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Herpes simplex virus 1 (HSV-1) is a very common pathogen. Besides mostly 
harmless oral lesions, HSV-1 causes severe diseases such as neonatal herpes, 
herpes encephalitis and herpes keratitis, the primary cause of infectious blindness 
worldwide. The available anti-herpes chemotherapy is efficient but depends on a 
functional viral thymidine kinase. Long-term treatment, required especially in severe 
diseases, promotes emergence of thymidine kinase mutant strains. These strains 
are multi-drug resistant, and may lead to dangerous untreatable exacerbations, 
demonstrating an evident unmet medical need.  
 
Small interfering RNA (siRNA) swarms are a novel antiviral approach with extensive 
tolerance for pathogen mutations. In contrast to regular siRNAs targeting around 
twenty nucleotides, swarms can target thousands, and thus overcome major 
challenges of regular antiviral-siRNAs, such as emergence of resistant mutant 
strains. The most extensively studied siRNA swarm target is the essential UL29 gene 
of HSV-1. The UL29 targeting siRNA swarm has proven antiviral efficacy against 
multiple patient-derived strains in vitro and significant inhibition of virus replication in 
vivo. Here, the swarm is improved by 2’-fluoro-modifications to achieve advanced 
stability and potency. In this Master’s thesis, effects of incorporated 2’-fluoro-
nucleotides on cellular tolerability, host responses and antiviral efficacy are studied 
in vitro.  
 
According to the results, the modified siRNA swarms are well tolerated and 
demonstrate high antiviral efficacy in prophylactic and therapeutic settings in vitro. 
The modified siRNA swarms were better than or equal to the nonmodified siRNA 
swarms in every studied aspect. Overall, the results encourage for subsequent in 
vivo experiments utilizing the modified siRNA swarms.   
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Herpes simplex virus tyyppi 1 (HSV-1) on yleinen taudinaiheuttaja, joka tunnetaan 
parhaiten aiheuttamistaan epämiellyttävistä ja toistuvista yskänrokoista. HSV-1 voi 
kuitenkin aiheuttaa myös vakavampia tautitiloja, kuten sarveiskalvontulehdusta. 
HSV-1:n aiheuttama sarveiskalvontulehdus on maailman yleisin sokeuteen johtava 
infektioperäinen sairaus, johon nykyinen lääkehoito on riittämätön. 
Herpesinfektioiden nykyinen lääkehoito on tehokasta, mutta edellyttää viruksen 
oman tymidiinikinaasigeenin toimintaa. Erityisesti vakavammissa sairauksissa 
vaadittava pitkäaikainen ja ennaltaehkäisevä lääkehoito voi johtaa 
tymidiinikinaasimutatoituneiden viruskantojen ilmaantumiseen. Nämä 
lääkeresistentit viruskannat ovat selkeä puute nykyisessä lääkehoidossa, ja siten 
tärkeä lääkekehityskohde.  
 
Pienet häiritsevät RNA:t eli siRNA:t (engl. small interfering RNA) johtavat geenien 
hiljentymiseen. Niitä voidaan käyttää estämään virusten lisääntymistä kohdistamalla 
siRNA:t kohdeviruksen välttämättömään geeniin. Tavallisesti siRNA:t on kohdistettu 
verrattain lyhyeen sekvenssijaksoon. Pieni kohdealue altistaa tehon menetykseen 
joko lähisukuisten virusten perimän monimuotoisuuden vuoksi tai mutaation kautta. 
SiRNA-parvet tuotetaan entsymaattisesti pitkästä kohdealueesta, jolloin niiden teho 
kattaa viruskantojen monimuotoisuuden ja mahdolliset mutaatiot 
kohdesekvenssissä. SiRNA-parvia on tutkittu lääkkeenä herpesinfektioon sekä in 
vitro että in vivo erittäin lupaavin tuloksin. SiRNA:t kuitenkin hajoavat nopeasti 
elimistössä, mikä vähentää hoitomuodon potentiaalia, annostelutavasta riippuen. 
SiRNA:n kestävyyttä pystytään kuitenkin parantamaan kemiallisilla modifikaatioilla.  
 
Tässä Pro Gradu -tutkielmassa selvitettiin siRNA-parviin sisällytettyjen 2’-fluoro-
nukleotidien vaikutusta parvien tehoon herpestä vastaan in vitro. Lisäksi selvitettiin 
solujen luonnollisen immuniteetin vaste muunnelluille siRNA-parville. Tutkimuksissa 
käytetyt solulinjat edustivat hermostoa ja sarveiskalvoa, jotka ovat olennaisia 
herpesinfektion kohdekudoksia. Muunnellut siRNA-parvet ovat tulosten perusteella 
vähintään yhtä turvallisia ja jopa tehokkaampia kuin perinteiset siRNA-parvet. 
Molempien parvityyppien havaittiin lisäksi estävän virusinfektiota ainakin viiden 
vuorokauden ajan kerta-annostelun jälkeen. Tulokset valottavat perinteisten ja 
erityisesti muunneltujen siRNA-parvien potentiaalia terapeuttisena ja 
ennaltaehkäisevänä lääkehoitomuotona ja kannustavat niiden jatkotutkimuksiin in 
vivo.  
 
Avainsanat: Herpes simplex, siRNA, RNA-interferenssi, Virustautien 
lääkehoito 
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1 Introduction 
 

1.1 Human herpesviruses  
 

The herpesviruses (Herpesviridae) are divided into alpha-, beta- and gamma 

herpesviruses based on their nucleotide (nt) sequence and biological characteristics. 

The herpesviruses share many common features with each other, such as their 

structure (see Figure 1). In general, herpesviruses are large, enveloped viruses 

(120-300 nm), with a double-stranded DNA protected by an icosahedral capsid. They 

also have the capability to establish latency after primary infection, which means that 

they can persist long time periods in the host before reactivating. (Cann, 2016) 

Altogether there are over 100 different herpesviruses, of which humans carry nine 

(see Table 1). In addition to the nine human herpesviruses (HHV), the B virus 

(Cercopithecine Herpesvirus 1) of macaques is capable of infecting humans and 

causing fatal encephalitis (Cohen et al., 2002). 

 
Figure 1 - Structure of herpes 
virion and herpes simplex 
virus genome. A) The double-
stranded DNA genome of the 
virus is protected by an 
icosahedral capsid. Outside the 
capsid, are the inner and outer 
teguments, containing 
essential proteins for viral 
lifecycle. On the outer surface 
of the virion, the envelope 
embedded with various 
glycoproteins guide the 
attachment of the virus to the 
host cell. B) The genome of 
herpes simplex viruses 
consists of two unique regions, 
the long (UL) and short (US) 
DNA segment. The UL is 
flanked by repeat sequences B 

and inverted B (B’), whereas US is flanked by C and C’. Shorter repeat sequences 
(a and a’) surround the segments. The repeats enable four conformations of the 
genome. Selected relevant genes of herpes simplex virus 1 are highlighted on the 
genomic map. The genome structure graphics is modified from (Paavilainen, 2017). 
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In general, HHVs are relatively common viruses. Their seroprevalence (proportion 

of the viral antibody positive within a population, %) is overall higher in developing 

countries, but differentiates depending on more exact geographical location and 

socioeconomic status. As an example, in a study conducted in USA, pregnant 

women below poverty level had herpes simplex virus 1 (HSV-1) seroprevalence of 

71.8-84.5% compared to 47.5-58.9% of the women above poverty level (Patton et 

al., 2018). Furthermore, the herpesviruses are more dangerous for immunodeficient 

patients who are more likely to develop severe diseases (e.g. HSV-1), or symptoms 

at all (e.g. HCMV). To this date, the only herpesvirus against which a vaccine is 

available, is the varizella-zoster virus (VZV) (Varivax®, Zostavax®). For this Master’s 

thesis, the most important herpesvirus is herpes simplex virus 1 (HSV-1), on which 

the following chapters will focus.  

  
Table 1 – Human herpesviruses and common diseases caused. Modified from 
(Paavilainen, 2017). 

 HHV Common name Common diseases or symptoms  

Al
ph

a-
he

rp
es

vi
ru

se
s 

1 Herpes simplex virus 1 (HSV-1) Orofacial and genital lesions 

2 Herpes simplex virus 2 (HSV-2) Genital lesions 

3 Varizella-zoster virus (VZV) Chickenpox (primary infection) and 
shingles (reactivation) 

Be
ta

- 
he

rp
es

vi
ru

se
s 

4 Epstein-Barr Virus (EBV) Mononucleosis, also associated 
with malignancies 

5 Cytomegalovirus (HCMV) Often asymptomatic, light fever, 
mononucleosis 

6A Human herpesvirus 6 A (HHV-6A) Roseola 

6B Human herpesvirus 6B (HHV-6B) 
Exanthema subitum (Roseola 

infantum), Fever 

G
am

m
a-

he
rp

es
vi

ru
se

s 
 

7 Human herpesvirus 7 (HHV-7) 

8 Kaposi’s sarcoma-associated 
herpes virus (KSHV, HHV-8) Prerequisite for Kaposi’s Sarcoma  
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1.2 Herpes simplex virus 1  
 

HSV-1 is evolutionally very old dating back almost six million years (Norberg et al., 

2011; Wertheim et al., 2014). Throughout its evolution, it has adapted to its viral life 

with humans. Its smart ways of adaptation can be seen in its ability to modify the 

host immune system to its liking, and the very effective latency-reactivation way of 

viral life – to this date, HSV-1 infection cannot be entirely cured, nor prevented by 

vaccination.  

In this chapter, the structure, viral lifecycle and related gene regulation, as well as 

host responses to HSV-1 are introduced. In the following chapters, the most 

important morbidities caused by HSV-1 to humans are presented followed by 

chapters reviewing current as well as potential future treatment approaches against 

HSV-1.  

 

1.2.1 Structure of HSV-1 virion 
The size of the HSV-1 virion is roughly 225 nm. Without taking the surface 

glycoproteins into account, the size ranges from 170-200 nm (Grünewald et al., 

2003). The outer surface of the virion consists of the lipid envelope derived from host 

cell membrane. In the envelope, there are embedded viral proteins such as 

glycoproteins. The most abundant envelope protein is glycoprotein B (gB), which 

similarly to other glycoproteins, mediates cellular entry of the virus (Cai et al., 1988). 

Under the envelope lie the outer and inner teguments, in that order. The tegument 

contains over 20 viral proteins (Loret et al., 2008) with multiple important functions 

related for example to initiation of viral transcription and regulation of the host cell’s 

immune response. Inside the tegument is the capsid, which protects the DNA. The 

HSV-1 capsid consists of four viral proteins forming pentons, hexons and triplexes, 

of which twenty come together to form a sphere-like icosahedron referred as the 

icosahedral capsid (Yuan et al., 2018; Zhou et al., 2000).  

Inside the capsid is the linear, double stranded DNA genome, which has 

approximately 152,000 base pairs and encodes over 80 genes, which map to both 

genomic strands and can overlap. The genome consists of two larger regions, 

named as the unique short (US) and unique long (UL) -regions, surrounded by long 
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inverted repeat sequences at both ends of the regions. The genome has four 

different conformations (Hayward et al., 1975). For an illustration of the herpes virion, 

please see Figure 1A. For illustration of the viral genome organization and location 

of selected HSV genes in the genome, please see Figure 1B.  

Additionally, the virion contains multiple cellular proteins (Loret et al., 2008). 

Interestingly, RNA-mediated silencing of these proteins led to poorer infectibility of 

the viruses, suggesting their importance in the viral lifecycle (Stegen et al., 2013).  

 

1.2.2 Lifecycle of HSV-1  
HSV-1 can transmit from human to human via secretions, such as saliva, or from the 

clinical lesions resulting from viral activity. The primary infection establishes through 

physical or chemical breaks in the epithelia. Commonly, the lytic, primary infection 

in the epithelial area of entry is clinically mild or even asymptomatic (Petti and Lodi, 

2019).  

The virus enters the cell by fusion of the viral envelope to the cell membrane, or via 

endocytosis, after attachment to the cell surface (please see Figure 2A). The 

attachment and fusion of HSV-1 are complex. In short, the viral glycoprotein C (gC) 

first attaches to heparan sulphate proteoglycans (HSPG) of the cell. After 

attachment, gD initiates the entry by interaction with cellular receptors, such as 

nectin-1 or herpesvirus entry mediator (HVEM). The fusion itself is mediated by gB, 

gH, and gL viral glycoproteins. (Campadelli-Fiume et al., 2007) 

After fusion of viral and cellular membranes, the capsid and tegument of HSV-1 are 

released to the cytoplasm. Through microtubule and dynein-mediated transport of 

the capsid, the genome is released to the nucleus (Sodeik et al., 1997). When in the 

nucleus, the viral gene expression initiates, and the genes are expressed in a 

cascade-like manner (Honess and Roizman, 1974). In the nucleus, the viral genome 

is replicated, new capsids are formed, and they are combined as nucleocapsids 

(Mettenleiter, 2002). The final assembly takes place outside of the nucleus. In short, 

during the route from the nucleus to the cellular membrane, the virus is primarily 

enveloped at the nuclear membrane, de-enveloped, tegumented and secondarily 

enveloped at non-nuclear specialized vesicles (Owen et al., 2015). Eventually, 

mature progeny virions exit the cells via exocytosis. They may then proceed to infect 
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neighboring cells either apically or laterally. After the replication cycle, the host cell 

is destroyed. Hence, the described process is called a lytic infection.  

After the primary infection, the virus can hide from the host and wait for a new lytic 

cycle by establishing a latent infection. The establishment of latency requires that 

the virus breaches the nerve-blood-barrier and is transported by retrograde transport 

via sensory neuron axon to ganglia. In the case of HSV-1, the target is most 

commonly the trigeminal ganglia which is reached via the ophthalmic, maxillary, or 

mandibular nerve branch. In the neuronal somas, the virus hides from the host’s 

defense systems by expressing only a certain genomic region; the latency 

associated transcript (LAT) (Stevens et al., 1987). The expression of LAT for 

example inhibits apoptosis of the host and aims to prevent the virus from 

reactivating. Eventually various factors, such as those leading to cellular stress 

(Avgousti and Weitzman, 2015; Wilson and Mohr, 2012) can reactivate HSV-1. The 

reactivation of HSV-1 infection can be symptomatic or asymptomatic. In both cases 

viral shedding and thus subsequent transmission is possible. The viral lifecycle of 

HSV-1 is presented in Figure 2B.  

 
Figure 2 - Lifecycle of HSV-1. A) Replication of HSV-1 in cell. The virus enters the 
cells via fusion or endocytosis. The nucleocapsid is transported to the nucleus, into 
which the genome is released. The transcription happens in a cascade-like manner, 
after which the nucleocapsid is formed in the nucleus. Outside the nucleus, the 
envelope, its glycoproteins and the tegument are assembled, and the mature virions 
exit the cells. B) After the primary lytic infection (green arrows), the virus can transfer 
by retrograde transport (red arrows) to the trigeminal ganglia (TrG), where it can 
establish latency. Upon reactivation, the virus is transferred back to the epithelium 
by anterograde transport (blue arrows) via trigeminal nerve branches. Lytic, clinical 
or subclinical infection can occur after reactivation (blue stars), or during primary 
infection (red stars). During reactivation or primary infection, the virus can proceed 
to infect the brain (purple arrow, purple star) or to the eye.  

α>β>γ Brain

TrG

A B
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1.2.3 Regulation of gene expression  
 

The gene expression of HSV-1 in lytic infection is regulated in a cascade-like 

manner. The three, coordinately expressed gene groups, are referred as α-, β-, and 

γ-genes, or immediate early (IE), early (E) and late (L) -genes, respectively (Honess 

and Roizman, 1974). In the lytic infection α-genes are expressed 2-4 hours post 

infection (hpi), β-genes 5-7 hpi and γ-genes latest at 12 hpi (Honess and Roizman, 

1974). The expression of α-gene products is a requirement for expression of β-

genes, which then again are a requirement for γ-gene expression (Honess and 

Roizman, 1975; Roizman et al., 1975). In general, alpha and beta genes form a 

negative feedback-loop, where gene products expressed later inhibit the 

transcription of the earlier genes. However, during the first steps of reactivation from 

a latent infection, the gene expression of the different gene groups seems to happen 

simultaneously to enable viral protein-mediated shut-down of the latent state 

(Linderman et al., 2017; Mattila et al., 2015). 

In lytic infection, the initiation of transcription of the α-genes, and thus the initiation 

of the whole expression cascade requires the viral alpha-trans-inducing factor (α-

TIF/VP16) that is translocated to the nucleus with the viral DNA (Pellett et al., 1985). 

It serves as a transcription factor for α-genes in complex with several host proteins 

(e.g. HCF1, Oct1, LSD1) (Kristie and Roizman, 1987; Liang et al., 2009; McKnight 

et al., 1987). The expression of genes other than ICP0 (infected cell polypeptide 0) 

also requires the recruitment of CLOCK histone acetyl transferase (Kalamvoki and 

Roizman, 2010). 

The α-gene products include, for example, the above-mentioned ICP0 (encoded by 

α0 gene), which serves as a gene transactivator via enhancement of CLOCK activity 

(Kalamvoki and Roizman, 2010), and ICP27 (encoded by UL54), which is a 

regulatory protein required for all γ-gene expression, and is an inhibitor of host cell 

apoptosis (Aubert and Blaho, 1999). An example of β-genes, which include proteins 

required for replication of DNA, is ICP8 (encoded by UL29), a single-stranded DNA 

binding protein required for viral DNA synthesis (de Bruyn Kops and Knipe, 1988). 

Of the γ-genes, a majority encode for glycoproteins of the viral envelope, such as 

glycoprotein B (encoded by UL27) essential for virus mediated cellular entry (Cai et 

al., 1988), or for tegument proteins, such as α-TIF (encoded by UL48). All the above-
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mentioned genes are essential for viral lifecycle of HSV-1. In addition to the essential 

genes, HSV-1 has many accessory proteins non-essential for viral replication.  

  

1.2.4 Host responses to HSV-1 infection 
The innate immunity responses against HSV-1 begin immediately upon the cellular 

entry of HSV-1. The host responses aim at eradication and destruction of the virus, 

and importantly also aim at preventing spread of the virus by making the surrounding 

cells (and tissue) alert for the potential incoming pathogen. HSV-1, however, fights 

back, by modifying and inhibiting the host responses to its benefit in multiple different 

ways (Hukkanen et al., 2010; Kurt-Jones et al., 2017). The host innate responses to 

HSV-1, such as type I interferons (IFN), are highly antiviral and can protect against 

a viral disease (Isaacs and Lindenmann, 1957; Minkovitz and Pepose, 1995). Thus, 

the success of the host’s innate response is major factor in the clinical (and in vitro) 

outcome of the infection. Overly extensive immune response to HSV-1, however, 

may lead to severe or even lethal exacerbations (Lundberg et al., 2008), while too 

low levels of immune response during HSV-1 infection, such as those of 

immunocompromised individuals, may as well lead to severe outcomes (WHO, 

2017).  

HSV-1 is detected in cells by multiple pattern recognition receptors (PRR), which 

can detect pathogen associated molecular patterns (PAMPs), such as viral proteins 

or viral nucleic acids, and damage-associated molecular patterns (DAMPs). The 

innate PRRs induce the production of cytokines, chemokines and type I IFNs, which 

subsequently induce multiple IFN stimulated genes (ISGs). Examples of ISGs are 

for example human myxovirus resistant protein 2 (MxB), which inhibits the HSV-1 

genome delivery to the nucleus (Crameri et al., 2018) and human myxovirus 

resistance protein 1 (MxA), which reduces the replication potency of HSV-1 (Ku et 

al., 2011). HSV-1 can however alter the actions MxA to support the infection (Ku et 

al., 2011). These responses mentioned above, and their magnitudes may vary from 

one cell type to another, however, the general idea persists.  

Toll-like receptors (TLRs) are important PRRs in the host for recognition of HSV-1. 

In general, they induce production of proinflammatory cytokines (TLR2) or induce 

type I IFN response (TLR3/7/8/9). The cytokine production happens mostly via 

MyD88 (myeloid differentiation primary response 88) and NF-κB (nuclear factor 
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kappa-light-chain-enhancer of activated B cells), whereas the type I IFN response 

happens mostly via IRF3 (interferon regulatory factor 3). The IRF3 pathway is 

inhibited at least by VP16 (Xing et al., 2013) and ICP34.5 (Verpooten et al., 2009). 

The actions of IRF3 happen via phosphorylation, dimerization and subsequent 

translocation to the nucleus, where it interacts with the IFN promoter and thus 

induces type I IFN (IFN-α, IFN-β) expression. The cellular IFN expression then 

induces expression of ISGs via the Jak/Stat pathway, which is, then again, inhibited 

by viral VHS (virion host shutoff protein). (Jahanban-Esfahlan et al., 2019; Kurt-

Jones et al., 2017) 

Upon cellular entry HSV-1 is detected by the cell by TLR2, which recognizes the viral 

glycoproteins of the virion surface (Kurt-Jones et al., 2004). The effects of TLR2 are 

however inhibited by viral protein ICP0, which subsequently inhibits NF-κB induction 

(van Lint et al., 2010). In the cell TLR3, TLR7, TLR8, and TLR9, which are all located 

on endosomal surfaces, can detect viral nucleic acids. TLR7 and TLR8 sense single 

stranded RNA (ssRNA), whereas TLR3 detects dsRNA (Jahanban-Esfahlan et al., 

2019). The viral gene US3 is known to control the TLR3 responses, and thus also 

reduce type I IFN and ISG induction (Peri et al., 2008).  

In addition to the TLRs, many other PRRs detect viral RNA as well. The cytosolic 

RIG-I (retinoic acid-induced gene I) recognizes ssRNA (related to RNA polymerase 

III activity), and eventually induces type I IFN responses (Chiu et al., 2009). Other 

important PRRs that recognize viral dsRNA, are RIG-I-like receptors, such as MDA5 

(melanoma differentiation-associated protein 5) (Melchjorsen et al., 2010) and PKR 

(protein kinase R). The antiviral activity of PKR is related to its ability to inhibit 

translation and promote antiviral autophagy (Kurt-Jones et al., 2017), yet these 

actions of PKR are inhibited by the viral ICP34.5 (He et al., 1997; Orvedahl et al., 

2007).  

HSV-1 can also be detected in cells by its DNA. Of the TLRs, TLR9 detects genomic 

DNA motifs of HSV-1 (Krug et al., 2004; Lund et al., 2003). Additional important DNA 

sensing PRRs are cGAS (cyclic GMP-AMP synthase) and IFI16 (gamma-interferon-

inducible protein 16). The cytosolic cGAS induces STING (stimulator of interferon 

genes), which in turn indirectly activates IRF3 (Li et al., 2013; Sun et al., 2013). The 

activity of STING is nevertheless prevented by viral ICP27 (Christensen et al., 2016). 

The IFI-16 also works via the IRF3 pathway. In addition to cytosolic viral DNA 
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recognizing activity, IFI-16 can also silence viral genes epigenetically in the nucleus 

as well as induce IRF3 signaling from the nucleus (Johnson et al., 2014; Orzalli et 

al., 2012). The viral protein ICP0 can however degrade IFI-16, thus limiting also its 

epigenetic silencing functions (Orzalli et al., 2012).  

The mentioned PRRs and the innate responses they eventually induce were only a 

brief review on the subject. Likewise, the innate immunity evasion methods of HSV-

1 are more numerous. Importantly, the immune evasion can also target the adaptive 

immune system. As important examples of adaptive immune evasion, HSV-1 can 

disable recognition of the infected cells by preventing presentation of viral antigens 

on the cellular surface by preventing actions of major histocompatibility complex 

(MHC) class I (Früh et al., 1995; Hill et al., 1995) and MHC class II (Neumann et al., 

2003), as well as by preventing antibody mediated antiviral response by binding IgG 

(Dubin et al., 1991) and by preventing complement activation (Friedman et al., 1984). 

Additionally, the lack of an HSV vaccine can be considered as indirect evidence of 

the competence of HSV-1 to evade the adaptive immune system. A common 

understanding of the interactions between the virus and the host are a prerequisite 

for development of antiviral drugs, especially those with possible interactions with 

the same pathways by which the virus is detected by.  
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1.3 Herpes simplex virus 1 – a common pathogen 
 

Primarily, HSV-1 is known for infecting the orofacial area, whereas its closest 

relative, herpes simplex virus 2 (HSV-2) is considered to infect the genital area. The 

most common symptoms are sores or blisters in the orolabial area, before which, the 

patient will experience tingling or itching (WHO, 2017). The clinical manifestations of 

reactivations are most commonly labial cold sores, but can also be lesions on nose, 

chin or cheek skin, which last for 2-16 days (Petti and Lodi, 2019).  

Overall, HSV-1 is a highly common pathogen. In 2012 the world-wide prevalence of 

HSV-1 was 67%, which is roughly 4.9 billion people (Looker et al., 2015a). In Finland, 

however, the number of HSV-1 seropositive people has decreased from the 

beginning of the ‘90s. For example, the seroprevalence of HSV-1 in pregnant women 

has decreased significantly from 1992 to 2012 by almost 25% (from 69.5% to 45%), 

and the corresponding seroprevalence of HSV-2 by 6.5% (from 17.5% to 11%) 

(Puhakka et al., 2016). The decrease in seroprevalence increases the risk of primary 

infections at later age, for example during pregnancy, which may cause the severe 

neonatal HSV infection. In addition, immunocompromised patients are especially at 

risk of the severe herpes simplex complications, such as pneumonia, disseminated 

infections and hepatitis, as well as having an increased risk for herpes keratitis, the 

leading cause of infectious blindness worldwide. However, HSV-1 can also cause 

severe infections in immunocompetent hosts. The more severe morbidities caused 

by HSV-1 are introduced in the following chapters. Notably, these potentially fatal 

morbidities, such as encephalitis, are not favorable for HSV-1 either, since a 

deceased host is not as beneficial for the virus as a viable host. 

 

1.3.1 Genital herpes 
Even though HSV-2 is usually considered to cause genital herpes lesions, and HSV-

1 orofacial lesions, HSV-1 has gained more importance as a causative agent of 

genital herpes. Recently, in Finland, HSV-1 has become the main cause for genital 

herpes among young women (Tuokko et al., 2014), regardless of the decrease in 

HSV-1 seroprevalence (Kortekangas-Savolainen et al., 2014). Worldwide, in 2012, 

the number of people with genital HSV-1 was 140 million (Looker et al., 2015a) in 

contrast to 417 million people with genital HSV-2 (Looker et al., 2015b).  
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The genital HSV-1 can be asymptomatic or symptomatic. When it is symptomatic, 

painful ulcers or blisters, or both, occur in the genital area. Moreover, at least pre-

existing HSV-2 infection can make the patient more susceptible to human 

immunodeficiency virus 1 (HIV-1) infection (Desai and Kulkarni, 2015; WHO, 2017). 

However, prior HSV-1 genital infection can protect a patient from symptomatic 

genital HSV-2 infection (Hofstetter, Rosenthal and Stanberry 2014).  

In times of active clinical symptoms, shedding of HSV-1 is most abundant, and thus 

is also most contagious, however, subclinical, asymptomatic shedding also enables 

virus transmission (Barton et al., 1987). The frequency of subclinical HSV-1 

shedding is up to 2.8% of asymptomatic days, yet is highest after symptomatic HSV-

1 lesions (Wald et al., 1995). According to more recent studies 2.2%-2.8% of oral 

DNA samples are HSV positive at any given time (Mäki et al., 2015; Mäki et al., 

2018). Overall, the recrudescence of symptomatic genital HSV-1 are rarer than that 

of HSV-2, taking place approximately once compared to four times per year 

(Hofstetter et al., 2014). Epidemiologically, the frequent, asymptomatic reactivations 

of genital HSV-1, as well as asymptomatic oral HSV-1 reactivations, might have 

significant effects to public health since they can lead to unforeseen transmission via 

genital or oral-genital contact. Hence, there is a need for an antiviral drug, preventing 

viral shedding, or even better, reactivations altogether.  

 

1.3.2 Neonatal herpes simplex infection 
Neonatal herpes is a complication of genital herpes resulting from HSV-1 or HSV-2. 

The overall rate of neonatal herpes is 14,000 cases per year worldwide. In Europe, 

1000 cases arise per year, of which 57% result from HSV-1. However, globally HSV-

2 is the major cause of neonatal herpes infections (70% of cases). (Looker et al., 

2017)    

Neonatal herpes infection occurs when HSV is transmitted from the mother to the 

infant. The transmission may happen in utero, postpartum or, most commonly (85%) 

during childbirth (James and Kimberlin, 2015). The transmission can be prevented 

by cesarean delivery, or by avoiding invasive monitors during child birth, or at best, 

preventing maternal infection altogether (Brown et al., 2003). Overall, the highest 

risk for transmission from mother to infant is when the mother has primary HSV 

infection (Brown et al., 2003). Alarmingly, since the proportion of HSV seropositive 
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women has decreased, the risk for primary HSV infection during pregnancy has 

increased, which subsequently creates an elevated risk for neonatal herpes 

infection. Fortunately, the incidence of neonatal herpes has remained unchanged so 

far (Puhakka et al., 2016).  

Almost half of the infants infected during or after childbirth will develop central 

nervous system (CNS) symptoms. In these situations, the mortality with antiviral 

treatment is 4% after one year, and two thirds of the survivors develop 

neurodevelopmental outcomes. When the infection is disseminated into other 

organs, such as liver or lungs, the mortality is close to 30%. In the rare in utero cases, 

the clinical manifestations include e.g. microcephaly, skin lesions or ocular findings, 

which are present already at birth. Luckily, close to half of all of the cases of neonatal 

herpes do not involve CNS or organ system symptoms. (James and Kimberlin, 2015) 

 

1.3.3 Herpes simplex encephalitis 
HSV-1 is the most common cause of sporadic, infectious encephalitis. The caused 

herpes simplex encephalitis (HSE) is at worst a hemorrhagic and necrotizing 

condition in the frontal and temporal lobes of the brain (Kumar et al., 2013). 

Approximately a  third of HSE cases result from primary infection (Whitley, 2006), 

but the majority happen due to reactivations (Figure 2B). The adverse access of 

HSV to the brain may result for example as consequence of enhanced neurotropism 

of reactivating virus, lacking antiviral activity of the patient, or overall high viral load. 

For the establishment of HSE, at least three routes are possible; through the 

olfactory nerve route or through hematogenous or the trigeminal pathway (Petti and 

Lodi, 2019). The disease has an incidence of 1 in 200,000-500,000 per year in 

developed countries and as high as 30% mortality rate even with proper treatment 

(Whitley, 2006). The disease affects mostly children and young adults but can affect 

any age group (Kumar et al., 2013). Most notably, immunocompetent individuals 

actually have an equal risk of HSE compared to immunocompromised individuals 

(Whitley, 2006). 
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1.3.4 Herpes simplex keratitis 
HSV-1 is linked to many ocular diseases with manifestations of conjunctivitis, acute 

retinal necrosis, and epithelial and stromal keratitis, which together are referred as 

herpes simplex keratitis (HSK). The worldwide incidence of HSK is as high as 1.5 

million with 40,000 annual cases of blindness or severe vision impairment, as 

categorized by the World Health Organization (Farooq and Shukla, 2012). Overall, 

in developed countries, HSK is the leading cause for infectious blindness (Dawson 

and Togni, 1976) and severe visual impairment (Farooq and Shukla, 2012). In these 

nations, the incidence is close to 250,000 cases per year, of which 1.5% lead to the 

severe visual impairments, or blindness (Farooq and Shukla, 2012).  

HSK may result from primary infection of the cornea but can also occur by 

reactivation of latent virus of oral origin (Figure 2B). Labetoulle et al. (2000) detected 

this phenomenon in vivo in mice, being able to demonstrate viral reactivation to the 

eye on the same side of the primary labial infection (Labetoulle et al., 2000). Later, 

they published the possible neuronal connections leading to virus propagation from 

the labia to the eye in mice (Labetoulle et al., 2003). The connections explained why 

reactivations to the cornea are most common, compared to viral manifestations on 

the iris or retina, for example.  

After the first clinical manifestation in the cornea, the recurrences of HSK are very 

likely (Dawson and Togni, 1976). For this reason, the patients use continuous 

prophylactic acyclovir treatment to prevent the recurrences. However, the 

prophylactic treatment with acyclovir induces acyclovir-resistant virus strains to 

emerge (Duan et al., 2009; van Velzen et al., 2013). Additionally, patient-derived 

virus isolates that are acyclovir-resistant, can be resistant simultaneously to other 

anti-herpetic drugs as well, even if the drug has totally different mechanism of action 

(Duan et al., 2008). Hence, emergence of multi-drug resistant viral strains during 

long-term prophylactic treatment encourages for development of antivirals with novel 

MOAs for treatment of herpes keratitis. 
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1.4 Treatment of herpes simplex virus 1 infections 
 

The by far most widely used antiviral drug against HSV-1 is a guanosine analogue, 

acyclovir (ACV). It is the treatment of choice for all the severe and more common 

conditions described in the previous chapter. ACV is well tolerated and can be used 

orally, topically or intravenously, which is required for the most severe exacerbations, 

such as HSE. In general, ACV decreases the time of active symptoms and related 

viral shedding in therapeutic use, as well as prolongs the time between recurrences 

when used prophylactically. ACV has relatively low half-life of three hours and a 

relatively low oral bioavailability (15-30%). However, it’s commonly used prodrug, 

valacyclovir, has better pharmacokinetics upon oral administration. (Koulu and 

Mervaala, 2013). The antiviral drugs approved for treatment of HSV-1 are 

summarized in Table 2. 

The mechanism of action of ACV is based on the activity of viral thymidine kinase 

(tk) and viral DNA polymerase. In infected cells, tk phosphorylates ACV into acyclovir 

monophosphate, which is subsequently phosphorylated to acyclovir triphosphate by 

cellular kinases. In its triphosphate form, ACV competitively inhibits the activity of the 

viral DNA polymerase and prevents further synthesis of the viral DNA chain. This 

MOA is shared not only with acyclovir and valacyclovir, but also with penciclovir and 

its prodrug famciclovir, which have higher oral bioavailabilities and longer half-lives 

in comparison to ACV. And as famciclovir metabolizes to penciclovir only after first-

pass metabolism, it has a much higher bioavailability in comparison to penciclovir. 

These afore-mentioned drugs are very effective and represent the relevant treatment 

against HSV-1. Due to their same mechanism of action, acyclovir-resistant strains 

are resistant to all the other mentioned drugs as well. Hence, in resistant patients a 

drug with a different MOA is required, and foscarnet is used. Foscarnet, however, 

has severe adverse effects, including high renal toxicity. For this reason, it is used 

primarily in treatment of ACV-resistant strains. Its MOA is to compete of the 

pyrophosphate binding site on the viral DNA-polymerase, thus competitively 

inhibiting its actions. (Cann, 2016; Koulu and Mervaala, 2013) 

The problem with the current treatments is that the drugs used against HSV-1 share 

the same MOAs and target proteins (tk and viral DNA polymerase), which leads to 

issues with emerging resistant strains, especially in long-term prophylactic use. 
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Notably, due to the latent, reactivating nature of HSV-1 infection, it cannot yet be 

cured. These factors together lead to a need for a drug treating and/or preventing 

HSV with a novel MOA.  

 

Table 2 - Current treatment of HSV-1. Modified from (De Clercq and Li, 2016). 

 Structure Mechanism  
of action 

Administration 
routea 

Indication 
of usea 

Acyclovir 

Guanosine 
analogue 

Activation by 
viral thymidine 

kinase and 
subsequent 
inhibition of 
viral DNA 

polymerase 

Oral, topical, 
intravenousb 

Oro-facial, 
genital 
herpes, 
herpes 

keratitis, 
herpes 

encephalitisb 

Valacyclovir Oral 
Genital and 
oro-facial 
herpes 

Penciclovir Topical Oro-facial 
herpes 

Famciclovir Oral 
Genital and 

orofacial 
herpes 

Foscarnet Pyrophosphate 
analogue 

Inhibits viral 
DNA 

polymerase 
Intravenous 

Acyclovir-
resistant 
herpes 

infection b 

Idoxuridine 
2’-deoxyuridine 

analogue 

Substitutes 
thymidine, 

targets DNA 
polymerase Topical Herpes 

keratitis Trifluridine Inhibits DNA 
replication 

Brivudine Inhibits DNA 
synthesis 

Docosanol Saturated fatty 
alcohol 

Inhibits viral 
fusion to 
cellular 

membrane 

Topical Oro-facial 
herpes 

Cidofovir c 
Nucleoside 

phosphonate 
analogue 

Inhibits DNA 
synthesis a Intravenous a 

Acyclovir- 
and 

foscarnet-
resistant 
herpes 

infection c 
a(DrugBank.ca, 2020), b(Koulu and Mervaala, 2013), c (Blot et al., 2000) 
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1.4.1 Genetic variation of circulating HSV-1 strains  
Clinical circulating strains of HSV-1 vary from each other by their phenotype in vitro 

and by their sequence (Bowen et al., 2019; Szpara et al., 2010). The sequence, and 

the phylogenic location of the strain, is believed to also influence the clinical 

characteristics of the infection, such as reactivation frequency (Shipley et al., 2018). 

Infected humans from a certain geographic location tend to have similarity in the 

genomics of their HSV-1 strains (Bowen et al., 2019; Pfaff et al., 2016). Overall, 

some genes are more conserved than others (Bowen et al. 2019). Notably, 

circulating viral strains, and in vitro reference strains, are expressing not just one 

genotype, but demonstrate intrastrain variability (Parsons et al., 2015; Shipley et al., 

2018). Hence, within a strain, partial drug resistance might occur due to mutation in 

the drug target of a viral subpopulation. For example, circulating virus strains are not 

fully resistant or fully sensitive to acyclovir, but manifest ranging susceptibilities 

(Bowen et al., 2019).  

 

1.4.2 Acyclovir resistance 
 

A vast majority of the mutations leading to ACV resistance are in the gene encoding 

for thymidine kinase (UL23), but can also be found from the gene encoding for DNA 

polymerase (UL30) (Sauerbrei et al., 2011). The UL23 and UL30 genes have high 

genetic variability among strains of HSV-1, and the possible mutations are many 

(Schmidt et al., 2015). Most of the mutations leading to ACV resistance are found 

from active or conserved genomic sites, but can also be found outside of these 

regions (Sauerbrei et al., 2011; Schmidt et al., 2015).  

Selective forces, such as long-term use of ACV, might lead to the emergence of 

ACV-resistant escape mutants. A very important example is herpes keratitis, which 

is treated prophylactically with ACV to prevent dangerous exacerbations. Adversely, 

the prophylaxis with ACV predisposes for ACV-resistant keratitis, and causes ACV-

resistant viruses to emerge (van Velzen et al., 2013). In a study by Duan et al. (2008) 

they found that 6.4% of the clinical HSV-1 strains derived from immunocompetent 

herpes keratitis patients were ACV-resistant, whereas otherwise only 0.1-0.7% of 

circulating HSV-1 strains of immunocompetent patients display ACV resistance 

(Farooq and Shukla, 2012). Moreover, the reactivating virus strains of keratitis 
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patients are usually ACV-resistant and can cause sequentially multiple recurrences 

(Duan et al., 2009).  

In addition to immunocompetent patients with long-term prophylactic treatment 

periods, immunocompromised patients are at high risk of developing ACV-resistant 

strains. However, the cause of immunosuppression affects the risk of developing 

ACV resistance. For example, according to a study with 1132 immunocompromised 

patients with HSV-1, the overall prevalence of ACV resistance was 3.1%, whereas 

bone marrow transplant patients had a prevalence of 12.1% (Danve-Szatanek et al., 

2004).  

The ACV-resistant strains are generally responsive to foscarnet (Sauerbrei et al., 

2011); nevertheless simultaneously ACV- and foscarnet-resistant strains have been 

described in immunocompromised (Darville et al., 1998) and immunocompetent 

patients (Duan et al., 2008). Alarmingly, in a study by Danve-Szatenek et al. (2004), 

over half of bone marrow transplant patients with ACV resistance demonstrated 

resistance also against foscarnet (Danve-Szatanek et al., 2004). Such ACV- and 

foscarnet-resistant viral strains can be treated with cidofovir (Blot et al., 2000), which 

is normally used for treatment of CMV in immunocompromised patients. Cidofovir, 

however, has dangerous adverse effects, such as high renal toxicity, and is thus 

used only when other treatments fail, and treatment is necessary.  
 

1.4.3 Current clinical pipeline 
 

Majority of the current clinical pipeline for treatment of HSV-1 is focused on improved 

treatment of oro-facial herpes episodes, rather than treatment of the severe 

conditions, or preventing recurrences. The investigative, HSV-specific drugs in 

clinical trials listed in Clinicaltrials.gov after 2010 are presented in Table 3. 

Additionally, vaccine development and immunomodulatory drugs in the clinical 

pipeline are presented in the following chapters. The immunomodulatory drugs are 

also included in Table 3. 

Three investigative drugs in the pipeline have unclear mechanisms of actions based 

on available literature and were thus left out of Table 3. Such drugs are 1) a topical 

short synthetic peptide, ZEP-3 (phase II; NCT02483182), a chemically modified 

version of snake venom derived short peptide described to have analgesic and 

antiviral purposes (SIS Shulov Innovative Science, 2018), 2) sublingual thiomersal 



 

 18 

BTL-TML-HSV (phase II; NCT01308424), which is described to affect by inhibiting 

transcription and recruiting leucocytes (Beech Tree Labs Inc, 2020), and 3) NB-001 

(phase III; NCT01321359), a topical nanoemulsion, with multiple ingredients 

including such disrupting the viral envelope (Kircik et al., 2012). None of these 

treatments strike as HSV-specific, however at least NB-001 is described to have 

specific antiviral activity unrelated to immunomodulatory functions.  

 

Table 3 - Pipeline for treatment of HSV-1. Representing year 2010 and onwards. 
The HSV-1 specific investigational drugs in clinical trials are enlisted in the upper 
section, whereas immunomodulatory treatments are enlisted in the lower section. 

Indication Drug  MOA Phase Clinicaltrials.gov 
identifier 

 

Labial, facial or 
genital herpes 

simplex 
episodes 

Amenamevir 
(ASP2151), Oral Inhibition of 

viral helicase-
primase 

III NCT01959295 
 

  
H

SV-1 specific treatm
ent 

Labial herpes 
simplex 

episodes 

Pritelivir 
(AIC316), 
Topical 

II NCT02871492 

Herpes simplex 
infection 

Monoclonal gD-
antibody (UB-

621), 
Subcutaneous 

Monoclonal 
gD-antibody 

I NCT02346760 

II NCT03595995  
(HSV-2) 

Prevention of 
recurrent 

herpes labialis 

SQX770 (squaric 
acid dibutyl 

ester), Topical 

Enhancement 
of immune 

system 
II NCT02965781 

Im
m

unom
odulatory treatm

ent 

Prevention of 
herpes keratitis 

recurrences 

Prednisolone 
acetate and 
prednisolone 

sodium 
phosphate 

(corticosteroids), 
Topical 

Anti-
inflammatory, 
adjuvant for 

oral acyclovir 
or 

valacyclovir 

IV NCT03626376 

Herpes simplex 
encephalitis 

related 
conditional 
deficiencies 

Dexamethasone 
(corticosteroid), 

Intravenous 

Anti-
inflammatory, 
adjuvant for 

standard care 

III NCT03084783 
 

Herpes simplex 
labialis related 

pain 

RMN3001 
(Diclofenac, 
lidocaine), 

Topical 

Anti-
inflammatory II NCT02207881 
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1.4.3.1 Helicase-primase inhibitors 
 

The viral helicase-primase complex, essential for DNA replication is a novel target 

for herpes simplex therapy. Currently, two helicase-primase inhibitors (HPI), 

amenamevir (ASP2151) and pritelivir (AIC316) are studied in clinical phases III and 

II, respectively. Of the two, amenamevir is studied for a wider range of indications, 

including also genital herpes simplex infection, and is administered orally, whereas 

pritelivir is an ointment yet only studied for labial infections. Additionally, amenamevir 

has demonstrated in vivo efficacy against corneal HSV-1 infection (Sasaki et al., 

2013), suggesting it’s potential also for treatment of multi-drug resistant herpes 

keratitis strains in the future. Amenamevir’s success in the phase III trial is not yet 

reported. Pritelivir, however, is reported to have had success in its phase II trials, 

which are currently ongoing with immunocompromised individuals.  

 

1.4.3.2 Vaccine development 
 

To this date, no HSV-1 nor HSV-2 vaccine is approved, however, many vaccine trials 

targeting especially HSV-2 are ongoing. Some vaccines have already made it far 

along the pipeline, such as Herpevac, which eventually was unsuccessful. The 

capability of HSVs to evade the adaptive immunity can be considered one of the 

reasons for struggles in the development of vaccines. 

Herpevac is an investigative gD-vaccine, that unfortunately failed to meet its primary 

endpoint at phase III (NCT00057330). It was not efficient against its primary target 

HSV-2, yet it demonstrated efficacy against genital HSV-1 (Belshe et al., 2012). 

Currently, a gD-antibody (UB-621) intended for treatment of herpes simplex 

episodes, has successfully finished phase I against HSV infection (NCT02346760) 

altogether and continued to an ongoing phase II to treat genital HSV-2 infection 

(NCT03595995).  

In contrast to subunit vaccines, such as the gD-vaccine, replication defective viruses 

have been studied in vaccine development. First of these vaccines in clinical trials is 

the HSV529-vaccine (a replication defective HSV-2 dl5-29). In its phase I trial 

(NCT01915212), it was shown safe, and effective in increasing antibody levels in 

seronegative and seropositive individuals (Dropulic et al., 2019). The vaccine has 

recently been taken to phase II trials (NCT04222985) likely with four different 
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immunotherapeutic modifications to the replication deficient virus. The trial is 

currently recruiting.  

 

1.4.3.3 Immunomodulation 
 

Even though immunomodulation is not exactly HSV-specific treatment, it is a major 

part of the current investigative clinical pipeline of HSV-treatment, and thus included 

here.  

Corticosteroids are studied by a phase IV trial investigating two corticosteroid 

adjuvants to support current treatment for stromal keratitis (NCT03626376) and a 

phase III trial with adjuvant corticosteroid therapy to reduce cognitional deficits 

related to herpes encephalitis (NCT03084783). Corticosteroids have been 

suggested to be efficient as adjuvant treatments for herpetic diseases (Arain et al., 

2015; Lizarraga et al., 2013; Wilhelmus et al., 1994). However, in general their use 

is controversial since they effect the natural defense system against herpes (Ramos-

Estebanez et al., 2014). To this date, the keratitis trial is still recruiting, and the 

encephalitis trial has not begun, so no results are yet reported.  

Anti-inflammatory treatment is also studied for herpes labialis (NCT02207881), yet 

not with corticosteroids but with a topical diclofenac-lidocaine mixture aiming to 

decrease labial herpes infection related pain and inflammation. No results have been 

yet reported of the trial.  

Additionally, squaric acid dibutyl ester (SQX770), was studied in phase II 

(NCT02965781) as an enhancer of the immune system to prevent labial herpes 

recurrences. Based on phase II results, it is reported to be safe, and effective (PR 

newswire, 2019). As suggested by phase I results, the efficacy to prevent 

recurrences is based on induced interferon γ levels and decreased interleukin 5 

levels (McTavish et al., 2019).  
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1.5 RNA interference as an antiviral approach 
 

1.5.1 Mechanism of RNAi  
 

RNA interference (RNAi) is a natural, conserved mechanism, which leads to RNA 

mediated regulation of gene expression (Cerutti and Casas-Mollano, 2006; Fire et 

al., 1998). There are multiple short RNA species that lead to RNAi, such as 

microRNAs, which are regulatory elements encoded by genomes of plants, animals 

and viruses, including HSV (Jurak et al., 2010), and short interfering RNAs (siRNAs), 

which lead to sequence specific mRNA degradation. siRNAs are widely used as 

tools for research, as wells as recognized for their potential in therapeutic use for 

example in interfering with viral replication.  

The siRNAs function by a multiprotein complex; the RNA-induced silencing complex 

(RISC). Argonaut 2 protein is an endonuclease, and an essential component of 

RISC. It utilizes both strands of the siRNA to find mRNA complementary to either of 

the strand’s sequence, eventually leading to cleavage and degradation of the found 

mRNA (Rand et al., 2005). The strand complementary to the mRNA is referred as 

the antisense or the guide strand, whereas the other strand is referred as the sense 

or the passenger strand. It has been shown that exogenous dsRNA is most potent 

in RNAi at the length of approximately 27 bp (Kim et al., 2005). dsRNAs of such 

length (>21 bp) are cleaved by endogenous Dicers before entering RISC, which 

leads to elevated silencing potency (Kim et al., 2005).  

Innate response and consequent toxicity peak related to dsRNA length is at 88 bp 

(Jiang et al., 2011). However, generally, the longer the exogenous dsRNA, the 

higher the cellular innate response. Importantly, at dsRNA lengths from 19 to 30 bp, 

which is the common length of siRNAs, no significant elevation in toxicity or 

interferon response is detected (Reynolds et al., 2006).  

 

1.5.2 Antiviral siRNA therapy  
 

siRNAs are currently recognized as having therapeutic potential against emerging 

pathogens and otherwise untreatable pathogens, including those that have 

treatments with only limited effectiveness, and those that are in risk of developing 

drug resistance (Levanova and Poranen, 2018). The antiviral siRNA approach is in 
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general extremely straight-forward, and for initiation of therapy development, 

basically only a genomic sequence is required. Importantly, genomic data is 

nowadays available almost immediately after discovery of a novel pathogen (Chan 

et al., 2020). The in silico designed antiviral siRNAs can then be generated either 

chemically or enzymatically for in vitro assessment of safety and efficacy (Levanova 

and Poranen, 2018).  

First siRNA to receive market approval was an intravenous siRNA under the 

tradename Onpattro™ for treatment of polyneuropathy caused by hereditary 

transthyretin-mediated amyloidosis, which was approved by European Medicines 

Agency and the U.S. Food and Drug Administration in 2018 (Hoy, 2018). The active 

siRNA of Onpattro™ is delivered by a lipid nanoparticle to hepatocytes. Recently, 

the same company received marketing authorization for another siRNA drug for 

treatment of acute hepatic porphyria (Scott, 2020). Currently, no other siRNAs, and 

thus also no antiviral siRNAs are yet on the market. Nevertheless, various antiviral 

siRNAs have been studied in clinical trials. These trials have studied treatment of 

respiratory syncytial virus (RSV), hepatitis B virus, hepatitis C virus, HIV-1 or Zaire 

Ebolavirus (Levanova and Poranen, 2018). Most recently also human papilloma 

virus targeted siRNA begun clinical trials (recruiting, NCT04278326). However, no 

siRNAs targeting herpesviruses have yet reached clinical trials.  

siRNAs offer a valuable approach with a novel mechanism of action for treatment of 

HSV. The treatment would benefit not only those patients suffering from episodes 

caused by drug resistant strains of HSV, such as numerous herpes keratitis patients, 

but also those in need of a more efficient treatment, such as herpes encephalitis 

patients. Moreover, as the diseases caused by herpes simplex viruses are most 

commonly topical (eye, skin, mucosa), the delivery of siRNA is not as challenging, 

as with internal, systemic treatment. As topical treatments lead only to low 

systematic load of siRNA (DeVincenzo et al., 2008), the overall adverse effects are 

minimal. Furthermore, intranasal delivery of siRNA could reach the central nervous 

system (Rodriguez et al., 2018), and thus enhance treatment of herpes simplex 

encephalitis (da Silva et al., 2016), or eventually even target the latent infection of 

HSV.  

siRNAs against HSV have not yet been studied in clinical trials but have been studied 

in vitro and in vivo with promising results. Of the targets studied, UL39 and UL29 
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targeted siRNAs have demonstrated efficacy against various patient derived strains 

in vitro (Paavilainen et al., 2016; Silva et al., 2014), as well as efficacy in vivo (da 

Silva et al., 2016; Paavilainen et al., 2017), encouraging for further research with 

these targets. Moreover, as UL29 has high homology between HSV-1 and HSV-2, 

siRNAs targeting UL29 have demonstrated in vivo efficacy against both of the 

viruses (Paavilainen et al., 2017; Palliser et al., 2006). Altogether in in vivo studies 

(please see Table 4), siRNAs against HSVs have led to decreased symptoms and 

mortality, as well as to significant inhibition of virus production inhibition in the 

infected tissues (da Silva et al., 2016; Li et al., 2014; Paavilainen et al., 2017; Palliser 

et al., 2006), thus supporting the potential of siRNA therapy against herpes simplex 

viruses.  
 

Table 4 – In vivo treatment of HSV with siRNA 

Target  
(gene|protein) Model siRNA delivery method Reference 
UL29, 
UL27 

ICP8, 
gB 

In vivo intravaginal 
infection 

Intravaginal delivery, lipid-
based 

(Palliser et 
al., 2006) 

α4 ICP4 In vivo corneal 
infection 

Topical application to 
cornea, siRNA-polymer 
complex 

(Li et al., 
2014) 

UL29 ICP8 In vivo corneal 
infection 

Topical application to 
cornea, no delivery reagent 

(Paavilainen 
et al., 2017) 

UL39 ICP6 In vivo CNS 
infection 

Intracaudal inoculation, 
siRNA-glycoprotein complex 

(da Silva et 
al., 2016) 

 

1.5.3 Challenges in antiviral siRNA therapy 

siRNA therapy faces challenges in their stability, delivery, off-target effects as well 

as limited target size and related target optimizations. Viruses as a target for siRNA 

therapy increase the importance of choosing a relevant target sequence and 

highlight the need for the siRNA therapy to tolerate target variation, since variability 

within and between virus strains exist. Additionally, some RNA-viruses can suppress 

the RNA interference pathway (Fabozzi et al., 2011; Li et al., 2016), however, such 

mechanism is not (yet) described with herpesviruses. Anyhow, due to the high 

potential of the siRNAs altogether, solutions to these previously mentioned 

challenges are and have been widely studied.  
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The delivery challenges are related to the negative, anionic charge of RNA. Due to 

the anionic charge, they cannot passively diffuse trough the cellular membrane. 

Additionally, siRNAs are rapidly degraded by nucleases if not protected (DeVincenzo 

et al., 2008). A common method to overcome the low stability are chemical 

modifications. Popular modifications are those at the 2’-position in the ribose, which 

are proven not to interfere with RNAi, but even increase siRNA potency and stability 

both in vitro (Allerson et al., 2005) and in vivo (Manoharan et al., 2011). The delivery 

challenges of siRNAs may be solved in many ways, for example by targeted viral 

vectors, nanoparticles or conjugates, such as lipids or antibodies (Levanova and 

Poranen, 2018). Moreover, delivery reagents suitable for both in vivo and human 

use (Sidi et al., 2008), which have also enabled siRNA mediated antiviral efficacy in 

vivo (Rodriguez et al., 2018), are nowadays commercially available. Additionally, 

siRNAs have proven antiviral efficacy even without a delivery reagent in vivo upon 

topical, corneal administration against HSV-1 (Paavilainen et al., 2017) and in 

humans via intranasal administration of siRNA aerosol targeted against RSV 

(DeVincenzo et al., 2010).  

The off-target effects of siRNAs can be caused by various reasons addressed by 

strategies in careful siRNA design (Gatta et al., 2018). Primarily, the off-target effects 

are mediated by similar sequences of nontargeted mRNAs leading to nonspecific 

gene silencing. They can also be mediated by matches between the seed region 

(nucleotides 2-7 or 2-8 in the antisense strand) and untranslated mRNA regions 

(Birmingham et al., 2006). In addition, off-target effects include elevated interferon 

responses induced by certain sequence motifs, which can lead to cytotoxicity 

(Fedorov et al., 2006; Meng and Lu, 2017) These toxic effects can be reduced by 

chemical modifications at the 2’-position of the ribose (Fedorov et al., 2006). The 

chemical 2’-modifications have also shown to reduce the off-target effects related to 

nonspecific gene silencing (Jackson et al., 2006).  

The last challenge mentioned is the limited target size of siRNA, which manifests as 

a low tolerability of mutations in the viral genome and as high odds to surfacing of 

escape mutants. Also, predicting actions of single, individual siRNAs is not possible, 

since the in silico analysis do not take secondary structures of target transcripts nor 

possible surrounding protein complexes into account (Parsons et al., 2009). In 

general, mutation tolerability of siRNA depends on site of the mutations with regard 
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to the siRNA (Amarzguioui et al., 2003). In the central region of the siRNA, which is 

generally the most sensitive for mutations, a double mutation has been shown to 

lead to total loss of activity (Holen et al., 2002). Independent of to the position, 

decrease in silencing ability is detected already at one and two nucleotide 

mismatches (Dahlgren et al., 2008; Holen et al., 2002). The issues of low mutation 

tolerability can be partially solved with pooling multiple siRNAs (Knoepfel et al., 2012; 

O'Brien, 2007). The pooling increases possibilities for successful, sequence specific 

target knock-down (Parsons et al., 2009), but nevertheless requires thorough in vitro 

and in silico evaluation of the individual  siRNAs within the pool. Regarding antiviral 

siRNAs, the pools enable overcoming possible variation in target pathogen 

transcripts. Simultaneously, by targeting multiple sequences, the sequence-

dependent off-target effects dilute (Hannus et al., 2014). siRNA pool may be 

produced synthetically, but faster and more straightforward is their enzymatical 

synthesis (Levanova and Poranen, 2018). A recently developed method enables a 

straight forward enzymatical production of siRNAs from long target sequences 

reaching up to 3.5 kbp (Nygårdas et al., 2009; Romanovskaya et al., 2012). The 

siRNA pool created in such a way is referred to as an siRNA swarm, since a siRNA 

swarm is not exactly a pool of few individual siRNAs, but a swarm of siRNAs 

targeting a long RNA sequence back-to-back. siRNA swarms are more thoroughly 

introduced in the next chapter.  

 

1.5.4 siRNA swarms 
 

siRNA swarms represent a collection of 27 bp (25 bp and 2 nt overhangs) long 

siRNAs, which are enzymatically produced from a long dsRNA representing the 

pathogen target sequence (Romanovskaya et al., 2012). Depending on the 

application, the target sequence may be coherent, or a chimeric combination of 

multiple genes (Jiang et al., 2019). Enabling of longer targets decreases the 

possibility of cumulative off-target effects as well as the significance of genetic 

diversity and point mutations, which are often a great concern especially in long-term 

infections and their treatment. Thus, siRNA swarms answer the challenges of 

traditional antiviral siRNAs, such as their susceptibility to off-target effects and to the 

genetic diversity of their targeted pathogen populations.  
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siRNA swarms have proven efficient against different viral pathogens (Jiang et al., 

2019; Nygårdas et al., 2009; Romanovskaya et al., 2012) and are well tolerated by 

various cell types (Jiang et al., 2019; Paavilainen et al., 2015). They have already 

shown comparable efficacy against multiple circulating strains and reference strains, 

regardless of their genetic deviation. This phenomenon is demonstrated not only for 

HSV strains (Paavilainen et al., 2016), but also for influenza virus A (Jiang et al., 

2019) and enteroviruses, where one siRNA swarm was able to significantly inhibit 

not only different strains, but different enteroviruses (Nygårdas et al., 2009).   

The most extensively studied siRNA swarm target is HSV-1 and its UL29 gene. The 

UL29 targeting siRNA swarm has been shown least immunostimulatory and the most 

antiviral of the HSV-1 specific siRNA swarms tested (Paavilainen et al., 2016). 

Moreover, the UL29 siRNA swarm does not cause unfavorable elevated interferon 

responses in retinal, epithelial nor neuronal cells (Paavilainen et al., 2016; 

Paavilainen et al., 2015). In addition to the high efficacy against various patient 

derived strains in vitro (Paavilainen et al., 2016), treatment with UL29 siRNA swarm 

decreased fatality and improved the clinical symptoms of a corneal infection in vivo 

(Paavilainen et al., 2017). Currently, the UL29 siRNA swarm is the most promising 

siRNA candidate for treatment of HSV-1.  
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1.6 Summary 
 

The multiple severe diseases caused by HSV-1, the lack of a cure or vaccine, and 

the emerged resistance to the current treatment-of-choice facilitate a need for a drug 

against HSV-1 with a novel mechanism of action and tolerability for sequence 

variability between and within HSV-1 strains. The siRNA swarms are a potential drug 

candidate in development to answer this need. Yet, siRNAs are challenged by their 

fast degradation in vivo. This challenge can be overcome by 2’-modifications in the 

nucleotides of siRNA. One of the modifications, which is shown to improve in vivo 

stability of siRNAs, are 2’-fluoro-modifications (Manoharan et al., 2011). Thus, the 

UL29 siRNA swarm was incorporated with 2’-fluoro-modifications. In this Master’s 

thesis, altogether six different modified siRNA swarms are compared. In short, the 

goal of the studies is to elucidate whether chemically modifying the siRNA swarms 

against HSV-1 is beneficial for the therapeutic or prophylactic antiviral activity, or 

their duration, and whether the modifications significantly change the host response 

profile to siRNA swarms in relevant target tissues of HSV-1. The experiment flow is 

presented Figure 3. 

Figure 3 - Flow of the experiments  
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2 Results 
 

2.1 Proof-of-concept studies  
 

The 2′-fluoro-modified siRNA swarms, synthetized by our collaborator at the 

University of Helsinki, represented modifications of adenosine (A), cytidine (C) or 

uridine (U) in the antisense strand of the siRNA sequence. The strand was either 

partially (10%) or fully (100%) modified regarding the nucleotide studied. All the 

antiviral siRNA swarms used targeted the UL29 an essential gene of HSV-1. For a 

list of the siRNAs used, please see materials and methods (4.1 siRNA swarms and 

control RNAs used). The cell lines used throughout the studies are HCE and 

U373MG. For clarification of cell lines used, please see materials and methods (4.2 

Cell lines used).  

 

2.1.1 Cellular viability after transfection with modified siRNA swarms 
 

First, the cytotoxicity of the modified siRNA swarms was assessed in both cell lines. 

The positive control for cytotoxicity, 88 bp dsRNA, caused a significant drop in 

cellular viability (p≤0.001) of 80% and 60% in U373MG and HCE cells, respectively 

(Figure 4A & Figure 4B). In both cell lines, all the modified siRNA swarms were 

tolerated at the same approximate level compared to the water transfected cells. 

Transfection with water (mock treatment), representing lipofectamine RNAiMAX 

without any RNA resulted in slight decrease of cellular viability (appr. 15%–25%) 

compared to untreated cells. In comparison to the nonmodified siRNA swarms, the 

different types of modified swarms were equally tolerated in U373MG cells. 

However, in the HCE cells the fully and partially cytidine modified (100% F-C and 

10% F-C, respectively) as well as the fully uridine modified (100% F-U) siRNA 

swarms led to significant decrease in cellular viability (for 100% F-U and 10% F-C 

p≤0.05, and for 100% F-C p≤0.01).  

As a follow-up study, a wider dose range (12.5 nM – 150 nM) was studied with 10% 

and 100% uridine modifications (Figure 4C & Figure 4D). Even the tripling of the 

concentration had no effect on the tolerability, and the modified siRNA swarms did 

not differentiate from the nonmodified siRNA swarm profile in this sense.  
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Figure 4 – Effects of the modified siRNA swarms on cellular viability. Human 
glioma (U373MG) (A, C) and human corneal epithelial (HCE) (B, D) cells were 
transfected at the RNA concentration of 100, 50, 25, or 12.5 nM of the indicated 
siRNA swarms or 12.5 nM of the cytotoxic control (88 bp dsRNA), left untreated or 
transfected with transfection reagent only (mock; water transfection). At 48 hours 
post transfection (hpt) the cellular viability was quantified with a luminescent assay. 
(A, B) The relative viability of the treated cells, at the RNA concentration of 50 nM is 
presented as the percentage of viability of the untreated cells. The bars represent 
the mean and the whiskers the standard deviation of the mean (N≥8 per treatment, 
data from two individual experiments). The p-values are calculated against the 
relative cytotoxicity of the nonmodified siRNA swarm (*, p≤0.05; **, p≤0.01; ***, 
p≤0.001). (C, D) The relative cytotoxicity of the indicated siRNA swarms is shown 
relative to the mock treated control. The whiskers represent the standard deviation 
of the mean (N≥3 per treatment). (E) Experiment flow. The cells were transfected, 
and 48 hours later measured for viability.  
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2.1.2 Prophylactic antiviral assay with modified siRNA swarms 
 

The antiviral assays were conducted utilizing a previously used model of prophylactic 

treatment, where the siRNA swarms are transfected into the cells four hours before 

infection (Paavilainen et al., 2016; Paavilainen et al., 2015; Romanovskaya et al., 

2012).  The virus amount was quantified by plaque titration of the virus (titration) 

from culture supernatant and by measuring viral mRNA levels by quantitative real-

time PCR (RT-qPCR) (Figure 5). The samples for RT-qPCR were derived from 

cellular lysates, from which RNA was extracted and converted into complementary 

DNA (cDNA) by reverse transcriptase (RT) reaction. The viral titration result derived 

from the culture supernatant reflects the virus amount shed from the infected cells 

as a result of viral replication. The amount of viral shedding is presented as plaque 

forming units (pfu) per milliliter. Please see materials and methods (4.7 Plaque 

titration of the virus) for clarification of viral plaque titration. The RT-qPCR measured 

the mRNA expression of a viral replication protein of HSV-1 [viral protein 16 (VP16) 

also known as α Trans-Inducing Factor (α-TIF)], which was normalized to expression 

of a housekeeping gene (Glyceraldehyde 3-phosphate dehydrogenase, abbr. 

GAPDH). As for U373MG, all types of modified siRNA swarms were analyzed, but 

for HCE cells, only adenosine modified siRNA swarms were used. The adenosine 

modified siRNA swarms were chosen for use with HCE cells, since upon 

confirmation of antiviral efficacy, minimal interference of toxic cellular responses was 

preferred (Figure 4B).  

The titration results (Figure 5A & Figure 5B) confirmed that the HSV-specific siRNA 

swarms, both modified and nonmodified decreased the amount of viral shedding by 

approximately four orders of magnitude in U373MG cells (>99.9% inhibition) and 

well over one order of magnitude in HCE cells (>90% inhibition) compared to the 

nonspecific siRNA swarm control at the siRNA swarm concentration of 50 nM. The 

difference of titer compared to the nonspecific siRNA swarm treatment was 

statistically significant (p≤0.001) for each of the antiviral treatment groups in both cell 

lines. Additionally, in U373MG cells, the fully cytidine modified siRNA swarm, 100% 

F-C, revealed significantly increased antiviral efficacy compared to the HSV-specific 

nonmodified siRNA swarm. On the contrary, the other fully pyrimidine modified 

swarm, 100% F-U, was significantly less antiviral than the nonmodified HSV-specific 
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siRNA swarm. These significant differences between the nonmodified and the 

modified antiviral siRNA swarms were not demonstrated in the mRNA analysis of 

VP16 (Figure 5C & Figure 5D). However, the VP16 mRNA level comparisons 

complemented the titration results regarding the significant decrease in viral mRNA 

levels compared to the nonspecific treatment in both cell lines and all types of HSV-

specific siRNA swarms studied (p≤0.05 in HCE, p≤0.001 in U373MG).  

 
Figure 5 – Prophylactic antiviral efficacy of modified siRNA swarms. Human 
glioma (U373MG) and human corneal epithelial (HCE) cells were transfected with 
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50nM of modified anti-HSV (anti-UL29) siRNA swarms, nonmodified anti-HSV (anti-
UL29) swarm, nonspecific control swarm or 10nM of 88 bp dsRNA (positive toxicity 
control). The modified siRNA swarms had all (100%) or a part (10%) of the A, C or 
U in their antisense strand 2’-fluoro-modified. Here, in U373MG experiments the 
nonspecific control swarm targeted a bacterial lac-operon sequence (PET), and in 
HCE experiments a GFP-sequence, unless otherwise stated. Additional non-RNA 
controls used were the untreated samples and water treated samples (mock), which 
represents the effect of transfection reagent alone. Four hours post transfection (hpt) 
the cells were infected with 1000 pfu per well of HSV1-GFP. (A, B) Viral shedding, 
which represents the virus replicated and exited from the cells to the supernatant, 
was quantified at 48 hpt from U373MG (A) and from HCE (B) culture supernatant. 
The unit, plaque forming units (pfu), describes the quantity of viral plaques resulting 
from infection with one milliliter of the collected sample. (C, D) VP16 mRNA 
expression was quantified at 48 hpt from U373MG (C) and from HCE (D) cells via 
RT-qPCR and normalized to housekeeping gene (GAPDH) expression. In panels A, 
B and C, the data is from two different experiments (N per repeat ≥ 4), except for 
PET treated cells in panel B, which represent one subexperiment only. In panel D, 
the data is from one experiment (N per treatment ≥ 4). The columns represent the 
mean+SD of the indicated treatment groups. The p-values are presented against the 
nonmodified siRNA swarm treated samples (*, p≤0.05; *** p≤0.001) and against the 
nonspecific siRNA swarm treated samples (#, p≤0.05; ##, p≤0.01; ### p≤0.001). If 
not shown, the p-value was nonsignificant. (E) Experiment flow. The cells were 
transfected four hours before infection (prophylactic model), and 48 hours later the 
virus production was quantified using two methods: titration and RT-qPCR 
measuring VP16 mRNA expression. 

 

Interestingly, the nonspecific swarm targeting green fluorescent protein (GFP) had 

no significant difference in viral titer compared to that of the nonspecific swarm 

targeting a bacterial lac-operon sequence (PET), even though the virus used (HSV1-

GFP) expresses GFP (please see 4.3 Viruses used). The average titer of the cells 

treated with the GFP specific siRNA swarm was, however, lower than that of the 

cells treated with the PET siRNA swarm, but the difference was nonsignificant. 

 

2.1.3 Host responses to modified siRNA swarms  
 
To support viability data and confirm sequence specificity of the modified siRNA 

swarms, a panel of innate host responses in treated and control-treated cells were 

measured at the timepoint of 48 hpt. Transcripts (mRNA) of interferon beta (IFN-β) 

and interferon stimulated gene 54 (ISG54) as well as human myxovirus resistance 

proteins 1 and 2 (MxA and MxB, respectively) were quantified by RT-qPCR (Figure 
6). All the data was normalized to GAPDH mRNA expression.  
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In U373MG cells, host responses to treatment with UL29 targeting modified siRNA 

swarms, 100% F-C, F-A, and F-U along with 10% F-C, F-A, and F-U were studied. 

To control the experiment, responses to a nonmodified UL29 siRNA swarm were 

studied, as well as to a nonspecific siRNA swarm (PET), to a cytotoxic control (88 

bp dsRNA) and to transfection reagent alone (water transfection; mock). The 

baseline expression, shown to be positive for each of the innate immunity markers 

was quantified from cells left untreated. The untreated cells had significantly lower 

expression of MxA, MxB and ISG54 compared to the nonmodified siRNA swarm 

(p≤0.001). IFN-β, then again, was expressed at the same approximate level in 

untreated cells as with the different siRNA swarm treatments and hence had no 

significant difference from baseline to treated cells. The host innate responses to 

nonmodified siRNA swarm did not differ from those caused by the transfection 

reagent alone in any of the studied responses (Figure 6; A/C/E/G). The only 

modified siRNA swarm, that differed significantly from the nonmodified siRNA swarm 

in any of the studied responses, was 100% F-C, which had significantly elevated 

IFN-β (p≤0.01) and ISG54 (p≤0.05) levels compared to the nonmodified siRNA 

swarm. The MxA and MxB levels were very similar in each of the treatments. Even 

treatment with the positive cytotoxic control, 88 bp dsRNA led only to slight 

nonsignificant elevation of MxA and MxB levels, whereas for ISG54 and IFN-β, 

treatment with 88 bp dsRNA induced significantly higher response levels compared 

to the nonmodified siRNA control (p≤0.001).  

In HCE cells, responses to treatment with modified UL29 siRNA swarms (100% F-A 

and 10% F-A) and the nonmodified UL29 siRNA swarm were studied, as well as to 

a nonspecific siRNA swarm (GFP), to a cytotoxic control (88 bp dsRNA) and to 

transfection reagent alone (water transfection; mock) (Figure 6; B/D/F/H). The 

baseline expression of the cells was positive with all the studied markers, but 

significantly lower (p≤0.05) than those of the nonmodified siRNA swarms in all 

studied mRNA expression levels. In contrast, the cytotoxic 88 bp dsRNA induced 

significantly higher responses of MxA, IFN-β and ISG54 (p≤0.05) than those of the 

nonmodified siRNA swarm. Overall, in HCE cells the adenosine modified siRNA 

swarms did not differ from the nonmodified siRNA swarm in any of the markers 

studied, and neither did the response to transfection reagent alone.  



 

 34 

 
Figure 6 - Host responses to modified siRNA swarms. U373MG cells were 
transfected with 50nM of each of the modified siRNA swarms, containing partially or 
fully (10% or 100%, respectively) modified nucleotides (A, C or U). Nonmodified and 
nonspecific control siRNA swarms (50 nM), as well as cytotoxic control (88 bp 
dsRNA) (10 nM) in addition to water transfected (mock) and untreated controls were 
used. HCE cells were treated similarly, but only adenosine modified siRNA swarms 

###

#  #

#  #

*
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(100% F-A and 10% F-A) were studied. The nonspecific swarm used targeted GFP 
in studies with HCE cells and bacterial lac operon in U373MG studies. The 
treatments and their abbreviations are listed in the lower panel legends. (A, B) 
Interferon beta (IFN-β), (C, D) interferon stimulated gene 54 (ISG54) (E, F) human 
myxovirus resistance protein 1 (MxA) and (G, H) human myxovirus resistance 
protein 2 (MxB) mRNA expressions were quantified at 48 hpt with RT-qPCR and 
normalized against GAPDH mRNA expression. The columns represent the 
mean+SD of two individual experiments (U373MG) (N≥8 per treatment group) or one 
experiment (HCE) (N≥4 per treatment group). The significant increases (*, p≤0.05; 
**, p≤0.01; ***, p≤0.001), and the significant decreases (#, p≤0.05; ##, p≤0.01; ### 
p≤0.001) compared to the nonmodified siRNA swarm are shown. If no p-value is 
presented, the difference was not significant. (E) Experiment flow. The cells were 
transfected and 48 hours later quantified for mRNA of relevant innate immunity 
markers via RT-qPCR.  

 
2.2 Dosing studies 
 

According to the proof-of-concept studies, relevant modified siRNA swarms were 

chosen for the dosing studies. For the dose-response study (chapter 2.2.1), 

adenosine modified siRNA swarms were chosen, since they demonstrated minimal 

immune responses and cytotoxicity in both cell types in contrast to other modification 

types (Figure 4, Figure 5). Thus, if elevated antiviral potency or efficacy in 

comparison to the nonmodified siRNA swarm were to be detected, it would be due 

to presence of modifications in the siRNA swarms with no interference from cellular 

antiviral responses induced by 2’-fluoro-nucleotides or 2’-fluoro-DsiRNA. In the other 

dosing studies (chapters 2.2.2, 2.2.3, 2.2.4, and 2.2.5) the cytidine modified siRNA 

swarms were used, since in the UL29 siRNA target, the most abundant nucleotide 

is cytidine. The maximum number of modified nucleotides was preferred regardless 

of slight immune response elevation (Figure 5), since the experiments are related 

to the hypothesized prolonged stability and efficacy due to incorporation of modified 

nucleotides and these qualities are most likely present when the highest number of 

modifications are studied.     
 

2.2.1 Dose-response relationship between modified siRNA swarms and 
inhibition of viral shedding 
 

The first of the dosing studies conducted was a dose-response study, examining the 

relationship between the concentration of siRNA swarm and the resulting viral 

shedding levels of HSV-1 from the cells. For the dose response study, a prophylactic 
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and a therapeutic model were used. In contrast to the prophylactic model, in the 

therapeutic model the cells were infected before treatment to better represent a 

clinical situation. In both models, the infection and treatment were four hours apart.  

The dose range used varied from 0.41 nM to 100 nM (three-fold dilution series). The 

siRNA swarms used for the study were modified 10% F-A and 100% F-A, in addition 

to a nonmodified siRNA swarm and nonspecific siRNA swarm.  

The antiviral efficacy was plotted as percent inhibition of viral shedding (%), which is 

calculated by comparing viral shedding from treated cells to that of the untreated 

cells. Based on the created data, sigmoidal dose-response curves were fitted. From 

the curves, maximum efficacy (Emax), its standard error (SE) and the concentration 

resulting in half of maximal efficacy (EC50) were determined for all HSV-specific 

treatments. The results are presented in Table 5 (U373MG) and Table 6 (HCE).  

 

Table 5 - Resulted dose-response parameters from U373MG cells 

 Prophylactic model Therapeutic model 

 10% F-A 100% F-A nonmodified 10% F-A 100% F-A nonmodified 

Emax 100%  100%  100% 100% 100% 100% 

SE 0.00013 0.00003 0.00019 0.00005 0.00002 0.00010 

EC50 Not determined 

 
Table 6 - Resulted dose-response parameters from HCE cells 

 Prophylactic model Therapeutic model 

 10% F-A 100% F-A nonmodified 10% F-A 100% F-A nonmodified 

Emax 100% 99% 98% 99% 95% 91% 

SE 0.04 0.29 0.10 0.05 0.38 0.72 

EC50 2 nM 4 nM 6 nM 2 nM 2 nM 3 nM 

 

 

In U373MG cells, the lowest tested dilution resulted still in over 80% inhibition of 

virus production with all the HSV-specific siRNA swarms in both models. In the 

therapeutic model, the lowest concentrations were not as antivirally efficient as their 
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counterparts in the prophylactic setting. Nevertheless, in both models the treatment 

with HSV-specific siRNA swarm, whether fully, partly or not modified, resulted in a 

maximum efficacy of 100% (Table 5). However, the dose-response curves shapes 

suggest higher potency of the modified siRNA swarms compared to those of 

nonmodified siRNA swarms (not shown) in both models. Especially at the lowest 

concentrations the treatment with modified siRNA swarms resulted in higher antiviral 

efficacy than treatment with nonmodified siRNA swarms. In general, the treatment 

with the nonspecific siRNA swarm differed significantly (p≤0.05) from each of the 

specific treatments at each concentration used (data not shown).  

In HCE cells, the differences between the models and treatments were more evident. 

The prophylactic model resulted in slightly higher (1-7%) maximum efficacy values 

than those of the therapeutic model with each of the treatments (Table 6). On the 

contrary, the EC50 values were 2-3 nM lower in the therapeutic model compared to 

the prophylactic model with fully modified (100% F-A) and the nonmodified siRNA 

swarms. For the partly modified siRNA swarm (10% F-A), the EC50-value was equal 

between the models (2 nM). Overall, the modified siRNA swarms demonstrated 

higher maximum antiviral efficacy and higher antiviral potency than the nonmodified 

siRNA swarms in both of the models (Table 6). In the prophylactic model, all the 

specific treatments resulted in significantly lower viral titers compared to the 

nonspecific control (and thus higher antiviral efficacy) at concentrations higher than 

1nM (data not shown). In the therapeutic model, the significances did not have such 

a clear pattern. However, the data indicates that the specific siRNA swarm treatment 

begins to differ from the nonspecific siRNA swarm treatment at a concentration of 

1.23 nM in both models in HCE cells (data not shown). 

 
2.2.2 Cellular stability of antivirally active siRNA swarms 
 

The study was conducted with the prophylactic setting with alternating infection 

timepoints (Figure 7). The siRNA swarms used were 10% F-A, 10% F-C, 100% F-

C, nonmodified and nonspecific (GFP). 10% F-A was included in addition to the 

cytidine modified to provide information on how a minimal number of modifications 

would affect the stability of active siRNA. Additionally, water transfection (mock), 

untreated cells and a short, single site siRNA (UL29.2) (Palliser et al., 2006) targeting 
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a part of the same sequence as the antiviral siRNA swarms, were used as a control. 

At 48 hours post infection, the supernatants were collected and quantified for viral 

shedding by plaque assay. For the experiment design, please see Figure 7C.  
 

 
Figure 7 – Cellular stability of antivirally efficient transfected siRNA. To assess 
the duration of the antiviral response resulting from the transfected siRNA swarms, 
U373MG (A) and HCE (B) cells were transfected with 50nM of the indicated modified 
siRNA swarms (10% F-A, 10% F-C and 100% F-C), a nonmodified control siRNA 
swarm or a single site siRNA (UL29.2) all targeting the same UL29 gene of HSV-1. 
Nonspecific siRNA swarm (GFP) was used as a control at 50 nM in addition to 
untreated cells and water transfected (mock) cells (for transfection reagent effect). 
The cells were infected with 1000 pfu of HSV1-GFP at 4, 24, 48, 72, or 96 hours post 
transfection. At 48 hours post infection the supernatants of the cell cultures were 
collected and titrated for quantitation of viral shedding. The columns and whiskers 
represent the mean+SD from ≥4 biological replicates. The p-values were calculated 
against the nonspecific control (#, p≤0.05), nonmodified control (*, p≤0.05) and the 
single-site siRNA control (¤, p≤0.05) (C) Experiment flow. The cells were transfected 
followed by infection after 4, 24, 48, 72, or 96 hours. The viral shedding was 
quantified by titration 48 hours post infection.  
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In U373MG cells, all treatments targeting UL29, modified and nonmodified siRNA 

swarms, as well as single site siRNA were active at all timepoints studied with 

statistically significant antiviral efficacy (p≤0.05) in comparison to the nonspecific 

treatment (Figure 7A). None of the modified siRNA swarms differed in antiviral 

response compared to the nonmodified siRNA swarms at any of the timepoints 

studied. However, whereas the nonmodified siRNA swarm did not differ significantly 

from the single site siRNA, both 10% F-A and 100% F-C were significantly more 

antiviral than the single site siRNA at the latest timepoint. When U373MG cells were 

infected 24 hours post transfection, all the specific treatments except 10% F-A 

resulted in perfect inhibition of infection with no detectable viral shedding in the 

supernatant.  

Complementing the results from the U373MG cells, the modified antiviral siRNA 

swarms did not have statistically different antiviral efficacy in HCE cells at the later 

timepoints compared to the nonmodified antiviral siRNA swarm (Figure 7B). 

However, they demonstrated increased antiviral efficacy (p≤0.05) compared to the 

nonmodified at the earlier timepoints (infection at 4-48 hpt). In contrast to the 

U373MG cells, in HCE cells the single site UL29.2 was significantly less antiviral 

(p≤0.05) than the modified siRNA swarms at the earlier timepoints (infection 4, 24 or 

48 hpt) and less antiviral than the nonmodified antiviral siRNA swarm at the later 

timepoints (infection 72 or 96 hpt). Overall, the HSV-targeted siRNA swarms resulted 

to multifold lower viral shedding compared to the nonspecific siRNA swarm and 

99.9% inhibition of viral shedding compared to the untreated cells even at the latest 

timepoints. 

 
2.2.3 Sustained inhibition of infection by siRNA swarms  
 

In order to study how long the infection remains inhibited in cells after transfection 

with 50nM of antiviral siRNA swarms, the cells were infected and then transfected 

(4 hpi) according to the therapeutic model. Supernatants were collected at 48, 96 

and 120 hpt (2, 4, and 5 days post infection, respectively) for quantitation of 

reproducing virus and titrated for quantification of viral shedding (Figure 8). The 

siRNA swarms used were HSV-specific modified 10% F-C and 100% F-C, as well 

as their nonmodified counterpart, in addition to nonspecific (targeted to bacterial lac-
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operon), untreated and mock-transfected controls. For the experiment design, see 

Figure 8C.  

 

 
Figure 8 – Sustained inhibition of infection. To examine how long the infection 
stays inhibited in the therapeutic treatment model, U373MG or HCE cells were 
infected with 1000 pfu of HSV1-GFP and treated 4 hours post infection with 50nM of 
the indicated siRNA swarms. The used treatments represented partially modified 
(10% F-C), fully modified (100% F-C) and nonmodified siRNA swarms. The 
additional controls used were a nonspecific control siRNA swarm (PET), water 
transfected (mock) and untreated cells. The viral shedding was quantified from the 
U373MG (A) and HCE (B) culture supernatants at 48, 96, and 120 hours post 
transfection (hpt) (2, 4, and 5 days post infection, respectively). The columns 
represent the mean+SD of ≥4 samples. The significant changes in viral shedding 
within each treatment group were calculated in comparison to the earliest timepoint, 
48 hpt. The significances found are presented with * (p≤0.05). (C) Experiment flow. 
The cells were infected followed by transfection after 4 hours (therapeutic model). 
The viral shedding was quantified by titration 48, 96, and 120 hpt. 

 

Overall, in both of the cell lines the inhibition of viral shedding was high when the 

cells were treated with HSV-specific siRNA swarms (Figure 8). In U373MG cells the 

viral shedding was three orders of magnitude less (99.9% inhibition efficacy) at 48 
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hpt and five orders of magnitude less (99.999% inhibition efficacy) at 96 and 120 hpt 

in cells treated with HSV-specific siRNA swarms compared to untreated cells. 

Complementing these results, the decrease of viral shedding in HCE cells was two 

orders of magnitude at 48 hpt and three orders of magnitude at 72 and 96 hpt. Most 

of the HSV-specific treatments did not show significant changes in viral production 

within the experiment timeline. The only exception was treatment with 10% F-C in 

HCE cells, which led to significantly higher (p≤0.05) viral shedding at 120 hpt 

compared to that of 48 hpt. The cells treated with the nonspecific siRNA swarms or 

transfection reagent alone had significantly higher (p≤0.05) levels of viral shedding 

at 96 and 120 hpt, than at 48 hpt.  

 
2.2.4 Repeated dosing of antiviral siRNA swarms 
 

To examine the benefits of repeated dosing of siRNA swarms, the cells were 

transfected again at 48 hours after the initial transfection with the same siRNA swarm 

or control (Figure 9). The first transfection was done 4 hours post infection with 1000 

pfu (therapeutic model). The modified siRNA swarms used were 10% F-C and 100% 

F-C. The nonmodified and nonspecific siRNA swarms, mock-transfected and 

untreated controls were included as well. For experimental setting, see Figure 9C. 

In U373MG cells, the viral shedding from the double treated 100% F-C cells was 

significantly lower (p≤0.05) than that of the cells treated once. The 10% F-C and 

nonmodified siRNA swarm treated cells also showed similar trend in the titers, but it 

did not result in statistical significance. The infected cells treated with the nonspecific 

siRNA swarm resulted in equal titers, whether transfected once or twice. 

Complementing the results from U373MG cells, in HCE cells, the 10% F-C and 100% 

F-C treated cells had a five-fold lower titer when dosed twice compared to those 

which were dosed only once. The HCE cells treated with nonmodified HSV-targeted 

or nonspecific siRNA swarm, however, demonstrate an increase in titer in the twice 

transfected cells compared to those transfected only once.  
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Figure 9 - Repeated dosing of siRNA swarm. To study the possibility of additional 
dosing of the siRNA swarms, the cells were first infected (1000 pfu) and treated 4 
hours afterwards (therapeutic model), followed by another transfection with the same 
siRNA swarm or control at 48 hours post the initial transfection (green columns, N≥4 
per treatment). To control the experiment, cells were also left without the second 
transfection (grey columns, N≥4 per treatment). At 96 hours, (i.e. 48 hours after the 
timepoint of the second transfection) the shedding of virus was quantitated by plaque 
assay (titration) from U373MG (A) and HCE cells (B). The used treatments represent 
partially modified (10% F-C), fully modified (100% F-C) and nonmodified siRNA 
swarms. The controls used were a nonspecific control siRNA swarm targeting 
bacterial lac-operon, water transfection (mock) and cells left untreated. The p-values 
were examined between the two settings within each treatment group. All found 
significances are presented (*, p≤0.05) The columns represent the mean+SD. (C) 
The cells were first infected followed by transfection after four hours. Then, at 48 hpt, 
the cells were either transfected again with the same siRNA, or not. 48 hours after 
the second transfection, the supernatants were collected, and viral shedding was 
quantified. 

 

2.2.5 Antiviral siRNA swarms and viral re-challenge 
 

A therapeutic model (transfection four hours post infection) was utilized to study how 

the siRNA swarms overcome a viral re-challenge. The cells were infected again 48 

hours after initial infection and measured for viral shedding two days after (Figure 
10). The viral re-challenge was done with a different HSV-1(17+) based fluorescent 
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virus, HSV1-mCherry, whereas the first infection was done with HSV1-GFP. The 

siRNA swarms used were the nonspecific, as well as the HSV-specific nonmodified 

and modified (100% F-C, 10% F-C). As controls, water transfected and untreated 

cells were used. For experimental design, see Figure 10D. 

 
Figure 10 - siRNA swarms and repeated viral challenge. To explore the possibility 
of the treated cells overcoming a repeat viral challenge, the cells were reinfected (re-
challenged, red columns) or not (normal, green columns) at 48 hours post 
transfection (hpt). Initially, the cells were infected with 1000 pfu of HSV1-GFP, and 
after 4 hours treated with the indicated siRNA swarms and controls. The experiment 
initially represented the therapeutic model. The used treatments represented 
partially modified (10% F-C), fully modified (100% F-C) and nonmodified siRNA 
swarms. The controls used were a nonspecific control siRNA swarm (targeting a 
bacterial lac-operon sequence), water transfection (mock) and cells left untreated. 
At 48 hpt, the viral re-challenge was done by infecting the cells with HSV1-mCherry 
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(1000 pfu). The viral shedding from U373MG (A) and HCE cells (B) was quantified 
at 96 hpt (48 hours post viral re-challenge). The statistical differences were 
examined between the two different settings within each treatment group. All found 
significances are presented (*, p≤0.05) The columns represent the mean+SD of ≥4 
samples. (C) Fluorescent imaging of the plaque assay on Vero cells was conducted 
to prove that the reinfection was successful. As an example, a well with GFP-positive 
virus plaques (e.g. plaque 1) is shown (left image). In transmitted light, additional 
plaques were found (middle image), which expressed mCherry (right image, plaque 
2). (D) Experiment flow. Cells were infected with HSV1-GFP and transfected 4 hours 
afterwards, representing the therapeutic model. 48h after the initial infection, the 
cells were re-challenged with HSV1-mCherry, or left as they were. The supernatants 
were then cultured two days after the re-challenge timepoint.  

 

The anti-HSV siRNA swarm treatments were more antiviral in comparison to 

nonspecific treatments in both cell lines. In general, the re-challenged cells did not 

differ statistically from the cells infected only once (Figure 10A,B). Even the treated 

cells, which had yet uninfected cells at the time of re-challenge, did not demonstrate 

an increase in viral shedding due to viral re-challenge, but had a similar endpoint to 

those infected only once. This phenomenon was seen in both cell lines. The 10% F-

C treated U373MG cells were the only ones that had significantly higher viral 

shedding when re-challenged (Figure 10B). Nevertheless, treatment with the 

nonmodified anti-HSV siRNA swarm led to a higher increase of titer in both cell lines 

when re-challenged, compared to the change of the one in cells treated with modified 

siRNA swarms.  

Additionally, fluorescent imaging of the viral titration plaques proved that also HSV1-

mCherry infection did happen (Figure 10C). This was demonstrated in each of the 

treatment groups (not shown). 
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3 Discussion 
 

In this Master’s thesis, the major aim was to characterize novel types of antiviral 

siRNA swarms with 2’-fluoro-modified nucleotides. The initial characterization was 

done by studying cytotoxicity (Figure 4) and host responses (Figure 6) induced by 

the modified siRNA swarms, as well as testing the modified siRNA swarms for 

antiviral activity (Figure 5) in the previously published prophylactic model.  

Once the initial characterization of the modified siRNA swarms was done, the 

therapeutic characteristics of the siRNA swarms were studied further. In addition to 

the prophylactic model, a therapeutic model, where siRNA swarms are administered 

after the infection, was included. First, the dose-response relationship between the 

siRNA swarms and inhibition of viral shedding in these two models was studied 

(Table 5 and Table 6). As it was clear that therapeutic treatment was successful with 

siRNA swarms, the infection progress in the therapeutic model was followed for 

multiple days to find out if the antiviral activity would be sustained for longer than the 

previously studied interval (Figure 8). Subsequently, the ability of the siRNA swarms 

to overcome a viral re-challenge was studied (Figure 10), as well as the regimen of 

repeated dosing of the siRNA swarm (Figure 9). Additionally, the prolonged duration 

of activity, suggested to result from 2’-fluoro-modifications (Janas et al., 2019; 

Manoharan et al., 2011), was assessed (Figure 7).  

The modifications chosen for the studies were fluoro-modifications in the 2’-position 

of the RNA ribose backbone. The relatively widely studied 2’-fluoro-modifications are 

proposed to have benefits such as longer stability in vitro and enhanced 

bioavailability in vivo, as well as lead to reduction of innate stimulation in comparison 

to regular siRNA (Fucini et al., 2012; Manoharan et al., 2011). In short, they should 

have improved qualities compared to nonmodified siRNAs. Importantly, the 2’-fluoro-

monomers do not appear to incorporate into cellular DNA or RNA, and are not 

genotoxic (Janas et al., 2016) or carcinogenic (Janas et al., 2018), which supports 

the potential of future clinical use of the modified siRNA swarms. Additionally, a 

deoxy-2’-fluoro-uridine derivative (Sofosbuvir), which has a deoxy-2’-fluoro-uridine 

metabolite, is already in clinical antiviral use (Kirby et al., 2015). Hence, the 

incorporation of 2’-fluoro-modifications can be assumed not to lead to major 

additional difficulties along the pipeline.  
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The modified siRNA swarms used for the studies represented sequences with all or 

a part of adenosine (A), cytidine (C) or uridine (U) nucleotides modified in the 

antisense strand, which is suggested to be the superior strand for antiviral siRNAs 

(Schubert et al., 2007). Guanosine (G) modified and multi-modified siRNA swarms 

were omitted due to problems in swarm synthesis and a decrease in yield, 

respectively (Levanova et al., manuscript). The modification-of-choice was a 

substitution of the 2´-hydroxyl group to a fluoro-group on the ribose, resulting in only 

a minimal difference in the molecular weight (F: 18.998403 g/mol, OH: 17.008 

g/mol), which can be assumed not to significantly affect concentration calculations 

of 25 bp long dsRNA molecules. These dsRNA molecules have an approximate 

molecular weight is 680 g/mol per base pair. The calculations regarding 100% F-C 

modified siRNA swarm would be affected the most, since the UL29 target sequence 

has a total of 185 nucleotides (nts) of C in the 653 nt target. In contrast, the sequence 

has 113 A nts and 128 U nts. If the 3’- and 5’- overhangs of the individual siRNAs in 

the swarm are considered, the resulting maximal difference in the concentration 

would be only approximately 1 pmol/μl, which can be considered insignificant for the 

purposes of this Master’s thesis. 
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3.1 The 2’-fluoro-modifications are well tolerated in vitro 
 

The cell lines chosen for the studies were U373MG and HCE, which represent the 

natural target tissues of HSV-1, in order to provide translational results from the in 

vitro studies. U373MG has been previously used for siRNA swarm studies 

(Paavilainen et al., 2016; Paavilainen et al., 2015; Romanovskaya et al., 2012), 

whereas HCE has not. HCE is, however, assumed to provide highly translational 

results for treatment of corneal diseases (Toropainen et al., 2001), and was thus an 

evident choice for use. After all, siRNA swarms could provide a new approach for 

treating herpes keratitis, which currently lacks a reliable treatment.  

The transfectability of U373MG had previously been shown by Romanovskaya et al. 

(2012). The transfectability of HCE was checked utilizing a fluorescent siRNA (not 

shown). Additionally, the transfectability was confirmed by the toxic effect caused by 

the cytotoxic control, 88 bp, which took place in both of the cell types (Figure 4).  

 

3.1.1 The transfection reagent is the likely reason for any siRNA swarm 
induced cytotoxicity 
 
The transfection reagent used was Lipofectamine RNAiMAX, which is optimal for 

dsRNA transfection. The reagent is shown to demonstrate relatively low cytotoxicity 

combined with relatively high transfection efficacy in comparison to other common 

transfection reagents (Wang et al., 2018). However, RNAiMAX is a probable reason 

for the majority of the detected decrease in viability, since the reagent alone leads 

to similar values of cellular viability as transfection with siRNA, whether modified or 

not (Figure 4). The fact that the toxicity levels elicited by double-stranded 

oligonucleotides is delivery method dependent, regardless of 2’-fluoro-modifications, 

is supported by literature (Janas et al., 2017). Hence, the most important control for 

the cytotoxicity studies is so called water or mock transfection, reflecting the 

cytotoxic effect of the transfection reagent alone.  

The cytotoxicity of the treatments was studied with a luminescent assay measuring 

levels of cellular adenosine triphosphate (ATP) and thus viability of the cells 

(Romanovskaya et al., 2012; Turunen et al., 2016). Overall, none of the modified 

siRNA swarms were toxic in either of the cell lines at 50nM, since their relative 

toxicity is very comparable to that of the cells treated with transfection reagent alone 
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(Figure 4A and Figure 4B). Also, as demonstrated by Figure 4C and Figure 4D, 

increasing the concentration up to 150 nM has no effect on modified or nonmodified 

siRNA swarm tolerability in either of the cell types. Thus, the CC50 (half-maximal 

cytotoxicity value) of all modified siRNA swarms must be higher than 150 nM (0.150 

μM). The concentration was not increased more since the amount of modified siRNA 

swarms for use was limited. However, the relationship of the nonmodified siRNA 

swarm concentration to cytotoxicity has been studied with concentrations up to 500 

nM, and even then, no toxic effect was detected (Paavilainen, 2017). Hence, it can 

be assumed that the level of cytotoxicity will remain similar throughout a larger 

concentration range but remains to be defined for modified siRNA swarms. However, 

as monomers, the CC50 of the different 2’-fluoro-modified nucleotides has been 

tested. Then, the CC50 varied between 43 and 250 μM depending on the medium 

and cell type, with surprisingly high variations between different nucleotides 

demonstrating slightly better tolerability of pyrimidine than purine monomers (Janas 

et al., 2019). Reaching these concentrations in in vitro experiments is unlikely, if 

even possible. Even in in vivo experiments with siRNA swarms, antiviral efficacy was 

demonstrated with 25 μM (Paavilainen et al., 2017). Moreover, 25 μM was effective 

even without transfection reagent, so the actual required antiviral dose for in vivo 

use can be estimated to be even lower, if a suitable transfection reagent were to be 

found. Nevertheless, in vitro applications requiring micromolar concentrations are 

unlikely, especially since the calculated EC50 -values for the modified siRNA swarms 

are well under 5 nM even in the less responsive cell line (Table 6). 
At the concentration used (50 nM; 0.05 μM), the modified siRNA swarms do not differ 

in tolerability from the nonmodified siRNA swarms in U373MG cells. However, in 

comparison to the nonmodified siRNA swarm, some modification types lead to 

increased cytotoxicity in HCE cells. Both F-C-modified and the fully F-U-modified 

lead to significantly lower levels of relative viability than their nonmodified 

counterpart. In this sense, HCE cells are more sensitive to the modifications in 

siRNAs, and especially those in pyrimidines (Figure 4B).  
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3.1.2 The magnitude of the type I innate response depends on the nucleotide 
modified   
 
The innate host responses, which were studied at 48 hpt by mRNA analysis, were 

represented by type I interferon expression (IFN-β), and three different interferon 

stimulatory genes (MxA, MxB, and ISG54). As for U373MG cells, all types of 

modifications were studied, but for HCE, only adenosine modified were studied. The 

reasoning to choose adenosine modified siRNA swarms for the innate immunity 

studies in HCE cells was related to the slightly elevated cytotoxicity levels of F-C and 

F-U modified siRNA swarms. The studied host mRNA expressions were normalized 

to GAPDH, a housekeeping gene commonly used for normalization of quantitative 

gene expression data. Since GAPDH values can vary between tissue types, but not 

within a tissue, it is a very reliable method to normalize in vitro data for intra-cell line 

comparisons (Barber et al., 2005). Direct comparisons between two cell types, 

should however, be assessed more carefully.  

 

Table 7 - Host responses to the treatments at 48 hpt  
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U373MG 

IFN-β P + + + + + + + + + +/++ 
ISG54 P ++ ++ ++ ++ ++ ++ ++ ++ +++ +++ 
MxA P ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ 
MxB P + + + + + + + + +/++ +/++ 

HCE 

IFN-β P ++ ++ ++ ++ ND ND +/++ ND ND +++ 
ISG54 P +/++ + + ++ ND ND ++ ND ND +++ 
MxA P ++ ++ ++ ++ ND ND ++ ND ND ++ 
MxB P ++ ++ ++ ++ ND ND ++ ND ND ++ 

P positive expression, ND not determined, +/++/+++ less than 10-fold difference / over 10-fold 
increase / over 100-fold increase in relative mRNA expression compared to the baseline of untreated 
cells 
 

In addition to causing the above-mentioned slight cytotoxicity, the transfection 

reagent (Lipofectamine RNAiMAX) induces host innate responses and antiviral 
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efficacy both higher than those of untreated cells in both cell types studied (Figure 
5, Figure 6 and Table 7). Overall, the modified siRNA swarms, and other siRNA 

swarm treatments (nonmodified and nonspecific) induce similar levels of host 

response mRNAs in both cell types than the transfection reagent alone does (Table 
7). This result complements the results of the cytotoxicity studies and supports 

previous literature on the matter that the host responses to siRNAs are highly 

dependent on the delivery method (Nguyen et al., 2009).  

Naturally, slight exceptions were found. Most noticeably, 100% F-C induces 

significantly higher IFN-β and ISG54 responses in U373MG cells than the 

nonmodified counterpart (Figure 6A and Figure 6C). Additionally, 100% F-A 

induces lower levels (nonsignificant) of IFN-β expression, than the nonmodified 

siRNA swarm in both cell types (Figure 6A and Figure 6B). Hence, the 100% F-A 

and 100% F-C differ in this fashion from the rest of the modified siRNA swarms. 

Some sequence motifs can cause elevated type I interferon response (Judge et al., 

2005; Meng and Lu, 2017), but can’t be the reason in this case, since both 100% F-

A and 100% F-C are derived from the same sequence. That, however, can be the 

cause of host response differences between different types of swarms, such as the 

slight difference in IFN-β levels between those induced by the nonspecific and UL29-

targeted nonmodified swarms (Figure 6A and Figure 6B). The suggested, slight 

reduction of immune stimulation caused by adenosine 2’-fluoro-modifications is 

supported by literature (Fucini et al., 2012; Meng and Lu, 2017). The results from 

this study support also those of (Fucini et al., 2012) and (Shin et al., 2007), who 

showed that cytidine and pyrimidine modifications, respectively, were ineffective in 

decreasing immune stimulation of the host. Furthermore, in this study the 100% F-

C and 100% F-U, representing maximum modifications of pyrimidines, actually 

highly differ from each other in the respect of host responses, which suggests that 

evaluating the effect of modified siRNA swarms as groups of purine or pyrimidine 

should be avoided, if possible.  

Nonetheless, based on these host response results, the 2’-fluoro adenosine 

modifications would seem to be the best choice for therapeutic use, if no additional 

immune activation is desired. Considering future therapeutic use of siRNA swarms 

against HSV, low or neutral immune stimulation should be preferred since 

concomitant treatment with interferons might be realistic regarding for example 
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herpes keratitis (Minkovitz and Pepose, 1995; Wilhelmus, 2015), and excess 

interferon levels can result in undesired cytotoxicity, apoptosis or other adverse 

effects. Still, in some antiviral applications against HSV, or other viruses, immune 

stimulation of type I interferons caused by siRNAs can be beneficial and support the 

sequence specific activity of a siRNA drug (Nguyen et al., 2009; Schlee et al., 2006). 

In that case, the 100% F-C siRNA swarm is the superior candidate. Altogether, 

understanding and being able to control the host responses to siRNA swarms is of 

high importance when considering therapeutic use. The importance of controlling 

and understanding the immune response in treatment of HSV is also indirectly 

demonstrated by the current pipeline, of which the majority is focused on 

immunomodulation (Table 3).  

Because ISG54 and IFN-β were able to distinguish differences between different 

types of siRNA swarms, they should be used also in the future for RNA treatment 

characterization. On the contrary, MxA and MxB profiles do not enable distinguishing 

of any differences between treatment groups. It could, however, be that the timepoint 

of 48 hpt is too late for determination of these responses. In the future, earlier 

timepoints should be studied, since in U373MG cells the peak in ISG54 and IFN-β 

responses induced by siRNA swarm, has been detected at 24 hpt (Romanovskaya 

et al., 2012). The study of IFN-α would also be of high interest, since it is one of the 

main cytokines induced by immunostimulatory RNAs (Meng and Lu, 2017).  

The similar-to-RNAiMAX innate host responses and cytotoxicity profile indicate that 

antiviral efficacy detected after treatment with the modified siRNA swarms is 

sequence specific. 100% F-C is the only modified siRNA swarm that can possess 

some antiviral efficacy derived from stimulation of innate immunity responses, 

however, the stimulation of innate responses and the cytotoxicity are not nearly as 

high as for 88 bp dsRNA, whose antiviral efficacy is merely due to high cytotoxicity 

(Figure 4) and stimulation of innate responses (Figure 6). As a conclusion, all the 

HSV-targeted antiviral swarms tested are sequence specific. Nevertheless, the 

importance of the nonspecific control is high. Additionally, the 10%-modified siRNA 

swarms are an important control, since they will help to elaborate the effect of 

modifications on antiviral activity, since they provide results presumably between the 

nonmodified and the 100%-modified siRNA swarms. 
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3.2 Antiviral properties of modified siRNA swarms  
 
3.2.1 The modified siRNA swarms are efficient as antivirals 
 
All the studied modified siRNA swarms target the same sequence within the UL29 

gene of HSV-1. The protein UL29 is coding for, ICP8, an essential protein for viral 

DNA synthesis (de Bruyn Kops and Knipe, 1988), and thus with silenced UL29 

expression, the virus is unable to replicate. Altogether, for studying the effect of 

modifications on the characteristics of siRNA swarms, UL29 is most definitely the 

target of choice, since it is currently the most extensively studied and promising 

siRNA swarm target (Paavilainen et al., 2016). Nevertheless, it would be highly 

interesting to study other viral targets as well. For example, an effect against 

establishment of latency might be possible, but requires more complex settings.  

The antiviral efficacy of the modified UL29 siRNA swarms was first assessed using 

the prophylactic model, which has been previously utilized in siRNA swarm studies 

in vitro (Paavilainen et al., 2016; Paavilainen et al., 2015; Romanovskaya et al., 

2012). The antiviral efficacy was measured by viral titration and RT-qPCR analysis 

of a viral γ-gene’s (VP16) mRNA levels (Figure 5). By both measures, the virus 

production decreased significantly when the cells were treated with UL29-specific 

siRNA swarms in comparison to treatment with a nonspecific siRNA swarm, verifying 

the sequence-specificity of the UL29 siRNA swarms used. The VP16 RT-qPCR 

results indicate that the cascade-like gene-expression of HSV-1 is discontinued due 

to silencing of UL29-mRNA, and the titration results confirm that the UL29-specific 

silencing leads to a decreased number of infectious viruses produced and shed from 

the infected cell culture. The results from the titration and RT-qPCR correlated 

extremely well, and thus in further studies, titration was utilized alone for quantifying 

the antiviral response, since it is more straightforward and does not require as many 

steps of specimen preparation as RT-qPCR. Moreover, titration quantifies replication 

competent viruses and when applicable is considered the golden standard to 

analyze viral amounts. 

Based on the results, the antiviral efficacy of the UL29-specific siRNA swarms is at 

excellent level of five orders of magnitude in U373MG cells and three orders of 

magnitude in HCE cells in comparison to the untreated cells (Figure 5). U373MG 

cells have also previously proven the most responsive cell line for antiviral siRNA 
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swarm studies, but the reported change of viral titer due to treatment with UL29-

specific swarms has been slightly lower at approximately three to four orders of 

magnitude (Paavilainen et al., 2016; Paavilainen et al., 2015; Romanovskaya et al., 

2012).  

As anticipated based on the slightly higher host response levels, the antiviral efficacy 

of 100% F-C was significantly higher than that of the nonmodified siRNA swarm 

(Figure 5A). Surprisingly, the 100% F-U was significantly less antiviral than the 

nonmodified siRNA swarm. The 100% F-A, then again, demonstrated similar 

antiviral activity to the nonmodified siRNA swarm, which combined with the minimal 

induction of innate responses, makes the 100% F-A siRNA swarm promising lead 

(Figure 6).  

Additionally, the statistically indifferent antiviral properties between the bacterial lac-

operon targeting siRNA swarm and GFP-targeting siRNA swarm (Figure 5B) 

indicate that targeting non-essential viral inserts does not interfere with viral 

production, since HSV1-GFP has a GFP-insert in its genome. This result justifies the 

use of the GFP-siRNA swarm as a nonspecific control siRNA swarm, even though it 

has a target in the test virus genome. 

 

3.2.2 The antiviral activity of siRNA swarms is dose-responsive  
 
In the dose-response studies, both the therapeutic model and the prophylactic model 

were used. The therapeutic model is known to be efficient in vitro with single site 

siRNAs (Backman, 2014; Yuan et al., 2005; Zheng et al., 2004), but was not before 

demonstrated efficient with siRNA swarms in vitro. Nevertheless, the siRNA swarms 

have already shown therapeutic antiviral efficacy in vivo (Paavilainen et al., 2017).  

Based on the results of the dose-response study, therapeutic treatment was almost 

as effective as prophylactic treatment, but as expected, led to slightly lower 

maximum efficacy values (Table 5 and Table 6). The preexisting elevated innate 

immunity levels due to siRNA transfection (Table 7 and Figure 6) provide the cells 

an advantage against the incoming virus in the prophylactic model, whereas in the 

therapeutic model, the cells are more susceptible upon infection. Interestingly, in 

HCE cells, the siRNA swarms exhibited higher potency (EC50) in the therapeutic 

model than in the prophylactic model. The elevated potency might be due to 
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enhanced transfection efficacy to pre-infected cells, or that as the transfection of viral 

transcripts is already initiated at the timepoint of transfection, the siRNAs find their 

targets faster, and the potential degradation of the active siRNA has less 

significance. In the therapeutic model the antiviral activity may be less sequence 

specific than in the prophylactic model. The reasons might lie in innate responses. 

The complex interactions between exogenous RNA and the virus in the cell were 

unfortunately not within the scope of this Master’s thesis. Data already exists the on 

interactions of virus and the innate response to siRNAs in the prophylactic model 

(Paavilainen et al., 2016; Paavilainen et al., 2015), but the cell lines did not include 

HCE and the results from the prophylactic model may not be extrapolated to 

therapeutic model as such. The hypothesis is nevertheless supported by the larger 

decrease of viral titer by treatment with the nonspecific siRNA swarm in the 

therapeutic model, than in the prophylactic model, indicating that elevated levels of 

non-sequence-specific inhibition of viral replication is present in the therapeutic 

model. The treatment is in any case sequence specific as the difference in viral 

shedding is significant between nonspecific and specific treatment. The hypothesis 

is also supported by an in vivo study of corneal infection and subsequent corneal 

administration of siRNA swarms, where also the nonspecific siRNA swarm exhibited 

significant antiviral efficacy (Paavilainen et al., 2017).  

In general, the results from the dose-response study (Table 5 and Table 6) reveal 

higher antiviral potency of siRNA swarms harboring any 2’-fluoro-modifications, 

which could translate to a lower required dose in in vivo use. The resulting EC50-

values (HCE cells; 2-4 nM), were of a different range than those found from literature. 

For example, antiviral siRNAs against Hepatitis C reached an EC50 of 0.4 nM (Moon 

et al., 2016) and those against coxsackievirus 3B approximately 0.1 nM (Schubert 

et al., 2007). And, as a different example, a double stranded 2’-fluoro-modified 

siRNA, for applications not related to antiviral research, reached  EC50-values of <0.1 

nM (Haringsma et al., 2012). Nevertheless, in this study, the EC50 -values from the 

more responsive cell line, U373MG, were not determinable due to efficacy of over 

80% even at the lowest concentration (0.41 nM) used, which suggests a comparable, 

sub-nanomolar EC50-value.  

Notably, the therapeutic and prophylactic maximum efficacies of the UL29-targeted 

siRNA swarms, whether modified or not, are higher than maximum efficacies found 
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from the literature (Schubert et al., 2007; Zheng et al., 2004). To specify, the siRNA 

swarms are not able to totally cure the infection, although it might be suggested by 

the 100% maximum efficacy in U373MG (Table 5). Still, some minimal virus 

shedding was detectable in the culture supernatants, and the actual maximum 

efficacy was rounded up from >99.99%. To current knowledge, full therapeutic 

antiviral efficacy with siRNAs in vitro can be reached with repeated doses only 

(Saulnier et al., 2006).  

The relationship between siRNA swarm concentration and inhibition of HSV 

replication is dose-responsive, and highly cell line dependent. The dose mainly used 

throughout the Master’s thesis (50nM) is relevant for both of the cell lines for such in 

vitro studies seeking maximum antiviral efficacy, since at 33.3 nM the maximum 

response is detected in both cell lines. Hence, a dose close to 33.3 nM, such as 50 

nM allows for maximum response with less RNA than the 100 nM dose traditionally 

used in siRNA swarm studies. For future siRNA swarm applications, the assessed 

dose-response relationship provides highly important knowledge, whether the siRNA 

swarms are modified or not, and whether they are used for antiviral purposes or 

other applications. However, the dose-response study in U373MG cells should be 

completed until the point of no antiviral response is reached, and the study could be 

repeated with swarms harboring other modifications than those in adenosine as well.  

 

3.2.3 Transfected siRNA swarms remain antiviral in cells for at least four 
days 
 
One of the major reasons, why 2’-fluoro-modifications of the siRNA swarms were 

considered, was to enhance the proposed stability of the siRNA in vitro and in vivo  

(Manoharan et al., 2011). Recently, pyrimidine modified siRNA swarms were proven 

more stable to RNase A compared to nonmodified nucleotides (Levanova et al., 

manuscript). However, cellular stability of modified or nonmodified siRNA swarms 

was not yet studied. Hence, the stability of active, antiviral siRNA in cells was studied 

by transfecting cells and waiting for four to 96 hours before infecting. The cells are 

always washed after transfection, suggesting that the all active siRNA is intracellular. 

For the study, a short single site UL29-targeting siRNA, UL29.2 was also included 

for comparisons (Palliser et al., 2006). In all of the timepoints studied, all of the HSV-

targeted siRNAs, both single-site and swarm, demonstrated antiviral activity of over 
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99.9% compared to the untreated cells, as well as significantly lower levels of viral 

shedding than those resulting from nonspecific treatment in almost all groups. In 

HCE cells, some of the treatments did not reach significance against the nonspecific 

siRNA swarm treatment, but that is likely to result from the low sample size, rather 

than lack of sequence specific efficacy.  

Notably, the timepoint of infection at 24 hpt appeared to be the best regarding 

antiviral efficacy, since a majority of the HSV-specific treatments led to total inhibition 

of HSV-replication (Figure 7). That, however, is not the most relevant timepoint for 

implications of acute infection, since the patient would need to recognize the 

reactivation of herpes extremely early. Nevertheless, the high prophylactic efficacy 

of an anti-HSV drug, even for use after symptoms occur, is important. In clinical 

herpes infection, the virus spreads from cell to cell, and thus multiple phases of 

infection are ongoing simultaneously. Hence, even given well after herpes infection 

symptoms arise, the antiviral siRNA swarm could efficiently protect neighboring cells 

for multiple days, and thus prevent the spread of infection. Simultaneously, the 

siRNA swarm will decrease the viral load from cells already infected and thus inhibit 

transmission of infectious virus (Table 5, Table 6, Figure 8, Figure 10). Additionally, 

for prophylactic treatment of recurrent HSV, such as is required in treatment of 

herpes keratitis, the long duration of antiviral efficacy is highly encouraging. 

Potentially, with long term use, recurrences could be prevented altogether, as 

suggested by in vitro results from 24 hpt (Figure 7). To point out, these results are 

derived from in vitro studies, and thus do not necessarily translate to in vivo nor 

clinical use.  

Interestingly, since the cells proliferated after transfection, as confirmed by 

microscopy, and still no evident difference in antiviral efficacy was detected between 

the earlier and later timepoints, the results suggest that the siRNA ends up also in 

the daughter cells. If it wouldn’t, the non-transfected cells would have produced 

detectable virus. However, challenging the interpretation of the results, the 

confluency of the cells affects their susceptibly to HSV. 

Overall, in the timepoints studied, no evident, systematic differences between the 

stability of the nonmodified and modified siRNA swarms could be detected. 

Therefore, the timepoints studied need to be continued further in order to see the 

possible prolonged stability and subsequent activity caused by incorporated 
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modifications. Normally, siRNAs lose in vitro efficacy in approximately a week  

(Bartlett and Davis, 2006), which could be the desired timespan in the repeated 

experiment. Longer experiments, however, would require a more complex setting, 

and thus require additional optimizations. Changes in current protocol, such as using 

lower siRNA concentrations or 100% confluent cell layers upon transfection, could 

also provide the needed result.  

Regardless, remaining active in cells for four days with equal or better antiviral 

activity than that of the single site siRNA, and furthermore without losing antiviral 

efficacy (Figure 7), revealed yet another favorable aspect of the siRNA swarm 

approach. Interestingly, the same single site siRNA used here remained antivirally 

active for 9 days in vivo (Palliser et al., 2006), which actually suggests similar, or 

even better indications for use of the siRNA swarms in vivo.   

 

3.2.4 One dose of siRNA swarm controls HSV-1 infection for at least five days 
 
In the study for sustained inhibition of infection (Figure 8) supernatants of cells 

treated with siRNA swarms, with and without fluoro-modifications, were quantified 

for replicative virus at 48, 96, and 120 hpt utilizing the therapeutic model.  

Surprisingly, infection was almost totally suppressed in each anti-HSV siRNA swarm 

treated group throughout the three-day period (48–120 h) with no significant increase 

in viral production. (The only exception was the 10% F-C modified at 120 hpt in HCE 

cells.) The non-specific treatment did not suppress the infection, as the viral 

shedding increased significantly in the three-day period (p≤0.05) in both cell lines. 

Since the viral shedding from the controls increased, whereas that of the anti-HSV 

siRNA swarm treated didn’t, the antiviral efficacy was relatively higher at the later 

timepoints in U373MG cells. Normally, the viral shedding is quantified at 48 hpt, but 

these results indicate that the antiviral response would be favorable to measure at 

later timepoints.  

In HCE cells, treatment with fully modified siRNA swarm (100% F-C) was able to 

suppress the infection better than the non- and partially (10% F-C) modified siRNA 

swarms. Additionally, in U373MG cells the fully and partially modified swarms clearly 

suppressed the infection better than the nonmodified swarm. Because of these 

results, the durability of action of the 2’-fluoro-modified siRNA swarms appears better 
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than that of the nonmodified siRNA swarms. Either the modified siRNA swarms 

remain active in the cells for longer and at higher concentrations (e.g. by avoiding 

nucleases), or the primary inhibition of viral replication is so much more potent, that 

the relative escape from the treatment is negligible.  

Whether the infection of anti-HSV siRNA swarm treated cells would eventually reach 

the levels of untreated cells remains to be studied. Again, the timepoints should have 

been continued further to see whether the infection would begin to spread, and if so, 

when. However, combined with the fact that HSV-1 doesn’t develop resistance 

against siRNA swarm treatment (Paavilainen et al., 2016), the ability to prevent virus 

growth for five days with one therapeutic dose is highly encouraging for therapeutic 

applications.  

 

3.2.5 Repeated dosing of siRNA swarms improves antiviral outcome 
 

The repeated dosing was studied by giving another dose of the initial treatment at 

48 hours after the initial treatment, which was given four hours after infection (for 

clarification, see Figure 9C). The timepoint was chosen because the viral shedding 

between 48 and 120 hours was known in the therapeutic setting used (Figure 8).  

Increased inhibition of viral shedding was detected in the treatment groups treated 

with HSV-specific siRNA swarms. And, even though in majority of these treatment 

groups the increased inhibition with a repeated dose was nonsignificant, the results 

are encouraging. The repeated treatment was indeed possible and demonstrated 

increased antiviral efficacy compared to treatment with a single dose (Figure 9). As 

previously mentioned, full eradication of virus in vitro has been shown only with 

repeated doses (Saulnier et al., 2006). However, here the dose was repeated only 

once, raising the question of what would happen with multiple repeats - total 

eradication of virus, elevated cytotoxicity, or perhaps both.  

 
3.2.6 siRNA swarms can resist a viral re-challenge 
 

Whether one dose of siRNA swarm would be able to overcome a viral re-challenge 

was assessed by utilizing the therapeutic setting, after which, the cells were re-

infected at 48 hpt. The second infection was done with virus with a different 
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fluorescent protein, HSV1-mCherry, which enabled confirming that the re-infection 

indeed happened.  

In general, the results support that the antiviral siRNA swarms, both modified and 

nonmodified can treat an infection and prevent a second, subsequent infection 

(Figure 10). In the cells treated with antiviral siRNA swarms, the levels of viral 

shedding did not increase to the extent they could have but remained like their own 

corresponding once-infected control. Importantly, the success of the second 

infection was confirmed by fluorescent live microscopy (Figure 10C). Hence, the 

treatment efficacy remained, indicating that the antisense siRNA strand was not 

decayed, or that there was plenty of active siRNA left after the first silencing round. 

The reasons for the extended activity might be related to siRNA swarms being Dicer-

substrate dsRNA with elevated silencing potency (Kim et al., 2005) or their other 

miRNA-like features (Lam et al., 2015).  

For future confirmation of the phenomenon, the setting should be adjusted so, that 

the reinfection would lead to more evident increase in viral shedding in the control 

groups. It can be simply reached with lower amount of virus in the first infection (e.g. 

100 pfu). Such a setting would enable more direct comparisons between the specific 

and nonspecific treatments. Yet, even though the results need more clarification, 

they highly indicate that treatment with an antiviral siRNA swarm can suppress 

subsequent viral infection after eliminating the first one.  
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3.3 Conclusions and future aspects for siRNA swarm studies  
 

The results of this Master’s thesis provide many valuable pieces of information 

regarding modifications in the siRNA swarms, and therapeutic dosing of siRNA 

swarms in vitro. In general, the studies support the use of modified swarms in further 

research, since they were well tolerated with no exceptions (Figure 4), did not 

demonstrate alarming changes in host response levels (Figure 6), and were antiviral 

in various settings (Figure 5, Figure 7, Figure 8, Figure 9, Figure 10). The 

modifications appeared to lead to superior results in antiviral activity (Table 6), 

warranting further investigation. The modified siRNA swarms may also be 

advantageous in the sense of manipulation of host innate responses, which seem to 

elevate due to cytidine modifications, and slightly decrease due to adenosine 

modifications. In the studies conducted to learn more about siRNA swarm stability 

and duration of action (Figure 7) as well as the siRNA swarms’ prolonged ability to 

suppress infection (Figure 8, Figure 10), the modified siRNA swarms were not 

clearly superior in comparison to the nonmodified siRNA swarms. However, the 

modified siRNA swarms appeared to have increased antiviral efficacy upon re-

dosing (Figure 9), whereas the nonmodified didn’t. Overall, depending on the needs 

of the subsequent study lineages of research on siRNA swarms, the modifications 

may be beneficial to incorporate into the siRNA swarm.  

Interestingly, some of the modified siRNA swarms have demonstrated superior 

stability against nucleases in comparison to the nonmodified siRNA swarm. Thus, 

even though the stability difference could not be established by cellular means in 

vitro (Figure 7), the stability studies would be reasonable and relevant to continue 

in vivo, especially since elevated in vivo stability due to incorporated 2’-fluoro-

nucleotides is suggested by previous research (Manoharan et al., 2011). 

Nevertheless, it seems that even regular siRNA swarms have higher stability than 

single site siRNAs, which suggests extensive stability for the modified siRNA 

swarms.  

If modifications can be utilized for further research, the adenosine modified siRNA 

swarms are a clear lead and the most promising candidate. The 100% adenosine 

modified siRNA swarm (100% F-A) led to slightly lower levels of host innate 

response combined with elevated antiviral potency in comparison to the nonmodified 
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siRNA swarm. The results indicate that 100% F-A indeed was superior to the 

nonmodified siRNA swarms. Yet, not all modified siRNA swarms were studied to the 

same extent. Considering that they had such differing characteristics when their 

comparison was possible (Figure 4, Figure 5, Figure 6), further studies might reveal 

additional interesting characteristics. Unfortunately, it was not possible to utilize all 

of the modified siRNA swarms in the same experiments in this Master’s thesis. 

Nevertheless, it might be more reasonable to continue studies with the adenosine 

modified siRNA swarms, than to deepen the knowledge of cytidine modified, which 

induced elevated innate responses (Figure 6), or uridine modified, that actually 

demonstrated surprisingly low antiviral efficacy (Figure 5).  

The partially (10%) modified siRNA swarms, in which the presence of the 2’-fluoro-

dNTPs was confirmed by mass-spectrometry (Levanova et al., manuscript), were 

similar in nature to the nonmodified throughout almost all the studies. However, in 

the dose-response study, partly modified siRNA swarms also led to increased 

antiviral efficacy and potency. Synthetizing the 10% modified siRNA swarms is more 

affordable than 100% modified siRNA swarms. It however remains to be studied 

further whether a small number of modified nucleotides will suffice for the same 

effects as the fully modified. Overall, an in vivo study, at best including all the fully 

and partly modified siRNA swarms would be very informative. The characteristics of 

the individual modified siRNA swarms would then be confirmed, and the highly 

important in vivo stability assessed.  

As a conclusion, the siRNA swarms offer a very valuable antiviral tool for the future. 

By covering a large genomic area, the likelihood of resistance is lower, choosing the 

target is easier and the possibility for adverse off-target effects is diluted. Moreover, 

based on previous results, siRNA swarms tolerate variability between circulating 

strains of pathogens (Jiang et al., 2019; Nygårdas et al., 2009; Paavilainen et al., 

2016), are efficient in vivo (Paavilainen et al., 2017) and do not cause adverse levels 

of innate response in human cells nor are toxic (Paavilainen et al., 2015; 

Romanovskaya et al., 2012). Now, in addition to the these previously known 

characteristics, it is shown that they are therapeutically efficient in vitro and suppress 

viral infection for at least five days (Figure 8). Moreover, one therapeutic dose is 

enough for the cells to even resist a viral re-challenge (Figure 10) and the siRNA 

swarms remain antivirally active in cells for at least four days upon prophylactic 
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dosing (Figure 7). These remarkably promising new results were reached with and 

without modifications. As previously summarized, the modified siRNA swarms 

manifested certain considerable benefits over the nonmodified siRNA swarm. Based 

on the in vitro data, the adenosine modifications especially offer an extremely 

promising lead, if studies with siRNA swarms with incorporated modifications are to 

be continued. Yet, only in vivo data will surely determine the value of 2’-fluoro-

modifications as a part of siRNA swarms and confirm if they are essential for future 

studies leading towards therapeutic applications.   
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4 Materials and methods 
  

4.1 siRNA swarms and control RNAs used 
 

The RNAs used in this thesis, as well as their target sequences, are described in 

Table 8. Shortly, all of the HSV-specific modified and the nonmodified siRNA 

swarms target a 653 nucleotide (nt) sequence of the essential UL29 beta-gene of 

HSV-1, which is the current target of choice for siRNA swarm therapy (Paavilainen 

et al., 2016). The non-HSV-specific swarms, PET and GFP, target non-viral 

sequences of pET32b vector and eGFP, respectively, and have inexistent similarities 

with the HSV-1, human and murine sequences as previously confirmed by Blast. In 

some experiments a single-site siRNA, UL29.2 (Palliser et al., 2006) was included 

as a non-swarm siRNA control. For innate immunity and toxicity studies, an 88 bp 

dsRNA, known for its high cytotoxicity, was utilized as a positive control (Jiang et al., 

2011). The modified siRNA swarms had modifications in their antisense strand in 

either all (100%) or a part (10%) of a chosen nucleotide, which was adenosine (A), 

cytidine (C) or uridine (U) (Table 8). 

 

4.1.1 siRNA swarm synthesis 
 
All the siRNA swarms used, as well as the 88 bp dsRNA, were synthesized by our 

collaborative research group (dos. Minna Poranen group, Molecular and Integrative 

Biosciences Research Programme, Faculty of Biological and Environmental 

Sciences, University of Helsinki, Finland). The enzymatical synthesis was done as 

described by Romanovskaya et al. (2012), resulting in 25 bp long double-stranded 

siRNA molecules (with 2 nucleotide overhangs in 3´ and 5´ ends) of the targeted 

sequence. The exact enzymatical synthesis of the modified siRNA swarms, with 

incorporated 2′-fluoro-modified nucleotides on the antisense strand is described in 

(Levanova et al., manuscript). The presence of the modified nucleotides in the 

partially modified swarms (10% F-N) was verified by mass spectrometry (Levanova 

et al., manuscript). 
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Table 8 - RNAs used 

RNA Type RNA target sequence 
Modification 

Reference 
nucleotide % 

10% F-A 

siRNA 
swar

m 

UL29 gene of HSV, 
653 bp sequence 

(nucleotides 59302-
59954a) 

A 10 

(Paavilainen et 
al., 2016) 

10% F-C C 10 

10% F-U U 10 

100% F-A A 100 

100% F-C C 100 

100% F-U U 100 

nonmodified None  

nonspecific 
(PET) 

pET32b vector lac-
repressor, 401 nt 

sequenceb, (nucleotides 
1630-2030) 

None This study 

nonspecific 
(GFP) eGFP, 711 nt sequence None (Paavilainen et 

al., 2016) 

UL29.2 
single
-site 

siRNA 

UL29 gene of HSV, 19 
nt sequence 

(nucleotides 59931-
59949a) 

None (Palliser et al., 
2006) 

88 bp 
dsRNA 

dsRN
A 

bacteriophage ϕ6 S 
segment, 88 bp 

sequence 
None (Jiang et al., 

2011) 
aHSV-1 strain 17+ (Genbank JN555585.1) 
b According to the numbering of the pET32b vector 

 

4.2 Cell lines used 
 

A human glioma cell line, currently reclassified as U251, but here referred as 

U373MG (ATCC, Manassas, VA, USA) to assure continuity and comparability with 

earlier research, as well as an immortalized human corneal epithelial cell line (HCE), 

kindly provided by Arto Urtti (University of Helsinki, University of Kuopio, Finland), 

were used in the experiments of this Master’s thesis. Additionally, viral plaque 

titration was done with African green monkey cells referred here as Vero cells 

(ATCC).  
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Vero cells were maintained in M199 (Biosera, Nuaille, France) medium 

supplemented with 5% heat inactivated fetal bovine serum (FBS) (Serana, Silicon 

Valley, CA, USA) and gentamycin, U373MG cells were maintained in high glucose 

Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, Carlsbad, CA, USA) 

supplemented with 10% FBS, 2mM L-Glutamine (Sigma, Saint Louis, MO, USA), 

and HCE cells were maintained in DMEM with Hepes (Gibco), supplemented with 

7% FBS. All cells were cultured with antibiotics (usually gentamycin), with exception 

of cells used for transfection. The cells were provided and used in 96-well plates 

(Corning, NY, US) by collaborative cell culturing facilities with the confluency of 30-

40% (HCE), 40-60% (U373MG) or 100% (Vero). The values were chosen based on 

manufacturers transfection protocol and own observations for optimized antiviral 

response (data not shown).  

 

4.3 Viruses used 
 

A green fluorescent protein (GFP) -expressing strain of HSV-1, HSV-

1(17+)LoxPmCMVGFP (abbreviated HSV1-GFP) (Mattila et al., 2015; Snijder et al., 

2012) and a red monomeric fluorescent protein mCherry -expressing strain of HSV-

1, HSV1(17+)Lox-CheVP26 (abbreviated HSV1-mCherry) (Sanbaumhüter et al., 

2012) were used. Both recombinant viruses were originally made available by prof. 

Beate Sodeik (MHH Hannover Medical School, Germany). The green fluorescent 

protein is expressed from a mouse cytomegalovirus (mCMV) promoter and thus 

expressed continuously in infected cells after the alpha regulatory phase of HSV. 

The mCherry protein is co-expressed as a fusion construct with Viral Protein 26 

(VP26), which is a small capsid protein encoded by UL35, a late gene expressed in 

the nucleus (Booy et al., 1994; McNabb and Courtney, 1992). 

The virus stocks used were propagated in Vero cells and stored in MNT-buffer [20nM 

MES (Sigma), 100mM Natrium Chloride, 30nM Tris] as described in detail by 

Romanovskaya et al. (2012). 
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4.3.1 Fluorescent imaging 
 

The live cell imaging was performed with the EVOS Auto FL (Thermo Fisher 

Scientific, Waltham, MA, USA) instrument using either GFP or RFP (red fluorescent 

protein) filters for HSV1-GFP and HSV1-Cherry, respectively.  

 

4.4 Transfection  
 

For transfection, the cells were plated without antibiotics at least 24 hours before 

transfection. The cells were transfected using Lipofectamine RNAiMAX (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s forward transfection protocol, with a 

slight modification of using a total volume of 100 μl. 

In short, the cells were washed once and left with 80 μl of Opti-MEM (Gibco). The 

RNA dilutions containing 1) Opti-MEM and lipofectamine (97:3) and 2) Opti-MEM 

and RNA (ratio depending on concentration of synthesized RNA stock) were 

prepared, combined 1:1 and let incubate for 20 min. The needed amount of RNA 

stock (synthesized siRNA swarms, or other RNA diluted in mQ-water) was calculated 

beforehand from the concentration provided with the following formula: (cstock, ng/μl / 

MRNA) x 1000 = cstock, pmol/μl, where MRNA = Maverage molar mass of dsRNA* bplength of RNA. For 

siRNA swarms, MRNA = 17 000 g/mol (length ≈ 25 bp, molecular weight of dsRNA bp 

≈ 680 ng/mol).  

Twenty μl of the prepared dilution was pipetted to the 80 μl of Opti-MEM already 

covering the cells, whereafter the plates were briefly shaken on a shaker. The cells 

were then incubated (+37°C, 5% CO2) for four hours before washing thrice with 

DMEM (incl. Hepes) with 7% FBS followed by incubation with 200 μl of the same 

medium. 

The cells were transfected with 0.041 to 15 pmols of RNA per well depending on the 

experiment, leading to RNA concentrations of 0.41 to 150 nM, respectively. For 

water transfections, 1% of the transfection volume was nuclease free water (Thermo 

Fisher), reflecting the approximate volume of the siRNAs (diluted in water) required 

for the dilutions.  
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4.5 Viability assay 
 

The cytotoxicity of the siRNA swarms was evaluated and quantified with a 

luminescent assay, CellTiter-Glo (Promega, Madison, WI) at 48 hours post 

transfection, according to manufacturer’s protocol and as described previously 

(Romanovskaya et al., 2012; Turunen et al., 2016). The luminescent signal was 

quantified with VICTOR Nivo Multimode Plate Reader (Perkin Elmer, Waltham, MA).  

 

4.6 Antiviral assays 
 

The antiviral assays in previous anti-herpes siRNA swarm studies were conducted 

by infecting the cells with 1000 plaque forming units (pfu) four hours post transfection 

(hpt), to mimic the low virus transmission in clinical situations (Paavilainen et al., 

2016; Paavilainen et al., 2015; Romanovskaya et al., 2012). Additionally, to better 

represent the clinical situation, another antiviral setting, where the cells were infected 

before transfection, was utilized. This setting is referred as the therapeutic model 

and the previously published the prophylactic model.  

 

Table 9 - Antiviral assay settings 

 Infection post transfection 
(Prophylactic model) 

Transfection post infection 
(Therapeutic model) 

 

at 0 h Cells washed 1x with Opti-
MEM, transfection 

Cells washed 1x with DMEM 2% 
FBS, infection* 

C
el

ls
 k

ep
t a

nd
 in

cu
ba

te
d 

at
  

+3
7°

C
 5

%
 C

O
2 
w

he
n 

no
t w

or
ki

ng
 

at 1½ h - Wash 2x with Opti-MEM, left 
with 80 μl 

at 4 h Wash 3x with DMEM 2% 
FBS, infection Transfection 

at 5½ h Wash 2x and leave with 
DMEM 7% FBS - 

at 8 h - Wash 3x and leave with DMEM 
7% FBS 

48 to 
120 h Follow up and sampling at desired timepoints 

 

In short, the settings used in this Master’s thesis represent therapeutic treatment 

(transfection four hours after infection) and prophylactic treatment (infection four 
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hours after transfection) (Table 9). The settings were modified in some of the dosing 

experiments to suit different purposes: 1) In the study for active siRNA stability after 

transfection, the cells were infected at 24, 48, 72 or 96 hpt, which was done as 

described with the viability assay. 2) In the re-challenge and repeated dosing 

experiments, 20 μl containing 1000 pfu or lipofectamine-siRNA -complexes, 

respectively, were added on top of therapeutically treated culture supernatant at 48 

hpt.  

 

4.6.1 Infection 
 

Prior to infection, the cells were washed with DMEM (incl. Hepes) supplemented with 

2% FBS and gentamycin. The number of washes depended on the setting (see 

Table 9). The viral dilution, always containing 1000 plaque forming units (pfu) in 100 

μl, was pipetted onto the cells. For the standard confluencies at the time of 

transfection, this amount represents 0.06 and 0.29 multiplicity of infection (MOI) 

values for U373MG and HCE cells, respectively. The viral dilution was calculated 

beforehand based on the concentration (pfu/ml) of the used stock [pfuneeded / 
(pfu/ml)stock x 1000 = μlof stock needed]. The stock is made from virus shedded from the 

cells used in virus propagation, which are then stored in MNT buffer (20 mM MES, 

100 mM NaCl, 30 mM Tris, pH 7.4). The viral MNT stock, stored in -80°C, was 

thawed slowly on ice to minimize the loss of viable viruses. After preparation of the 

virus dilution, it was incubated on the cells for 1-1.5 h shaking on a shaker at +35°C 

and afterwards washed to remove the unabsorbed viruses with either Opti-MEM or 

DMEM (incl. Hepes) supplemented with 7% FBS, depending on the setting (Table 
9).  

 

4.6.2 Collection of samples 
 

At the desired timepoints the supernatant was collected to a parallel 96-well plate 

(Corning) and stored at -80°C. Immediately after supernatant collection, those cells 

intended for mRNA analysis by qPCR, were covered with 80 μl of TRI Reagent 

(Invitrogen) and stored at -80°C. 
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4.7 Plaque titration of the virus 
 

The viral titers were determined by plaque titration on Vero cells in 96-well plates 

using 10-fold dilution series.  

The medium on the Vero cells was changed to 100 μl of DMEM (incl. Hepes) 

supplemented with 2% FBS. A 10-fold dilution series of the sample was prepared. 

For each dilution, the supernatant was mixed thoroughly by pipetting up-and-down. 

After dilutions, the plates were incubated 1-1.5 h shaking on an orbital shaker at 

+35°C. After incubation, 100 μl of DMEM (incl. Hepes) supplemented with 7% FBS 

and 80 mg/l of human immunoglobulin G (IgG), KIOVIG (Baxalta, Wien, Austria), 

was added on top of the pre-existing medium. After 3 to 4 days of incubation, the 

cells were fixed and stained. 

For fixing, the supernatant was removed and replaced with methanol (+4°C). After 5 

minutes in room temperature, the methanol was removed. The cells were let dry in 

a laminar flow for at least 5 minutes before addition of the crystal violet 0.1% diluted 

in phosphate buffered saline (PBS), HyClone (GE Healthcare Lifesciences, 

Marlborough, MA, USA)). The crystal violet was removed, and the cells were rinsed 

with tap water and let dry for at least 24 h before counting and imaging the plaques 

(for example of viral plaques, please see Figure 10C). 

Due to the presence of IgG in the titration medium, the virus can spread only from 

cell-to-cell, forming infected areas called plaques. The infected cells then detach, 

leaving visible hole to the cell layer upon fixing. The plaques are then counted and 

the plaque forming units per ml are calculated. The plaques can be counted with a 

regular light microscope.  

 
4.8. RNA extraction 
 

The RNA extraction of the cells on the 96-well plates covered by TRI Reagent was 

done according to the manufacturer’s protocol. In short, with chloroform (20% of TRI 

Reagent volume) and centrifugation, the RNA was separated in to a clear, aqueous 

removable phase. From that phase, the RNA could be precipitated with isopropanol 

(50% of TriReagent volume) and ethanol (at least 100% percent of TriReagent 

volume). The resulting RNA was dissolved into 20 μl nuclease free water and stored 

at -80°C.  
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4.9 Reverse transcriptase reaction 
 

The whole cellular RNA from the both infected and non-infected, treated and control-

treated samples was processed into complementary DNA (cDNA) in a reverse 

transcriptase (RT) reaction as previously described (Paavilainen et al., 2016; 

Paavilainen et al., 2015; Romanovskaya et al., 2012). In short, the samples were 

pretreated for 30 minutes at +37°C with DNAse (Thermo Fisher Scientific, Waltham, 

MA) in the presence of RNAse inhibitor (Thermo Fisher Scientific) followed by 

deactivation of the DNAse with EDTA (Sigma Aldrich, Saint Louis, MO, USA). The 

RT reaction was conducted using RevertAid H Reverse Transcriptase (Thermo 

Fisher scientific) with random hexamer primers (Thermo Fisher Scientific), which 

were annealed 5 min in +70°C, followed by cooling down on ice. The RT-cycle used 

was 20 min at +37°C, 60 min at +42°C and 10 min at +70°C. After cooling down at 

+4°c, the resulted cDNA was stored at -80°C.  

 

4.10 Quantitative PCR 
 

Quantitative PCR (qPCR) was performed with a Rotor-Gene Q (Qiagen, Hilden, 

Germany) instrument utilizing a SYBR Green enzyme and buffer system (Thermo 

Fisher), as previously described (Nygårdas et al., 2011). The mRNA expression of 

interferon beta (IFN-β), interferon stimulated gene 54 (ISG54), glyceraldehyde 3-

phosphate dehydrogenase (GAPDH), human myxovirus resistance protein A (MxA), 

human myxovirus resistance protein B (MxB) and HSV viral protein 16 (VP16; alpha-

TIF) were quantified using primers listed in Table 10. 

The housekeeping gene (GAPDH) values of each sample were used for normalizing 

mRNA expression levels. Quantity standards (calibrators), specifically custom-made 

for each primer pair, were used. For MxA, the standard has been used in (Yahya et 

al., 2017), for MxB, the standard is described in Kalke et al. (manuscript in 

preparation), and the rest are listed in (Paavilainen, 2017). 
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Table 10 - qPCR primers used 

Target  Sequence Reference 

GAPDHa sense GAG AAG GCT GGG GCT CAT 

 

(Nygårdas et al., 

2009) 

antisense TGC TGA TGA TCT TGA GGC 

TG 

 

ISG54a sense ACT ATC ACA TGG GCC GAC 

TC 

(Romanovskaya et al., 

2012) 

 antisense TTT AAC CGT GTC CAC CCT TC 

IFN-βb sense TCT CCA CGA CAG CTC TTT 

CCA 

(Peri et al., 2008) 

antisense ACA CTG ACA ATT GCT GCT 

TCT TTG 

MxAb sense GAG GAG ATC TTT CAG CAC 

CTG 

Used in (Yahya et al., 

2017); sequences in 

Kalke et al., 

manuscript in 

preparation 

antisense TGG ATG ATC AAA GGG ATG 

TG 

MxBa sense GGA AAG CAG CGT CCT TCT 

CT 

Kalke et al., 

manuscript in 

preparation antisense ATT CCT TCC AGC AAC AGC CA 

VP16a sense GCT CCG TTG ACG AAC ATG 

AA  

(Broberg et al., 2003) 

antisense TTT GAC CCG CGA GAT CCT AT 

aThe annealing temperature in the PCR cycle was 55°C 
bThe annealing temperature in the PCR cycle was 60°C 
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4.11 Statistical analysis 
 

Statistical analysis was done with SPSS Statistics 26.0.0.0. (IBM, Armonk, NY). The 

normality of the data was assessed both visually and with Shapiro-Wilk test. The 

statistical significances were all calculated with Mann-Whitney’s non-parametric U-

test comparing two individual groups. The sigmoidal dose-response curves were fit 

and EC50 values calculated with Origin 2016 (64-bit) b9.3.3.303 (Academic) 

(OriginLab Corporation, Northampton, MA, USA). 
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Abbreviations list  
 

 

10% F-N An UL29 targeting siRNA swarm, containing 10% of a 

particular nucleotide (N = A, C or U) 2´-fluoro-modified 

100% F-N An UL29 targeting siRNA swarm, containing 100% of a 

particular nucleotide (N = A, C or U) 2´-fluoro-modified 

88 bp An 88 bp long, cytotoxic RNA. Used as a positive control for 

toxicity and innate responses. 

ACV Acyclovir 

bp Base pair 

CC50 Half-maximal cytotoxicity 

cDNA  Complementary DNA 

cGAS Cyclic GMP-AMP Synthase 

CLOCK Circadian Locomotor Output Cycles Kaput 

CMV Cytomegalovirus 

CNS Central Nervous System 

DMEM Dulbecco's Modified Eagle Medium 

DNA  Deoxyribonucleic acid 

dsRNA Double-stranded RNA 

EC50 Half-maximal efficacy 

eGFP Enhanced green fluorescent protein 

Emax Maximum efficacy 

FBS Fetal Bovine Serum 

GAPDH Glyceraldehyde-3-Phosphate Dehydrogenase 

gB Glycoprotein B (HSV) 

gD Glycoprotein D (HSV) 

GFP Green fluorescent protein 

HCE Human corneal epithelial cell line 

HHV Human herpes virus 

HIV-1 Human immunodeficiency virus 1 

hpi Hours post infection 

hpt Hours post transfection 
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HSE Herpes simplex encephalitis 

HSK Herpes simplex keratitis 

HSV Herpes simplex virus 

HSV-1 Herpes simplex virus 1 

HSV-1(17+) A laboratory reference strain of HSV-1 

HSV-2 Herpes simplex virus 2 

HSV1-GFP HSV-1(17+)LoxPmCMVGFP, a GFP expressing recombinant 

HSV-1 

HSV1-mCherry HSV-1(17+)Lox-CheVP26, an mCherry expressing 

recombinant HSV-1 

ICP Infected Cell Polypeptide, nomenclature for herpes proteins 

ICP8 Major DNA-binding protein encoded by UL29 gene of HSV-1 

IFI-16 Gamma-interferon-inducible protein 

IFN Interferon-stimulated gene 

IgG Immunoglobulin G 

IRF3 Interferon regulatory factor 3 

ISG Interferon Stimulated Gene 

LAT Latency associated transcript  

mCMV Mouse cytomegalovirus promoter 

miRNA Micro RNA 

MOA Mechanism of action 

MxA Myxovirus resistance protein 1 

MxB Myxovirus resistance protein 2 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

nt Nucleotide 

PBS Phosphate-buffered saline 

PET A non-specific siRNA swarm derived from bacterial lac-operon 

sequence 

pfu Plaque forming unit(s) 

PKR Protein kinase R 

PRR Pattern recognition receptor 

RIG-I Retinoic acid-inducible gene I 
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RISC RNA-induced silencing complex 

RNA Ribonucleic acid 

RNAi RNA interference 

RSV Respiratory syncytial virus 

RT-qPCR Quantitative reverse transcription PCR 

RT reaction Reverse transcriptase reaction 

siRNA Small interfering RNA 

ssRNA Single stranded RNA 

STING Stimulator of interferon genes 

TLR Toll-like receptor 

U373MG A neuronal cell line (glioma), reclassified by ATCC as U251 

UL Unique long, a segment of the herpes genome, the genes in 

the area are named accordingly (e.g. UL29, UL30)  

UL29 An essential gene of HSV-1 encoding a protein required for 

DNA replication in viral replication cycle (ICP8) 

UL29.2 A short synthetic siRNA targeting UL29 (Palliser et al., 2006) 

US Unique short, a segment of the herpes genome, the genes in 

the area are named accordingly (e.g. US3) 

VP16 See α-TIF.  

α-TIF Alpha trans inducing factor, initiator of HSV-1 transcription.  
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