn) ≤ (1 + νnM1)d(yn,wn) + μn

≤ (1 + νnM1)[αnd(yn,Tnyn) + α′
nd(yn, εn)] + μn. (24)

From (23), we get limn→∞ d(Tnyn, xn+1) = 0. Note that

d(yn,Tnxn) ≤ d
(
(1 − βn − β ′

n)T
nxn ⊕ βnTnzn ⊕ β ′

nε
′
n,T

nxn
)

≤ βnd(TnznTnxn) + β ′
nM2 → 0, asn → ∞. (25)

By (19) and (25), we have d(xn, yn) ≤ d(xn,Tnxn) + d(Tnxn, yn) → 0 as n → ∞. By triangular
inequality, d(xn, xn+1) ≤ d(xn, yn) + d(yn,Tnyn) + d(Tnyn, xn+1) → 0, as n → ∞. By (19) and uni-
form continuity of T, we have

d(xn,Txn) ≤ d(xn, xn+1) + d(xn+1,Tn+1xn+1)

+ d(Tn+1xn+1,Tn+1xn) + d(Tn+1xn,Txn)

≤ (2 + νn+1M1)d(xn+1, xn) + d(xn+1,Tn+1xn+1)

+ d(Tn+1xn,Txn) + μn+1

→ 0, as n → ∞. (26)

This completes the proof. �
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Theorem 2.2: Let X,K,T, {xn} satisfy the hypothesis of Lemma 2.2. Then the sequence {xn} defined
by (8) �-converges to a fixed point of T.

Proof: We first show that w�({xn}) ⊆ F(T). We denote w�({xn}) := ∪(A{un}) where the union is
taken over all subsequence {un} of {xn}. Let u ∈ w�({xn}) then there exists a subsequence {un} of
{xn} such that A({un}) = {u}. By Lemma 1.4 there exists a subsequence {vn} of {un} such that � −
limn vn = v ∈ K. By Lemma 1.5, {vn} ∈ F(T). Now by Lemma 2.1 limn−→∞ d(xn, F(T)) exists, so by
Lemma 1.3, we have u= v, i.e, w�({xn}) ⊆ F(T).

To show that {xn} � − convergent to point in F(T), it is sufficient to show that w�({xn}) consists
of exactly one point.

Let {un} be subsequence of {xn} with A({un}) = {u}, and let A({xn}) = {x} for some u ∈
w�({xn}) ⊆ F(T) and {d(xn, v)} converge. By Lemma 1.3, we have x = v ∈ F(T). Thus w�({xn}) =
{x}. This shows that {xn} is � − convergent to a point of F(T). �

Theorem 2.3: Let X,K,T, {xn} satisfy the hypothesis of Lemma 2.2. If Tm is semi-compact for some
m ∈ N, then the sequence {xn} converges strongly to a point of F(T).

Proof: By Lemma 2.2 and the uniformly continuity of T, we have limn→∞ d(xn,Tmxn) = 0. By the
semi-compactness of Tm, there exists a subsequence {xnj} of {xn} such that xnj → p ∈ K. Lemma 2.2
guarantees that limnj−→∞ d(xnj ,Txnj) = 0 and so d(p,Tp) = 0. By Lemma2.1, limn→∞ d(xn, p), thus
p is the strong limit of the sequence {xn} itself. �

3. Numerical examples

In this section, we provide the numerical examples to illustrate its performance and to compare
propose iteration with existing methods.

Example 3.1: Let X := R be a usual metric space with the metric d, which is also a complete CAT(0)
space, and C = [1, 999]. We see that C is a bounded closed convex subset of X. Define a mapping

Tx =
√
x2 − 8x + 40.

It easy see that T is a continuous uniformly L-Lipschitzian and a total asymptotically non-expansive
mapping with F(T) = {5}.

Let αn = βn = n
n+1 and γn = 1 for all n ∈ N and without perturbations. By using Wolfram

Mahtematica 10, we computed the iterates of (4), (6)–(8) (and moreover (8) with αn = 0, hybrid S-
iteration) for an initial point x1 = 999. The convergence behaviour of all iterations for approximating
the fixed point 5 are given in Figures 1 and 2.

In Figures 3, and 4, we give the convergence behaviour of the iterates of and for some initial point
under the different control conditions.

Example 3.2: Consider X = R
2 equipped with the Euclidean norm. Let x = (x1, x2) ∈ R

2, then the
squared distance of x from the origin is

‖x‖2 = x21 + x22.

Consider K as the closed unit disk:

K = {
(x1, x2) ∈ R

2 : x21 + x22 ≤ 1
}
,

which is bounded, closed, and convex in X. We define mapping Rotθ : K → K by:

Rotθ (x1, x2) =
[
cos(θ) − sin(θ)

sin(θ) cos(θ)

] [
x1
x2

]
.
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Figure 1. Convergence behaviour for Ex. 1 in case αn = βn = n
n+1 and γn = 1 for all n ∈ N.

Figure 2. Convergence behaviour for Example 3.1 in case αn = βn = n
n+1 and γn = 1 for all n ∈ N.

Figure 3. Convergence behaviour for Example 3.1 in case αn = βn = 1 − 1√
n+1

and γn = 1
n+1 for all n ∈ N.

For θ = π
4 , our algorithm is the following:

x(n+1) =
(

2− n
2 2− n

2

(−1)n2− n
2 2− n

2

)
w(n)

w(n) = (1 − αn)y(n) + αn

(
2− n

2 2− n
2

(−1)n2− n
2 2− n

2

)
y(n)
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Figure 4. Convergence behaviour for Example 3.1 in case αn = βn = 1√
n+1

− 1
n
√
n+2

and γn = n
n+1 for all n ∈ N.

y(n) = (1 − βn)

(
2− n

2 2− n
2

(−1)n2− n
2 2− n

2

)
x(n) + βn

(
2− n

2 2− n
2

(−1)n2− n
2 2− n

2

)
z(n)

z(n) = (1 − γn) x(n) + γn

(
2− n

2 2− n
2

(−1)n2− n
2 2− n

2

)
x(n).

It is easy to see that Rotθ is non-expansive, since for all (x1, x2), (y1, y2) ∈ K and Rθ is total
asymptotically non-expansive mapping. Clearly, zero is the only fixed point of the mapping
Rotθ .

Let αn = 1 − 1√
n+1 and βn = γn = 1

n+1 for all n ∈ N and without perturbations. By using Wol-
fram Mahtematica 10, we computed the iterates of (8) for an initial point x(1) = (250, 250) for
θ = π

4 ,
π
8 and π

14 . The convergence behaviour of all iterations for approximating the fixed point (0, 0)
are given in Figures 5 and 6.

Figure 5. Convergence behaviour for Ex. 2.



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 417

Figure 6. Convergence behaviour for Ex. 2.

Figure 7. Convergence behaviour for Example 3.3.

Example 3.3: Here we reconsider Example 3.1, in case αn = βn = 1√
n+1 − 1√

n+2 and γn = n
n+1 for

all n ∈ N (see Figure 9), wherewe consider a versionwith perturbation given byα′
n = β ′

n = γ ′
n = n−5

and εn = ε′
n = ε′′

n = (n+1)n3
2n − 16 (Figures 7 and 8).

Example 3.4: Herewe reconsider Example 3.2, with sameαn = 1 − 1√
n+1 andβn = γn = 1

n+1 for all

n ∈ N and with perturbations given by α′
n = β ′

n = γ ′
n = n−5 and εn = ε′

n = ε′′
n = (n+1)n3

2n − 16. By
usingWolframMahtematica 10, we computed the iterates of (8) for an initial point x(1) = (250, 250)
for θ = π

4 ,
π
8 and π

14 . The convergence behaviour of all iterations for approximating the fixed point
(0, 0) are given in Figure 9, where we compare pertubed and no perturbed ones.
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Figure 8. Convergence behaviour for Example 3.3.

Figure 9. Convergence behaviour for Example 3.4.
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