
Rapid Software Development

Life Cycle in Small Projects

University of Turku

Department of Future Technologies

Software Development

Master’s Thesis

May 2020

Eevert Koskinen

Supervisor: Tuomas Mäkilä
In compliance with the quality regulations in University of Turku, the originality of this publication has been inspected with Turnit OrigininalityCheck system.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/326421534?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

University of Turku
Department of Future Technologies / Faculty of Science and Engineering

EEVERT KOSKINEN:

Rapid Software Development Life Cycle in Small Projects

Master’s Thesis, 54 pages.

Software Engineering

May 2020

Small software projects are becoming more usual nowadays. Whether a small project is

conducted privately or professionally, the management of the project and its phases is

much easier with proper tools and frameworks. The research target of this thesis is to

find out a proper life cycle model for small software projects.

This thesis is conducted for Softwarehouse, a professional division of IT services in

the University of Turku. The official guide for Scrum framework is adhered in software

development but when it comes to formally managing various phases of a software

project (planning, design, implementation, testing, reviewing etc.) there is room for

improvement. Managing software projects with a proper set of tools and procedures

would be beneficial as Softwarehouse works on many projects concurrently.

The intended life cycle model has to be formal and heavy enough so that the

benefits of agile project management can be received. However too rigid a model can

be too arduous and exhausting to use, which could result in the decrease of

Softwarehouse’s production volume. Therefore the model has to be light enough to

maintain rapid software development and creative atmosphere within the

Softwarehouse. This thesis begins by giving outline of existing software development

life cycle models and followed by relevant literary exploration. After this the research

case is explained in greater detail. These give the foundation and rationale to propose a

suitable model. The model is experimented empirically and reviewed by partaking

personnel. The results are reviewed and discussed. Finally topics for future research are

suggested.

Keywords: Software, Development, Life Cycle, Project Management, Scrum, Agile

Methodologies

Contents

1 Introduction 1

2 Software development in general 3

2.1 Waterfall . 3

2.2 Agile methodologies . 6

2.2.1 Scrum . 6

2.2.2 Kanban . 8

2.3 Software development life cycle (SDLC) 9

3 Existing research 12

3.1 Rapid production . 12

3.2 Small project organizations . 16

3.3 Organizational creativity . 20

3.4 Agility at present . 20

4 Research case status 22

4.1 Overview . 22

4.2 Scrum . 23

4.2.1 Scrum team . 23

4.2.2 Events . 24

4.2.3 Artifacts . 25

4.3 Workflow with Scrum . 26

4.4 Tools . 26

4.5 Project management . 27

4.5.1 Resource and personnel management 27

4.5.2 Risk and uncertainty management 27

4.5.3 Project scope and estimation management 28

5 Suggested model 29

5.1 Design considerations . 29

5.2 Model descriptions . 29

5.2.1 Planning phase . 30

5.2.2 Development phase . 31

5.2.3 Wrapping phase . 32

5.3 Model analysis . 33

6 Research overview 35

6.1 Setting . 35

6.2 Cases and teams . 35

6.2.1 Innovation platform . 36

6.2.2 UGIS-system . 36

6.2.3 Material database . 36

6.2.4 Lataamo . 36

6.3 Measures . 37

6.3.1 Individual experiences . 38

6.3.2 Productivity . 38

6.3.3 Project management . 39

6.4 Research analysis . 39

7 Results and Discussion 40

7.1 Results . 40

7.2 Discussion . 42

7.2.1 Organizational creativity . 42

7.2.2 Risk, resource, estimation and portfolio management 43

7.2.3 Formal project management . 44

7.2.4 Model compliance with agile foundation 46

7.3 The deployment of the suggested model 46

7.4 Future research . 47

7.4.1 Customer prioritization . 47

7.4.2 Measuring value and satisfaction 48

7.4.3 DevOps . 50

8 Summary 51

References 56

Appendices 61

1 Introduction
When it comes to successful software development, knowledgeable and competent

software project managers and development teams play an integral role as they apply

practically verified management practices in various project phases.[1] Nowadays

smaller software projects are becoming more common in both the public and private

sectors. Whether the intentions are to replicate a similar project with existing intellectual

properties or to create something from ground up, the management of a project and its

various phases is pragmatic and easier with proper tools and frameworks.

The research target of this thesis is to develop a proper life cycle model for

small software projects. It is conducted for Softwarehouse, a division of IT services in

the University of Turku. Softwarehouse is comprised of two divisions: implementation

and research. They provide software, data management and laboratory services under

the name of the University of Turku. Softwarehouse is a relatively new and growing

concept that has ambitions to steadily scale up their production capacity by incorporating

university students in their daily operations. Currently most of the acquired clients of

Softwarehouse come from academic circles, but it has potential to expand their business

network in the future to attain clients from the private sector.

Currently Softwarehouse works on many projects concurrently and finishes

approximately 40 to 60 projects per year. The sizes of momentarily active projects may

vary from small websites to larger mobile applications. Most of the times all the actors

in the Softwarehouse are working simultaneously in multiple projects with a

"criss-cross" manner. Employees do posses proficiency with multiple software languages

and technologies. The official guide for Scrum framework is adhered in software

development but when it comes to formally managing various phases of a software

project (planning, design, implementation, testing, reviewing etc.) there is room for

improvement. Managing software projects with a proper set of tools and procedures by

devising a rational life cycle model would be beneficial for Softwarehouse. The intended

life cycle model has to be formal and heavy enough so that the benefits of agile project

management can be received. However too rigid a model can be too arduous and

exhausting to use, which could result in the decrease of Softwarehouse’s production

1

volume. Therefore the model has to be light enough to maintain rapid software

development and creative atmosphere within the Softwarehouse. Additionally the

intended model needs to be capable of accommodating the diverse growing technical

competence that exists in softwarehouse. There may be many active software projects

that can be technically quite different from each other. In the end this model has to be

able to help managing them all with systematical consistency.

In order to create and design a suitable life cycle model for Softwarehouse, the

basic principles of generally recognized software development techniques must be

understood. In the following section this thesis provides an extensive literary review on

waterfall model, agile methodologies and software development life cycle in general.

This section helps to identify benefits and disadvantages of certain software development

techniques. In the third section this thesis explores and reviews findings on existing

researches that are closely linked to the research goals of this paper. Researches that

emphasize on swift production benchmarks and smaller projects without neglecting the

fundamental principle of legitimate project management are featured in this section. The

fourth section focuses on expanding and explaining the research case more elaborately

so that rationale and justification for the intended model may be extracted. Based on the

observations of the case and the previous literary sections, the fifth section provides the

framework and its details for the suggested model. The sixth section is for explaining the

research methods and tools for the actual empirical experiment of the suggested model.

The idea is to test this model with multiple simultaneous projects. The seventh section is

dedicated for discussing the results of the experiment. This section reviews how well the

research goals were achieved and provides suggestions for future research.

Currently Softwarehouse’s practices of formal project management are in their

infancy. This thesis aims to discover a proper project life cycle model, which helps to

add benefits of viable project management in daily operations and to manage the items in

the project portfolio with systematical consistency. If these aspects are attained and the

model does not harm organizational creativity or lower production volume, one can state

that the research goals of this thesis were achieved.

2

2 Software development in general
This section provides a brief overview on generally known software development

techniques. In terms of the research target their suitability in Softwarehouses operations

is also evaluated.

2.1 Waterfall

The waterfall model was originally introduced in software engineering environments by

Winston W. Royce in 1970. The model is a linear sequential development process, where

the progress is systematically flowing through a specific list of phases. The model

comprises five different phases: Analysis, design, implementation, testing and

maintenance. In order to build a functioning software all the phases must be completed

in the right order. Additionally, before proceeding to the next phase the preceding phase

must be entirely complete. The core principle is that the output of each phase becomes

the input for the next phase. In some instances the model also enables the option to

revisit previous phases, if the customer requirements are constantly changing. The figure

1 illustrates all the model phases in the right order.[2][3]

Figure 1: The overall structure of an average waterfall cycle

The purpose of the analysis phase is to extract and identify the core

Requirements for the software. The result of this phase is a fully comprehensive

3

behaviour description for the intended software. Both system and business analysts are

deeply involved in this phase. All the functional requirements are determined by defining

different use scenarios. According to them, requirements such as purpose, functions,

interfaces and database capabilities can be determined. Establishing non-functional

requirements is also relevant. They include characteristics such as software constraints

and limitations that have a huge influence on design and operations of the software rather

than on software behaviour.[2]

During the design phase all the planning and problem solving for the software

solution is conducted. Software developers and designers are deeply collaborating to

devise plan which includes designs for elements such as algorithms, architectures,

database schema and structure, user experience and logical diagrams. All the results

achieved in this phase will establish the necessary foundation before the following phase

can begin. [2]

The implementation phase represents the part of the project where the actual

software engineering is carried out. All the business requirements and technical

specifications are fulfilled into a software through the means of programming and

deployment. The working and development environments are initialized where the

program source code is then authored and compiled. The result of this phase is an

executable application.[2]

Testing phase is dedicated for software verification and validation. Software

testers check that the software solution meets the business requirements and

specifications. During this phase vigorous software debugging is conducted so that

various bugs and glitches can be discovered and corrected. Essentially the purpose of

testing is to ensure that the results achieved in the implementation phase actually satisfy

the goals authored in the analysis phase. [2]

Maintenance phase is the process of modifying already delivered software

solution. Actions that are executed in this phase can be about fixing bugs, refining output

and increasing performance. Maintenance activities may also include operations, where

the software is properly adapted to its intended environment, new user features are

accommodated to the software build and reliability of the software is increased.[2]

4

In practice, software projects have been inclined to encounter various problems

and shortcomings due to which there have been significant delays, cost overruns and even

utter failures. In most cases, the reason for this is that project managers are not assigning

enough personnel or resources for certain activities in the development. Critical phases

may be delayed due to insufficient amount of personnel. These delays may result in

bottleneck situations, which in turn can lead to a failure in delivering a product in time,

within budget or to a specified level of quality. [2][3]

The advantages for waterfall model are the capabilities for departmentalization

and control. The schedule, milestones and deadlines for each phase can be easily

determined. The purpose and goal of each phase is fairly comprehensible, which makes

the model easy to use. The rigidity of the model enables effortless management as the

main deliverable and the review process for each phase is very specific. Every phase is

implemented one at a time and can not be worked on concurrently with other phases. If

the business and technical requirements are very clear from the beginning and the size of

project is smaller, the use of waterfall model is well justified.[4]

The main problem with the waterfall model is that estimating the time and cost

for each phase is not easy. In some instances If there are multiple problems discovered

in the testing phase, it can be challenging to go back and make necessary alterations. If

the nature of the project is complex and the requirements have a moderately high risk of

changing, the waterfall model is not suitable. [4]

The waterfall model has a huge emphasis on following a specific plan. Every

phase in it serves a specific purpose and it is easy to review the success during the

project. The goal of this thesis is create a rapid development model for smaller projects.

Most of the projects Softwarehouse conducts are smaller in their size. Previously it was

established that waterfall model works for smaller projects provided that requirements

are clear from the beginning of the project. However Softwarehouse strictly follows

Scrum in their daily operations. The agile nature of Scrum framework emphasizes more

on learning-oriented approach than plan-oriented approach - there is hardly any rationale

or benefits to justify even partial usage of Waterfall.

5

2.2 Agile methodologies

This subsection provides a literary review on most popular agile frameworks.

2.2.1 Scrum

The Scrum framework is an approach to systems development that is based on defined and

black box process management. The performance of Scrum approach in its variants was

first witnessed by Takeuchi and Nonaka at Fuji-Xerox. Additionally bigger technology

companies such as Canon, Xerox and Hewlett-Packard were among the first to notice its

effectiveness. Later on Scrum started to gain a formidable foothold in software companies

as they started to notice the benefits Scrum could harness in object oriented techniques

and tools. [5]

In practice Scrum is a methodology that can be used in management,

enhancement and maintenance of an existing or a prototype system. The core principle is

that existing design and source code is constantly being evaluated and reviewed. When

Scrum development team plans their product releases, the decisions are made based on

the following variables: Customer requirements, time pressure, competition, quality,

vision and resource. These variables establish the preliminary plan for software projects.

As Scrum is an evolutionary approach by nature these variables are likely to change

during the project. Scrum is an enhanced iterative and incremental process that has

following phases: Pregame, Game and Postgame. [5]

In the pregame phase all the initial planning for the project is conducted. If the

goal is to develop a new system, this phase includes conceptualization and analysis. In the

case of an existing system, the analysis is usually limited. Mostly Pregame phase includes

activities such as Authoring a product backlog list, definition of project team, estimating

costs for the development work and risk assessment. Planning the project architecture is

also executed in this phase. The architecture illustrates the designs for how the items in

the backlog list are implemented. In some instances there may be more in-depth analysis

on backlog items depending on the project complexity. [5]

The game phase represents the actual development phase. It is an iterative cycle

of development, which occurs in sprints. A sprint conveys a set of activities that occur in

6

a pre-defined period of time. The length of the sprint is often assigned by management,

and is usually one to four weeks. During this phase the development team performs the

following: Develop, wrap, review and adjust. Developing part includes the actual

software implementation and testing. However it may include also domain analysis,

definition changes for backlog item. The wrap part refers to the part, where the source

code with its implemented changes is converted into an executable version. Review part

is comprised of activities where the development team meets, presents the work and

reviews the progress. This is the time where the team can raise and discuss about various

problems. Risks can be addressed and appropriate measures to handle them can be

defined. Adjust is the development portion where the information gathered in the review

part is processed further into packets. The completion of each sprint is usually followed

by a bigger review event. The development team and product management attend this

event. The point of this event is to review the implemented changes and evaluate the

overall project progress. The changes may be discussed in greater detail and new

backlog items may introduced and assigned to development teams. Depending on the

project complexity and the desired oversight, this sequence of activities in the game

phase can be repeated as many times as it is deemed necessary. [5]

The Postgame phase is dedicated for the project closure. At this point the

management team feels that the product meets the defined requirements and is ready for

general release by declaring the project as "closed". After this the product is essentially

ready for integration, user documentation, training material preparation and other closure

related tasks. The figure 2 below illustrates the development flow of this Scrum

variant.[5]

The Scrum explained above represents one the earliest versions of Scrum. This

model may provide a rough idea on the development flow, but it does not explain the

formal roles and events that are very common in modern Scrum frameworks. However,

compared to modern versions, the principles of resource flexibility, continuous learning

and collaboration do apply in this variant. Nowadays most software companies apply the

essence of scrum in software development, but some of the aspects of scrum may have

been adjusted to suit their needs better. The Scrum of Scrums, a way to implement cross

communication between multiple Scrum teams is briefly explained in the next section.

7

The official guide of Scrum includes and explains detailed use of sprint events, artifacts

and roles. Softwarehouse follows the guide in their operations and will be explained in

greater detail later in the research case status section.

Figure 2: Workflow in Scrum

2.2.2 Kanban

In the 1950s Japanese manufacturing industries introduced Kanban and lean principles.

In manufacturing Kanban works as a scheduling system that helps production teams to

visualize and manage the flow of the work more efficiently. In software development

Kanban was utilized in 2004. Project teams use Kanban to illustrate the workflow, limit

the work in progress at each development phase and measure cycle times. Kanban board

visualizes all software processes by conveying assigned work among developers,

communicating priorities and emphasizing bottlenecks. The core idea in Kanban is to

practice lean thinking in development by limiting the overall work in progress, in other

words implementing only items that are requested. If executed properly Kanban

increases the constant flow of released work items, as developers develop only few items

at given times. [6] The figure 3 below shows the structure of an average Kanban

board.[7]

Efficient use of Kanban helps team members to understand how their time is

being used during development. Usually online Kanban tools provide means to track

and gather productivity data, which helps project teams to discover development related

impediments. Commonly there are situations where one team member is overworking

and another is not doing his share of the work. In this instance the project manager would

8

Figure 3: Kanban board

delegate the available members to work on more demanding tasks, which alleviates the

pressure from the overall workload the whole team is facing. Essentially Kanban helps to

maximize the usage of available resources which enables the possibility to continuously

deliver products to clients. The other side of Kanban revolves around the principle of

waste reduction. Minimizing excess waste such as over-production, unnecessary motion

and defects. In other words the team is not conducting work that is not needed, incorrect

or time spent on doing the work with smaller priority.[7]

Most software development experts deem Kanban as an advanced agile tool that

necessitates formidable amount of development experience and motivation. Considering

the already existing agile working practices and the experienced personnel in

SoftwareHouse, the utilization of Kanban could be feasible and viable. In

SoftwareHouse the formally agreed practice is the official Scrum. The question whether

the proposed workflow in Kanban could co-exist with the chosen scrum framework is

not self-evident at this time. However the principle of lean thinking and the reduction of

excess waste is worth considering since there multiple small projects worked on

simultaneously.

2.3 Software development life cycle (SDLC)

When building any kind of product, it is generally beneficial to devise a model to track

and manage the product evolution from its initial conceptualization to its final release

- Whatever is the kind or size of the project. A product life cycle model typically has

stages to facilitate planning, provisioning, operating and supporting it. The model is

9

the framework that helps to ensure that the product is able to meet all the requirements

throughout its life. Another beneficial aspect of utilizing a proper life cycle model is

to ensure that the project organization thinks its operations within a larger framework,

which helps to manage all existing projects and overall business goals. The figure 5

below illustrates a typical life cycle model with some of the possible progressions. All

the stages have a distinct purpose and contribution to the whole life cycle. Organizations

employ stages differently to satisfy their distinct business strategies. [8]

Figure 4: Stages in SDLC

Content management for project life cycle allows a project organization to enable

a collaborative environment. Additionally component content management supports the

reuse of content objects. In terms of producing high-quality software, documentation is or

at least should be an important part of product life cycle. The international standards for

managing technical content includes storing elements such as user information, product

life cycle information and service management items. Content management activities can

be divided into five main modules. The figure 6 below shows the modules and example

activities among them.[9]

In project initiation the project organization authors a business case to support

the development and implementation of a content management solution. This is done by

evaluating certain organizational needs: Analyzing the current state, identifying potential

customer benefits and cost reduction opportunities, calculating the cost for needed

technologies and personnel and conducting risk assessment for the project. Essentially

multiple benefits such as standardized levels of product quality, reduced maintenance

and development costs and possibilities to trace cycle reviews and approvals better.[9]

10

Figure 5: The overall structure of the proposed life cycle model

In terms of efficient project management, A proper software development life

cycle can help to deliver a project with reduced development costs, higher product

quality and shorter time. Essentially it can help to attain highest level of management

and documentation. Everyone in the project organization understands what product

should be built, why it should be built and the best way to build it. However multiple

setbacks and failure to understand SDLC framework can turn the product

implementation into a disaster. Organizational commitment and precise execution are

prerequisites to utilize SDLC. [10]

This section has explained in different ways how software development can be

done. More or less every development framework has its own distinct features and

nuances that defines it. Considering the development flow and the different stages in

each of them, they all share lots of similarities with the generally recognized SDLC

framework. Most organizations use these frameworks but in most instances they have

designed and altered them significantly to suit their needs better. In the case of

SoftwareHouse, the intended life cycle model should be able to increase the benefits of

project management and progress tracking while sustaining the current production

volume. These explained frameworks create a foundation for the proposed model.

However like many other Software firms, Softwarehouse has its distinct qualities, which

need to be considered when designing and/or adapting a suitable model.

11

3 Existing research
This section goes deeper into the research goal of this thesis by exploring and reviewing

researches with relevant topics. Emphasis is on literature that focuses on rapid production,

small project organizations and organizational creativity. As agile methodologies play a

huge role in thesis, this section also briefly explains examples of the pragmatic utilization

of agile.

3.1 Rapid production

As the competition in the era of e-business is rising, firm’s ability to implement and

deliver high quality software on time is becoming a relevant metric to consider. In

general software development is known to be questionably slow and inefficient due to

communication delays and breakdowns. Firms are trying to come up with

game-changing ways to produce software to stay ahead of the competition. Typically

these new methods experiment various practices such as quality management

approaches, automated software design and usage of different development tools. In

spite of these new ways firms are still unable to manage their projects with necessary

quality.[11]

In large software projects, developers spend most of the time in communicating

with or looking for information from other team members. Past studies suggest that

commonly developers use less than 30 percent of time in coding during projects. The

rest of the time is used in meetings, problem solving and resolving misunderstandings

with customer requirements. Additionally communication breakdowns can constitute a

significant time sink. The reason for this usually the fact that development related tasks

are carried out by different groups. Physical separation and grown distance between

team members is proven to increase the probability of diminished communication.

Teasly’s research suggests that strong team collocation through the concept of War

Rooms can mitigate this issue efficiently. In war room, everyone involved in the

development such as experts, developers and managers conduct their work in a specific

space that is without outside distraction. War room promotes the idea that all the

essential resources are centralized and there are no communication breakdowns. The

12

figure 7 shows an example layout of a "war room".[11]

Figure 6: War room

The war room concept was tested with six different projects, which had the

development lifespan of 24 months. The company who delivered the projects utilized a

waterfall variant called fusion. Additionally the company adopted multiple features from

IBM’s Rapid application development methodology. Case projects were scoped with

timeboxing, which attempts to maintain time and personnel in constant values and

emphasizes the importance of implementing the most desired customer features. The test

results showed that heavy collocation of development teams increases productivity and

interactive continuous communication, which enables overhearing and awareness of

other team member’s activities.[11]

Strong collocation alone may be a simple way to ensure more efficient

communication and help delivering the working application in shorter time.[11]

However software firms should also consider adopting appropriate tools to attain rapid

production levels. To this date, rapid application development (RAD) methodologies still

do not have that high of a reputation. There are a number of ways to implement RAD.

Some of them are derived from dynamic systems development method (DSDM), which

focuses on issues such as project management, quality assurance and testing within rapid

metrics. DSDM has five different aspects: Development process model, set of

techniques, documentation, the link between documentation and techniques and the

philosophy. [12]

13

Principles of Joint application design (JAD) seem to appear in different RAD

methodologies. The core idea in JAD is that users and developers engage in deep

collaboration that spans the entire project life cycle from initial planning to final product

release. Arranging time for highly organized and detailed-oriented workshops is a

relevant part of JAD. These workshops are often conducted in conjunction with with

other analytical methods to improve and enhance systems specification activities.

Additionally workshop are expected to be held at clean rooms, where planning and can

be conducted without needless distractions and interruptions. All team members must

have great communication skills in terms of business. Additionally Users must have

knowledge in the application area. Documentation is an important part of JAD -

Development teams are expected to author fully documented business and technical

requirements early in the project. [12][13]

Time is a prominent feature in RAD. In most instances the key features of the

intended system can be implemented in 20 percent of the time required to build the entire

system. Due to this the concept of timeboxing has become a standard way to evaluate

and specify system priorities. Basically if there is a huge risk that the deadline will be

missed, lower priority requirements will be moved to a later time box. These priorities

may appear in later timeboxes and development iterations. Timeboxing ensure that the

development team is able to deliver the system within a fixed time span before the business

environment has changed. Essentially timeboxing helps development teams to maintain

focus and chronological control of the project. The figure 8 shows the relation between

timeboxes and user reviews.[12][14]

Figure 7: Timeboxing

Incremental prototyping is commonly associated with RAD methods. In

prototyping the initial research and development are conducted simultaneously to create

a prototype, which may or may not evolve into a final product. The prototype should

14

include a database, majority of its modules, user interface and information flows for

interfacing systems. Prototyping is essentially a process of building a system in an

iterative way. Once a prototype is finished, it is tested, reviewed and discussed to

determine whether it is actually turned into final products. This cycle of

inspection-discussion is usually repeated several times during a RAD project. The figure

9 shows how the prototyping may occur in development.[12][15]

Figure 8: Prototyping

Modern RAD approaches often require support from tools. Even though the goal

is to produce software in a rapid manner, software reliability can be achieved with various

statistical process-monitoring tools and designed experiments. In some instances effective

graphical user interface builders and computer-aided software engineering tools can both

expedite and maintain the quality in the development. There are studies that verify the

effectiveness of the heavy usage of these kinds of tools.[12] Most of these advanced tools

can be quite strenuous to use and require knowledge in data management. Considering

the the limited research goal of this thesis and the current state of already used tools in

Softwarehouse, A detailed exploration and review of these tools is excluded from this

paper. Examples of these tools can be found from these references. [16][17][18]

Many of the principles of DSDM apply in RAD approaches. The highest focus

is on delivering products frequently and highlighting the importance for business

purpose. In other words delivering a product that has necessary features within required

time is the most relevant aspect to consider. Highest level of communication and

collaboration between all stakeholders is vigorously adhered and monitored to prevent

misunderstandings and development breakdowns. Iterative and incremental development

helps to extract and specify the appropriate business solution. The iterative development

is usually backed with integrated testing throughout the project life cycle. The suggested

life cycle model for DSDM is shown in the figure 10. The first phase represents the

15

initial feasibility study, where both technical and business requirements are evaluated so

that the appropriate RAD approach can be chosen. The second phase is the high level

business study. In the third phase, building a functional prototype that demonstrates the

biggest requirements is the primary goal. The actual end system design and building of

the end product takes place here. Basically the prototype from previous phase is refined

further. The project closure and the handover to users is conducted in the final phase. In

most instances the success of the project is also evaluated here.[12]

Figure 9: Dynamic systems development method

3.2 Small project organizations

The growth of the software industry has generated many small companies. Much like

bigger companies these smaller companies are developing and producing significant

software solutions for both internal use and commercial applications. Fayad [19]

suggests that smaller-sized organizations need effective and tailored software

engineering practices. Metrics such as development speed, mode and size need to be

considered when designing and implementing appropriate working methods. It is

difficult to estimate cost figures for development. However it can be stated that methods

for developing large-scaled contract-based systems do not serve adequately companies

16

with less than fifty employees. Specialized forms testing and development are

prerequisites for effective distribution and feature updates in large companies. Smaller

companies tend to have much more specific needs and they are combined with the

challenges of frameworks and component integration.

As mentioned before, new software companies are started every day. Some of

them fulfill the definition of a software startup, which is a popular way to start

developing an idea into a successful business. Emerging and accessible technologies

such as cloud platforms and web development tools have made it relatively easy and

quick to to get started. The popularity and allure around startups are mainly inspired due

to countless success stories such as Facebook and Twitter. In many instances, embracing

lean thinking and customer focused development have been suggested as valid ways to

operate a startup.[20]

Generally startups have limited resources in terms of personnel and funding.

This combined with rapidly changing circumstances and strict schedules can make

running a startup difficult. Usually in the beginning a startup is platform for exploration,

which means that business models, customers and overall product requirements are

virtually non-existent. However it is important to be efficient and systematic. This can be

done simultaneously maximizing value gained and minimizing the effort in

development. To address all the challenges when finding a product idea worth scaling,

Bosch and her partners have suggested the early stage software startup development

model (ESSSDM). The model offers an operational process framework that highlights

the importance of lean thinking and assists in decision-making. It defines a step-by-step

process with clear exit criteria for ideas and guides what practices and techniques to

employ in the different stages. In essence the model helps to initialize a product backlog

of ideas, maintain and review the backlog items, prioritizing and validating ideas through

a funnel and abandon ideas with no proper rationale or prospects. The figure 11 shows

the overview of ESSSDM.[20]

Software process assessment models such as Capability maturity model and

ISO 9001 are not suitable for small software companies. Studies suggest that smaller

companies want to improve product quality and development processes but are having

problems with finances, technical domains or organizational restrictions. Sometimes the

17

company may have difficulties in forming an internal dedicated process improvement

group. Financial problems are often encountered when managers are trying to allocate

resources for quality groups and consultants. Technical issues may surface when the

company attempts to incorporate of modern development that necessitates personnel

training. Nunes and Gunha [21] have developed Wisdom method to address the specific

needs of smaller software companies. With this method, the development teams are able

to build and maintain systems that adhere high quality standards and processes.

Figure 10: Early stage software startup development model

The core foundation of wisdom was inspired by small companies that were

developing software with extremely specific and/or chaotic ways. Having chaotic ways

of working does not mean that the company is failing. Despite of chaotic nature, various

spiral models and iterative development methods have been proven to be effective.

Commonly the principle of "just do it" is associated with chaotic development ways.

Wisdom embraces this and promotes desirable aspects such as speed, flexibility and

good communication. Wisdom has three central components: process based

rapid-prototyping model, a set of conceptual modeling notations and a pragmatic

philosophy to manage projects.[21]

The iteration concept is very important in wisdom. The development team states

prototype objectives and reviews them at the end of the iteration. This activity provides

a sense of completion and control among managers and developers during the project.

In the beginning Understanding the teams development pace and assigning appropriate

duration for iteration is crucial for success. However later on Wisdom helps increasing

the workloads and lengths of iterations. In other words the development team’s overall

18

pace of production will improve and the organization is able to operate multiple product-

development life cycles in parallel.[21]

Smaller companies are inclined to benefit from diagrammatic and model-based

approaches as they help to specify and document developed software systems. Creating

and managing documentation becomes an inherent part of the development process and

is not considered to be a supporting activity. In Wisdom different models emerge from

participatory sessions and are supported by wrap-up sessions, where the required formal

specification is authored. Wisdom does not necessitate usage of direct tool support such

as Case tools. Wisdom could benefit from usage of separate modeling tools but their

presence in production would in fact hinder the aspects of rapid-development tools.

Separate modelling tools do not support process management activities such as task

prioritization and progress measurement. With a light-weight approach, wisdom intends

combine process management tools with modeling tools, which reduces the need of

using additional tools.[21]

Figure 11: Wisdom workflows

The wisdom notation is a subset of the UML, which is the standard language

for visualizing, specifying, constructing and documenting software system’s artifacts.

UML is comprised of 233 of different basic and diagram model concepts. Figure 12

conveys Wisdom’s four major workflows and diagrams. Wisdom is based on seven

models and uses four types of diagrams. The models and diagrams are carefully selected

19

to support the interactive aspects of software systems. Requirements workflow aims for

the the development of systems that actually satisfies the client and the end user. The

analysis workflow refines and structures the requirements in the requirements model.

The design workflow pushes the systems to implementation by refining its shape and

architecture.[21]

3.3 Organizational creativity

Richard Woodman, John Sawyer and Ricky Griffin [22] explain in their article that

organizational creativity is virtually the creation of a useful new product, service, idea or

process in a complex social system. It directly correlates with innovation whether it

sparks a new product or improves existing ones. Creativity is represents a complexity of

an individual’s behavior in a given situation. Contextual and social influences describe

various situations and they can either facilitate or hinder individual accomplishments.

Factors such as preceding correlations, cognitive style and motivation together combine

a function that makes up individual creativity.

Farida Rasulzada and ingrid Dackert [23] convey in their article that

psychological well-being of a person is related to organizational creativity and

innovation. New challenges and personal growth are often the products of Creativity and

they are likely to make individuals feel happier, enthusiastic and optimistic. Various

organizational factors such as team climate, available resources and implemented

leadership can enhance or reduce creativity. Positive team climate supports innovation,

makes individuals feel safe and fosters a vision that motivates work groups. Perceptions

of abundant resources alone can make people more engaged and inclined to deliver

creativity. Leadership is an important influence as it is well-established that a

transformational and charismatic leader invokes more intellectual stimulation in

employees.

3.4 Agility at present

Agile practices were originally intended for small collocated teams. Nowadays larger

companies utilize scrum by employing multiple teams that are distributed to several

20

locations. In order to scale Scrum effectively in larger and dispersed software

development operations, the use of a method called Scrum-of-Scrums (SoS) has

increased greatly. SoS is essentially practice that enables possibilities for inter-team

coordination and collaboration. Like with regular Scrum, SoS uses the daily Scrum

meeting, except that it deals with teams instead of team members.[24]

Many organizations have benefited from applying lean and agile practices at the

team level. The Scaled Agile Framework (SAFe) is a popular knowledge base that has

effectively grouped together integrated principles for lean and agile. In practice SAFe

extends the agile team by creating a cluster of agile teams. These teams together form

an agile release train (ART). In addition to different configurations and implementation

roadmap, SAFe highlights the relevance of role based training. To implement SAFe, the

target organization must truly understand the underlying lean and agile values. The Agile

manifesto influences the agile foundation of SAFe. The four values of the manifesto are

illustrated in the list below.[25]

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

List 1: The core values of agile manifesto.

21

4 Research case status
In this section the research case of this thesis is explained in greater detail to extract the

rationale for the intended model. This is done by reviewing current state of working

methods, tools and practices in project management.

4.1 Overview

Software House is a division of IT professionals and researchers from various fields of

science. It is comprised of two sections: implementation and research. They provide

software, data management and laboratory services for academic researchers and research

groups. Softwarehouse’s business network does not possess typical characteristics and is

essentially a complex. It includes its own project groups and other actors like customers,

researchers, other IT-teams of University (server and middleware) and sometimes external

IT-suppliers.

Softwarehouse works on many projects simultaneously and completes

approximately 40 to 60 projects per year. Smallest software projects are usually simple

websites that have a lifespan of one to two weeks. On occasion Softwarehouse also has

larger well funded projects, which can last several years. An example of this kind of

project could be implementing a complex analytic platform that supports a large research

undertaking. In terms of project portfolio management, Softwarehouse has always at

least 5 active projects, which are managed and implemented by 8 developers. There is

only one software tester with whom Software House collaborates. Due to this, the

development iterations and project release dates need to be scheduled and planned

according to software tester’s timetable. At the time of this thesis there was no one

appointed as the head of Software. Managing the project portfolio of Softwarehouse was

included in this role. To ensure formal accountability of managed projects, a head of

project management was appointed as a temporary solution.

Softwarehouse has been working with Scrum for a long time and follows

strongly its guidelines in every project. In certain distinct instances Softwarehouse has

also used Kanban, if there is a case, where a finished project requires maintenance or

22

needs to be developed further. In spite of using certified software development

frameworks, practices in formal and higher level project management are still in their

infancy. There is no systematic way how smaller projects are initiated, managed and

finished. Based on unconventional project management and personnel dynamics, one

could state that Softwarehouse’s operation style is a bit chaotic by nature.

4.2 Scrum

Scrum is a framework for developing, delivering and sustaining complex products.

Schwaber and Sutherland [26] have explained the definition of scrum in this guide. The

following subsections explain how Softwarehouse operates with the official Scrum

methodology.

4.2.1 Scrum team

The Scrum team is comprised of a Product owner, the development team and a Scrum

master. Teams are self-organizing and cross-functional. They determine how to best

accomplish their work and have all the needed competencies to complete the work without

having to rely and answer to others, who are not part of the team. The team structure is

designed to Optimize flexibility, creativity and productivity. Teams implement and deliver

products incrementally to ensure that the customers have access to best possible version

of the product at all times.[26]

The product owner’s job is to maximize the value of the product. Product owner

manages the product backlog by ordering the backlog items, ensuring the development

team truly understands backlog items and optimizing the value of the work the

development team performs. The product owner is one person who is accountable for the

work mentioned above.[26]

The development team consist of competent individuals responsible for

carrying out the work and delivering a functional version of a product after each sprint.

Development teams are empowered to manage their own work. In Softwarehouse the

size of the development team often varies depending on the size of the project. All the

individuals in the team may have specialized skills and areas of focus, but accountability

23

for the work belongs the entire team.[26]

The Scrum Master is responsible for making sure that the entire Scrum team

follows rules and constitution of Scrum as defined in the official guide. This is done

by promoting and helping everyone understand the theory, practices, rules and values in

Scrum. Depending the on level of team’s experience, Scrum master has lots of various

activities that serve the specific needs of product owner, development team and the firm

organization. For example Scrum master ensures the Scrum events are organized and held

whenever they are needed, helps product owner find the best ways to manage product

backlog and removes impediments to the development team’s progress. Softwarehouse

aims to have a dedicated scrum master for every active project, but in smaller projects the

scrum master role can be deemed unnecessary.[26]

4.2.2 Events

Scrum framework is known for its prescribed events, which are designed to create

regularity to the workflow and minimize general misunderstandings. All the events have

a specific duration. However apart from sprints, all the events may end whenever the

purpose the event is achieved. This ensures that the appropriate amount of time is spent

without allowing needless production delays. These events are designed to give a formal

opportunity to inspect work and enable transparency.[26]

The heart of Scrum is a sprint, which acts as a general container for all the other

events. The length of the sprint is always fixed and can not be modified once the sprint

has started. The duration of a sprint can be one month or less. In softwarehouse the

sprint duration is two weeks by default in every project. Once a sprint ends, a new sprint

starts immediately. Each sprint may be considered a project and are used to accomplish

something.[26]

Sprint planning is the event where all the work for upcoming sprint is reviewed

and decided. Generally sprint planning answers, what can be done in this sprint and how

the chosen work will be done. The entire scrum team participates in this events, so that

everyone understands the work of the sprint. Sprint goal is defined during planning. For

example it can be set of backlog items that need to be implemented during the sprint.[26]

24

The daily Scrum is a 15-minute event held at every day of the sprint. During this

event, the development team plans the work for the upcoming 24 hours. It is basically

a tool to inspect the work since the last daily Scrum and forecast the upcoming work.

In Softwarehouse, the daily scrum is structured around three questions: What did I do

yesterday, What will I do today and Do I have any problems with my current work. The

daily scrum essentially helps to improve communication and to review work progress

towards the sprint goal.[26]

The sprint review is held at the end of the sprint to inspect the finished product

and adapt the product backlog. Sprint review a mean for all the project stakeholders to

collaborate about the word conducted during the sprint. Depending on the project the

sprint review duration can vary from 1-hour to four-hours. In softwarehouse, the sprint

review includes at least the following elements: The product owner explains what backlog

items were completed and what were not completed, The development team demonstrates

the completed work and entire team reviews the project timeline and budget. Additionally

the entire team discusses what do next in the project.[26]

The sprint retrospective is an event that is used to inspect the team and its

performance. In softwarehouse, the retrospective is used to review the sprint

performance in terms of people, processes and tools. The main goal is to identify what

went well and potential improvements. Additionally a plan to implement improvements

may be devised.[26]

4.2.3 Artifacts

Scrum’s artifacts represents the work or value to provide transparency for inspection and

adaptation. The product backlog is a list of every item that is known to be needed in the

product. It is essentially the primary source of product requirements. The sprint backlog

is the set of product backlog items that are selected for the sprint. In softwarehouse, this

is often combined with a plan to deliver the working product of the sprint and to realize

the sprint goal. Scrum relies on transparency. The decision to optimize value and control

risk are made based on the current state of the artifacts. The definition of done is a term

used to describe whenever a product backlog item or the working product of the sprint is

25

completed.[26]

4.3 Workflow with Scrum

In order to implement Scrum properly, all the necessary events must be held and all the

textbook artifacts must be managed. The figure 12 below illustrates the approximate life

cycle sketch for most of the projects in Softwarehouse. The cycle begins from assigning

a project from product portfolio. After this all from Sprint planning to Review and

Retrospective are kept according to the official Scrum guide. Software testing usually

occurs after a sprint to ensure that the deliverable reaches a certain level of quality.

Figure 12: Scrum Workflow

4.4 Tools

Softwarehouse uses Atlassian Jira project management software to manage and schedule

their workload in this project. For Softwarehouse’s needs, Atlassian gives extensive

means to drive a project with Scrum. All the central activities such as managing the

backlog, starting a sprint and reviewing progress through comprehensible burndown

charts can done with Softwarehouse’s Jira license.[27] Softwarehouse uses also slack for

project communication and messaging. All the active projects have their own specific

slack channels to keep conversations focused and teams more aligned.[28] In terms of

electronic tools, Softwarehouse is currently not particularly inclined to add any more

tools to their development practices. However they are looking for feasible ways to

improve their software testing practices - Incorporating a light-weight testing tool could

26

be valid way to improve testing.

4.5 Project management

Software House gently follows a discovery-oriented project management style which lets

the organization work independently under the parent organization. It has a separate

internal structure and processes to create and develop products with uncertain

outcomes.[29]

4.5.1 Resource and personnel management

Project management requires versatile personnel management skills. Project team

consists of different kind of people which in many cases represent different cultures and

work from different parts of the world. Successful teamwork requires strict rules,

communication, stimulation and constructive feedback. A skillful project manager

knows how to exploit individual skills for the benefit of the group. [30]. Software

House’s personnel management is open and trustful which is typical for scrum

management. Responsibilities are divided between team members and each of the

members had their own responsibility areas. The part of Software House that conducts

the research, evaluates and investigates projects feasibility and then adds them to the

project order database. This database is constantly monitored so that the right amount

personnel from the implementation section can be assigned to projects as early as

possible. However it is worth noting that most of the projects in Softwarehouse do not

have a dedicated project manager. The overall accountability of every project falls solely

on the Head of softwarehouse, who admits that there is too much work all the time.

4.5.2 Risk and uncertainty management

In software development, risk can be defined as a potential problem that may delay or

even hinder the development progress of a project. Risk management means risk

containment and mitigation. This can be done by identifying and planning. Additionally

risks can also be classified and prioritized. If a risk likely hood and its potential impact is

high, the responsible team may devise a separate plan to avoid and mitigate the risk.[31]

27

Risk management in Softwarehouse is mostly based on work amount estimates that are

determined by evaluating the level of challenge within the project and the needed

technical know-how to finish the project. As most of the projects are small and can be

executed swiftly and fluently, it is often deemed unnecessary to conduct vigorous risk

management. If a project has complex or uncertain elements, they are identified early on.

Steady and open communication is Softwarehouse’s primary strategy in risk prevention

and mitigation.

4.5.3 Project scope and estimation management

In software development it is often hard to answer the question: How much work will it

take to deliver a new product? Cost estimation is inherently difficult as it is difficult for

humans to predict absolute outcomes.[32] The visibility of milestones is a critical feature

in highly singular projects.In cases where the project is quite vulnerable for delay and

even failure having visible milestones is especially important.[33] Currently scoping and

estimation is closely linked to existing risk management. The level technical challenges

and uncertainties serve a basis for story point estimation. Additionally during sprint

planning, the outcomes of previous sprints are used as a baseline to evaluate the effort

needed to complete tasks. Discussion is mostly the primary and only mean to assign the

amounts of points to each task. Softwarehouse could use common agile estimation

techniques that utilize visual aids - this could make planning activities more sensible and

entertaining.

28

5 Suggested model
This section describes the framework and its details for the suggested model. This is done

by explaining design considerations followed by model descriptions and analysis.

5.1 Design considerations

There were significant factors and issues to consider when designing the model. Firstly

the main purpose of the model was to increase formal project management in

Softwarehouse’s daily operations and to enable consistent management of

Softwarehouse’s small projects. Secondly, the suggested model could not be too

strenuous to use - Maintaining Softwarehouse’s production volume, organizational

creativity and team specific autonomy were important aspects to take into account.

In terms of lower level details, the model was supposed to be built around the

official Scrum framework, due to which the model needed to incorporate key scrum events

such as sprint planning and sprint review. The quality management in Softwarehouse is

determined by Scrum’s Definition of Done. This means that all the implemented features

are properly tested before marking them as truly done. Currently the considerable factor

is that there is only one dedicated software tester with whom the work has to be planned

and scheduled. The head of softwarehouse’s project manager asked, if the suggested

model could aside from traditional j-unit tests, incorporate more testing in development

iterations. Additionally ways to improve initial resource planning and schedule estimation

were also requested.

5.2 Model descriptions

With the design considerations in mind, the suggested model is conveyed in figure 13. It

shows chronologically all the significant phases and steps from initiation to project

closure. Like the original Scrum framework introduced in the second section of this

thesis, this model groups its activities and steps in three phases: planning, development

and wrapping. It also indicates all the relevant roles attached to every step. Overall the

whole figure represents a more detailed, embellished and nuanced model compared to

29

the previously presented life cycle model in section four. Like with the waterfall model,

each stage and internal step has a specific purpose. The model takes into account all the

necessary scrum events and artifacts. Continuous iterative nature is accommodated by

including four different development steps. Compared to existing work flows in

Softwarehouse, the usage of this model introduces three significant additions to daily

operations. These are highlighted with the color of red in the figure. Firstly after

initiation comes the Kick-Off and planning step. Secondly there is added monkey testing

with the box m. testing. Thirdly there is increased project management with the box risk

management and cost estimation. Additionally the arrows around development steps

symbolize a newly formatted style for development.

Figure 13: The overall structure of the proposed life cycle model

5.2.1 Planning phase

The first step in the planning phase is the initiation. This where the head of project

management orders a project and assigns a group of individuals for the project planning.

The Kick-off and planning step follows next. This is where the assigned individuals meet

for the first time to discuss about the project. They talk about the general aspects of the

project such as project difficulty and used technologies. Additionally the product owner

30

is assigned and the initial product backlog is authored.

Aside from agreeing of all the details, conducting resource planning and

management is also a relevant part of this phase. As Scrum sprints have a fixed length,

the principle of time boxing is already used. However this model introduces the

importance of resource boxing. This means that the planning team will choose the right

amount of personnel for the actual development. In order to do this, the team will

estimate and choose the right amount of story points for every item in the backlog. This

can be done with lots of different ways such as Planning Poker and T-shirt Sizes. Based

on the total amount of story points for the sprint, the planning team will choose the right

amount personnel, which which will form the scrum team.[34][35]

Moving on to sprint planning, the scrum team chooses all the items for the

sprint and plans how they are implemented. Depending on the estimated amount story

points in the previous phase the team will choose an appropriate schedule estimation and

review technique for the upcoming work. In standard projects with enough diversity and

complexity, a traditional burn down chart is a valid way to estimate the work progress.

However in very small projects, a burn down chart may be too cumbersome and heavy to

use. As previously verified, Softwarehouse has on occasion used Kanban to conduct

projects with smaller scopes. For these instances, the team might consider using a

cumulative flow diagram.[36] Compared to traditional Burn down chart, a Cumulative

flow diagram has better interoperability with Kanban technique and is a lighter way to

review cycle times, throughputs and work in progress. After agreeing on the schedule

estimation technique, the team will continue with the normal agenda of sprint planning.

5.2.2 Development phase

The development phase is the portion where the sprint cycle and the actual development

takes place. The primary actors of this phase are the development team and the Scrum

master. The sprint backlog is the primary source of all given tasks and the work progress

is reviewed in daily scrum events - Scrum master makes sure that is properly done. The

tendency to develop, integrate and refine is quite typical a chain of activities in software

production. As an added element, the purpose of M. Testing is to increase testing in

31

development. Conducting J-unit testing is already a standard procedure in feature

integration, but M. testing means adding monkey testing in development. Considering

that the intended product is not large, a sub variant of monkey testing called smart

monkey is used. This means that in addition to developing, the developers will on

occasion conduct smaller scale testing with the mentality of knowing the purpose and

functionality of the system. Essentially the developer navigates through the system and

gives valid inputs to perform random tasks. This is done in the interest of finding bugs

and errors without predefining any specific test or user cases. The durations of monkey

testing sessions should be kept as short as possible.

The box below the development sprints, indicates all the added risk

management and cost estimation for the entire project. The development team has the

complete autonomy to choose how this is actually done. There can be small separate

meetings. However since there formally no project specific managers in Softwarehouse,

every individual in the development team should practice this whenever it is possible.

Risk management should have the following process flow: Identification, planning and

monitoring. This applies to risks that could affect either the current sprint or future

sprints. Additionally cost estimation practices are added to determine whether the

development team could alter the sprint backlog either by eliminating current tasks or

adding new tasks during the sprint. Altering the size of the sprint backlog should not be

done unless everyone including developers, Scrum master and the head of project

management accepts it. In the interest of keeping this model as light as possible, the

documentation can practiced whenever deemed necessary.

5.2.3 Wrapping phase

In the final phase of the suggested model, the project is seen through the finalizing work.

The testing step is the final measure for product related quality assurance. This is done

by the tester. Provided that every implemented task is truly done, there will be no need to

revisit them again in upcoming sprints. If everything goes according to plan, all the

implemented tasks and features together comprise a fully operational deliverable.

Naturally if there are significant problems and very limited time, these problems will be

discussed in the sprint review to determine appropriate plan of action. All the relevant

32

stakeholders including product owner, Scrum master and the development team by

minimum should partake in the sprint review. Sprint retrospective should be kept right

after the review. Depending on the discovered findings and authorized decisions, the

project can proceed either to closure or sprint planning after which another development

iteration begins.

5.3 Model analysis

The quick glance of the suggested model would imply that the model shows exactly how

modern day scrum currently works. In the first planning comes the added concept of

resource boxing, which is done with the aid cost estimation games. This is overseen by

the selected planning committee, who will based on their findings, assign the right

amount people for the project and form the actual development team. Moreover in the

sprint planning comes the alternative schedule estimation tool, which is allegedly in

smaller projects a better option compared to standard burn down chart. These concepts

will ensure a higher probability that the project development is started with the right

amount of resources and proper work schedules.

This model introduces smart monkey testing in development iterations. As the

team has the complete autonomy to plan and conduct their work, the team can choose

appropriate times to conduct a small monkey testing sessions. In consideration to smaller

scale operations of Softwarehouse, Smart monkey testing provides added quality control

that is easier and cheaper to execute compared to traditional testing. Theoretically

Monkey testing could limit future work and minimize software tester’s work. However

due to its random nature, it could also be improper use of developer’s time, which is why

developers should aim to keep monkey testing sessions as short as possible. Monkey

testing could also be automated with dedicated techniques and tools, but there is

currently very limited access to proper tools in the open market.

Scrum framework itself acts as an effective way to oversee project management.

According to Scrum’s values, the development team has an utter autonomy to choose the

overall development style for planning, deciding and conducting all the scheduled work

as long as scheduled events are held. Daily scrum helps to review the overall progress

33

and inform if there are production related impediments arriving. However the practices

formal project management is often neglected or entirely omitted in agile methodologies.

Added risk management can help prevent production delays. Increased cost estimation

helps to evaluate the use of resources. For example if a certain project turns out to be

more demanding, the head of project management can transfer more personnel to more

arduous projects and remove personnel from projects that require lesser amount of work.

In terms of project portfolio management. There are no significant additions to

enable a systematic way to examine projects as singular units. As there are many active

projects worked on simultaneously, there should be a more coherent way to review their

current technical weight in the sprints and financial outcomes. Currently the head of

project management is solely accountable for the results of the projects. The proposed

model does encourage developers to think about risks and estimations more carefully,

which should enable a greater visibility of the overall situation. This should give basis to

make informed decisions in terms economical viability and project profitability.

All things considered the model does have a clear structure and every aspect of it

is explained adequately. The model describes the life cycle of a single project from project

initiation to closure. The process of project sales and project delivery to a client is omitted

from this research, as the primary purpose and research outcome is to extract the point

where production efficiency and project management are perfectly balanced. However

this model can extended to consider the sales side more carefully in future research.

34

6 Research overview
This is the section that conveys the details of the empirical research for the suggested

model. This is done by explaining the research setting, cases and measures.

6.1 Setting

The research setting takes place in the premises of Softwarehouse’s daily operations.

The duration of the research period is one month, during which the model is tested on

two consecutive scrum sprints. The developers will be given instructions on how to use

the model in life cycle parts where the biggest additions and changes occur. In terms of

honoring the agile nature, the development team is trusted to follow the instructions

within absolute autonomy and the best of their abilities. The head of project

management will spectate the model processes and workflows during the experiment to

see how well they are followed. This instruction document can be found in the

appendices section of this paper. Before the experiment begins, a life cycle model

tutoring session will be organized for the developers if there is need for one. Finally it

will be mentioned that the head of project management will take no special consideration

when ordering and prioritizing projects. The intended cadre of stakeholders for this

experiment is comprised of 8 developers, one software tester and the head project

management. The changes this model brings to daily operations, affect mostly the

developers. The primary goal is to evaluate how well the model works for all the projects

that are active during the research period. All the projects and teams that are active

during this period, are briefly listed and explained below.

6.2 Cases and teams

During the experiment, four different products were developed as a joint effort of IT-

services and Department of Future Technologies. The estimated team size for each of

them was expected to between one and three individuals.

35

6.2.1 Innovation platform

This is a platform designed to handle project order requests and monitoring said projects.

It designed for people interested in understanding and driving transformations. It brings

together researchers and companies to co-create and share knowledge. In addition to

conducting basic and applied research, this platform is an interface for expert services.

6.2.2 UGIS-system

This live system manages the studies of doctoral candidates at the University of Turku. It

is a portal that assists in training processes and contains information regarding the doctoral

training of each doctoral candidate. The Ugis portal instructs and maintains the progress

of a doctoral degree. Candidates can use this system to check status their status and

instructions. Additionally the portal can be accessed by thesis supervisors with active

university credentials.

6.2.3 Material database

This database assists and manages metadata of various research material collections. It

enables the possibility to repeat and evaluate research experiment results by reviewing

original academic source material. It makes sure that existing source materials are stored

appropriately and enhances the usability of them. By exhibiting consistently the metadata

of various materials, this database ensures that every item in the database has a clear

description.

6.2.4 Lataamo

This system is virtually infrastructure that enables possibility to pool together all the

official documents produced during the legal processes of individual bills. This covers

all the documents from the preliminary preparation phase to enactment and allows

nontraditional form of research in human sciences. It contains tools for distant reading

and analysis of vast materials. The system is capable of data collection, integration and

knowledge visualisation.

36

6.3 Measures

As the purpose of this model is to increase practices in project management and by

minimum maintain the current production volume, the key research metrics are divided

into three parts: Personal experiences, persistence of production volume and quality of

project management. Based on combined results of them, the success of this research

can be determined. To extract and evaluate the results, all developers will be given a

questionnaire after the research period is finished. The survey is comprised of three

sections: Individual experience, Project Management and Finale. The core style of

questions is shown in the list below. The actual questionnaire can be found in the

appendices section. Additionally the head of project management will be interviewed

personally with similar questions.

1. Did the model increase the production volume in Softwarehouse?

2. How did the model come accross on the instruction sheet before the research

started?

3. On the individual level, how did the model affect performance?

4. On the group level, how did the model affect the performance?

5. Was the concept of having an initial planning committee cumbersome and

straining?

6. Was the added monkey testing cumbersome and straining?

7. was the added project management cumbersome and straining?

8. How would you rate the quality of Resource and personnel management?

9. how would you rate the quality of Risk and Uncertainty management?

10. how would you rate the quality of Scope and estimation management?

11. Does the model help managing projects systematically?

12. Would use this model in the future?

13. Could the model be improved?

37

14. Any additional comments or suggestions?

List 2: The style of questions

6.3.1 Individual experiences

There is considerable amount of forces affecting the individual experiences. In the

beginning the information on total amount active scrum teams and team structure is

basically unknown. The suggested model introduces new activities both in group and in

individual level. Additionally the nature and type of active projects may affect the

individual experiences. Like the model itself this questionnaire was supposed to be as

light as possible to fill out. It would take approximately 5-minutes to answer every

multi-choice questions. These questions gave every developer a decent and effortless

opportunity to review and reflect their opinions about the models core activities and its

effects on overall performance - both individual and group. This questionnaire mostly

inquired developers’ opinions on how strenuous, rigid and cumbersome the model and

its activities felt after the experiment. However it also gave them the chance to reflect

their predictions about the model before the experiment started. Additionally in the final

section every developer also had the chance provide detailed feedback about the model.

6.3.2 Productivity

The chosen productivity measure usually depends on the domain of software projects

and the programming languages used. Lines of code is a typical measure of output.

However this metric is valid only when each comparable project is developed with the

same language.[11] For all intents and purposes, all the active projects in the research

period can be regarded as heterogeneous. As such the measure of a standard story point

used to evaluate the needed effort for any task, is an adequate way to review progress in

every active project. The total amount of completed story points after each sprint is the

primary metric to determine and evaluate the total output and productivity. Production

volume was an important metric to consider when this model was designed. The very

first question in the form asks directly whether the model increased or decreased the

production volume during the experiment.

38

6.3.3 Project management

The quality of added project management was the third relevant aspect to evaluate. The

research case section identified four important areas of project management in software

projects: Resource management, risk management, Project estimation and portfolio

management. This questionnaire had a dedicated to section and questions to evaluate the

overall quality of each to them. The scoring of each area is between one and five. At the

end of experiment the aggregated average values directly correlate whether they have a

strong or weak performance.

6.4 Research analysis

The research outcomes and results are mostly based on human experiences and

perceptions. Individual attitudes towards the model and the quality of project

management are effortlessly extracted through a well defined and structured online

survey form. The answers of the survey and an interview with the head of project should

serve as an adequate method to draw conclusions and lay ground work for potential

future research. Additionally the total amount of completed story points is a robust

metric to determine the production volume during this experiment.

39

7 Results and Discussion
This is the section where the results of the empirical experiment are presented. They

give basis for deeper analysis and discussion. Additionally topics for future research are

briefly explored here.

7.1 Results

First of all it is formally worth noting that there were substantial issues with data

extraction. This issue was properly discussed during the interview with the head of

project management. The timing for this research was less than optimal. This research

was initiated during the time when employees were returning from their summer

vacations - There was a minor acclimation process going on during this research.

Additionally it was hard to include proper projects to this experiment. Agile frameworks

were hardly utilized as most of work was conducted individually. These notions were

followed with a direct statement that company of this size may not able adopt centralized

model such as this. However it was clearly pointed out that the elements in the model

can be applied well in daily operations.

In the end there were only a few replies in the original questionnaire. There was

an attempt to gather additional data. This was done by altering the overall tone of the

questionnaire. The updated questions inquired information with a hypothetical style from

those who could not partake in the experiment. Their opinions on how does the model

come across on paper were asked in this modified questionnaire. To clearly state the total

amount of gathered data, there were two replies in the original questionnaire, one reply in

the modified questionnaire and the interview with the head of project management. The

sparsity of replies does affect the quality of this research. However when combining all

the answers in all the questionnaires and the interview, some clear conclusions can be

made. For the very least, it can be clearly stated that the model did not lower or increase

the production volume in softwarehouse - one of the key stipulations of this research can

deemed as verified.

In terms of the individual experiences and organizational creativity, there was

40

minor variance between answers. It can be stated that the model did not have any

noticeable effect on group and individual performance. The concept of having an initial

planning committee to conduct scoping and planning before the sprint starts was not

deemed cumbersome or straining. To some extent The concept was actually appreciated

and it was pointed out that initial design and planning has been somewhat neglected in

the past. The added monkey testing was deemed beneficial and well-received. However

the added project management was partially deemed cumbersome and straining. One of

the answers in the free comment section stated that the responsibility of formal project

management should not be included in the developer’s role. According to the head of

project management, this model does not harm organizational creativity.

The part of the questionnaire where the assessment of project management took

place yielded in relatively high appraisal. Every identified area in the project management

received excellent score by average. According the to the combined results, The weight

of resource and personnel management was slightly lightened. Risk management was

acknowledged as a useful practice. The quality of quantity of it is predicated on the size

of the project. Project scoping and design was already executed well. However this model

formally recognizes it and makes the process fractionally more fluent. The head of project

management highlighted the fact that as important as initial planning is, the key in agile

frameworks is the occurring learning throughout the project.

At the end of questionnaire, the given answers would indicate that the personnel

of Softwarehouse are mostly willing to use to the model in future projects. As with the

answers on the question whether the model could be improved would suggest that the

model is good as it is - perhaps minor improvements could be made. When analyzing

the answers in the free comment section further, it was repeatedly pointed out that the

core essence of the model resembles and reflects many of core practices that were already

utilized before the experiment took place. One of the comments even directly claimed: "I

do think that the model is good as it describes our practices well." According to the head of

project management this model can be very much utilized in the future projects. However

it was pointed out that projects in Softwarehouse varies very much in type and size -

treating every project case-by-case and applying the practices of the model accordingly is

more important than forcibly adhering a centralized model in every case.

41

7.2 Discussion

In the following subsections the impact of the model on organizational creativity and

project management is discussed in greater detail.

7.2.1 Organizational creativity

James Moultrie [37] points out in his article that the term creativity is mostly used to

describe processes and outputs instead of inherent traits of individuals. The organizational

creativity can be detected in the output from its employees. Elements such as humour,

risk taking, freedom and idea support can collectively describe creative capacity in an

organization. Additionally the article conveys that resources, management practices and

motivation are factors that interact with each other and influence the level of innovation

in an organization. Amabile’s componential theory of Organizational creativity is based

on this notion. The Figure 14 below illustrates this theory

Figure 14: Componential theory

The suggested model used in this experiment was designed based on

preliminary observations made during a brief employment in Softwarehouse.

Additionally inputs from the leader and the head of project management were used to

make the necessary formal adjustments into the model. It can be stated that

softwarehouse fosters and supports humour, autonomy and idea creation in its daily

operations. Creativity can be detected in individuals, team dynamics and the core

environment. The fact that Softwarehouse operates under an academic institution also

42

supports the pursuit of innovation. The personnel are more inclined for exploration and

research and the resources granted by University of Turku support this kind of dynamic.

Management practices do not share a lot similarities with those adhered in the private

sector. This is understandable as too strict processes may hinder the creative flow among

academic workers.

Apart from minor deviations in the attitudes towards formal project

management, the model and its practices did not strain the creative environment in

SoftwareHouse. The model implores to follow certain repetitive pattern, which could

lower the motivation on individual and task level. Those who responded in the survey

stated that they appreciated the added practices. These practices were designed to add

more insight in planning and give means to understand the state of current situation with

product and short term goals. This would help to prevent unplanned disasters and delays

production. Generally everyone wants to avoid unplanned work and finish their work in

time. Moreover it is valid to state that even creative workers who prefer autonomy can

appreciate more formal and vigorous practices if they are in the interest of increasing

operational awareness.

7.2.2 Risk, resource, estimation and portfolio management

When working with agile methodologies, risks are usually managed differently. Due

to careful planning and open communication there are greater prospects for preemptive

risk management - dealing with smaller impediments before they turn into considerable

risks. The quality of risk management did receive high scores however the idea that

developer should allocate separate time for identifying potential risks may seem a bit

needless and unfruitful activity. Extensive risk management may be of use when the

software project is scheduled to last years and there are large amounts of resources at

play. Identifying potential risks and assigning a level of severity is sort of useful. But

discussing about minor about minor impediments in daily Scrum might be more effective

for Softwarehouse.

There is a considerable chance that resource and estimation management was

significantly enhanced with Kick-Off and planning step in the proposed model. Nearly

43

all the respondents identified it as pleasant way to implement estimation and the resource

and estimation management did receive high scores as well. Swift and robust planning

has always been a part of agile methodologies. However like one of the respondents said,

it often dismissed altogether in sprint planning. This model for the very least identifies

the importance of it and has assigned an additional step for it.

Finally this thesis can reflect the quality portfolio management. At this point

it has to said that despite of high score in this category there is no way to review the

effectiveness of this aspect with this experiment alone. To determine the systematical

management of multiple project with a centralized model, the experiment duration would

have had to be much longer so that actual long-term effects could have been identified. It

is good that Softwarehouse now has a officially documented model that represents their

practices. However with further consideration, a separate longer experiment with different

measures would be a prerequisite to truly review systematical portfolio management.

7.2.3 Formal project management

Lung-chun Liu and Ellis Horowitz [38] state that there are certain essential features that

must be followed in software related project management. To list a few, The underlying

management framework or model should describe that software development is a design

process, which is inherently evolutionary by nature. Working in parallel enables multiple

individuals to work on same the project simultaneously. If an activity fails the

framework should have the means to indicate the activities and resources that are

affected. The minimum set of features include: Specific objective, budget, consumption

of other resources and a time-frame. Essentially the article emphasizes the fact that

Project management is a mixture people, resources, systems and techniques required to

carry out the project successfully.

In Softwarehouse the combination of people, processes and resources is not

ordinary compared to regular Software firms. The utilization of formal project

management is still significantly small. This may be due to the fact that Softwarehouse

has not worked on a project that was large enough to benefit from formal project

management. Nowadays with agile development methodologies the idea is to reduce the

needless activities and focus on what is important, which is delivering actual value in

44

smaller increments. This becomes especially important in smaller development

operations with fewer resources and smaller time-frames. Considering this notion,

formal project management in a context such as Softwarehouse may be actually deemed

as a wasteful activity.

Avi Yaeli and Alexander Kofman [39] from IBM suggest that several skills are

needed to conduct software development. In addition to technical practices such as

programming and testing, Managerial skills such as agile coaching and stakeholder

coordination play an important part. To this date there is no consensus on the distribution

of roles among development teams and various management styles to different role

schemes.

In the questionnaire one of the developers pointed out that project management

should not be a responsibility of the developers. However when working with multiple

smaller projects in parallel, it may be challenging to delegate a holistic managerial

responsibility to a single person. In terms of Software development governance at

Softwarehouse, it is difficult to say whether the responsibility of project management

should be a functional role or a group role. The quality of project management did

receive a high score in the questionnaire. However in the future, the experimented model

could be revised to adopt a custom functional role, which would allocate more focus on

managerial and coordination activities.

As the usage of agile methodologies increases, the emphasis on individual and

group autonomy becomes more topical. Development teams are relatively free to choose

their own pace and practices. A cohesive team who collaborate based on trust can be

hindered by developers who prefer to work on their own. Trust is predicated on the

fact that team members believe in the competence and integrity of their colleagues.[40]

Softwarehouse is a relatively small and tight organization where everyone knows each

other. It is clear that the personnel organize and conduct their work with high autonomy

and trust towards one another. Clearly stated goals and well-established practices forged

in autonomy may be the only crucial synergy needed to deliver working software in a

timely manner in Softwarehouse - needless formality of high level project management

could be justifiably dismissed altogether from daily operations.

45

7.2.4 Model compliance with agile foundation

Nowadays having well-established agile workflows in an organization can be seen a huge

advantage. Aside from increased quality of work and reduced probabilities for production

delays, being agile also makes the working environment better for current employees and

more attractive to potential job applicants. However this only happens if core agile values

are truly understood and followed. In the third section, this thesis briefly introduced the

agile manifesto and its core values. If an organization claims to be working agile ways, it

really needs to able verify this.

The proposed model operates with the assumption that agile values are followed

in its workflows. During the preliminary data gathering and the post experiment phase,

it was vehemently pointed out that deleting and adding items to a sprint backlog during

a sprint goes against the nature of agile estimation - items for upcoming sprint should be

locked down based on the production velocity of previous sprints. The agile manifesto

claims that responding to change is crucial over following a plan. However it is worth

pointing out that the official Scrum guide does not suggest that developers or virtually

any stakeholder has the authority to add more work for during a sprint let alone alter the

size of the development team. This notion again raises a point whether formal project

management practices can be mixed agile methodologies.

The model does recognize the importance of working software over

comprehensive documentation - as practicing documentation was instructed to be kept as

light as possible. However the question whether the model itself forces the organization

think more about processes and tools over individuals, makes the exploration and

conceptualization of a centralized model for agile methodologies seem more than

controversial. Perhaps the proposed model should be more like a tailored set of

guidelines that are considered in the case of each individual project.

7.3 The deployment of the suggested model

The survey results indicated that the model represents many of the practices that were

already in use before the experiment took place. Additionally when most of the

respondents conveyed their willingness to use the model in the future, the adoption and

46

standardization of the model and its practices as a key reference was nearly effortless.

Essentially it can be stated that one of the key outcomes this thesis is a well-documented

model that is supported by the head of project management and some of the core

personnel in Softwarehouse. In the future the model will be used as a key consideration

and guideline, when new projects are ordered and their approximated life cycle is

planned. Like with any new set of practices and a culture that supports them, there are

usually individuals who are willing to adopt new ways and individuals who are hesitant

at first. A well-made set of instructions can be helpful for both existing and new

employees, but those who have understood the value of the model will be the ones who

truly provide assistance by tutoring and setting an example - it is the best way to drive

change towards new frameworks and cultures.

7.4 Future research

In the interview with the head of project management it was discussed that the model

could perhaps assist more in high-level decision making - which customer’s needs are

most important at the moment. The following topics and articles go through well-known

practices in assessing customer’s needs and delivering value consistently.

7.4.1 Customer prioritization

It is widely claimed that organizations should prioritize between their customers and

allocate resources accordingly. This means that certain customers receive different and

preferential treatment in certain situations. In practice, some organizations utilize a

customer tier system, where customers are evaluated based on their importance and

potential sales volumes. Implementing differentiated use of marketing instruments for

different customer tiers is crucial as it would increase probability that marketing efforts

are directed towards the right customer relations. Homburg, droll and Totzek [41] have

proposed framework that assesses the effects in customer relations based on two factors:

relationship characteristics and performance outcomes. The overall estimation of

customer portfolio is based on evaluating the causality between these factors. There are

three important characteristics for a customer relationship: satisfaction, loyalty and the

share of wallet. The respective average of each of these is determined.

47

The idea of customer prioritization is often challenged. The fact that lower level

customer can be dissatisfied due to potential neglect, which could result in weakened

reputation as dissatisfied customers are more inclined to spread negative word.[41] In

the case of Softwarehouse, the customer acquisition and management strategies are very

different as most of customer portfolio is comprised of other academic institutions. The

reputation among academic institutions is very important aspect of softwarehouse. Which

is why the usage of a model, where decisions are made based on financial profitability,

would likely yield in undesirable outcomes. Additionally a model like this does not scale

to a smaller organization like Softwarehouse as it does not utilize vigorous marketing

strategies. This is likely due to the fact that the organization mostly revolves around

smaller day-to-day development operations. When evaluating the quality of development,

measuring customer satisfaction is a key aspect in agile methodologies. Softwarehouse

could benefit from a satisfaction based portfolio management system. Like with the model

mentioned, customers could be placed in tiers however their scoring would be based more

on satisfaction and loyalty - financial performance and factors would not be considered as

much.

7.4.2 Measuring value and satisfaction

In terms of product life cycle, prioritization is a relevant aspect to consider. With

prioritization, key activities can be extracted, boundaries of work can be identified and

differentiating between wants and needs is easier. There are many techniques that help in

prioritization such as Kano Methodology, MoSCoW technique and Kj methodology.

These techniques deliver good results in long term planning. However lean prioritization

is better, when applying a quick approach and a daily basis decision making. Lean

prioritization offers the power of value and effort matrix. The figure 15 below this

paragraph illustrates this.[42]

The value and effort matrix provides a simplified way to evaluate how much

value the feature brings to the product and actual the effort needed to complete the task.

It is self-evident that the development team should prioritize on tasks that are produce

high value and require minimal amount of effort. However it is not guaranteed that

implementing high value tasks results in high customer satisfaction. In addition to smart

48

Figure 15: Value effort matrix

and lean prioritization, there should also be an effortless way to measure customer

satisfaction and engagement.

In a competitive market, companies are inclined to focus their efforts on the

demands of their customers. Advertisement is the primary way to conduct corporate

communication towards customers. This occurs with various promotions and public

relation efforts. However the flow of information and feedback from the customer is

more than often quite limited. Collecting actual feedback is usually implemented with

voluntary surveys, which enable companies to inquire specific topics of interest and

customers to communicate their opinions about the supplying company. Daniel Scheiner

and Jon Crosnick [43] mention in their article that the best question to measure customer

satisfaction is: "How likely is it that you would recommend [brand or company x] to a

friend or a colleague?". The responses to this question are then aggregated into a single

metric, the net promoter score (NPS). In addition to NPS, there are other popularly

recognized metrics such as customer satisfaction score (CSAT) and customer effort score

(CES). These can be extracted with fluent social media monitoring and various

electronic surveys such as In-App, post service and email questionnaires.[44]

Creating good and robust surveys that would suit the needs of Softwarehouse, is

not a simple thing to implement. Prioritization and development decisions are made on

daily basis and these decision usually reflect the outcomes of the current and the next

sprint. Reaching out to the customers to assess their needs regularly, has to be effective

and as effortless as possible to the customer. Authoring survey that gives more

49

understanding about customer’s satisfaction could prove to be beneficial. In the best case

scenario the survey and feedback collection would be automated to reduce manual and

technical overhead. Implementing continuous feedback into Softwarehouses operations

could be the next step.

7.4.3 DevOps

Nowadays with emerging agile methodologies and rapid development techniques, comes

the new core concepts such as continuous integration and delivery. Self-organizing teams

and easy infrastructure management enables DevOps practices, where developers and

systems administrators work together to deliver value systematically and with faster

velocity. Frequently measured feedback comes into aid as well-configured systems are

able to detect internal systems errors. External feedback is obtained when engineers

conduct robust code reviews and business users test the deployed code to assess the

usability.[45]

Analyzing DevOps and its practices further goes well beyond the scope of this

research. However it is worth pointing out that Softwarehouse could benefit from

DevOps as concepts such as continuous delivery and continuous feedback are included

in it. Larger companies such as Facebook, Amazon and Netflix utilize DevOps practices

in their daily operations. Due to its efficiency, they are able to deliver new features and

software updates even on a daily basis to their customers. This happens with practically

non-existent system down-time and reduced technical overhead. Delivering high value

items rapidly and consistently creates a strong basis to increase existing customer

satisfaction and to attract new customers. Currently there are many tools available to

implement DevOps practices with different levels of licensing. Due to this even smaller

organizations are able to adopt DevOps processes.

50

8 Summary
The first section began by explaining how smaller software projects are becoming more

common nowadays and why adhering a proper life cycle management is beneficial for all

kinds of software projects. Through this notion it was presented that creating a

customized life cycle model for Softwarehouse would be the core deliverable of this

research. After this the section explained briefly the background and the current situation

of softwarehouse. Despite of the strong usage of official Scrum framework,

Softwarehouse was short of formal and systematic project management. Additionally

primary considerations for the suggested model and the justified outline for this thesis

were explained.

In the second section of this thesis, the basics of traditional waterfall model

were explained to elaborate how the first official software development life cycle model

was practiced. After this typical agile methodologies were briefly explained. These

included the original variant of Scrum framework and Kanban. Additionally the

traditional SDLC was explained. The idea of this section was to explore core thoughts

such as lean development, redundancy of certain core practices and systematic workflow

with well-defined stages.

The third section explored existing research in topics such as rapid production,

small project organizations and organizational creativity. It was established that

developers tend to use less than 30 percent of time in actual coding during development.

The rest of time of is used in meetings, problem solving and clearing misunderstandings.

Enabling efficient communication is one of the key elements to establish rapid

production velocity. Generally recognized rapid development methodologies such as

rapid application development, joint application development and dynamic systems

development method were introduced. All of these frameworks speak for the consistent

usage of various robust techniques such as time boxing, incremental development and

adoption of advanced statistic and graphic tools. Smaller project organizations have

much more specific needs, which is why the adoption of general frameworks and

components is not self-evident. When dealing with reduced resources, the core idea is to

focus on lean thinking and iterative development. Organizational creativity can be

51

regarded as product in a complex social system and it is directly linked individual

well-being. Finally the section explained two examples on how larger companies scale

agile practices in their operations while adhering agile manifesto.

The fourth section elaborated the research case and its context further.

Softwarehouse is a small division of IT professionals and researchers, that provide

software development, data management and laboratory services. Softwarehouse works

on many projects simultaneously and completes approximately 40-60 projects per year.

Often Softwarehouse has at least five active projects, which are managed and

implemented by 8 developers. Softwarehouse mainly uses the official Scrum process and

is capable of using Kanban on occasion. Jira Atlassian is used for project portfolio

management and Scrum backlog management. Slack is the primary messaging and

communication tool. In terms of project management, Softwarehouse followed a

discovery-oriented management style. Resource and personnel management happens by

monitoring the project database and adequately assigning the right amount of employees

to carry out the project. Risk management is based on work amount estimates, which

depend on the level of technical challenge. The importance of project scoping and

estimation was recognized, but lacked a standardized and robust way.

The fifth section began with explaining the design considerations for the

proposed model. Preserving organizational creativity and production volume where two

key conditions to keep in mind. The model was graphically presented and all the stages

and steps were explained in great detail. Additionally the model was analyzed. It shared

many similarities with a typical scrum framework however introduced and emphasized

the importance of project scoping, risk and resource management.

The Sixth section explained the details of the experiment used to determine the

effectiveness of the proposed model. The experiment setting and the actual software

project cases were explained. The primary measures for the experiment were the

production volume, individual experiences and the quality of project management.

These were to be measured with a light weight online survey and an interview with the

head of project management. Additionally the quality of the experiment was assessed.

The seventh section was meant for the results of the experiment and deeper

52

discussion of research outcomes. Initially it was explained that were considerable

challenges with data gathering which lowered the quality of the results. However by

adding another modified questionnaire and combining results, some clear conclusions

could be made. It was clear that model did not lower the production volume in

Softwarehouse. There were minor impacts on organizational creativity and project

management.

It was stated that organizational creativity can be detected through humour, risk

taking and idea support. Management practices and motivation interact with each other

and influence the level of innovation in an organization. Apart from added the project

management the suggested model did not harm organizational creativity. The model

implores to follow a certain repetitive pattern, which could lower the motivation.

However in general the model was well received. This could have been due to fact that

he model increases insight through systematic planning, which could reduce unplanned

disasters. Everyone appreciates that work is finished in time - The cost of added project

management is worth the gain of enhanced operational awareness.

Even though project management did receive high scores every identified

category, it was pointed out that separate risk management is not so beneficial in smaller

software operations. Results in systematic portfolio management were deemed

inconclusive due to insufficiently executed experiment. However the quality of scoping

and estimation could be verified to be successful.

In software development, project management is essentially a union of people,

resources and processes that is required to carry out the work in a project. Efficient

management requires at least a specific objective, budget, time-frame and consumption

of other resources. The quality of project management did receive relatively high scores

in every category in the experiment questionnaire. However it was prominently raised

that project management should not be the responsibility of a single developer. The

model could be revised to adopt a functional role in project management, which would

alleviate the weight project management as a group activity. Using the model to manage

every project consistently and systemically was challenged by the head of project of

management. According to him, every project should be treated case-by-case and the

suggested practices should be applied accordingly. Additionally it was explained that

53

Formal project management is mostly in beneficial in larger projects. Softwarehouse

mostly has smaller projects, which lead to conclusion, that Softwarehouse might not

actually benefit from having a centralized template model. Furthermore when working

with agile methodologies, the focus is on learning as opposed to following a plan -

formal project management could be deemed as a wasteful activity. When working with

smaller projects with a non-traditional organization, clearly stated goals and reliably

self-organizing teams may be the only synergy needed to deliver working software

within the best possible capacity.

The model was reviewed in terms compliance with core agile values. Due to

various reasons, attaining the full range of benefits of agile is only possible by truly

understanding agile foundation. The notions of agile manifesto were reflected against the

proposed model. In a few crucial ways, the model and its processes did not adhere agile

values, which lead to conclusion that centralized life cycle models may be overly

controversial in the context agile methodologies.

The model deployment to Softwarehouses daily operations was explained by

reiterating the positive survey results and how they promote the willingness to use the

model in the future. Additionally aside from a well-documented model and instructions,

the model is supported by the upper management and some of the core personnel, who

will drive the change of using the model in future projects by referencing the model as

a key consideration and providing assistance to employees, who are unfamiliar with the

model.

This thesis ended with exploration of topics that were suggested by the head of

project management. Essentially the ideal model could be equipped with better means to

conduct high-level decision making. To determine which customer’s needs that deserve

more attention at certain times. Customer’s satisfaction and loyalty were recognized as

the only relevant metrics for Softwarehouse, when evaluating or attempting to prioritize

between current customers. Simple value estimation of user features and stories can be

done with low maintenance techniques. However with well implemented forms,

collecting customer feedback through metrics such as NPS and CSAT was identified as a

robust way to measure customer satisfaction and engagement. As the benefits of

implementing automated ways to collect feedback was raised, this thesis finally briefly

54

explained the concept of DevOps, which in addition to continuous feedback includes lots

of other useful concepts and techniques that could really increase customer satisfaction

and even attract more business.

55

References
[1] Robert T. Futrell, Linda I. Shafer, and Donald F. Shafer. Quality Software Project

Management. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[2] Youssef Bassil. A simulation model for the waterfall software development life

cycle. CoRR, abs/1205.6904, 2012.

[3] P. Trivedi and A. Sharma. A comparative study between iterative waterfall and

incremental software development life cycle model for optimizing the resources

using computer simulation. In 2013 2nd International Conference on Information

Management in the Knowledge Economy, pages 188–194, Dec 2013.

[4] TOOLSQA. Waterfall model, 2016. Last accessed 10 April 2020.

[5] Ken Schwaber. Scrum development process. In Jeff Sutherland, Cory Casanave,

Joaquin Miller, Philip Patel, and Glenn Hollowell, editors, Business Object Design

and Implementation, pages 117–134, London, 1997. Springer London.

[6] M. O. Ahmad, J. Markkula, and M. Oivo. Kanban in software development:

A systematic literature review. In 2013 39th Euromicro Conference on Software

Engineering and Advanced Applications, pages 9–16, Sep. 2013.

[7] Planview LeanKit. Maximize your time, improve efficiency with the kanban system,

2019. Last accessed 10 April 2020.

[8] Ieee guide–adoption of iso/iec tr 24748-1:2010 systems and software engineering–

life cycle management–part 1: Guide for life cycle management. IEEE Std 24748-

1-2011, pages 1–96, June 2011.

[9] Iso/iec/ieee international standard for systems and software engineering – content

management for product life-cycle, user, and service management documentation.

ISO/IEC/IEEE 26531:2015 (E), pages 1–60, May 2015.

[10] Stackify. What is sdlc? understand the software development life cycle, 2017. Last

accessed 10 April 2020.

56

[11] S. D. Teasley, L. A. Covi, M. S. Krishnan, and J. S. Olson. Rapid

software development through team collocation. IEEE Transactions on Software

Engineering, 28(7):671–683, July 2002.

[12] P Beynon-Davies, C Carne, H Mackay, and D Tudhope. Rapid application

development (rad): an empirical review. European Journal of Information Systems,

8(3):211–223, 1999.

[13] E.J Davidson. Joint application design (jad) in practice. Journal of Systems and

Software, 45(3):215 – 223, 1999.

[14] D Tudhope, P Beynon-Davies, H Mackay, and R Slack. Time and representational

devices in rapid application development. Interacting with Computers, 13(4):447 –

466, 2001.

[15] Steven D. Tripp and Barbara Bichelmeyer. Rapid prototyping: An alternative

instructional design strategy. Educational Technology Research and Development,

38(1):31–44, Mar 1990.

[16] W. Q. Meeker and M. Hamada. Statistical tools for the rapid development and

evaluation of high-reliability products. IEEE Transactions on Reliability, 44(2):187–

198, June 1995.

[17] M. R. Lyu and A. Nikora. Casre: a computer-aided software reliability estimation

tool. In [1992] Proceedings of the Fifth International Workshop on Computer-Aided

Software Engineering, pages 264–275, July 1992.

[18] Anton Kokalj. Computer graphics and graphical user interfaces as tools in

simulations of matter at the atomic scale. Computational Materials Science,

28(2):155 – 168, 2003. Proceedings of the Symposium on Software Development

for Process and Materials Design.

[19] M. E. Fayad, M. Laitinen, and R. P. Ward. Software engineering in the small.

Communications of the acm, 43(3), March 2000.

[20] Jan Bosch, Helena Holmström Olsson, Jens Björk, and Jens Ljungblad. The early

stage software startup development model: A framework for operationalizing lean

57

principles in software startups. In Brian Fitzgerald, Kieran Conboy, Ken Power,

Ricardo Valerdi, Lorraine Morgan, and Klaas-Jan Stol, editors, Lean Enterprise

Software and Systems, pages 1–15, Berlin, Heidelberg, 2013. Springer Berlin

Heidelberg.

[21] N. J. Nunes and J. F. Cunha. Wisdom: A software engineering method for small

software development companies. IEEE Software, 17(5):113–119, Sep. 2000.

[22] Richard W. Woodman, John E. Sawyer, and Ricky W. Griffin. Toward a theory of

organizational creativity. Academy of Management Review, 18(2):293–321, 1993.

[23] Farida Rasulzada and Ingrid Dackert. Organizational creativity and innovation in

relation to psychological well-being and organizational factors. Creativity Research

Journal, 21(2-3):191–198, 2009.

[24] Maria Paasivaara, Casper Lassenius, and Ville T. Heikkilä. Inter-team coordination

in large-scale globally distributed scrum: Do scrum-of-scrums really work? In

Proceedings of the ACM-IEEE International Symposium on Empirical Software

Engineering and Measurement, ESEM ’12, page 235–238, New York, NY, USA,

2012. Association for Computing Machinery.

[25] James Halprin. Safe: Four key things you should know, 2018. Last accessed 10

April 2020.

[26] k. Schwaber and J. Sutherland. The scrum guide. the definitive guide to scrum: The

rules of the game TM.

[27] LAIRE MAYNARD. Learn scrum with jira software, 2019. Last accessed 10 April

2020.

[28] M. Mankins and E. Garton. Software development teams and slack: A handbook,

2017. Last accessed 10 April 2020.

[29] Karlos Artto, Jaakko Kujala, Perttu Dietrich, and Miia Martinsuo. What is project

strategy? International Journal of Project Management, 26(1):4 – 12, 2008.

European Academy of Management (EURAM 2007) Conference.

58

[30] Satu Rekonen and Tua Björklund. Adapting to the changing needs of managing

innovative projects. European Journal of Innovation Management, 19:111–132, 01

2016.

[31] Cast. Risk management in software development and software engineering projects,

209. Last accessed 10 April 2020.

[32] Paul Barnes. Software costs estimation in agile, 2020. Last accessed 10 April 2020.

[33] Richard Whitley. Project-based firms: new organizational form or variations on a

theme? Industrial and Corporate Change, 15(1):77–99, 02 2006.

[34] Meisterplan. Agile principles as a guide for resource management, 209. Last

accessed 10 April 2020.

[35] ROBBRECHT VAN AMERONGEN. 7 agile estimation techniques – beyond

planning poker, 2009. Last accessed 10 April 2020.

[36] Kanbanize. Cumulative flow diagram for best process stability, 2009. Last accessed

10 April 2020.

[37] James Moultrie and Alasdair Young. Exploratory study of organizational creativity

in creative organizations. Creativity and Innovation Management, 18(4):299–314,

2009.

[38] Lung-chun Liu and E. Horowitz. A formal model for software project management.

IEEE Transactions on Software Engineering, 15(10):1280–1293, Oct 1989.

[39] Yael Dubinsky, Avi Yaeli, and Alexander Kofman. Effective management of roles

and responsibilities: Driving accountability in software development teams. IBM

Journal of Research and Development, 54:4:1 – 4:11, 05 2010.

[40] O. McHugh, K. Conboy, and M. Lang. Agile practices: The impact on trust in

software project teams. IEEE Software, 29(3):71–76, May 2012.

[41] Christian Homburg, Mathias Droll, and Dirk Totzek. Customer prioritization: Does

it pay off, and how should it be implemented? Journal of Marketing, 72(5):110–130,

2008.

59

[42] Pavel Kukhnavets. Value/effort matrix: Lean prioritization for product managers,

2018. Last accessed 10 April 2020.

[43] Daniel B. Schneider and Jon A. Krosnick. Measuring customer satisfaction and

loyalty: Improving the ‘net-promoter’ score. 2008.

[44] Userlike Pascal. 6 proven methods for measuring customer satisfaction, 2016. Last

accessed 10 April 2020.

[45] Oliver Krancher, Pascal Luther, and Marc Jost. Key affordances of platform-as-

a-service: Self-organization and continuous feedback. Journal of Management

Information Systems, 35(3):776–812, 2018.

60

Appendices

61

Instructions for developers

The diagram below illustrates the proposed software development life cycle model for small
projects. Everything from the initiation to closure is shown here. However the significant
changes and additions in development team’s daily operations only appear in boxes ​1 - 5 ​.

1.Kick-off & planning
The head of project management orders a project a projects and assigns a group individuals for the
project planning. This initial planning committee will meet to discuss about the general aspects of the
project (Difficulty, used technologies etc). Product owner is assigned and the initial product backlog is
authored.

Resource planning is an important part of this phase. As such the initial planning committee will choose
the right amount of personnel, which will form the final/actual scrum team. In order to do this, the team
will estimate and choose the right amount of story points for every item in the backlog. This can be done
with lots of different agile effort estimation ways such as Planning Poker and T-shirt Sizes. Based on the
total amount of story points for the project, the initial planning committee will choose the right amount of
personnel.

2.Sprint planning
In sprint planning, the scrum team chooses all the items for the sprint and plans how they are
implemented. Depending on the estimated amount story points in the previous phase the team will
choose an ​appropriate schedule estimation and review technique for the upcoming work. In standard
projects with enough diversity and complexity, a traditional burn down chart is a valid way to estimate the
work progress. However in very small projects, a burn down chart may be too cumbersome and heavy to
Use. For these instances, the team might consider using a cumulative flow diagram. However it is worth
noting that this model is designed for Scrum projects with enough diversity. Cumulative flow diagram
works well in projects where Kanban is used. It is just an option.

3.M. Testing
This box represents an added bonus to software testing practices and quality assurance. Conducting
Automated J-unit testing is already a standard procedure in feature integration, but M. testing means
adding monkey testing in development. Considering that the intended product is not large, a sub variant
of monkey testing called smart monkey is used. This means that in addition to developing, the
developers will on occasion conduct smaller scale testing with the mentality of knowing the purpose and
functionality of the system. Essentially the developer navigates through the system and gives valid inputs
to perform random tasks. This is done in the interest of finding bugs and errors without predefining any
specific test or user cases. The durations of monkey testing sessions should be kept as short as
possible.(5-10min) Developers can have these sessions whenever they deem it possible.

4.Risk management and 5. Cost estimation
The boxes below the development sprints represent all the added risk management and cost estimation
for the entire project. The development team has the complete autonomy to choose how this is actually
done. There can be small separate meetings. However since there formally no project specific managers
in Softwarehouse, every individual in the development team should practice this whenever it is possible.
Risk management should have the following process flow: Identification, planning and monitoring. This
applies to risks that could affect either the current sprint or future sprints.

Additionally cost estimation practices are added to determine whether the development team could alter
the sprint backlog either by eliminating current tasks or adding new tasks during the sprint. Depending on
the needed effort for a project, assigned developers may even be “hotswapped” between projects during
sprints.

(It is worth noting that deleting and adding features during a sprint is not entirely in compliance with
scrum methodology, as sprint planning and locking upcoming tasks should be bone based previous
burndown charts. However sometimes altering the sprint backlog and development team during a sprint
can be the right thing to do in terms of ​resource management​.)

In the interest of keeping this model as light as possible, the documentation for risk managment and cost
estimation is optional.

12.1.2020 Rapid software development life cycle model in small projects - A survey

https://docs.google.com/forms/d/1vUbhZTENehQMvWMdvNwwVwi1ux6M3jXYJPJGoEK0qkw/edit 1/3

Rapid software development life cycle model in small
projects - A survey
A survey to assess the developer experience, project management and the efficiency of the
proposed life cycle model.

The following survey is divided into three sections: Individual
Experience, Project Management and Finale. The survey is
comprised of entirely multiple choice questions. There is also
free space for comments in the finale section.

1. First of all a question about the overall production volume in SOHO. Based on your own
estimations, could the model...
Mark only one oval.

 A. Increase the production volume?

 B. Decrease the production volume?

 C. have no noticeable effect on this?

Individual and group Experience
How could model affect the social construct and organizational creativity in SOHO. (Option 3 means
neutral)

2. How does the model come across on the instruction sheet?
Mark only one oval.

1 2 3 4 5

Very light Very rigid

3. On the individual level, could the model...
Mark only one oval.

 lower the overall performance?

 increase the overall perfomance?

 have no noticeable effect on this?

4. On the group level, could the model...
Mark only one oval.

 lower the overall performance?

 increase the overall performance?

 have no noticeable effect on this?

12.1.2020 Rapid software development life cycle model in small projects - A survey

https://docs.google.com/forms/d/1vUbhZTENehQMvWMdvNwwVwi1ux6M3jXYJPJGoEK0qkw/edit 2/3

5. The initiation. Kick-off & planning. Is the concept of having an initial planning committee
cumbersome and straining?
Mark only one oval.

 Yes

 No

 Unable to determine.

6. Is the added monkey testing cumbersome and straining?
Mark only one oval.

 Yes

 No

 Unable to determine.

7. Is the added project management cumbersome and straining?
Mark only one oval.

 Yes

 No

 Unable to determine.

Project Management
Models ability to adopt and enhance practices in formal project management. (Option 3 means
neutral)

8. Resource and personnel management
Mark only one oval.

1 2 3 4 5

Weak Strong

9. Risk and Uncertainty management
Mark only one oval.

1 2 3 4 5

Weak Strong

10. Project Scope and estimation management
Mark only one oval.

1 2 3 4 5

Weak Strong

11. Management of project portfolio. Could the model help to manage projects
systematically?
Mark only one oval.

1 2 3 4 5

Weak Strong

12.1.2020 Rapid software development life cycle model in small projects - A survey

https://docs.google.com/forms/d/1vUbhZTENehQMvWMdvNwwVwi1ux6M3jXYJPJGoEK0qkw/edit 3/3

Powered by

Finale
Final questions and free space to give feedback in greater detail.

12. If the head of project management in SOHO called a vote to decide, whether to use this
model in future sprints. Would you vote...
Mark only one oval.

 Yes?

 No?

13. In terms of making alterations to this model. Could the model be improved?
Mark only one oval.

 The model could be improved significantly.

 The model could be improved slightly.

 The model is good as it is.

 No comment.

 The model's core structure and foundation needs to be designed from ground up.

14. Free space to provide comments. Suggestions, Strengths, weaknesses etc.

	Introduction
	Software development in general
	Waterfall
	Agile methodologies
	Scrum
	Kanban

	Software development life cycle (SDLC)

	Existing research
	Rapid production
	Small project organizations
	Organizational creativity
	Agility at present

	Research case status
	Overview
	Scrum
	Scrum team
	Events
	Artifacts

	Workflow with Scrum
	Tools
	Project management
	Resource and personnel management
	Risk and uncertainty management
	Project scope and estimation management

	Suggested model
	Design considerations
	Model descriptions
	Planning phase
	Development phase
	Wrapping phase

	Model analysis

	Research overview
	Setting
	Cases and teams
	Innovation platform
	UGIS-system
	Material database
	Lataamo

	Measures
	Individual experiences
	Productivity
	Project management

	Research analysis

	Results and Discussion
	Results
	Discussion
	Organizational creativity
	Risk, resource, estimation and portfolio management
	Formal project management
	Model compliance with agile foundation

	The deployment of the suggested model
	Future research
	Customer prioritization
	Measuring value and satisfaction
	DevOps

	Summary
	References
	Appendices

