

Store submission automation: effects of user

centred design on organizational learning

Samu Mörsky

Master’s Thesis

May 2020

DEPARTMENT OF FUTURE TECHNOLOGIES

UNIVERSITY OF TURKU

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/326421552?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The originality of this thesis has been checked in accordance with the University of

Turku quality assurance system using the Turnitin Originality Check service

TURUN YLIOPISTO

Tulevaisuuden teknologioiden laitos

Samu Mörsky: Store submission automation: effects of user-centred design on

 organisational learning

Pro gradu -tutkielma 54 s.

Tietojenkäsittelytiede

Toukokuu 2020

--

Tässä tutkielmassa perehdytään yrityksen sisäiseen käyttäjäkeskeisesti suunniteltuun

automaatiotyökaluun, jonka tarkoituksena on lähettää sovellustiedostoja ja

markkinointiassetteja Applen sekä Googlen digitaalisiin sisältöpalveluihin.

Tarkoituksena on selvittää, onko käyttäjkeskeisellä suunnittelulla vaikutusta

organisaation oppimiseen.

Käyttäjäkeskeisessä suunnittelussa lähtökohtana on käyttäjien tarpeiden ymmärtäminen

sekä vaatimusten määrittely. Organisaation oppiminen puolestaan viittaa organisaation

sisällä tapahtuvaan informaation tai osaamisen kasvamiseen, joko ryhmässä tai

henkilökohtaisella tasolla. Näiden kahden kohtaamisesta ei lähdehaun perusteella

löytynyt aikaisempaa tutkimusta. Tutkielmassa käydään läpi yksityiskohtaisesti

organisaation rakenne, digitaalisten sisältöpalveluiden asettamat vaatimukset sekä miten

toteutettiin työkalu vastaamaan tämän luomaa kysyntää, jotta aiheen ja haastatteluiden

tulkitseminen tässä kontekstissa olisi mahdollisimman yksityiskohtaista.

Tämä tutkielma käyttää lähtökohtanaan laadullisen tutkimuksen menetelmäsuuntausta.

Tutkimuksen yhteydessä haastateltiin käyttäjiä yrityksestä, jolle kyseinen työkalu

toteutettiin. Haastatteluiden perusteella ei löydetty suoraa korrelaatiota

käyttäjäkeskeisen suunnittelun ja organisaation oppimisen välillä. Pieniä viitteitä niiden

välillä kuitenkin löytyi, jonka perusteella lisätutkimus aiheesta olisi paikallaan.

Asiasanat:

Käyttäjäkeskeinen suunnittelu, Organisaation oppiminen, Automaatio, Digitaaliset

sisältöpalvelut

UNIVERSITY OF TURKU

Department of Future Technologies

Samu Mörsky: Store submission automation: effects of user-centred design on

 organisational learning

Master’s Thesis 54 p.

Computer science

May 2020

--

In this thesis, we study an automation tool implemented using user-centred design-

paradigm. The aim of this thesis is to study how the user-centred design affects

organisational learning. The tool is used for uploading application packages and

marketing assets to the Apple and Google digital distribution services.

User-centred design focuses on understanding user’s tasks and requirements.

Organisational learning is used to describe the learning that happens inside an

organisation on individual or group level, which helps the organisation to accumulate

long lasting knowledge. In the initial literary search, there was no earlier research

focusing on this particular question. In this thesis, we will go through in detail the

organisational structure, the requirements set for the digital distribution services and the

implementation of the automation tool for this case. This will enable us to scrutinize the

interviews and results in this context.

This thesis was carried out using qualitative research methodology. Interviews were

conducted with users from the company for which the tool was implemented. These

interviews seem to bear no strong correlation between organisational learning and user-

centric design. However, the results indicate for the research question that further

inspection to the subject could be worthwhile.

Keywords:

User-centric design, Organisational learning, Automation, Digital distribution services

Contents

1. INTRODUCTION... 1

2. THEORETICAL BACKGROUND .. 3

2.1 HUMAN-CENTRED DESIGN ... 3

2.2 ORGANIZATIONAL LEARNING .. 5

2.3 INCLUSION CRITERIA FOR INTERVIEWS ... 6

3. ORGANIZATION AND THE PROCESSES BEFORE THE AUTOMATION ... 8

3.1 PROCESS BEFORE THE AUTOMATION ... 8

3.2 ORGANIZATIONAL MODEL ... 10

4. ECOSYSTEM ... 12

4.1 GOOGLE PLAY STORE ... 12

4.1.1 Application packages .. 12

4.1.2 Visual assets .. 14

4.1.3 Text assets ... 15

4.1.4 Track and rollout systems ... 16

4.2 APPLE APP STORE .. 17

4.2.1 Application package .. 17

4.2.2 Visual assets .. 18

4.2.3 Text assets ... 19

4.3 LOCALIZATIONS AND RATINGS ... 20

5. TECHNICAL OVERVIEW OF THE TOOLS ... 22

5.1 FASTLANE .. 22

5.2 ITUNES MUSIC STORE TRANSPORTER .. 23

5.3 GOOGLE PLAY DEVELOPER API... 27

6. TECHNICAL SOLUTION .. 29

6.1 BUILDTRACKER ... 29

6.2 SHIPIT .. 35

7. INTERVIEWS AND RESULTS ... 38

7.1 USER’S ROLE BEFORE AUTOMATION.. 38

7.2 USER EXPERIENCES .. 39

7.3 USER EVALUATION ... 42

8. CONCLUSIONS ... 44

REFERENCES .. 47

APPENDIX A: APPLE APP STORE METADATA-FILE EXAMPLE ... 51

APPENDIX B: GOOGLE PACKAGE UPLOAD SCRIPT EXAMPLE .. 53

1

1. Introduction

In modern world where humans have to interact with increasing amount of

digital services and devices, it is important to design interfaces that are, first and

foremost, easy to use but also designed for the tasks it must accomplish. User-centric

design (UCD) aims to achieve just that. However, it is important to consider what

happens to the knowledge that users used to have before digital devices and services

were made easy to use. For example, in the early 1990s in order to be able to use

computer, user had to obtain knowledge how to use Microsoft MS-DOS (Microsoft

Disk Operating System) in order to operate Windows. Nowadays, less and less people

need to know how to operate command-line interfaces. With this in mind, it is

important to consider what happens to the knowledge that used to be required for

accomplishing certain tasks.

Automation is used nowadays to help us humans to achieve tasks that required

a lot of manual work or calculating capacity. While the knowledge to accomplish

these tasks is required in order to automate them, the users that used to do them might

not be required to have this knowledge. In such case, it is fair to assume that the

knowledge that many used to possess is transferred to the few that is in charge of

designing and implementing the automated system. This in turn might have some

effects on organizational learning (OL) that is used to describe the learning that

happens inside an organisation. Considering this, I wanted to research the question

that does implementing these automated systems using UCD paradigm, have some

kind of effect on retaining knowledge regarding a task and organizational learning.

To reach conclusions we will go through the theoretical background regarding

UCD and OL. In Chapter 3, we will go through the organizational structure and how

the process was before automation for it was implemented to understand the need for

this tool. Chapter 4 gives insight to the Apple and Google digital distribution services,

and what requirements they have for uploading application packages and marketing

assets. Additionally, we will go through the tools available for automating these tasks

2

in Chapter 5. Chapter 6 describes the user interface, as well as, the tool implemented

for automating asset uploading tasks. Finally, we will go through the interviews and

reach the conclusions in the Chapters 7 and 8.

3

2. Theoretical background

In this chapter, we will go through the theoretical background for human-

centred

design and organisational learning. We will also look at the inclusion criteria for the

interviews conducted with the users of the automated submission system of this

thesis.

2.1 Human-centred design

Human-centred design (HCD), also known as user-centred design (UCD), is a

problem-solving approach for interactive systems, where the goal is to develop a

solution to a problem by involving human (user) perspective to every step of the

problem-solving process. Contrary to earlier when design was widely driven by the

paradigm that users can adapt to emerging technology, now designers and developers

are paying closer attention to building intuitive and easy to use systems. Although

UCD and HCD are nowadays used interchangeably, some consider there to be few

semantic differences. While UCD, a term coined by Donald A. Norman in his book

User-Centred System Design: New Perspectives on Human-Computer Interaction, is

focusing on the target users and their tasks, HCD is considered to be more general

way of interacting with the human nature and finding solutions that conform not only

to particular users, but humans as a whole. [29] With that acknowledged, in this thesis

these terms are used as synonyms.

The aim of human-centred design is to make the system as usable as possible

for the end-users. This is enhanced by interacting with the end-users, brainstorming

and going through the requirements with them. This includes gathering feedback from

users while development may still be going on. An essential requirement for

designing HCD solutions is to define the context of use of the feature or product

4

under design. [1] In practice, this means documenting the potential users and their

tasks. Human-centred approach is usually integrated into other development

processes, such as rapid prototyping, so that it becomes a seamless part of

development cycle. Overall, the goal of integrating HCD is to constantly ensure good

usability of the output. Important thing to note is that UCD is not just asking users for

features, and then implementing them. Users usually have only partial understanding

of their needs and how to design human computer interaction. [31]

The usability of a system that is not used frequently or every day is even more

critical than those that are used all the time. It should be easy to remember how to use

a program even if there is a long delay between the sessions. Additionally, when

designing systems for certain age groups, it is essential to know that their needs are

different. For example, older users might have problems with the same user

experience (UX) standards that are widely used in modern applications. [28] As Stara

et al. [30] suggest, it is especially important in this age group to try and facilitate the

needs of the audience, as bad user experience can dissuade them from using

technology. Moreover, mood of the user can affect their experience and actions while

using a system. For example, a person feeling stressed or anxious is inclined to prefer

a familiar experience using a system knowing what will happen given a certain

action. In comparison, a person with a relaxed and happy mood is more likely to be

more open minded about the situation and willing to be more tolerant about their

experience.

There are of course different points of views for the human-centred design

paradigm. One worrying aspect of human centred design, as Norman [2] proposes, is

that focus on individual people or group of people tends to make the usability of the

system worse for other people who might come to use it. It does make the usability

better for the target group, but it might also be a good idea to consider what happens,

if the user group changes or evolves during the lifetime of the system, as it usually is

for successful products. Norman also proposes that users for whom the system was

designed usually get so proficient in using it, that they might require different things

from it than they did when they were beginners. The habit of listening to your

5

customers is always a good thing for developers but abiding too much for the

requested features might end up making the system overly complex.

User experience of automated systems is vital. Understanding users’ tasks is

essential to automate them. While automation might remove certain workloads from

the users, it also has a tendency, if not carefully planned, to create new

communication and workloads for the end-users. [32] For this reason, it is beneficial

to be mindful about the task under automation and consider what effects it might have

for the users and their future tasks.

2.2 Organizational learning

Broadly speaking organizational learning (OL) refers to the information and

knowledge that is accumulated inside an organization by the people who work there.

[33] Part of it usually is managing that knowledge and trying to transfer it so that the

information is not lost when a key employee leaves the company. Organization

improves over time as it gains experience and through that experience it can gain and

create knowledge. And if the knowledge management is not considered in an

organization, it may lose knowledge when people leave company or change positions.

The most important thing about OL is not that the company can gain static

knowledge but rather to learn continuously by generating new knowledge which the

people of the organization can apply and transfer from one to another. OL is not only

a group-wide learning, but also something that an individual inside this organization

learns is considered learning by the organization. That individual can then choose to

share that knowledge with other people. One of the key aspects to enable a culture of

learning, within an organization, is to learn from managerial experiences. To promote

OL, management must provide an infrastructure capable of supporting and

documenting the learning inside an organization. [34] Common mistakes, made by

organisations, are that they are not capable to learn from their past project failures. A

beneficial practice for such cases is process called post-mortem where teams collect

6

data from project that was not successful and share it with the organisation

accumulating knowledge for the whole organisation.

One major issue in OL comes from being able to convince individuals to share

their knowledge. In hierarchical company structures, hoarding knowledge can be seen

as a power move, as possessing certain knowledge can help individuals to further

their careers, or at least cement their place inside an organization as an essential

person. [35] For this reason it is of utmost importance for an organization to try to

promote and reward knowledge sharing within its ranks. As Antunes et al. [36]

conclude “an organization’s ability to use and leverage knowledge is highly

dependent on its human resources, which effectively create, share, and use that

knowledge.” Human resource management is of paramount importance in this ability

to translate existing individual knowledge to results for organization.

The concept of OL is still not absolutely clear as there are many different

descriptions of it. While that may be the case, it is widely agreed that OL is a process

and the differences in the definitions may stem from the fact that there are multiple

different kinds of organisational learning taking place on different levels of the

organisation. [33] However, Sunassee and Vernon [33] propose following definition:

“Organisational Learning is the way in which individuals in an organisation learn,

from the approach they take to addressing a task-related challenge, to their

understanding of how they should learn.”

2.3 Inclusion criteria for interviews

For the interview presented later in this thesis, I chose the interviewees on the

basis that they have some experience in submitting new versions of games to the

application marketplaces. Moreover, they preferably have been doing submissions

before and after the submission tools were implemented. One of the interviewees was

part of the central submission team responsible for all the submissions. The rest had

assumed the responsibility of submissions when the organization shifted the process

7

to game teams. I also wanted to have some insight from people that are not that

versed in using the submission tools. My aim was to try to gather some differing

points of view from those who are using and from those who are not using the tools

for submission to figure out why it was not used by all and how to get everyone to use

them.

 The goal of the interviews was first and foremost to gather feedback on how

the usability of the subject automation system is currently working from the user

perspective, and how it could be improved to better suit the needs of its user base.

Also, we wanted to learn how the change in submission process introduced by

automation has affected the organization and the transfer of the knowledge regarding

submissions when the organization decided to shift the submission responsibility to

game teams from central submission team. Additionally, we are also trying to find out

how well tools that were designed with human-centred philosophy has retained its

usability when the group of users it was designed for has changed.

8

3. Organization and the processes before the

automation

In this chapter, we will go through the process of manual labour regarding the

now automated workflow. We will also see the organizational model before the tool

was developed. At the same time, this reflects how the company structure and

workflow regarding submissions has evolved to this day.

3.1 Process before the automation

 The submission of a new game package is usually orchestrated by the game

producer. They would have the relevant people to provide necessary assets to the

central submission team for the upcoming release. Assets were usually provided

through Slack (cloud-based proprietary instant messaging platform) sending URLs

and file system paths to where the assets were to be found. A central submission team

would then add the submission to their queue of submissions. When prior

submissions were done, the submission specialist would proceed to upload these

assets to the marketplaces by hand. In practice, for the screenshot submission this

would mean dragging images one at a time from the source folder to the image field

in App Store Connect or Google Play console. This would be repeated for every size

and language localization. Typical App Store Connect image submission can consist

of 10 language localizations with up to 10 images for each of the 5 sizes, which

would result to 300 images to submit. [3] According to the user interviews this

process could take up to a whole working day, as each image would then be

processed by the marketplace taking some time before the interface would be ready to

process the next screenshot.

Text asset processing was considered a bit faster as there is only need for one

localisation for every type of text. However, there are still multiple different texts to

9

submit. For Apple App store, one has the option to submit a description text that is

used to summarize the application and its features for the user, keywords for better

search optimization and release notes to describe what is new in the latest version of

the application. For Google Play Store, one can similarly choose to provide a

description text and release notes. Google Play also has an option for a short

description text that is displayed in the listing and can be then expanded to see the

longer main description. Still this process was described in the interviews as

cumbersome, because the users had to do a lot of copy-pasting between the store

console and the source material. The process of submitting texts is considerably faster

than submitting screenshots but it is still a substantial amount of repetitive work for

the users to do by hand.

In addition to previously mentioned assets, one would also have to submit an

updated build for the application. In some cases, the producer might decide to change

to a new icon, for example, to reflect some on-going seasonal campaign. Changing

the icon is done from the web user interface (UI) in the respective marketplace and

does not require any effort for localizations and different sizes. A build can be

uploaded to the App Store Connect by sending it with XCode or Apple’s application

loader app which requires a Mac (OS X) computer to be used. For Google Play,

uploading a build is more straightforward as you can upload it from the browser

within the Google Play console. The build of course must be signed correctly and

must conform to Google and Apple’s guidelines. We are going to investigate those

guidelines with more depth in Sections 4.1.1 and 4.2.1.

As mentioned earlier, according to the user interviews, this process of

submitting assets manually could take a whole business day depending on the amount

of assets. Often the assets would arrive late which, in turn, would cause the

submission team to upload assets in a hurry. There was often confusion with the

correct game build and asset specifications which would result in them getting

rejected during submission or in the review process of the marketplace. This was an

unnecessary long feedback cycle as then the marketing department would have to

modify their assets and developers to create new package with correct specifications.

10

3.2 Organizational model

 The organizational model in the framework of this thesis consists of game

teams, technical team, support team and marketing team. Game teams are naturally

responsible for developing new games and maintaining old titles. Typical game team

in this organization has an executive producer, game producer, quality assurance

(QA) lead, multiple game programmers, artists and designers. Additionally, the team

has an assigned marketing specialist from the marketing team, a data analyst and a

customer support specialist. Game producer is responsible for overseeing the game

development and schedule. They act as a liaison between the game team and upper

management. Their responsibilities include also communicating the progress of the

game under development to other stakeholders. Usually, the producer is the one to

schedule a submission of a new updated game package in cooperation with other

team members. QA lead is responsible for making sure that the new game package is

up to standards and as free of bugs as possible. They orchestrate the testing efforts

with third-party testing companies and send the packages to them for testing.

Programmers, designers, level designers and artists are working in tandem with each

other developing the game by combining their talents to match the vision of designers

and producer. Artists are responsible for the visual presentation of the game, while

programmers combine the art with the game logic they have developed.

 Technology team develops and maintains tools and services for the game

teams to use in the game development. These tools vary from automating simple

time-consuming tasks to offering services for tracking and analysing the game builds

for submission compatibility. Technology team consists of multiple smaller teams

responsible for different services they maintain and develop. Additionally, a support

team handles communication between the game teams and other game-related

functions. Submissions being one of these functions, there were multiple submission

specialists whose responsibility was to submit new game builds and assets for the

game teams in the manner described earlier. However, there was a shift in the

11

organizational model that led to submission team downsizing and shifting the

submission responsibilities to game teams themselves. Now, instead of ordering a

submission and delivering assets for the submission team, game teams must manage

that individually. Based on the interviews it was apparent that this organizational shift

led to some challenges in the communication and execution of said submissions.

12

4. Ecosystem

A submission consists of multiple different assets and steps. For a submission,

one needs an application package that has the latest features, pictures that show the

current state and the new features of version under submission and the texts that can

provide a bit deeper overview of the game and its features. These assets can then be

submitted to the marketplaces. In many ways both Google Play store (GPS) and

Apple App Store Connect (ASC) are very similar when it comes to requirements and

submissions. Both use mainly similar asset types, but there are, of course, differences

in how and what are displayed to the user. Additionally, stores require different things

from the packages that are submitted to stores. In this chapter, we will go through

what kind of requirements and at the same time go through the differences and what

in common these stores have.

4.1 Google Play store

 Google Play store is a Google’s digital distribution service for Android

operating system. It allows users to download applications developed with Android

SDK (Software Development Kit). Google Play store serves other kind of digital

media as well, but we will be focusing on the application market and what

requirements it has.

4.1.1 Application packages

 For Google Play Store, application packages are distributed in .apk or .aab

format. APK stands for Android application package and AAB stands for Android

app bundle. Developers can choose in which format they want to upload packages to

the store for users to download. Android application package is an archive format,

similar to ZIP or JAR formats, which contains all the code and resources used by the

13

application. [4] These resources may vary from audio files to art used by the

application. Google Play requires that the compressed APK size should be no more

than 100 megabytes. In some cases that is plenty of space for an application, but for

bigger applications, such as games, developers can decide to use APK expansion

files. [5] It is possible to have two expansion files for an application, each up to two

gigabytes of size. The expansion file can be any format, but in the end, Google Play

will convert the file extension to Opaque Binary Blob files (.obb). There are two

types of expansion files: main and patch. An application can have one of both types

of expansion active at the same time. Main expansion file contains the primary

additional resources your application requires. Patch instead is used for updates

regarding the main expansion file.

While APK is one package meant for all users with different devices,

developers might choose to upload AAB instead for better optimization for users.

Android app bundle is similar to APKs with the format so that it contains the code

and resources, but it defers the APK generation and signing to Google Play instead.

This means that Google Play is able to serve APKs better matching the user’s device

configuration. Using Android app bundles will also increase the app’s maximum

compressed download size to 150 megabytes without any expansion files. While the

download size is increased, app bundles do not allow any additional expansion files.

Android app bundle is different from android application package in that it cannot be

deployed straight into a device. It is rather an upload format for your application

containing all the code and resources. This means that AAB applications cannot be

sideloaded onto a device in the same manner as you could do with APK.

Application packages that are uploaded to the Google Play store must be

signed with Google signing certificate. This signing key has a public certificate that is

used by devices and services to verify that the application is from trusted source. [12]

14

4.1.2 Visual assets

 In Google Play developer can choose to upload screenshots showcasing their

application to the potential users in the store as shown in Figure 1. It is possible to

add up to 8 screenshots for each supported device type. [6] These device types

include: Phone, 7- and 10-inch tablets, Android TV and Wear OS by Google. To be

eligible for publishing an application in Google Play developer must upload at least

two screenshots for the application. These screenshots have to be in JPEG (Joint

Photographic Experts Group) or PNG (Portable Network Graphics) format. Alpha

channels are not allowed in these images, which means that in practice screenshots

cannot contain transparency values. Submitted screenshots dimensions must be

between 320 and 3840 pixels, keeping in mind that the maximum dimension cannot

be more than twice the size of the minimum dimension. In addition to screenshots, the

developer can optionally choose to upload a video displaying the core mechanics of

the game. This video is a YouTube video URL that is embedded to the same

container with the screenshots. As shown in Figure 1, the promotional video is

displayed first with screenshots following.

Figure 1. Rendition of Google store listing that is shown for the user. (Image source:

https://support.google.com/googleplay/android-developer/answer/1078870?hl=en)

https://support.google.com/googleplay/android-developer/answer/1078870?hl=en

15

In addition to the screenshots, an icon and feature graphic for the application

is required. The given icon does not replace the application icon displayed on the

device but is rather displayed in various places in the application's store listing page.

The icon must be in PNG format with 512×512 pixel dimensions and under 1024

kilobytes. Feature graphics are used to show static screen over promotional video

with a play button overlaying the graphic. When clicked, the promotional video is

shown. This means that for feature graphic to be displayed on the application’s store

listing page you also need to submit promotional video. This graphic is shown

anywhere in Google Play where application might be featured by Google. The feature

graphic must be of PNG or JPEG format without alpha channels and with 1024×500

pixel dimensions. [6]

4.1.3 Text assets

 There are three main text components for the application’s store listings:

description, short description and title. Title is the application’s name in the Google

Play store, and it should be under 50 characters long. Description or the main

description text is for the developer to highlight and tell about their application and

try to incentivize users to download said application. Main description should be

under 4000 characters long. Short description is the first text description that users see

when they access an application's store listing. It should try to capture the attention of

users with 80 characters or less.

 In addition to the aforementioned texts, there is also texts for release notes

informing users what is new in the latest update of the application. Submitting release

notes is a bit different from other text assets. While the rest of the text assets are

associated with the application itself, release notes are linked to update releases of the

application. The release notes are attached to application’s tracks that hold

information about specific releases. When preparing a new release of application, the

developer might push the application package to a beta track, and then attach release

16

notes for that track. Release notes for the track are stored in kind of XML (Extensible

Markup Language) format with language localization in tags and the appropriate text

inside those tags. An example of this could look like:

<en-US>

Example text for new release

</en-US>

4.1.4 Track and rollout systems

 In Google Play, the releases are handled with mainly three tracks. These

tracks are production, beta and alpha. Developers may create and name their own

custom tracks, but the workflow will remain similar regardless. With the intended

workflow from Google for these tracks the developers would initially upload a build

to closed alpha track for internal testing. [7] When all the critical issues have been

tested, the track could be promoted to beta, where more people who have signed into

the beta program would have the new build available for them. Finally, when

everything seems to be in order developers can promote the beta track to production,

so that the new update would be available for all the users. [7]

 Additionally, for these tracks there is an available system called staged

rollout. The rollout system is a way for the developers to release new updates in

stages. [8] In practice this means that the developers can choose a percentage of users

that the new update will affect. For example, the developer can define that they want

to test the waters with 5% rollout for their upcoming release. They would then set the

ALPHA BETA PRODUCTION

17

rollout value as 0.05 and set the production track status to “inProgress”. After the

initial rollout if there are no issues with the new release, the rollout value can be

increased, for example, to 0.2 to allow more people on the new patch and so on until

the new release is deployed for the entire user base.

4.2 Apple App Store

 Apple App Store is similar distribution service to Google Play. However,

Apple App Store focuses, as the name suggests, on distributing applications, and for

other kinds of media Apple has iTunes. Apple App Store Connect is a service where

developers can manage their applications that are listed in the App Store. Every

action related to publishing an application goes through App Store Connect while

App Store is rather meant to act as a storefront for customers.

4.2.1 Application package

 For iOS platform, packages from the Apple App Store are distributed to the

users in .ipa (iOS App Store Package) format. IPA format is similar to Google’s

archive package format, where both can be decompressed with unzipping them. IPA

files contain all the assets and code in a specific structure for iTunes and App Store to

recognize. Apple has a 4-gigabyte size limit for overall uncompressed app size, but

additional downloads can be done from the application. [10] For an application to be

eligible for being downloaded over the cellular network, its download size has to be

lower than 200 megabytes. If the application is over the limit, it may require to be

downloaded over Wi-Fi. [11]

 For an application package to be eligible for submission to Apple App Store,

it must be signed with correct signing certificates issued by Apple. [13] Code signing

ensures that the application to be installed on user’s device is from a known source

and has not been changed after signing. This means that Apple does not allow any

18

application with a wrong certificate or without a certificate to be installed on an iOS

device. Provisioning profiles are a part of the signing process and defines whether the

application package is intended to store submission or testing. There are two primary

provisioning profiles that are used for testing: development and AdHoc. These

profiles define for which devices the application package can be installed.

Consequently, the test devices must be added to the correct provisioning profile in

order for them to be able to install the development packages.

4.2.2 Visual assets

 For App Store Connect, the main visual assets are similar to Google Play in a

way that you can upload images, icons and preview videos. However, the

requirements are a bit different. [14] For screenshots, application has to have at least

one, and maximum of 10 images for each screen resolution. Phone screenshot

resolutions vary from 1242×2688 pixels for the newest 6.5-inch screen to 640×920

pixels for the 3.5-inch screen used by the iPhone 4s. If the appearance of the

application is the same regardless of the device resolution, the resolutions can be

scaled down from larger resolutions. [15] For iPad tablet devices, the screenshot sizes

vary from 2048×2732 pixels for 12.9-inch 3rd generation tablet to 1536×2008 pixels

used by iPad mini. It is worth mentioning, that even though the 12.9-inch 2nd

generation iPad uses the same resolution as the 3rd generation, it requires its own

screenshots to be uploaded separately. The allowed image formats to be submitted to

the App Store Connect are the same PNG and JPEG as they are for Google Play. The

screenshots for App Store Connect also do not allow alpha channels in images to be

submitted.

 Preview videos or App previews as they are called in ASC are uploaded

directly to the store as opposed to Google Play where they are hosted by YouTube.

App previews follow the same format with resolutions as screenshots, apart from the

smallest device iPhone 4s not being supported. Preview videos are optional, but store

listing allows up to 3 videos for every size. Supported extensions for app previews are

19

.mp4, .mov and .m4v. Additionally there are other specifications to validate, as shown

in Figure 2, before videos are eligible for submission to the app store connect.

Figure 2. App preview specifications for two different formats. (Source:

https://help.apple.com/app-store-connect/#/dev4e413fcb8)

4.2.3 Text assets

 Similarly to Google Play store, developers can submit texts providing

information about the application to the App Store Connect. There is, however, a

difference in how these stores consider the texts. In App Store Connect, most of the

texts are linked in the platform version of the application. [16] In practice this means

that newly submitted texts show up to the users when the new version is approved

and promoted to production, while in GPS the texts are updated as soon as they are

saved in the Google Play console.

For ASC, the options for texts are description, promotional text, keywords,

release notes and subtitle. Description text is used to detail the applications features

and functionality with limitation of 4000 characters. Promotional text enables the

https://help.apple.com/app-store-connect/#/dev4e413fcb8

20

developer to inform users of any current app features without having to update the

application. The character limit for promotional text is 170 characters. Keywords help

the users to discover the application. Keywords are listed and separated with commas

and can have up to 100 bytes of content. Additionally, any company or app names is

not allowed in the keywords section. The subtitle is a maximum of 30 characters long

summary of the application and, similarly to the promotional text, can be updated

without submitting an update to the application. [17] Finally, release notes, which are

labelled as “What’s new in this update” in the ASC, are again used to inform the

users of the new features for the new update. What’s new in this update section is also

limited to 4000 characters of length.

4.3 Localizations and ratings

 All of the above assets can be localized to different languages. Google Play

store offers a possibility to localize your application and listing to over 70 different

languages. [9] For App Store Connect, the developers can choose from over 40

languages. [18] Usually it only makes sense to localize to those regions that are seen

as a good market opportunity. As such developers might consider localizing the

application to those markets. However, it is possible to set a default language for the

application. With this all the regions and languages without their own localization

will be shown the default language in the store listing as well as the in-game content.

 In Google Play store, content ratings vary between countries and continents.

Most of the time they follow the standard guidelines for that region. North and South

America follow ESRB (Entertainment Software Rating Board) content rating system,

while most of Europe and Middle East follow PEGI (Pan European Game

Information) standards. Germany, Brazil, Australia and South Korea have their own

rating systems differing from the main standards used by their region. [24] This

means that the application can have different ratings depending on the territory of the

rating authority. In addition to the aforementioned rating standards, all the

applications should also comply with Google Play Developer Program Policies. [26]

21

These policies aim to ensure that applications offered for download in GPS should

have at least minimum functionality and are not doing anything inappropriate or

illegal. App Store Connect on the other hand is a more closely curated environment.

Each application submitted is reviewed individually by experts. [25] As such they do

not have set guidelines for each localization and age rating, but rather every case is

evaluated by the reviewer. In both Google Play-store and App Store Connect cases,

content and ratings guidelines are different for distributing the application in China.

22

5. Technical overview of the tools

 In this chapter, we will go through the selection of tools that can be used

currently to upload different assets to the stores. There are multiple tools that

developers can choose to use, but most of them have some pitfalls that can affect the

usability and reliability of the submission. We will also see why we should choose to

use these particular solutions over the other available tools.

5.1 Fastlane

 Fastlane is an open source platform to simplify and automate many of the

tasks involved with releasing an application in the Google Play and Apple App Store.

[27] It can be used to automate screenshot capturing to code signing applications with

its built-in tools. However, in the context of this thesis we are going to focus more on

following tools in particular: Deliver and Supply. Deliver is a tool used to upload

assets to the App Store Connect while Supply is geared towards Google Play-store.

 Deliver uses another Fastlane tool called Spaceship to perform actions to App

Store Connect. Spaceship in turn uses API endpoint “du-

itc.appstoreconnect.apple.com” to upload assets to the ASC, and for uploading

application packages deliver uses the command line tool ITMSTransporter. Supply on

the other hand uses the Google Play Developer API to manage all the communication

with the Google Play-store.

 As all of the Fastlane’s tools are run from the command line, the problem with

using it for our project was that we had to invoke subprocesses for running Supply or

Deliver. Additionally, the problem with the earlier mentioned API, used by the

Deliver for uploading assets, is that there was no public documentation for it. Every

23

time Apple decided to change how the API works, there was usually a short delay

before the fix was merged and released. This meant that parts of the tool could be

unusable for a short period of time. For this reason, it was decided to change the

strategy to use the iTunes Music Store Transporter and Google Play Developer API

directly.

5.2 iTunes Music Store Transporter

 Assets can be delivered to the Apple App Store Connect using iTunes Music

Store Transporter (ITMSTransporter). ITMSTransporter is Apple’s Java-based

command line tool to validate and deliver assets to the store. [19] ITMSTransporter

can be used for delivering all assets to the app store or iTunes store. By default,

ITMSTransporter is delivered with XCode application, but can be installed separately

as well. XCode can only be installed on Mac computers, but for Linux and Windows

a download option for the tool is also available.

 The metadata is delivered to the App Store Connect through the App Store

Package format (.itmsp). An App Store Package is a directory marked with .itmsp

extension. It contains a metadata.xml (Extensible Markup Language) file where all

the delivered content is described and files to be delivered with the metadata-file. For

example, a directory where screenshots are uploaded to the ASC would look like:

24

 An example metadata-file is provided in Appendix A. This example follows

the specification defined in the app metadata specification. [20] Before assigning the

delivery content in the metadata-file, identifying information for the application is

required. App Store Connect provider, team id and vendor id must all be defined at

the beginning of the metadata-file, corresponding to the application the metadata will

be uploaded to. These are marked with “<provider>”, “<team_id>” and

“<vendor_id>” elements. These elements define the application that the to be

delivered metadata is linked with in the App Store Connect. Version element contains

short version string of the application version in the store where the metadata will be

assigned. This version must correspond to an existing version in the store. Locales

inside the version element are defined with the RFC 5646 specification

(https://tools.ietf.org/html/rfc5646). The en-US locale defined in the metadata-file

would then be applied English-speaking residents of the United States.

<locale name="en-US">

 <title>Test Application</title>

 <subtitle>Testing-filled application</subtitle>

 <description>Application for testing.</description>

 <promotional_text>On sale for a limited time.</promotional_text>

 <keywords>

 <keyword>testing</keyword>

https://tools.ietf.org/html/rfc5646

25

 <keyword>educational</keyword>

 </keywords>

 <version_whats_new>Fixed a bug.</version_whats_new>

Inside the “<locale>”-elements is defined the localized content for delivery.

Inside these tags are also defined all the assets explained in Chapter 4. While the text

assets are described inside their corresponding elements as a plain text, screenshots

and app previews require additional content for delivery.

<software_screenshot display_target="iOS-iPad" position="1">

 <file_name>screen-en-US-ipad-1.png</file_name>

 <size>286243</size>

 <checksum type="md5">3cefb7c5c37f6c868c0f4c46dc16c415</checksum>

</software_screenshot>

<app_preview display_target="iOS-6.5-in" position="1">

 <preview_image_time format="24/999

1000/nonDrop">00:00:17:01</preview_image_time>

 <data_file role="source">

 <file_name>app_preview.mp4</file_name>

 <size>33558000</size>

 <checksum

type="md5">cd12fca6b5858985fdbe10a422ade6c3</checksum>

 </data_file>

</app_preview>

 The “<software_screenshot>” element contains information about the display

target of the screenshot. These display target names are consistent with the

resolutions mapped to the device names in the screenshot specification (Section 4.2).

The position argument next to the display target indicates the desired position for

screenshot in relation to other provided screenshots for that display_target and locale.

Name correlating to the file stored inside the App Store Package must be supplied in

26

the “<file_name>” element. Additionally, the file size in bytes and calculated MD5-

checksum must be provided in their own elements under the

“<software_screenshot>” or “<app_preview>” elements. The app preview is

described similarly, except there is possibility to define a poster frame for the app

preview. Poster frame is shown to the user when the app preview is not playing. The

source file is provided inside “<data_file>” elements, as opposed to a more

straightforward definition of software screenshots.

 For submitting assets automatically to the App Store Connect. there is

realistically no other feasible way besides using ITMSTransporter. For example,

Fastlane, uses Apple’s REST API (Representational State Transfer Application

Programming Interface) to upload assets to the store platform. The problem with this

approach is that the API used by Fastlane is neither documented nor officially

supported. This could provide some major problems down the road if Apple decides

to discontinue or change how the API works. With this in mind, the only practical

solution for automating submissions to ASC is to use ITMSTransporter offered by

Apple. There are, however, some limitations and inconveniences with using

Transporter. Most notable is the delivery format that requires multiple file and system

IO-operations, as well as, parsing and generating .xml documents from templates.

Secondly, running command line tool from inside the program introduces some

challenges for parsing and reporting the output.

27

5.3 Google Play Developer API

 Google offers an extensive API for a wide variety of operations to different

Google-platforms. One of these is Google Play Developer API which can be used to

send assets and application packages to Google Play-store. [21] API is, as defined by

Red Hat, a set of definitions and protocols for building and integrating application

software. In practice this means that an application can communicate with other

services without knowledge of how it is implemented. API defines the input and

output of the endpoints and with this information the developers can build their

software to communicate with the API. The benefits of the Google Play Developer

API compared to the Transporter offered by Apple is that the API offers the

developer more control for interacting with the service. For example, uploading a

single asset is more straightforward with calling an API endpoint than invoking a

subprocess for the Transporter command line tool.

 Authentication to Google Play Developer API can be handled with service

account or with OAuth client to authenticate with personal credentials. For the

implementation of the tool of this thesis, service account was selected due to the

reason that not all users had appropriate level of access rights to do all the operations

required to submit assets to the Google marketplace.

 Google Play Developer API implements a resource called Edits that allows

preparing multiple changes to the application through a series of methods before

committing them all at once. [22] For interacting with the Google Play Developer

API, there is a client library for Python. [23] Appendix B provides an example file for

simple Android Application Package upload implementation. From this example we

can see that first by calling edits().insert() method with empty payload we are

creating an open edit in the application. After that by supplying the returned edit

identifier to consequent requests it is possible to make multiple changes for the same

session, before finally committing them in batch. It is however worth noting that this

implementation would not be enough by itself to publish this application package to

any of the applications’ tracks. In order to accommodate this feature, the file

28

presented in Appendix B would need some additions. An update call to the

edits().tracks() resource would have to be made with request body defining the

application packages’ Android versioncode.

payload = {

 ‘track’: ‘beta’,

 ‘releases’: [{

 ‘versionCodes’: [<application_versioncode>],

 ‘status’: ‘completed’

}]

}

 For automating tasks to Google Play-store, the Google Play Developer API

seems to be the only practical way. This is, however, a non-issue as the Google Play

Developer API is extensive and well documented. Changes to it are communicated

well in advance and there is support for multiple different programming languages.

29

6. Technical solution

 In this chapter, we will go through the implementation of the automated tools

for uploading assets to the store marketplaces. There are two main components for

this implementation: BuildTracker and Shipit. The handling and ordering of assets for

the submission is done from the BuildTracker and Shipit is a microservice responsible

for submitting the assets. For the programming language for this service python was

chosen based on the fact that other surrounding tools in the technology team stack

were also done with it. In the beginning it brought some problems when using

Fastlane because it is implemented using ruby programming language.

6.1 Buildtracker

 Buildtracker is an internal Django application developed for keeping track of

all the application packages built in the company. Every application package built by

automated build tools are sent to the Buildtracker. All the packages that are sent to

Buildtracker are analysed and the contents and information about the packages are

displayed for users. From the application package page users can also download the

build, re-sign the package with different signing certificate and send it for external

testing companies. From this page the application package can be uploaded to the

corresponding marketplaces as shown in Figure 3.

30

Figure 3. Application package info page.

Screenshots and app preview videos are validated from their own tab. Users

can create new validation from the button shown on the page in Figure 4. From there

the project and version is chosen for the validation. Then URL to Google Drive folder

containing images or videos is defined. If images or videos are valid, the preview for

it is created automatically after validation. On the other hand, if some of the assets are

not valid, an error message containing offending assets with which of the validation

steps failed are shown in the message field.

31

Figure 4. Screenshot validation page.

 From the Project homepage users with relevant permissions can create a

“submission task” for the project. This includes deciding what assets are needed for

the new submission. Users have all the asset options presented in Chapter 4 excluding

the icon upload. In this request, a new application package is automatically required

for the new submission as every version should add something new to the game. This

design choice was made during the design with the users. Stores themselves allow to

change assets without updating the application package itself, and it is possible to

accommodate this with submission automation but that means users will have to

deviate from the intended workflow.

32

Figure 5. User interface for submitting assets.

 The UI (User Interface) for submissions as shown in Figure 5 allows users to

submit the assets defined in the “Request submission” phase. “Build submissions” are

done from the application package page as described earlier, but in this submission

page you can “attach” the final build to the current submission task to show which

package was actually made available for the users. In the images section, submission

users can send screenshots to the store. Screenshots are made available automatically

and a preview for the images is generated when artists validate that the screenshots

are compatible with the store requirements. From this preview, users can make sure

that all the desired screenshots are in the right order and belong to the correct

33

localisation. Additionally, for App Store Connect submissions video section is also

available. The UI for it works in the same manner as for screenshot submission. For

text submissions the preview is generated by user action. Then a request is sent to the

microservice to look up texts for the desired version number from a Google sheet

defined for each individual project. After this is done, a HTML page is generated and

the found texts are displayed for the user to make sure that everything is in order. If

everything is correct, the users can then submit these texts to the store.

There are two main ways to access the individual submission page. First is

through the submission calendar view showing all the upcoming company

submissions and the second is through individual project home page showing only the

submissions relevant to that particular project. The submissions are displayed in the

project page in a submission tab and companywide submission calendar, which

contains ongoing and upcoming requested submissions for every project. When all

the planned sections are done for a submission, it is marked live. Submission calendar

shows every submission for two weeks and on the top, there is a section for all the

submissions that are late.

 The user interface in Buildtracker was designed with users to promote and

make their workflow more straightforward. The intended workflow and roles can be

seen in Figure 6. One of the main themes when designing this workflow was to

discover and report possible errors and blockers of submissions as early as possible.

For example, when artists validate screenshots the errors would be reported directly

back to them and the images would not appear in the submission before all checks

passed. The same would happen when a new package is uploaded, a submission

validation would be run for the package and users would then be able to see which of

the compliance requirements, if any, were not as it should be. The end-users wanted

to make it easier to communicate between teams, by collecting the links to assets and

submissions into a centralised system. Finally, as is the case most of the time with

automated systems, users wanted to reduce the amount of manual labour and errors

associated with submissions.

34

Figure 6. Intended workflow for users.

Initially the results were good, and submissions were used as designed.

However, after some time when the submission team downscaled and finally ceased

to exist, some problems with the UI were found that did not conform to the needs of

the new users. When the submission responsibilities shifted from the submission team

to individual game teams, users found the intended submission workflow a bit stiff

and restricting. Submission requests that were intended to be used as a sort of a ticket

system for the submission team, became a more a way of creating an on-demand

submission with extra steps. The submission calendar that was created for the

submission team became irrelevant because game teams submitting their assets are

mostly invested only in their own projects’ submissions. As a result, the submission

calendar became bloated with incomplete tasks for the reason that submitted builds

were not attached to the correct submissions for them to be marked as complete.

35

6.2 Shipit

 Shipit is the project name for a set of microservices made with Python

programming language. The microservice consists of multiple processes running in a

process control system. Every asset type has their own process running and polling

new submissions from Buildtracker API for each submission type. Additionally, there

are processes for validators as well. Images and videos are validated by a set of

functions that each are validating their own specification. The errors are then

collected and formatted to as human readable format as possible. The reports are then

sent back to Buildtracker for artists to go through. After successful validation,

thumbnails from the actual images are generated and sent to AWS S3 bucket from

where Buildtracker can display them for the preview.

Image submission consists of Google and Apple submission modules. For a

submission to ASC images or videos, metadata file and information about the

application is required. The required information consists of user credentials, vendor,

team and application identifier. The vendor and team identifiers are fetched from the

App Store Connect based on the application identifier defined in the project’s

Buildtracker configurations. The metadata file for upload is generated from templates

conforming to the specifications. When setting up the submission, a Python

dictionary containing all the information needed for the submission is created and

passed to the template to populate the place holder spots. The Python dictionary is a

data structure very similar to JSON (Java Script Object Notation) format in the sense

that both consist of key-value pairs. The assets are downloaded from Google drive

using Google Drive API which is very similar to Google Play Developer API

explained in Section 5.3. The downloaded files are analysed to determine the

language, display target and position for the template. The obtained resolutions are

then compared to the resolutions defined by Apple to determine the device target. The

module is only searching for three main resolutions in the source folder, because all

the other device sizes can be scaled from them automatically in the App Store

Connect. These resolutions are, as defined in Section 4.2.2, 1242×2688 for 6.5-inch

iPhone, 1242×2208 for 5.5-inch iPhone and 2048×2732 for iPads. Screenshot

36

positions on the other hand are determined from names as they are sorted

alphabetically. This means that the screenshots must be sorted in the right order

already in the source folder. Once the screenshots are copied to the .itmsp-package,

the metadata-file is also generated and situated in the folder. Finally, a subprocess is

used to call the iTMSTransporter command line tool to start the submission. This

process is followed by a process monitor module which reports the progress and

result of the submission to the Buildtracker.

Google image submission module in contrast only requires the images and the

application package name for a submission. The images are downloaded through the

same API as for the App Store Connect submission. The same screenshots are used as

for ASC submission, for the reason, that Google has very liberal requirements for the

screenshot resolutions. The screenshots are then divided based on the language and

device targets in a dictionary. The dictionary is then iterated over using the

edits.images.upload method. References for building these requests can be

found in Appendix B.

Text submissions work in the same vein as they work for the corresponding

platforms in the image submission module. The texts are fetched from the Google

sheets using a Google sheets utility library. The worksheet is organized by version

number and text type, so that it is more machine readable. The worksheet is then

searched for rows containing the desired version number and text type. The dictionary

containing the texts are finally sent to the metadata template for Apple submission, or

iterated over, using the same technique as for the screenshot submissions.

The communication between Shipit and Buildtracker is handled through the

Buildtracker API. Consequently, this means that the Buildtracker does not interact

with the Shipit services. The communication flows from Shipit to Buildtracker, as

shown in Figure 7, by polling new tasks and sending results to different API routes.

37

Figure 7. Communication flow chart between Shipit and other platforms.

The submission automation tools are working for the most part as intended. Most

problems in submissions are still occurring from user errors. These errors mostly stem

from the fact that the instructions and usage of these tools are not so straightforward

for a new user. This problem could be alleviated with extensive documentation or

training made readily available for users.

38

7. Interviews and results

In this chapter we will go through the interviews and collect the results for

each question. The objective for these interviews was to gather user experiences for

the achieved automation. From the company perspective, we wanted to gather

knowledge on the user’s perceived experience of the service to assist us in

redesigning the user interface to better match the current and future needs of the users

conducting the submissions. On academic level, we wanted to focus on how, if at all,

the automated submission service designed with UCD-paradigm affected the

organization's ability learn and retain information relating to the automated domain.

(TODO conclusions: It has to be mentioned, that in hindsight the user perspective

might have had even too much weight on the end product. As we established in

Section 2.2, users might not always know how to best implement their wishes.)

7.1 User’s role before automation

Question: What is your individual work process regarding submission?

Users’ individual work process seems to be all around pretty same, as first

build is submitted for testing, and after that gathering required assets and submitting

them or coordinating submission for someone else. iOS builds are usually submitted

well in advance as it takes longer time for them to be approved. Submissions for

Google Play are more or less instant.

Question: What is the update process in your team?

From these answers we can gather that people who usually make submissions

are more or less in charge of the whole submission process. Sometimes the process of

uploading the assets is given to the marketing people, but the decision making is the

responsibility of the person who makes the submission.

39

Question: What was submission like before automation?

Submissions before were tedious and a lot of manual work. When the central

team oversaw the submissions, it would lead to situations where game teams ordering

the submission were not necessarily aware of all the things needed for the submission.

For example, some image sizes could be missing, or the images might contain alpha

channels which are not allowed by apple. That would lead to hurry as artists would

need to modify images and they needed to be submitted again. Apple would require

the submission to be made from apple hardware so in the worst case the submitter

would need two use two computers. Also, the time from providing assets to the

submission team and them going to the store could take some time as the submission

team would have queue for submissions.

7.2 User experiences

Question: What did/do you expect from automation?

The main expectation is mostly convenience across all answers. Some

interviewees said that it is hard to expect or ask for anything as they are not thinking

on the same technical level as developers, so it is hard for them to try and imagine

what is possible to do. Some things that might sound simple for them would prove to

be impossible to implement, and this goes the other way around as well. One

interviewee also expressed that they did not even believe that it would be possible to

automate submissions. I think there is something to be looked in to in how the

difference in users and developers’ technical abilities affect the design of the

software.

Question: Have you used submission automation? If not why?

40

All interviewees have used most parts of automation. Video submission is, for

some reason, not used that much. It might be because videos are not that frequently

submitted. That could affect the “confidence” to use the tool to submit them when

there is a long delay between sessions.

Question: How would you describe your experience learning to use

submission automation tools? How could the learning process be improved?

Overall, learning to use submission automation was not perceived as hard. But

some people expressed that there are parts where you do not remember what to do.

For this reason, the usability could be improved. Moreover, some people said that the

UI is “a bit engineery” and some parts of the tool are outdated as the user group has

changed. Additionally, when users have longer periods when they are not doing

submissions, coming back to the tool can be like learning to do it again.

Improvements wise more straight forward submissions were requested. This means

for example, getting rid of the request submission form, described in Section 6.1, and

doing the submission from one page containing all required action points.

Additionally, the concept of versions was hard to grasp for part of the interview

group. This confusion stems from the fact that sometimes builds follow slightly

different versioning from the submission version. For example, an application

package having version 1.1.0.1, which in this case consists of major-, minor-, patch-

and commit number. All the while, the version under submission would be in this

example 1.1.0. Some added complexity for the users offers the fact that Google Play

store do not even require any versioning for assets other than the application

packages.

Question: How did the introduction of submission automation change your

process regarding submission?

One interviewee who was part of the central submission team expressed that

the hardest part was to get teams to use the submission tool. From the user

perspective, the expected convenience was achieved, which is why the change was

41

for the better across all interviewees. Also, it was interesting to notice that people

would push back the submission date when the required time to do them was reduced.

Before the tool was introduced, people would start to prepare for submission week in

advance. After the tool was in use, the submission assets could be delivered as late as

the day the game was supposed to go live. Additional benefit for the users was that

this enabled multitasking as the submitter could perform the submission and do other

things while the automation tool was uploading assets. The interviewees also

expressed that less errors would occur, as the validation process for assets were

introduced as part of the submission tools.

Question: How did the change in submission responsibilities change your

submission process?

There was a bit of division among the answers. Some users had always been

doing their submissions even before automation, while other people observed that the

whole process “felt a lot more on me”. Some said that at the moment there is no one

who is on top of all the submission related things and there should be someone who

supervises and helps people with matters related to stores and submissions.

Question: How did the knowledge regarding submissions transfer from

submission team to game teams?

Among these answers, some said that it is hard to say how the knowledge

transferred, as the old submission team was a kind of outgoing by nature and most of

the interviewees were already their good friends and helping each other even before

the responsibilities shifted. Consequently, the transfer of knowledge was quite

seamless between those parties. The central submission team would do the

submission with a person from the game teams and instruct them for how to do it by

themselves. In conclusion, interviewees suggested that no significant amount of

knowledge was lost during this phase, because the knowledge for submissions were

actively shifted to more people.

42

7.3 User evaluation

Question: How would you evaluate the effectiveness and reliability of

submission automation?

One observation was that the way Buildtracker and submission automation

went on to develop changed the whole concept of submission in the company, which

in turn reduced the importance of the central submission team, as was said that

“anyone could do submissions with a press of a button”. There was no real need for

one team to do all the submissions anymore. (As a side note, pretty soon after the

tools were in use, the submission team size reduced; it would be interesting to know if

this had something to do with the tools, or if it is just a coincidence.) The consensus

amongst all interviewees is that the tool is effective as a whole. There are some

concerns with the reliability, and most of the time it is really hard to guarantee that

store side servers are functioning. Some users do not trust the automation system

because of those cases. Moreover, sometimes the assets take long time to appear in

Apple App Store: at most, some builds could take as long as 10 hours to be visible.

Users expressed that if there would be some errors, they would contact the

development team and the issue would be resolved in timely manner.

Question: How would you improve submission automation?

Common improvement among these answers was: faster submissions and

more promotional asset types, for example, when Apple considers a game for a store

featuring. Additionally, it was suggested that getting rid of submission calendar that

was developed for the old submission team to track submissions would make the feel

of the submissions more straightforward. Users also expressed that, while not urgent,

the UI is dated and could be somewhat improved. One interviewee hoped for new

store features to be integrated faster, for example, adding new localisation options and

image sizes would be helpful on the day they are allowed in appstore. One idea was

also, to have automated email to be sent out when a version for a game is live.

43

Question: How can the submission automation tool be better integrated to

your update cycle?

Multiple users said that more agile way to do submission would be better way

to integrate the submission to teams’ ways of working. The current way of requesting

submissions is a bit stiff, which is why a page that covers all the needs with intuitive

and agile user experience would be ideal for users. When it is time to submit, just

“punching” in the assets would make the process more straightforward.

Question: How important role submission plays in your team’s development

processes?

Most people were of the opinion that the submission is a really important part

of the development process. It is, of course, the whole point of development to get the

packages to users and as core business as it gets. One differing perspective was that it

is not really important anymore as the tooling has made the team to not be so

concerned about the submission as it is already pretty painless. Hence, the producer

or QA can just put everything into the store and no other team members really need to

be concerned with the process.

44

8. Conclusions

 This thesis aimed to identify whether an automated system made with user

centred design had some effect on organizational learning. Considering the fact that

this thesis only focused on one system matching the description, it is hard to come to

any definitive conclusions in this field. Still, the results were indicative of there being

some help retaining information inside this organization even though core

competence regarding submissions left the company. As stated in the interviews, the

core submission team would instruct new users on how to use the automated system.

Spreading the submission knowledge throughout the game teams will help the

organization learn, but the automation would leave users with only shallow

knowledge of the underlying store platform systems. Furthermore, the training of the

new users would be performed by the previous user, who might not have that good of

an understanding of the system themselves. In my opinion it would be beneficial for

new users in the future to get the required training from people with good

understanding of the system. It is worth mentioning that, even though the knowledge

regarding the submissions might be shallow for the users using the automation, the

team responsible for implementing the automated system has to have a deep

understanding of the submissions. In this sense, the core competence has shifted from

the submission specialists to the technology team implementing and documenting the

system resulting in increase in the overall and long-term submission knowledge for

the organization.

Whether this increase in organizational learning had anything to do with the

automated system being designed with UCD can be debated. The UCD part of the

design may have been a bit too inclusive of the user feedback. Considering this fact,

the resulting system had some features that could not keep up with the changing

organization. As stated earlier, when designing the system, the end-user was

consulted perhaps even too much about their preferences for the user interface. For

example, some of the small details about submissions were good ideas in theory, but

in practice they just ended up being steps that brought no real value for the user. One

45

such example was the QA and team status for game packages considered for

submission seen in Figure 3. The idea would be that both team and QA lead would go

to the package page and greenlight it when it gets approved for submission on their

part, then a submission specialist would see that this package can now be submitted.

This would rarely happen in practice, instead the package for submission would be

communicated using other channels. Consequently, if this research would be

continued in the future, I would suggest paying more attention in the UCD process to

be applied in the design phase of the system.

Considering the qualitative nature of this study, the initial expectations for this

study were met reasonably well. As stated earlier, the knowledge of the submission

and its processes are now spread more in the organization rather than residing in one

team. Even though the aim was to see if UCD and OL would overlap in this case,

there was more evidence to support automation affecting OL rather than UCD being

responsible for it. The user interviews indicated that even though there is no one on

top of all the submissions like before, the knowledge regarding the submissions are to

be found in more places and perhaps not even needed as much, because the process is

more streamlined from automated validation to uploading of the assets. Additionally,

the feedback from learning to use the system was generally good, and users had no

problems getting support when encountering situations which they could not resolve

themselves. Also, from the quantitative perspective the overall submission times were

considerably faster. As users stated in the interviews, work that could take them at

worst the whole business day, could now be done with a push of a button allowing

them to do other work in tandem while the submission was processing in the

background.

At the organizational level, we got a lot of valuable insight on the state of the

automated submission tools. Feedback from the users will help us understand better

what needs to be changed or improved in the next iterations of the user experience for

the system. While feedback from users is most certainly valuable, it is important to

not take it at face value, rather it is better to try and really understand the users and

their tasks. From the interviews and my gathered insight for the subject, I would

46

surmise that convenience takes priority over functionality when automating tasks,

even if they are work heavy in the first place. If the user experience of the system is

tedious and hard to learn for the users, they might choose to do the original tedious

work that is at least familiar to them. One concern from the interviews was that some

of the users were not aware of all the existing features for automated submissions.

Some interviewees suggested a feature only to discover that it already existed. For

this reason, it is really important to onboard and educate people to get them to use the

existing systems as soon as possible before they develop their own habits that could

make them impervious to new ones.

In conclusion, the results were not indicative of there being any significant

learning due to the UCD, but overall this study gave direction for new research to be

made on the subject. The observed OL could be attributed to general automation and

resulting change in the work environment. The results from the system were overall

positive as the interviews suggested. It provided valuable insight on the subject of

designing systems for specific user group and how new users brought by changing

organizational structure changed the demand for the features of the same system.

47

References

[1] Nigel Bevan & Ian Curson, Planning and implementing user-centred design. In

CHI EA '99: CHI '99 Extended Abstracts on Human Factors in Computing Systems,

(May 1999), Pages 137–138

[2] Norman, Donald A. “Human-centered design considered harmful”, Interactions,

Volume 12, Number 4 (2005), Pages 14-19

[3] App Store icon, app preview, and screenshots overview, (2020),

https://help.apple.com/app-store-connect/#/dev910472ff2

[4] Google, Application Fundamentals, (27.12.2019),

https://developer.android.com/guide/components/fundamentals

[5] Google, APK Expansion Files, (27.12.2019),

https://developer.android.com/google/play/expansion-files

[12] Google, Use app signing by Google Play, (2020),

https://support.google.com/googleplay/android-developer/answer/7384423?hl=en

[6] Google, Graphic assets, screenshots, & video, (2020),

https://support.google.com/googleplay/android-developer/answer/1078870?hl=en

[7] Google, Set up an open, closed, or internal test, (2020),

https://support.google.com/googleplay/android-developer/answer/3131213?hl=en

[8] Google, APKs and Tracks, (18.5.2018), https://developers.google.com/android-

publisher/tracks

[9] Google, Translate & localize your app, (2020),

https://support.google.com/googleplay/android-developer/answer/3125566?hl=en

48

[10] Apple, Maximum build file sizes, (2020), https://help.apple.com/app-store-

connect/#/dev611e0a21f

[11] Apple, Reducing Your App’s Size, (2020),

https://developer.apple.com/documentation/xcode/reducing_your_app_s_size

[13] Apple, Code Signing, (2020), https://developer.apple.com/support/code-signing/

[14] Apple, App Store icon, app preview, and screenshots overview, (2020),

https://help.apple.com/app-store-connect/#/dev910472ff2

[15] Apple, Screenshot specifications, (2020),

https://help.apple.com/app-store-connect/#/devd274dd925

[16]Apple, Platform version information, (2020), https://help.apple.com/app-store-

connect/#/devf29afbb74

[17] Apple, App information, (2020), https://help.apple.com/app-store-

connect/#/dev219b53a88

[18] Apple, Prepare for a Global Audience, (2020),

https://developer.apple.com/internationalization/

[19] Apple, Transporter User Guide 2.0, (2019),

https://help.apple.com/itc/transporteruserguide/en.lproj/static.html

[20] Apple, Basic App Metadata Annotated, (2020),

https://help.apple.com/asc/appsspec/#/itc6e4198248

[21] Google, Google Play Developer API, (05.11.2019),

https://developers.google.com/android-publisher

49

[22] Google, Edits, (05.11.2019), https://developers.google.com/android-

publisher/edits

[23] Google, GitHub google-api-python-client, (13.3.2020),

https://github.com/googleapis/google-api-python-client

[24] Google, Apps & Games content ratings on Google Play, (2020),

https://support.google.com/googleplay/answer/6209544?hl=en

[25] Apple, App Store Review Guidelines, (04.03.2020),

https://developer.apple.com/app-store/review/guidelines/

[26] Google, Developer policy center, (2020),

https://play.google.com/about/developer-content-policy/

[27] Felix Krause, Fastlane, (2019), https://fastlane.tools/

[28] Vera Stara, Richard Harte, Mirko Di Rosa, Liam Glynn, Monica Casey, Patrick

Hayes, Lorena Rossi, Anat Mirelman, Paul M.A.Baker, Leo R. Quinlan & Gearóid

ÓLaighin, Does culture affect usability? A trans-European usability and user

experience assessment of a falls-risk connected health system following a user-

centred design methodology carried out in a single European country, Maturitas,

Volume 114, August 2018, Pages 22-26

[29] The International Organization for Standardization, ISO 9241-210:2019(en),

Ergonomics of human-system interaction — Part 210: Human-centred design for

interactive systems, (2019)

[30] Pieter M.A.Desmet, Haian Xue & Steven F.Fokkinga, The Same Person Is Never

the Same: Introducing Mood-Stimulated Thought/Action Tendencies for User-

Centered Design, She Ji: The Journal of Design, Economics, and Innovation, Volume

5, Issue 3, Autumn 2019, Pages 167-187

50

[31] Mica R. Ensley & Debra G. Jones, Designing for situation awareness, Second

edition, 2004

[32] N.B. Sarter, D. D. Woods & C.E. Billings, Cognitive Systems Engineering

Laboratory, The Ohio State University, AUTOMATION SURPRISES, Handbook of

Human Factors & Ergonomics, second edition, G. Salvendy (Ed.), Wiley, 1997

[33] Nakkiran N. Sunassee & Vernon Haumant, Organisational Learning versus the

Learning Organisation, SAICSIT '04: Proceedings of the 2004 annual research

conference of the South African institute of computer scientists and information

technologists on IT research in developing countries, October 2004 Pages 264–268

[34] Michael G. Harvey, Jonathan W, Palmer & Cheri Speier, Intranets and

organizational learning, SIGCPR '97: Proceedings of the 1997 ACM SIGCPR

conference on Computer personnel research, April 1997 Pages 110–116

[35] Jim Q. Chen, Ted E. Lee, Ruidong Zhang & Yue Jeff Zhang, “Systems

requirements for organizational learning”, Communications of the ACM, December

2003

[36] Helder de Jesus Ginja Antunes & Paulo Gonçalves Pinheiro, Linking knowledge

management, organizational learning and memory, Journal of Innovation &

Knowledge, 31 May 2019

51

Appendix A: Apple App Store metadata-file

example

<?xml version="1.0" encoding="UTF-8"?>

<package xmlns="http://apple.com/itunes/importer"

version="software5.11">

 <provider>ApplicationDeveloper</provider>

 <team_id>ABCD1234</team_id>

 <software>

 <vendor_id>VENDOR1D</vendor_id>

 <software_metadata>

 <versions>

 <version string="1.1.1">

 <locales>

 <locale name="en-US">

 <title>Test Application</title>

 <subtitle>Action-filled combat game</subtitle>

 <description>Application for

testing.</description>

 <promotional_text>On sale for a limited

time.</promotional_text>

 <keywords>

 <keyword>testing.</keyword>

 <keyword>educational.</keyword>

 </keywords>

 <version_whats_new>Fixed a

bug.</version_whats_new>

 <software_url>http://www.testapp.com/

</software_url>

 <privacy_url>http://www.testapp.com/privacy/

</privacy_url>

 <privacy_policy_text>Privacy

policy</privacy_policy_text>

http://www.testapp.com/
http://www.testapp.com/privacy/

52

 <support_url>http://www.testapp.com/support/

</support_url>

 <app_previews>

 <app_preview display_target="iOS-6.5-in"

position="1">

 <preview_image_time format="24/999

1000/nonDrop">00:00:17:01</preview_image_time>

 <data_file role="source">

 <file_name>app_preview.mp4</file_name>

 <size>33558000</size>

 <checksum

type="md5">cd12fca6b5858985fdbe10a422ade6c3</checksum>

 </data_file>

 </app_preview>

 </app_previews>

 <software_screenshots>

 <software_screenshot display_target="iOS-iPad"

position="1">

 <file_name>screen-en-US-ipad-

1.png</file_name>

 <size>286243</size>

 <checksum

type="md5">3cefb7c5c37f6c868c0f4c46dc16c415</checksum>

 </software_screenshot>

 </software_screenshots>

 </locale>

 </locales>

 </version>

 </versions>

 </software_metadata>

 </software>

</package>

http://www.testapp.com/support/

53

Appendix B: Google package upload script

example

from googleapiclient.discovery import build

from google.oauth2 import service_account

Create credentials from service account json-file.

credentials =

service_account.ServiceAccountCredentials.from_json_key_f

ile(

 json_key_path,

scopes=['https://googleapis.com/auth/androidpublisher']

)

Create service to make calls to the API

service = build(

 'androidpublisher',

 'v3',

 credentials=credentials

)

Create edit request and save edit id

edit_request = service.edits().insert(body={},

package_name=application_package_name).execute()

edit_id = edit_request['id']

Call upload method for the .apk

service.edits().apks().upload(

 editId=edit_id,

 package_name=application_package_name,

 media_body=path_to_apk,

54

 media_mime_type='application/octet-stream'

).execute()

Finally commit changes

service.edits().commit(editId=edit_id,

package_name=application_package_name).execute()

