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ABSTRACT

This dissertation discusses various aspects of strategic trading using both analytical
modeling and numerical methods. Strategic trading, in short, encompasses mod-
els of trading, most notably models of optimal execution and portfolio selection, in
which one seeks to rigorously consider various—both explicit and implicit—costs
stemming from the act of trading itself. The strategic trading approach, rooted in
the market microstructure literature, contrasts with many classical finance models in
which markets are assumed to be frictionless and traders can, for the most part, take
prices as given.

Introducing trading costs to dynamic models of financial markets tend to com-
plicate matters. First, the objectives of the traders become more nuanced since now
overtrading leads to poor outcomes due to increased trading costs. Second, when
trades affect prices and there are multiple traders in the market, the traders start to
behave in a more calculated fashion, taking into account both their own objectives
and the perceived actions of others. Acknowledging this strategic behavior is espe-
cially important when the traders are asymmetrically informed. These new features
allow the models discussed to better reflect aspects real-world trading, for instance,
intraday trading patterns, and enable one to ask and answer new questions, for in-
stance, related to the interactions between different traders.

To efficiently analyze the models put forth, numerical methods must be utilized.
This is, as is to be expected, the price one must pay from added complexity. However,
it also opens an opportunity to have a closer look at the numerical approaches them-
selves. This opportunity is capitalized on and various new and novel computational
procedures influenced by the growing field of numerical real algebraic geometry are
introduced and employed. These procedures are utilizable beyond the scope of this
dissertation and enable one to sharpen the analysis of dynamic equilibrium models.

Keywords: Strategic trading, optimal execution, asymmetric information, market
microstructure, algebraic geometry






TIHVISTELMA

Tamai viitoskirja késittelee strategista kaupankdyntid hyodyntéen sekd analyyttisid
ettd numeerisia menetelmid. Strategisen kaupankédynnin mallit, erityisesti optimaa-
linen kauppojen toteutus ja portfolion valinta, pyrkivét tarkasti huomioimaan kau-
pankdynnistd itsestddn aiheutuvat eksplisiittiset ja implisiittiset kustannukset. Tama
erottaa strategisen kaupankédynnin mallit klassisista kitkattomista malleista.

Kustannusten huomioiminen rahoitusmarkkinoiden dynaamisessa tarkastelussa
monimutkaistaa malleja. Ensinnikin kaupankivijéiden tavoitteet muuttuvat hieno-
varaisemmiksi, koska liian aktiivinen kaupankédynti johtaa korkeisiin kaupankéyn-
tikuluihin ja heikkoon tuottoon. Toiseksi oletus siitd, ettd kaupankévijoiden valit-
semat toimet vaikuttavat hintoihin, johtaa pelikdyttdytymiseen silloin, kun markki-
noilla on useampia kaupankavijoitd. Pelikdyttdytymisen huomioiminen on ensiar-
voisen tirkedd, mikéli informaatio kaupankivijoiden kesken on asymmetristd. Néi-
den piirteiden johdosta tdssd viitoskirjassa késitellyt mallit mahdollistavat abs-
trahoitujen rahoitusmarkkinoiden aiempaa tidsmillisemmén tarkastelun esimerkiksi
péivénsisdisen kaupankdynnin osalta. Téamin lisdksi mallien avulla voidaan 16ytidd
vastauksia uusiin kysymyksiin, kuten esimerkiksi siihen, millaisia ovat kaupankivi-
joiden keskindiset vuorovaikutussuhteet dynaamisilla markkinoilla.

Monimutkaisten mallien analysointiin hyddynnetdfin numeerisia menetelmii.
Tdmd avaa mahdollisuuden ndiden menetelmien yksityiskohtaisempaan
tarkasteluun, ja tdtd mahdollisuutta hyoddynnetdin pohtimalla laskennallisia
ratkaisuja tuoreesta numeerista reaalista algebrallista geometriaa hyodyntidvasti
nidkokulmasta.  Viitoskirjassa esitellyt uudet laskennalliset ratkaisut ovat laa-
jalti hyodynnettdvissd, ja niiden avulla on mahdollista terdvoittdd dynaamisten
tasapainomallien analysointia.

Asiasanat: Strateginen kaupankdynti, optimaalinen toteutus, asymmetrinen infor-
maatio, markkinoiden mikrostruktuuri, algebrallinen geometria
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I INTRODUCTION

1.1 Motivation

Market microstructure research delves deep into the inner workings of financial mar-
kets, contemplating—among many other topics—issues such as price discovery, in-
traday trading patterns, trading strategies, and transaction costs. It is one of the most
rapidly growing fields in finance, especially considering the research landscape in
finance post the 2007 financial crisis (see, Guéant 2016). One of the main reasons
for the strong development of this research area is the rise of both electronic and al-
gorithmic trading, both of which have shaped financial markets tremendously, often
with outcomes that are in stark contrast with classical market microstructure models
in financial economics.!

Topics and questions in the field of market microstructure have also captured
the imagination of researchers from statistics, mathematics, and physics and due
to this the field is vibrant and constantly evolving. As such, there is a myriad of
methods and approaches that one comes across in microstructure research starting
from game theory and standard (low frequency) econometrics and continuing on to
stochastic control theory, high frequency econometrics, and many others. Moreover,
with provocative topics such as market manipulation or ominous terms such as dark
pools, it is unsurprising that popularized depictions of financial markets and market
microstructure have also found their way in to bookstores and even on to bestseller
lists, most notably perhaps the 2014 book Flash Boys by Michael Lewis.

It should also be noted that even though it is easy to equate the term market in
market microstructure to the stock market this would in fact give an erroneously
narrow scope for the field. Indeed, questions relating to market microstructure are
great of interest in, for instance, the bond markets and the foreign exchange markets.
For a (very) recent survey on the former the reader is referred to Biais and Green
(2019) and for a (very) recent survey on the latter the reader is referred to Evans and
Rime (2019).

Based on the above, it comes as no surprise that there are numerous important
research questions and topics in the area of market microstructure that are in need
of further inquiry. From the point of view of this dissertation, the most relevant are
the topics related to (optimal) trading strategies and intraday trading dynamics under
asymmetric information, endogenous learning, and various forms of price processes

I For an overview of the classical literature see, for example, O’Hara (1995) or Madhavan (2000).
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and transaction costs.

These questions and topics are exceedingly important from both academic and
practical perspectives. Considering the academic perspective, understanding the dy-
namics of financial markets and, for instance, how differential information possessed
by various agents affects these dynamics is one of the most challenging and impor-
tant questions in financial economics. As for the practical perspective, increasing
competition and regulation—e.g., Regulation National Market System (Reg. NMS)
and Markets in Financial Instruments Directive 11 (MiFID II)—in the financial mar-
kets means that ever more smaller details—micro-details, if you will—have become
essential in ensuring survival and the ability to operate profitably.

Furthermore, all these topics naturally fit under the umbrella of strategic trading.
Strategic trading, in this thesis, is in broad terms taken to mean trading activities
which take into account price impact and other possible trading costs, endogenous
or exogenous, in an explicit fashion.> This entails, for instance, optimal execution
programs where the goal is to minimize the expected execution costs of a given trade,
or portfolio selection under transaction costs where one constructs optimal portfolios
in a multiperiod setting, taking into account that portfolio rebalancing is costly.

1.2 Research Questions

Building on the large extant literature, this dissertation focuses on strategic trading
models from a mostly normative perspective, utilizing both theoretical and numerical
methods. The models discussed feature both game-theoretic and non-game-theoretic
settings with an emphasis on the former. Special attention is paid to the computa-
tional approaches utilized in solving and analyzing various models. Moreover, em-
pirical implications as well as practical aspects arising are emphasized when deemed
appropriate. In sum, the main goals of the dissertation are:

% To study how risk preferences, asymmetric information, and endogenous
learning—in previously overlooked non-cooperative settings with heteroge-
nous players—affect equilibrium trading and intraday patterns in financial mar-
kets.

% To examine how different functional specifications of price impact change op-
timal trading strategies and the nature of equilibrium trading.

% To put forth new numerical approaches for analyzing questions related to opti-
mal execution, portfolio optimization, and strategic trading.

2 Price impact can stem, for instance, from revelation of private information or from the impact of orders on

the limit order book, while other sorts of transactions fees can be thought of as, for instance, slippage costs or
transaction taxes.
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The key unifying question throughout the dissertation is how a trader should op-
timally navigate through different market conditions. To exemplify, the first essay
depicts, on one hand, a trader with mean-variance-skewness preferences, facing a
myopic multiperiod portfolio optimization problem under quadratic transaction costs
and, on the other hand, a trader facing different types of nonstandard optimal execu-
tion problems. The scope of changing market conditions, however, goes well beyond
just tweaking how price impact or transaction costs are specified.

More fundamental questions, addressed in the second and the third essay, involve
markets with asymmetric information and learning as well as non-cooperative strate-
gic interactions between traders with possibly different risk preferences. By exam-
ining optimal trading on these types of complicated markets one hopes to shed light
on important issues not discussed in earlier literature. Further, pushing the bound-
aries of existing frameworks is also important in the sense that it is the best way to
reveal the limitations of various modeling choices and potential deficiencies in the
way these models are typically analyzed.

In the midst of exploring the aforementioned questions various numerical meth-
ods, many of which a relatively new to the field of finance, are utilized. A number
of programming languages (e.g., Julia and Python) as well as computing platforms
(e.g., MATLAB® and MATHEMATICA®) are employed in the implementation of
these numerical methods both for performance and robustness reasons.? In addition,
two freeware packages written for MATLAB® and designed for specialized calcu-
lations are extensively used. PHCpack (cf. Verschelde 1999, Guan and Verschelde
2008), which implements polynomial homotopy continuation, is used in the first and
the second essay. GloptiPoly 3 (cf. Henrion et al. 2009), which solves (approxi-
mates) generalized moment problems and which, consequently, can be used to solve
polynomial optimization problems, is used in the first essay.

1.3 Structure

The first, introductory, part of the dissertation proceeds as follows. Section 2 gives an
overview of strategic trading and optimal execution problems. Section 3 introduces
the field of numerical real algebraic geometry, a relatively young field of mathemat-
ics, which forms the basis for the numerical procedures used in the essays. Section 4
provides an overview of the included essays. There is a general guideline adopted in
the first part: as there are plenty of equations in the second part of this dissertation—
in an effort to balance things out—there will be none in the first part.

The second part consists of three distinct, independent essays, focusing on var-
ious aspects of strategic trading. The ordering of the essays is partially arbitrary.

3 MATLAB® isa registered trademark of The MathWorks, Inc. MATHEMATICA® s a registered trademark of
Wolfram Research, Inc.
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However, the ordering of the first and second essay can be justified by noting that the
first essay gives a general depiction and detailed background information on some of
the methods used in the second essay.
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2 STRATEGIC TRADING, OPTIMAL
EXECUTION, AND TRANSACTION COSTS

2.1 Background

Financial markets and the behavior of agents in these markets is difficult to model
and it is not hard to see why. Even if one accepts the classical premise of a Bayes-
rational, utility maximizing market participants, one still faces a problem of describ-
ing the behavior of a (large) number of potentially heterogenous individuals, making
decisions independently (yet acknowledging the presence of others) based on poten-
tially heterogenous, correlated, and possibly overlapping information.*

Nevertheless, in a series of seminal papers, a few tractable, and from a modeling
perspective rather fruitful, approaches to tackle this problem have been suggested. A
good place to start is to consider frictionless (i.e., no transaction costs) and complete
or (perfectly) competitive markets with infinite liquidity. In the context of finan-
cial market modeling, a convenient feature obtained using this approach is that all
market participants may be considered as price takers, i.e., the trades of the market
participants do not affect the market price at which the trades are executed.

Assuming traders are price takers is a modelling choice made, for instance, in
a myriad of (competitive) rational expectations equilibrium (REE) models. By as-
suming the number of traders in the market is infinite, competitive REE models can
generate many valuable insights about the workings of financial markets. In general,
this modeling approach can be considered to produce a (macro) approximation for
a market featuring only very liquid stocks and characterized by the absence of large
traders (cf. Cetin et al. 2004). Even after accepting this approximation point of view,
the outlined approach is not completely unproblematic.

To exemplify, Vives (2010) distinguishes two problems with competitive rational
expectations equilibrium (REE). First, in a fully revealing, competitive REE no one
has an incentive to acquire information since all the information is already included
in the market price. This instead results in the equilibrium collapsing (the Grossman
and Stiglitz 1980 paradox). Second, there is the schizophrenia problem introduced
by Hellwig (1980). In general, this refers to the phenomenon where a trader takes
advantage of the information content of market prices but ignores the price impact
of trades. This latter problem only pertains to finite economies—i.e., economies

4 Even if the market participants have identical information, they may differ, for instance, in their initial wealth
endowment or risk aversion.
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(or markets) where the number of traders is finite—and vanishes as the size of the
economy approaches infinity, since then individual trades no longer have a price
impact. Finally, competitive models are unable to capture the nuances brought about
by introducing large traders in the market.

To avoid these issues and to direct focus more on the micro features of finan-
cial markets, the approach taken in this dissertation is to explicitly model strategic
trading behavior along the lines of Kyle (1985).> Conversely to the competitive
REE models, the backbone of strategic trading models is the notion that trades—or
at least the trades of some traders, e.g., the aforementioned large traders—indeed
have price impact and traders take this price impact into account in designing their
trading strategies.® Generally speaking, this yields a class of optimal execution prob-
lems in which the additional strategic dimension adds to the complexity of the ques-
tion under study—especially if one is interested in a model where price impact rises
endogenously—but at the same time enables one to study a wealth of topics that are
beyond the reach of frictionless competitive models. Differences within this class
usually stem from how price impact, or, more generally, price formation, and other
trading costs are specified.

2.2 Curious Case of Price Impact

Price formation is a central topic in the area of market microstructure and this ques-
tion has been looked at from various perspectives. Classical works in this area, often
adopting the viewpoint of a dealership market with inventory concerns, include Gar-
man (1976), Stoll (1978), Amihud and Mendelson (1980), and Ho and Stoll (1981);
Roll (1984) discusses order processing costs. Further, Glosten and Milgrom (1985)
provided a seminal framework to study the relation between bid-ask spread and ad-
verse selection and Kyle (1985) studied price formation and strategic trading under
asymmetric information.

Asymmetric information and trading strategies are elevated to a prominent role
in this dissertation and hence the most relevant paper from above is Kyle (1985), in
which a privately informed insider trades in a market with noise traders and com-
peting market makers. The market makers seek to infer over time the private infor-
mation of the insider from noisy order flow signals. These endeavors of the market
makers give rise to endogenous price impact and the market price is gradually di-

3> Generally speaking, this dissertation adopts a slightly wider view on strategic trading as compared to classical

market microstructure literature. Strategic trading, in this dissertation, is in broad terms taken to mean trading which
takes into account price impact and other possible costs explicitly. This entails, for instance, optimal execution
programs where the goal is to minimize expected execution costs or portfolio selection under transaction costs.
Price impact can be taken to stem, for instance, from revelation of private information or from the impact of orders
on the limit order book.

Kyle (1989) avoids the schizophrenia problem by looking at a non-competitive market where traders submit
demand schedules instead of market orders.

6
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rected towards the valuation indicated by the insider’s private information. A central
observation here is that price impact in Kyle (1985) exists because of private infor-
mation and, for example, uninformed trades in the model have no price impact. This
line of thinking is adopted in the second essay.

While price impact stemming from private fundamental information hidden in
aggregate order flows is a compelling story, it is not the whole story. This view is
endorsed in, for instance, Bouchaud (2010), in which the author characterizes price
impact as being the correlation between an incoming (buy or sell) order and the fol-
lowing price change. In many instances, the information content of order flow is low
or nonexistent and incoming orders still cause immediate price shifts. One way to
explain this is to note that not all traders are always present in the market and lig-
uidity providing intermediaries must be compensated for their efforts (cf. Grossman
and Miller 1988).”

Alternatively, one could purport that price impact stems from the dynamics of the
limit order book as in Obizhaeva and Wang (2013).% The authors develop a model be-
tween security prices and supply-demand dynamics and use it to study optimal trad-
ing strategies in the resulting market.® Subsequent literature (cf. Schied et al. 2010,
Schied et al. 2017, and Schied and Zhang 2018) has often used the Obizhaeva and
Wang (2013) model to justify certain assumptions about the (mathematical) prop-
erties of price impact with less emphasis on explicitly modeling limit order book
dynamics—the third essay of this dissertation utilizes a similar approach.

Figure 1 summarizes how price impact is modeled in this dissertation.

(NON)LINEAR PERMANENT PI

(/——b‘ INFORMATION-DRIVEN PI ‘

| PRICE IMPACT (PI) | p= (NON)LINEAR TRANSIENT PI

g LIQUIDITY-DRIVEN PI ‘

(NON)LINEAR TEMPORARY PI

Figure 1: (Price impact decomposed) This figure presents an overview of how price impact is “decomposed” in
this dissertation.

The first thing to note from Figure 1 is how the general price impact is decomposed

7 Liquidity demand/provision and liquidity in general is a closely related, albeit arguably somewhat wider, topic

to the themes discussed in this section. Amihud et al. (2006)—in addition to providing an excellent survey of the
liquidity literature—defines liquidity as the ease of trading a security and lists, e.g., demand pressure, inventory
concerns, and information symmetry as well as adverse selection as potential drivers of illiquidity.

Most financial markets nowadays are organized around a double auction limit order book.

The link between supply-demand dynamics and price changes is well established in the empirical literature. See,
for example, Bouchaud et al. (2009).

8
9
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to information-driven (as in, e.g., Kyle 1985) price impact and liquidity-driven (as
in, e.g., Obizhaeva and Wang 2013) price impact. This distinction has notable impli-
cations from a modeling point of view as discussed in the second and third essay. '’

The second key notion in Figure 1 is the functional form and the duration of
price impact. Starting with the functional form, the price impact function used to
transmit the effect of trades on market prices, can be either linear or nonlinear, the
former offering more tractability and the latter some added realism with respect to
empirical results.!! In Kyle (1985) price impact is linear and permanent, a choice
that facilitates efficient modeling of learning from noisy order flow signals, while
Obizhaeva and Wang (2013) features linear transient price impact.

Moving on, the differences between various price impact duration assumptions
can be summarized as follows (see also, Alfonsi et al. 2012).

¢ PERMANENT PRICE IMPACT: Impact is (perfectly) persistent and thus af-
fects the current and all future trades; can stem from, e.g., new fundamental
information being incorporated into prices, i.e., information-based price im-
pact.

¢ TRANSIENT PRICE IMPACT: Impact is greater immediately after the trade
but vanishes over time; can stem from, e.g., limit order book effects, i.e.,
liquidity-driven price impact.

¢ TEMPORARY PRICE IMPACT: Impact is limited to the current trade; can
stem from, e.g., transaction taxes. 12

Figure 2 provides a further illustration of price impact stemming from a single sell
(market) order.'3

10" Papers featuring combinations of different types of price impact functions are scarce. Park and Van Roy (2015)

is one example.

11 See, for example, Bouchaud (2010).

12 Temporary price impact is included in, for instance, Almgren and Chriss (2001) and Huberman and Stanzl
(2005).

13 A buy (market) order could be illustrated analogously.



22

Price level before sell order

Perm. PI
-
Trans. PI -
Fd
Temp. PI —[ -
-
ty Lot

Figure 2: (Price impact of a sell order) This figure illustrates the effect of different components of price impact
for a single market sell order.

In Figure 2, a sell order first causes an instantaneous drop in the price level at t,
followed by an (almost) immediate recovery as the temporary price impact has dis-
sipated at 75,.'* As time moves on, the transient price impact of the sell order slowly
fades and the price approaches a new, post-trade, price level as illustrated by the
middle (dotted) horizontal line.!?

In Figure 2, the post trade price level is lower than the original price level due
to permanent price impact. In some cases, permanent price impact can, however, be
taken to be close to negligible in which case the price eventually recovers close to
the original level. A case in point would be a situation where there is a large order,
which consumes plenty of liquidity but is not believed to contain any fundamental—
i.e., price relevant—information.

The way price impact is specified has important implications on the viability of
the modeled financial market. For instance, it turns out that the form of price impact
is important from the point of view of market manipulation. In an important paper,
Huberman and Stanzl (2004) demonstrate that with permanent, time-independent
price impact, manipulation and arbitrage can only be ruled out when the price impact
function is linear. Similarly, Gatheral (2010) studies how the shape of the price
impact function is related to dynamic arbitrage when price impact is allowed to be
transient.'® These previous works are extended by Alfonsi et al. (2012) who study

14 Note that in this dissertation the focus in mainly on intraday trading, i.e., fo; —fo is assumed to be small in

relative terms; in a discrete time model one can assume that temporary price impact affects only current period
trades. Naturally, it can take more time for the price to recover but the effect of longer horizon price dynamics
is not considered. Mainly because in the models considered there is an urgency component which prescribes that
trading must be completed within a given time-interval. Moreover, with longer horizons it becomes increasingly
likely that prices are affected by various outside shocks and these additional shocks should be incorporated into
the models considered. Finally, if one interprets temporary costs as, e.g., transaction taxes, it is obvious that these
costs are not actually visible in market prices but instead affect only the actual prices incurred by the trader.

15 See also, Duffie (2010).

16 Manipulation using the Kyle (1985) model with permanent linear price impact is studied in, for example,
Van Bommel (2003), Chakraborty and Yilmaz (2004b), and Chakraborty and Yilmaz (2004a). In these mod-
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transaction-triggered price manipulation strategies.

Nevertheless, while (implicit) price impact costs often constitute a lion’s share of
total transaction costs, there are other costs which might be of interest as different
costs can have different implications on equilibrium outcomes. A case in point of
costs separate from price impact are explicit transaction costs.

2.3 Explicit Transaction Costs

As noted by Amihud et al. (2006), exogenous transactions costs such as brokerage
fees and transaction taxes are an important source of illiquidity. Fabozzi et al. (2010)
(pp. 421-426) characterize these types of costs as explicit, as compared to the im-
plicit price impact costs discussed above, and this categorization is also adopted in
this dissertation.!” Further, explicit transaction (or, trading) costs, whenever present,
are taken to be purely exogenous.'®

By incorporating explicit trading costs in addition to implicit trading costs, one
is able to delve deeper into aspects of strategic trading than would be possible if
just implicit costs were considered. For example, portfolio optimization with im-
plicit costs is exceedingly complicated, but one can still—in a rather straightforward
manner—utilize explicit costs to introduce financial market frictions into portfolio
models (cf. Garleanu and Pedersen 2013). This approach is taken in the first essay.

Moreover, Schied and Zhang (2018) study a price impact game with both implicit
and explicit costs and propose that (quadratic) transaction costs may in fact provide
protection against predatory trading and even decrease the total (implicit plus ex-
plicit) trading costs experienced by traders. This protection feature of transaction
costs is examined further in the third essay.

2.4 Other Modeling Choices

In addition to the way (implicit and explicit) transaction costs are modeled in this
dissertation, there are also a few additional modeling choices, which are worth a
short discussion. First, in this dissertation attention is not on capturing the dynamics
of a limit order book and, for instance, only a single market price is utilized, instead
of separate bid and ask prices. This choice is made both for simplicity and, due to the
fact that, even if one, for example, models a two-sided limit order book often only

els, additional assumptions are added to the original framework to make manipulation feasible even under linear
permanent price impact.

For additional information about transaction costs see, for instance, Johnson (2010) (Section 2.5) or Kissell
(2014) (Chapter 3.).

More specifically, the functional form of explicit transaction costs is taken to be quadratic in line with, e.g.,
Garleanu and Pedersen (2013).
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one side of the book is utilized (cf. Obizhaeva and Wang 2013). 19

Second, differences between order types, most notably market orders and limits
orders, are generally not emphasized. Common wisdom dictates that traders with
greater urgency utilize market orders while more patient or less time-constrained
traders utilize limit orders. Since this dissertation focuses for the most part on op-
timal execution problems to be carried out within a fixed time-frame, one can think
of the traders in the models as being (highly) impatient and thus choosing to submit
market orders.?”

2.5 Recent Research

Much of the theory in this dissertation, especially in the second and third essay,
owes to two recent and closely related papers: Moallemi et al. (2012) and Choi et al.
(2019). The former leans more towards the optimal execution literature in quantita-
tive finance while the latter builds on the strategic trading foundations provided by
Kyle (1985).2! Starting with Moallemi et al. (2012), a quick overview of the optimal
execution literature is in place.

Influential early works in this area include Bertsimas and Lo (1998), Almgren and
Chriss (1999), and Almgren and Chriss (2001) with more recent contributions by, for
example, Alfonsi et al. (2010) and Obizhaeva and Wang (2013).22 One of the key
developments moving from the “classical” papers towards the more recent work is
the way in which price impact is modeled. Earlier papers, such as Bertsimas and Lo
(1998), Almgren and Chriss (1999), utilized permanent and temporary price impact
while in, e.g., Obizhaeva and Wang (2013) price impact is transient.?> Typical to the
models presented in these papers is that they focus on the trading strategy of a lone
trader isolated from other traders potentially present in the market.

Indeed, historically, the key difference between the strategic trading and optimal
execution approaches in the literature has been that strategic trading often refers to
game-theoretic modeling while standard optimal execution models abstract over the
interactions between different traders and concentrate only on formulating optimal
strategies under a given, exogenous, price impact function. Recently, however, this

19 Recent reviews related to limit order book modeling are given in, for example, Parlour and Seppi (2008),

Bouchaud et al. (2009), and Gould et al. (2013).

It should also be emphasized that strategic trading with limit orders under asymmetric information is highly
complicated from a modeling point of view. See, for example, Rosu (2012).

There are numerous extensions of the original Kyle (1985) model: Foster and Viswanathan (1990), Subrah-
manyam (1991), Holden and Subrahmanyam (1992), Foster and Vishwanathan (1993), Holden and Subrahmanyam
(1994), Caballe and Krishnan (1994), Rochet and Vila (1994), Holden and Subrahmanyam (1996), Huddart et al.
(2001), and Bernhardt and Miao (2004) to name some.

22 See also, e.g., Predoiu et al. (2011) and Gatheral and Schied (2011).
23 Finite market resilience and replenishing liquidity is described empirically in, for example, Biais et al. (1995),

Ranaldo (2004), Degryse et al. (2005), and Large (2007). Other relevant statistical contributions include: Cont

(2011), Hautsch and Huang (2012), Cont et al. (2014), and Lo and Hall (2015).
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distinction between the two has become more blurred. For instance, Schied and
Zhang (2017), Strehle (2017), Schied and Zhang (2018), and Huang et al. (2019)
study optimal execution in a game-theoretic framework. One of the goals of this
dissertation, especially the third essay, is to blur the distinction even further.

However, a feature even rarer than strategic interactions in optimal execution
models is the presence of asymmetric information. In Moallemi et al. (2012) both
strategic interactions and asymmetric information have a key role as the paper stud-
ies a game between two traders, one of which, say trader A, has to liquidate a given
position, the size of which is private information of trader A, while the other trader,
say trader B, is actively seeking profitable trading opportunities. Because B does not
know how large a position A is going to liquidate, B tries to learn this information
from price changes. The quicker B is able to infer the trading needs of A, the bet-
ter B is able to use this information in formulating an adversary (predatory) trading
strategy, taking advantage of predicted future price movements.

The presence of asymmetric information is what distinguishes Moallemi et al.
(2012) from, for example, earlier work on predatory trading such as such as Brun-
nermeier (2005), Carlin et al. (2007), and Schied and Schéneborn (2009). The com-
bination of asymmetric information and strategic interactions also separate Moallemi
et al. (2012) from most of the optimal execution literature, even though the founda-
tions of the paper are build on the classical (exogenous) liquidity-driven, linear per-
manent price impact market. The third essay examines a version of Moallemi et al.
(2012) featuring transient price impact and quadratic transaction costs.

Moving on to Choi et al. (2019), the first thing to note is that now, due to the
influence of Kyle (1985), the price impact is of the linear permanent form and, more
importantly, information-driven and endogenous. More specifically, price impact
rises due to the efforts of the market (makers) to learn the private (fundamental) in-
formation hidden in aggregate order flows. Choi et al. (2019) builds on the works
of Foster and Viswanathan (1994), Foster and Viswanathan (1996), and Back et al.
(2000) in which the authors study strategic trading by competing, differentially in-
formed traders.?*

On top of endogenous price impact, the more complex information structure in
Choi et al. (2019) is the main distinction that separates the paper from Moallemi
et al. (2012). Indeed, in Choi et al. (2019) this complex information structure gives
rise to the so-called “forecasting the forecasts of others” problem which complicates
the model analysis. The upside, however, is that one is able to: (a) form a clearer
picture of how (non-nested) differential information affects the intraday dynamics
and equilibrium trading strategies and (b) complement the results obtained via the
Moallemi et al. (2012) framework.

24

In contrast to the other papers, Back et al. (2000) utilizes a continuous time framework. Continuous time
version of the Kyle (1985) model is also examined in, e.g., Back (1992), Back et al. (1998), Baruch (2002), Back
and Baruch (2004), Collin-Dufresne and Fos (2016).
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While the theoretical results obtained in this dissertation are normative in na-
ture, there are also important linkages to questions and challenges put forth in recent
empirical papers. For example, Van Kervel and Menkveld (2019) bring forth the
need for models dealing with contemporaneous trading by a number of heteroge-
nous traders.” This makes sense as these types of interactions drive the intraday
patterns observed in financial markets, and hence, the better one is able to explain
the interactions, the better one is able to explain the observed patterns. In addition,
the models studied in this dissertation—supplemented with novel and detailed data
sets—can be used in hypothesis formation in empirical inquiries to the trading strate-
gies of corporate insiders, as in Klein et al. (2017), or professional asset managers,
as in Di Mascio et al. (2017).26

Finally, understanding optimal execution of trades from a normative perspective
in various settings is also valuable from a practical point of view. On one hand,
best execution practices are embedded in regulations, such as Reg. NMS, and on
the other hand, there is empirical evidence (see, Anand et al. 2011) which supports
the economic significance of the trade implementation process in evaluating insti-
tutional trading desks. Hence, motives are clearly present for institutions to seek
improvements to these practices and processes.

25 See also, for instance, Khan et al. (2012), Dyakov and Verbeek (2013), and Busse et al. (2018).
26 See also, Dufour and Engle (2000) who use a large transaction level data set to study price impact and market
activity, finding a positive relation between activity and price impact.
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3 NUMERICAL REAL ALGEBRAIC
GEOMETRY

3.1 A Quick Overview of the Field

In dealing with problems pertaining to strategic trading and optimal execution, meth-
ods and topics from the—relatively young—area of numerical real algebraic geome-
try (NRAG) are prominently featured in this dissertation. For this reason, this section
gives a sententious summary of this ponderable and quickly evolving field from the
point of view of applications.

The links between real algebraic geometry and the methods discussed below are
neatly summarized in the introductory notes of Bochnak et al. (1998). Algebraic
geometry is concerned with the set of solutions to polynomial systems and in real al-
gebraic geometry one is mainly interested in the real solutions, i.e., the set of real so-
lutions. In addition, questions related to sign changes of polynomials and to domains
where a given polynomial has constant sign are of great interest in (real) algebraic
geometry.

To understand what are the links alluded to above, it suffices to note that the
methods in Section 3.2 and 3.4 are designed to find all solutions to a polynomial
system or a certain type of polynomial, whereas the methods in Section 3.3 take
advantage of so-called certificates of positivity, i.e., theoretical results that guarantee
that a given polynomial remains positive when restricted to a certain set.

Having made the distinction between algebraic geometry and its real counter-
part, what is left to address is the quantifier numerical. It is indeed the case that
many questions in real algebraic geometry are such that they are accessible to an
algorithmic way of thinking (cf. Basu et al. 2016).>’ This coupled with the rise in
computational power and the development of several high quality software packages
implementing various algorithms pertinent to algebraic geometry (cf. Stillman et al.
2008), has enabled the rise of the field now known as numerical real algebraic geom-
etry (NRAG). It is precisely this rise of NRAG that has granted access to numerous,
novel and valuable, numerical approaches with plenty of untapped potential in the
field of finance and economics.

27 An example of such a question would be the classical root counting problem.
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3.2 Grobner Bases and Polynomial Homotopy Continuation

The methods discussed in this section are all about finding all solutions to systems
of polynomial equations. This is in contrast to many standard numerical root find-
ing algorithms which typically, given some initial parameters, only produce a single
root at a time. This difference is significant, as it is often the case with, for instance,
game-theoretic models that: (1) the equilibrium conditions are given by a (square)
system of polynomial equations which has many (real) roots (2) potential equilib-
rium multiplicity, stemming from the existence of multiple roots, may cause serious
ambiguities in interpreting the model predictions.?® To take these issues into con-
sideration and to better understand equilibrium behavior two numerical all-solutions
methods, namely, Grobner bases and polynomial homotopy continuation, are em-
ployed in the first and the second essay.

The first all-solutions method to be discussed here is Grobner bases. The insight
behind this method, based on deep results in algebraic geometry, is to simplify the
task of finding all solutions to a given polynomial system to finding all solutions
to a much simpler system, which nevertheless has exactly the same solution set as
the original system. In its core, Grobner bases enable one to focus attention on
finding the roots of a single univariate polynomial instead of a (square) system of
polynomials. It is worth pointing out here that univariate root finding represents a
significant simplification as compared to multivariate root finding and many efficient
univariate root finding algorithms exist in practically any programming language.?’
The computational complexity with respect to Grobner bases stems from the fact
that obtaining a simpler version of the original system requires some work. This
simplification process is often thought of as a generalization of the classical Gaussian
elimination in linear algebra.

The second method, namely, polynomial homotopy continuation, takes an alter-
native route to finding all solutions to a polynomial system. This alternative route
involves utilizing a special system (the so-called start system), with an appropriate
number of ex ante known zeros, in conjunction with the original system to form
a continuation system, which can then be used to find all solutions to the original
system. Roughly speaking, the idea is to take a convex combination of the start
system and the original system, set this new system to zero, and, starting from the
known solutions of the start system, to “slide” (i.e., to put more weight on the origi-
nal system)—Tlittle by little—towards the case where all the weight is on the original
system and as output one obtains the desired solution set. While polynomial homo-
topy methods draw heavily from complex analysis, results from algebraic geometry
are crucial in finding efficient bounds on the number of (complex) solutions for the
polynomial system under study. These bounds are needed in constructing the best

28
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Some examples are listed in Kubler et al. (2014).
The ease of univariate root finding is also the reason why all-solutions methods are not needed in the third essay.
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possible start system on a case-by-case basis.

A good question at this point is: Why would one need to utilize two methods? The
logic behind this choice is related to the inherent weaknesses present in both Grébner
bases and homotopy continuation methods. On one hand, Grobner bases are compu-
tationally expensive, not naturally parallelizable, and may run into numerical diffi-
culties, especially when polynomial coefficients are real numbers.>® Thus, Grobner
bases are best suited for studying the solutions of relatively simple and small sys-
tems. On the other hand, polynomial homotopy continuation methods can be applied
to larger systems and are naturally parallelizable, but can potentially waste a con-
siderable amount of computational effort to non-essential calculations (i.e., tracking
diverging paths; cf. Judd et al. 2012) and are also subject to numerical issues (e.g.,
singularities and rounding errors; cf. Datta 2010).3! By utilizing both methods, one
gets the best of both worlds combined with an additional layer of robustness.

3.3 Polynomial Optimization

Polynomial optimization—as the name implies—deals with optimization problems
where the objective functions as well as the constraints take the form of polynomial
equations. Recent work (cf. Anjos and Lasserre 2012) has shown that there exist ef-
ficient numerical algorithms to solve these types of problems. Furthermore, existing
algorithms: (1) have generically finite convergence and (2) are able to numerically
verify global optimal solutions. Both features are important from the perspective of
practical usability. Finite convergence means that one is actually able to solve these
problems numerically, usually within a sensible time frame. Certificates for global
optimality instead are profoundly useful when dealing with, for example, problems
which are beyond the scope of classical optimization theory and standard optimality
conditions.

Generally speaking, the central feature of the polynomial optimization approach
(cf. Lasserre 2015, pg. 6) is that it is not tied to the standard setting of convex versus
nonconvex, but is instead able, within the family of polynomial problems, to offer
a unified treatment for numerous relevant problems belonging to this family. More
importantly—at least from the point of view of this dissertation—it turns out that the
aforementioned family is large enough to include various interesting problems from
the field of finance.

First, problems involving moments of random variables often give rise to polyno-
mial objective functions. A case in point is a portfolio optimization problem with, for
instance, mean-variance or mean-variance-skewness preferences. Second, it is well-

30" When polynomial coefficients are rational numbers of parameters, Grobner bases computations are exact. See,

for example, Kubler and Schmedders (2010).

31 Polynomial homotopy continuation methods are purely numerical in nature.
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known that continuous functions can be accurately approximated with polynomials.
Hence, one is often able to utilize polynomial optimization methods even to cases
where the original problem is not directly stated in terms of polynomial functions.
Therefore, it is safe to conclude that the scope of potential applications of polynomial
optimization is vast.

3.4 Interval Polynomials

An interval polynomial is, in essence, an algebraic equation with perturbed coeffi-
cients.>> Here, perturbed coefficients are taken to mean that each coefficient of the
polynomial is allowed to take values from an (non-degenerate) appropriate interval.
Therefore, one can view an interval polynomial as a family of polynomials, each of
which has the same degree and the same variables (unknowns), but at the same time
featuring distinct coefficient values.

Interval polynomials arise naturally in situations where, for instance, the coeffi-
cients are subject to noise due to inaccurate measurements. A case in point would
an equation with a fixed (algebraic) functional form but whose coefficients are esti-
mated from data. Alternatively, one could justify the use of interval polynomials by
the properties of floating-point arithmetic ubiquitous in computational applications.
Interval polynomials, and interval analysis methods in general, also have notable ap-
plications in robust optimization and control (Vehi et al. 2002 and Mansour et al.
2012).

This dissertation shortly touches on the theory of interval polynomials by means
of a short example in the context of a dynamic optimization problem. In this prob-
lem, the relevant optimality conditions simplify to an algebraic equation whose co-
efficients are determined by a set of exogenous parameter values as well as known
solutions from earlier rounds of the dynamic programming algorithm. The resulting
algebraic equation can be treated as an interval polynomial and to this polynomial
one can apply the recent results by Zhang and Deng (2013) which, for a fixed in-
terval, allow one to determine the number of associated interval zeros. The purpose
of the short example is to bring forth a novel—at least to the best knowledge of the
author—approach to study equilibrium existence and uniqueness in dynamic models,
featuring algebraic equilibrium conditions.

32 Cf. Ferreira et al. (2001), Ferreira et al. (2005), and Zhang and Deng (2013).
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3.5 Applications of NRAG in Finance and Economics

Many of the numerical approaches touched upon in this dissertation have presently a
limited number of well-documented applications in finance and related fields. This is
reflected in the fact that following overview of related references is close to exhaus-
tive. This does not, however, mean that there would not exist many potential future
applications, some of which are discussed in this dissertation.??

Starting with the homotopy continuation approach, recent applications include,
for instance, dynamic general equilibrium models (see, for example, Amisano and
Tristani 2009 and Amisano and Tristani 2011), game theory (see, for example, Ba-
jari et al. 2010 and Judd et al. 2012), and industrial organization (see, for example,
Besanko et al. 2010). For a review on usage of homotopy continuation in game the-
ory, the reader is referred to Herings and Peeters (2010), and for a guide on using
the methodology to solve dynamic games, the reader is referred to Borkovsky et al.
(2010). Some less recent applications include Schmedders (1998) and Schmedders
(1999).

Moving on to Grébner bases, recent applications can be found in, for instance,
Kubler and Schmedders (2010) and Robatto (2019). The former is more of a survey
paper, while the latter utilizes Grobner bases to rule out bad outcomes among the
multiple equilibria supported by the monetary economics model introduced in the
paper. Similarly, Marinovic and Varas (2018) resort to methods from computational
algebraic geometry to tackle multiplicity of equilibria in a continuous time model
of strategic trading and activism. Grobner bases complement homotopy methods
in dealing with the determination of the solution sets for complicated polynomial
systems. As noted earlier, it is for this reason that polynomial homotopy continuation
and Grobner bases are often utilized side-by-side in this paper.

Pertaining to polynomial optimization, one prominent example application is
Renner and Schmedders (2015), who study the principal-agent problem—the PA-
problem, for short.>* PA-problems typically fall in to the category of bilevel opti-
mization problems. In these types of problems one optimization problem is a part
of the constraint set of another, upper-level, optimization problem (see, for instance,
Colson et al. 2007). Bilevel programs are, by and large, very difficult to solve and
standard approaches to solve PA-problems feature strict assumptions. Renner and
Schmedders (2015) tackle this issue by reformulating the PA-problem, under suitable
yet relatively mild conditions, as a polynomial optimization problem. This approach
enables one to avoid the strict assumptions related to alternative approaches. Ren-
ner and Schmedders (2017) extend the methods to a dynamic PA setting, obtaining

33 Further support for the view that more applications of NRAG in finance and economics are likely to emerge in

the near future is provided by the success of these methods in other fields. See, for instance, Josz et al. (2015) and
Ghaddar et al. (2017).

34 See also, Couzoudis and Renner (2013).
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numerical approximations for the policy and value functions arising in the proposed
model.

Finally, recent applications featuring interval methods include Stradi and Haven
(2005) and Stradi-Granados and Haven (2010).>> The authors emphasize the ben-
efits stemming from interval methods in conjunction with well-known optimization
algorithms in solving highly nonlinear, multiperiod (rational expectations) models.
One of these benefits is the ability to locate multiple roots without changing the ini-
tial conditions and to determine unique roots by iteratively narrowing the intervals
(bisection) around points of interest. The application of interval methods introduced
in this dissertation is similar in spirit, but focuses more on interval polynomials and
recent theoretical results pertaining to the number of zeros of the objects, instead of
offering purely numerical recipes for actually locating these zeros.

35 See also, Zilinskas and Bogle (2006).
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4 OVERVIEW OF INCLUDED ESSAYS

4.1 Applications of Numerical Algebraic Geometry in Strategic
Trading and Portfolio Optimization

The first essay deals with novel numerical approaches to, both old and new, prob-
lems in (non-game-theoretic) optimal execution and portfolio optimization as well
as (game-theoretic) strategic trading. The approaches utilized rely on the techniques
from real algebraic geometry introduced in Section 3. The essay starts by offering
a concise overview of polynomial optimization, polynomial homotopy continuation,
and Grobner bases, and then proceeds to a comprehensive exploration of various
example applications.

The first example application is related to the classical problem of optimal exe-
cution of trades discussed in Section 2. The key observation is that these problems
often involve settings, which can be modeled using polynomial objective functions
and polynomial constraints. Therefore, polynomial optimization techniques offer an
effective way to go about solving these types of problems. Numerical examples show
that polynomial optimization can indeed be utilized to analyze (in a global sense)
some problems related to optimal execution, which have previously been considered
too complicated to solve or solved using, more or less, heuristic methods.

The second example application also takes advantage of polynomial optimiza-
tion techniques. This time the goal is to solve a mean-variance-skewness (MVS)—
instead of the well-known mean-variance (MV)—portfolio optimization problem un-
der quadratic transaction costs. As noted in earlier, this type of problem sits com-
fortably under the umbrella of strategic trading in this dissertation.

What makes MVS portfolio optimization interesting is the fact that adding skew-
ness to the objective function of the problem breaks the standard quadratic formu-
lation. This in turn means that classical approaches typically cannot guarantee the
global optimality of the solutions obtained. This is not, however, a problem for the
versatile modern polynomial optimization techniques. Examples are provided to il-
lustrate some noteworthy similarities and differences between the standard MV opti-
mal portfolios and the MVS portfolios. It is worth pointing out that the MV portfolio
problem can also be described by a set of polynomial equations and hence solved us-
ing polynomial optimization. Therefore, via the use of the polynomial optimization
approach, one can implement a unified optimization procedure capable of handling
portfolio problems featuring two or more moments.
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The final example application presented in the first essay concentrates on a recent
dynamic strategic trading model introduced in Choi et al. (2019) and extended in the
second essay of this dissertation. The goal is to utilize numerical algebraic geometry
(Grobner bases and polynomial homotopy continuation) to numerically study equi-
librium uniqueness in the model. The main motivation for this is the lack of analyti-
cal tools—stemming from the complexity of the equilibrium system of equations—to
properly answer this question. It is shown that general uniqueness, without additional
conditions imposed on the equilibrium properties, is questionable. Nevertheless, all-
solutions methods can be used to identify and rule out problematic equilibria and to
generally sharpen the equilibrium analysis.

The first essay also covers various worthwhile topics for additional research. Fur-
thermore, an algorithmic viewpoint pertaining to the different example applications
is provided.

4.2 Risk Preferences, Dynamic Equilibrium, and Trading Targets

In the second essay, the recent Choi et al. (2019) model, featuring two strategic
traders in a dynamic financial market, is extended to allow for more general risk
preferences. In addition to this extension, a detailed look at the numerical methods
used in solving the model is given, especially from the point of view of equilibrium
existence and uniqueness. The numerical methods are again based on numerical
algebraic geometry and the theory concerning polynomial equations.

The main theoretical contribution of the paper is to provide a solution to the neg-
ative exponential utility version of Choi et al. (2019). One of the reasons why this
contribution is important is that is allows one to narrow down the instances where risk
neutral traders are good proxies for, e.g., risk averse traders. Indeed, the model intro-
duced allows one to examine both risk averse and risk seeking traders, while at the
same time nesting the original risk neutral model, and hence facilitates multifaceted
comparisons between various model equilibria under different risk preferences.

Among these comparisons, several interesting features pertaining to the equilib-
rium values of the model constants and the resulting intraday dynamics arise. For
instance, in a high risk aversion market, price impact is monotonically decreasing
towards the end of the day, whereas in the risk neutral market price impact exhibits
an S-shaped pattern, decreasing more sharply in the beginning and the end of the day,
while remaining more or less unchanged during the middle of the day. Further, it is
observed that risk aversion increases mutually beneficial liquidity provision between
the two traders in the model. Finally, it is shown that the risk preferences also have a
marked impact on the intraday autocorrelation patterns observed in equilibrium.

On the methodological front, a computational approach using polynomial ho-
motopy continuation (cf. Verschelde 1999) to tackle the question of equilibrium
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multiplicity is put forth. Using this approach, combined with key analytic observa-
tions, a meticulous discussion pertaining to the equilibrium existence and uniqueness
properties as well as techniques to numerically solve for the dynamic equilibrium is
presented. It is noted that, for example, equilibrium uniqueness is closely linked to
the feasible ranges for the initial parameters in the model and that strict uniqueness
may require additional constraints beyond those stemming from explicit equilibrium
equations. All in all, the goal is to advocate the use of more insightful and versatile
computational means to investigate dynamic strategic models in finance.

4.3 Order Execution Game with Transient Price Impact and
Asymmetric Information

The third essay introduces an optimal order execution game with transient price im-
pact between two traders possessing different (ex ante) information endowments.
The framework is based on the recent Moallemi et al. (2012) paper. The model de-
veloped in the third essay bears resemblance to models of predatory trading (cf. Car-
lin et al. 2007 and Brunnermeier and Pedersen 2009), but at the same time deviates
from these models in the choice of information structure (asymmetric information)
and the assumption that price impact is transient instead of permanent.

The third essay contributes to the literature by analyzing in depth the equilibrium
implications—i.e., changes in trading strategies, expected execution costs/profits,
etc.—of moving from permanent to transient price impact. This analysis is carried
out using both theoretical and numerical methods. Regarding the former, the first part
of the paper walks the reader through the steps involved in constructing the model
solution (equilibrium), while at the same time exemplifying some key model prop-
erties. Equilibrium existence and uniqueness are discussed with a view on interval
polynomials.

Regarding the latter, the tail end of the essay focuses on the numerical analysis
of the model. A sundry of interesting observations is uncovered. First, a simplified
version of the model developed in the paper in contrasted against Obizhaeva and
Wang (2013) to show that the trading strategies obtained are in line with earlier
literature. Next, through various numerical examples, it is illustrated how moving
from permanent to transient price impact markedly changes the equilibrium of the
order execution game. Most notably, it is discovered that it is no more optimal for
trader B (cf. Section 2.5) to pursue a strictly predatory strategy. Finally, the impact
of additional transaction fees is examined. It is found that while transaction costs are
detrimental from the viewpoint of optimal strategies, they can alleviate the problem
of predatory trading when the liquidating player, referred to as player A in Section
2.5, utilizes suboptimal strategies.

The essay concludes with a detailed look at possible extensions and topics for
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further research. Appendices give an account of the numerical solution and an ex-
ample, featuring a novel interval polynomial approach, pertaining to the question of
existence and uniqueness of the model equilibrium.
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This paper gives an overview of developments in (numerical) algebraic
geometry with novel applications to finance. Previously problematic
theoretical and practical problems related to strategic trading and
portfolio optimization are solved as examples. Multiple topics for
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I INTRODUCTION

This paper discusses the use of numerical methods arising from algebraic geometry
in finance applications. More specifically, methods stemming from subfields of al-
gebraic geometry such as real algebraic geometry and numerical algebraic geometry
and their potential applications in models of strategic trading and portfolio optimiza-
tion.! In general, the field of algebraic geometry has evolved strongly during the last
few decades and many theoretical results have been successfully implemented algo-
rithmically (see, for instance, Basu et al. 2016). Due to this, one is able to tackle, with
fresh and efficient computational methods, interesting problems that were previously
considered to be out of reach.

One explicit example of these computational methods is (polynomial) homotopy
continuation (or, PHC), which can be used to find all solutions to a given polynomial

Turku School of Economics at the University of Turku, mianhan@utu. fi.
Since it is often impractical to strictly place a given approach to a subfield, the term algebraic geometry is instead
utilized as an umbrella term encompassing all relevant subfields.
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system.> An example application is polynomial systems encountered in game theory.
More specifically, in a game setting, one is often interested in determining unique-
ness of a given equilibrium and for this purpose one must usually check all possible
solutions in order to verify uniqueness. Depending on the application, the interest
may also be in, for instance, finding some subset of solutions, potentially even just
one solution, or conversely finding all real solutions to a given system.

It is good to note that while the basic theory of (polynomial) homotopy contin-
uation has been known for quite some time, more recent theoretical developments
and increases in computational power combined with the availability of profession-
ally implemented programs have made it possible to effectively utilize these methods
in practical applications. In general, this side-by-side advancement of theory, algo-
rithms, and processing power has paved the way for the surge in applications of
algebraic geometry.

Unsurprisingly then, it is not hard to find noteworthy applications—see, for in-
stance, Schmedders (1998) and Schmedders (1999). Homotopy continuation meth-
ods have recently been found useful, for instance, in the context of dynamic general
equilibrium models (see, for example, Amisano and Tristani 2009 and Amisano and
Tristani 2011), game theory (see, for example, Bajari et al. 2010 and Judd et al.
2012), and industrial organization (see, for example, Besanko et al. 2010). For a
review on usage in game theory, see Herings and Peeters (2010), and for a guide on
using the methodology to solve dynamic games, see Borkovsky et al. (2010). In this
paper homotopy methods are utilized to numerically study equilibrium properties
and uniqueness in a recent dynamic strategic trading model of Choi et al. (2019). In
addition to describing the numerical procedure, the discussion below sheds light on
some overlooked features of the Choi et al. (2019) model.

Grobner bases (cf. Becker and Weispfenning 1993) represent an alternative to
homotopy continuation methods with a different, algebraic geometry based, angle to
finding all solutions to polynomial systems of equations. Grobner bases have also
benefited from increased computational power and the diffusion of easy-to-utilize
algebraic geometry software. Overall, Grobner bases complement homotopy meth-
ods in dealing with the determination of solution sets for complicated polynomial
systems. For this reason, polynomial homotopy continuation and Grobner bases are
utilized side-by-side in this paper.

Recent applications of Grobner bases can be found in, for instance, Kubler and
Schmedders (2010) and Robatto (2019). While the former is more of a survey pa-
per, the latter utilizes Grobner bases to rule out bad outcomes among the multiple
equilibria supported by the novel model introduced in the paper. Similarly, Mari-
novic and Varas (2018) resort to methods from computational algebraic geometry to
tackle multiplicity of equilibria in a continuous-time model of strategic trading and

2 Homotopy continuation can be used generally when dealing with nonlinear equations or systems but in this paper
polynomial systems specifically are of interest.



51

activism.

The final example is polynomial optimization which, in short, is about mini-
mizing/maximizing general polynomial equations over a feasible set described by
polynomial inequalities. An example of this sort of problem is the standard mean-
variance (MV) portfolio optimization problem with (or without) a short-selling con-
straint (see, for example, Markowitz 2010). The MV portfolio problem has a
quadratic objective function and can typically, depending on how the problem is
constrained, be handled in the standard convex optimization framework. Polyno-
mial optimization discussed in this paper, however, goes much further than this.
Namely, cubic and quartic polynomial objectives under some given, polynomially
constrained, feasible set are analyzed.’

A few comments on why this represents a notable advancement in numerical
methods are in order. First, for higher degree polynomials, determining whether the
objective is convex (or concave) can be NP-hard (see, Ahmadi et al. 2013). This
is problematic as standard optimization approaches heavily rely on the convexity
(concavity) of objective functions. Second, directly minimizing a polynomial func-
tion over a set defined by polynomial equalities and inequalities is also, in general,
NP-hard (Laurent 2009).

The solution to this predicament is to utilize (approximative) numerical methods.
Numerical methods, however, can sometimes produce ambiguous results due to the
lack of general theory. Luckily, the proposed polynomial optimization approach,
drawing again from algebraic geometry, is able to provide a numerical certificate of
the global optimality of the solution obtained. This certificate represents a marked
improvement over any sort of case-specific, pseudo-global (heuristic) approach often
utilized in the literature.*

Most advances in polynomial optimization are more recent than those in poly-
nomial homotopy continuation or Grobner bases. At the same time, the number of
potential applications is numerous from finance and economics to robotics and from
probability theory to computer science. Recent applications in game theoretic set-
tings include Couzoudis and Renner (2013), Renner and Schmedders (2015), and
Renner and Schmedders (2017).

In this paper, polynomial optimization is exemplified via an optimal execution
problem, i.e., a problem of executing a sequence of trades so that price impact is
minimized, and a portfolio optimization example. Since polynomial optimization
problems are often encountered in situations where approximations—for example,
(orthogonal) polynomials such as Chebyshev polynomials or (truncated) Taylor se-
ries expansion—are utilized, two of the problems discussed are in fact based on

Higher degree objectives are certainly possible but not considered in this paper.

An example of a pseudo-global approach is a method based on multiple runs of a local optimization algorithm,
with variations in the initial conditions, in hopes that the best solution obtained via this procedure is indeed the
global optimum. Typically, there is no way to verify the claim.
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approximations. One problem relating to optimal execution of contingent claims and
another relating to mean-variance-skewness (MVS) portfolio optimization. The ex-
amples considered reveal many interesting, previously unstudied, aspects of some
key problems in finance and illustrate broadly the intuition and applicability of poly-
nomial optimization.

The rest of the paper is organized as follows. Section 2 introduces the theoretical
background to the methods utilized. In Section 3 polynomial optimization techniques
are employed to a classical optimal execution problem. Section 4 illustrates an appli-
cation of polynomial optimization to mean-variance-skewness portfolio optimization
and reviews a number of recent developments in the field of portfolio optimization,
which could be tackled using the polynomial optimization approach. Section 5 pro-
vides an example of finding all solutions to a polynomial system via homotopy con-
tinuation and Grobner bases. Section 6 concludes the paper and Appendices A—E
provide supplementary details.

2 TOOLS FROM ALGEBRAIC GEOMETRY

2.1 Preliminaries

In this section, a bulk of the notation and definitions used below as well as some
key underlying results are presented. All definitions and results are standard and
hence no references are provided. Further, for conciseness, the presentation omits
several details and the interested reading hoping for further details is referred to, for
example, Bochnak et al. (1998), Cox et al. (2006), and Lasserre (2015).

In this paper, it suffices to concentrate on real polynomials which in turn are
constructed using monomials. Hence, the following is a good starting point.

Definition 1 (Monomial). A monomial for variables xi, ..., x, is given by the product
x(ll1 coexon Ifa=(ay,...,ap) € Z’;O, then the monomial is standard and if « € Z", then
x® is called the Laurent monomial.

As noted above, monomials are used to form polynomials as established in Definition

2.

Definition 2 (Polynomial). Finite linear combinations:
f = anxa,

where co’s are constants, are called polynomials if S C Z7, or Laurent polynomials
ifS cz"
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The degree of a polynomial, i.e., the highest sum @ +... + @, for a component mono-
mial, is given by deg(-). The collection of polynomials in the variables x = (xp, ..., X;,)
having coeflicients in some field K—in this paper K € {R,C}—is denoted by K[x].
The following special class of polynomials is central to the methods discussed below.

Definition 3 (Sum of squares polynomial). A polynomial f € R[x] is a sum of
squares polynomial (SOS for short) if it has a representation:

x> f(X)= ) pj(x)?%, xeR,

jeJ
where
piER[X], VjeJ,
and where J is a finite index set.

The significance of the SOS polynomials from Definition 3 stems from the fact that
these polynomials can be used to construct certificates of nonnegativity for polyno-
mials over sets defined by other polynomials.’

Indeed, polynomials are pivotal in defining a new, special class of subsets, uti-
lized heavily in, for instance, polynomial optimization. To exemplify, consider the
following definition.

Definition 4 (Ideal). A subset I CR[xy,...,x,] = R[X] is an ideal if:
1. 0€l,
2. If f,gel, then f+ge€l,
3. If feland heR[xy,...,x,], then fhel

Ideals are typically constructed using a set of basis polynomials. To acknowledge
this, denote by Iy := (f) = (fi,..., fn) the ideal generated by the set of polynomials

fiseos fa

Ideals are essential in formally examining the solution (zero) sets of polynomial sys-
tems. Another important set defined using polynomials is the basic semialgebraic
set.

Definition 5 (Semialgebraic set). A ser S C R" is called semialgebraic if:
S:={xeR": gjx)>0, j=1,...,m},

for polynomials g; € R[x].

5 These certificates are a key building block in constructing the duality theory between positive polynomials and
moment problems, which is at the heart of polynomial optimization. For further details, the reader is referred to
Lasserre (2015).
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Definition 5 gives a simple description of the basic semialgebraic set. A bit more
generally, semialgebraic subsets of R” can be defined using Boolean (disjunction,
conjunction, and negation) operations on the sign conditions g >0, g =0, and g <0
over a finite number of polynomials (cf. Bochnak et al. 1998, pp. 23-26). For
the purposes of this paper it suffices to summarize that semialgebraic sets of R” are
obtained by invoking a finite number of polynomial sign conditions. In the field of
finance, perhaps the simplest example would be a short-selling constraint imposed
on portfolio weights w. More specifically, it is required that portfolio weights belong
totheset {weR" : w; >0, Vj=1,..n}.

Another important concept related to sets is the convex hull defined below.

Definition 6 (Convex hull, cone & polytope). For S C R" the convex hull is given
by the set of convex combinations of points in S :

Conv(S):{Z/lis,- 1 5;€8,4,=0, Z/li: 1},
i=1 i=1

Alternatively, suppose Cy represents the convex sets C C R", where for each C € Cy
it holds that:

Vx,yeCand 1€[0,1] = Ax+(1-AyeC.

Then the convex hull of S can be defined as the minimal convex set in C which
contains the set S.

Moreover; a polytope P is the convex hull of a finite set in R". Finally, a set § C R"
isaconeifxeS = axeS,Va>0. IfS is also convex, ie., S € C]'é then is it
called a convex cone.

As seen from Definition 6, the convex hull gives a natural way to define the concept
of a polytope. Furthermore, on the basis of Definition 6 it is easy to characterize a
bit more specialized polytope, namely, the Newton polytope.

Definition 7 (Newton Polytope). For a polynomial f € R[x], as in Definition 2, the
Newton polytope is given by:

NP(f) = Conv({a € ZZ : ¢, # 0}).

Newton polytopes are essential in capturing the sparsity structure of a polynomial.
The following example gives a simple illustration.
Example 1. (Newton polytope) Compare f = (ax+by+cz)’ to f =dx> +ey* +yz,
where a,b,c,d,e # 0. Clearly, it then follows that:

NP(f,) = Conv({(3,0,0), (0,2,0), (0,1,1)}) c NP(f).
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Now, denote by V,(-) the Euclidean volume in R".% For a collection Py,..., Py
of polytopes in R", it can be shown that V,(4;P; + --- + 4,,Py) is a homogenous
polynomial in the A;’s with degree n. Thus, the following important definition is
obtained.

Definition 8 (Mixed volume). For a collection of polytopes Pi,...,P,, the n-
dimensional mixed volume, denoted by MV, (P1,...,Py), is given by the coefficient
of the monomial Ay - - - Ay, in the polynomial expression of:

(Vn(/llPl + .- +/1um).

Example 2 demonstrates mixed volume calculations in practice.

Example 2. (Calculating the mixed volume) Consider a 2-tuple of Newton poly-
topes (P, P2). For 11,4, € Ryq it holds that:

Va(1 P + o Py) = BMV(P1, Py) + 11 oMV(Py, Py) + 3MV(Py, Py).

Because MV(P;, P;) = Va(P)), i € {1,2}, and as the above holds for all nonnegative
A1 and A;, one obtains:

MV (P, P2) = =V (P1) = V2(P2) + Vao(Py + P2).

For an arbitrary collection of polytopes (P1,..., P,), one has (see, Cox et al. 2006, pp.
337-339):

n
MV(Py, ..., P,) = Z(—l)""‘ Z (Vn(ZP,-).
k=1 Ic{1,...,.n}, |I|=k iel

Newton polytopes and mixed volumes are utilized in establishing an upper bound
on the number of solutions for a given polynomial system. Tight upper bounds are
crucial from the point of view of efficient numerics as they enable one to design
algorithms that are more efficient. This issue is revisited in Section 2.3

The final step in the preliminary preparations is an important (classical) theorem
which verifies that one can, associated with the roots of a given polynomial, find
a solution path, in the homotopy sense, formulated by an analytic function.” To
proceed, for i : C* xC — C", such that (x,7) — h(X, ), denote by J = [f_ﬁ % g—i‘]
the Jacobian matrix and by Jy the restriction of the Jacobian to the partial derivatives
of h with respect to x = (x1, ..., Xp).

6 Note that, for instance, Va(P) is interpreted as the area of P.
7 Analytic functions are those functions which are locally equivalent to a convergent power series. Polynomials
are naturally analytic.
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The theorem presented next has many forms and is often presented with varying
levels of generality. As in Judd et al. (2012), the following version is sufficient for
the purposes of this paper.

Theorem 1 (Implicit Function Theorem (IFT)). Let (xg,) € C" X C be such that
h(xg, fy) = 0 and suppose rank(Jx)(Xg, o) = n. Then there exists neighborhoods Nx C
C" of xg and N, C C of ty and an analytic function x : N; — Ny such that h(x(t),t) = 0.

For more details and a proof see, for example, Munkres (1991) Theorem 9.2.

2.2 Polynomial Optimization Problems

2.2.1 Theory

The first main application of algebraic geometry discussed in this paper is polyno-
mial optimization over semialgebraic sets. This approach is utilized to solve optimal
execution and portfolio selection problems in Sections 3 and 4 respectively. Since a
proper introduction to polynomial optimization is reasonably technical and lengthy,
this section covers only the basic idea behind the general approach, utilizing only the
language of standard optimization theory. For the sake of completeness, a slightly
more detailed account of some aspects of polynomial optimization, focusing espe-
cially on implementation, is given in Appendix C. For a complete treatment of the
subject, the reader is referred to Lasserre (2015).
Now, consider the following global optimization problem:

o= ir;f{f(x) :xes), (1)

where f is a polynomial and S is a semialgebraic (constraint) set as in Definition 5.
It will become evident that many problems in finance naturally fall into this category
of problems.

At this point, one might be troubled about the fact that—even with these restric-
tions, i.e., a polynomial objective function and a semialgebraic constraint set—it is
not at all obvious as to how to go about solving the optimization problem, let alone
how to go about solving it in a global sense. The key idea will be to construct a
sequence of convex semidefinite relaxations of (1). These relaxations are increasing
in size and the sequence of optimal values obtained from the relaxations converges—
under certain conditions—to the global optimal value.

To exemplify, note first that problem (1), assuming deg(f) < d, has an equivalent
representation:

= sup {4 fx)—1eCu(S)}, 2
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where Cy4(S) is a convex cone (see, Definition 6) such that the polynomials p € C4(S)
have a degree of at most d and are nonnegative. Note that the optimization problem
is now with respect to a single variable (1) and that it is a finite dimensional convex
optimization problem. Nevertheless, it is not in general a tractable problem since the
convex cone of polynomials is difficult to characterize in practice.

The main idea in overcoming this difficulty is to introduce a sequence of—or
more precisely, an increasing family of—convex cones:

Cl(S)cCHi(S)c -+ cCu(S)
and associated optimization problems:

pr=sup{d : fx)-1eClLS)), 1=0,1,..
A

which constitute a hierarchy of increasing linear or semidefinite programs, converg-
ing to the global optimum f*. In other words, one obtains a sequence of lower bounds
P1 <P+l £ ... < f* such that py — f* as [ — oo (cf. Lasserre 2015, p. 4). Tools from
(real) algebraic geometry are essential in proving this convergence result.

Finally, by considering the dual of (2), also a finite dimensional convex opti-
mization problem, one obtains a formulation of the original problem (1) which is
an instance of the generalized moment problem (GMP; see, Lasserre 2010, Ch. 5).
Together the primal and dual can be utilized, under appropriate conditions, to numer-
ically verify the global optimality of the obtained results.®

2.2.2 Implementation and Earlier Applications

The numerical results in this paper regarding polynomial optimization are obtained
utilizing GloptiPoly 3 (see, Henrion et al. 2009). GloptiPoly is a MATLAB freeware
that implements methods to solve or approximate the generalized moment problem.’

Indeed, as noted above, a polynomial optimization problem has a representa-
tion in terms of the generalized moment problem, i.e., a polynomial optimization
problem can be viewed as a special instance of the GMP. Lasserre (2008) develops
an approach, taking advantage of semidefinite programming, to tackle GMPs with
polynomial data. To solve the semidefinite programs, arising as a by-product of this
approach, the semidefinite programming solver SeDuMi (see, Sturm 1999), also a
MATLAB add-on, is utilized (GloptiPoly uses SeDuMi by default). Details on this
approach can be found in Appendix A.

In many instances, practical applications of polynomial optimization methods are
constrained by the size of the problem in question. Namely, general-purpose al-
gorithms, not to mention software, for solving large-scale polynomial optimization

8 It depends on the viewpoint and context whether the formulation given in (2) is referred to as the primal or the

dual of the original global optimization problem (1).
9 MATLAB is a registered trademark of The MathWorks, Inc.
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problems are as of writing this paper yet to be developed. Much of the work re-
lated to solving large scale polynomial optimization problems involves improving
the performance of existing semidefinite solvers. Even though methods for specific
important problems do already exists, this must be considered as both a key venue
for future research and also as the single most impactful drawback when considering
applications of polynomial optimization methods.

In Section 3.4 problems relating to increasing degree of the polynomial objective
function are discussed. Although presently high degree and high “dimension” (large
number of variables) are likely to cause some computational issues, there are meth-
ods that have been developed to deal with these issues. One example is the method of
Mevissen and Kojima (2010) which utilizes a change of variables (cf. Section 3.4).
Other methods utilize (see, Waki et al. 2008), for example, sparsity patterns in the
objective polynomial to develop more efficient numerical algorithms.

Despite the challenges, several applications, outside the scope of a detailed ex-
ploration in this paper, of polynomial optimization have emerged. For instance, in
Lasserre (2010) an application to pricing exotic derivatives is detailed. The approach
turns out to be rather versatile, being able to handle various models for the underlying
asset price such the geometric Brownian motion, the Ornstein-Uhlenbeck process,
and the mean-reverting square-root process.

Another potentially fruitful area from the point of view of polynomial optimiza-
tion is game theoretic modeling. A case in point is Couzoudis and Renner (2013).
Furthermore, Renner and Schmedders (2015) and Renner and Schmedders (2017)
demonstrate the use of the method to solve moral hazard principal-agent problems,
a class of problems which is highly relevant in finance. Particular examples of these
problems can be found in theoretical corporate finance (executive compensation) and
portfolio delegation (portfolio manager compensation). In addition to the novel so-
lution procedure, the authors illustrate how one can approximate non-polynomial
objective functions so that the approximated problem can again be treated as a POP,
even when the original problem does not share this feature. This is an important
notion as, by the Stone—Weierstrass theorem, continuous functions on a bounded
interval can be uniformly approximated by polynomials. Combining polynomial
approximation and optimization will significantly increase the number of potential
application areas.

2.3 All-Solutions Using Homotopy Methods

2.3.1 Theory

The second main application of algebraic geometry is finding all solutions to sys-
tems of polynomial equations. As a leading example, the method of all-solutions
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homotopy continuation is discussed. This entirely numerical method is well suited
for solving problems involving high degree and high dimension polynomial systems.
Homotopy methods are utilized in Section 5 to find all solutions to a polynomial
system arising in conjunction with a dynamic strategic trading model.

The concise description of homotopy continuation methods provided in this sec-
tion is largely based on Cox et al. (2006, chs. 7.4 & 7.5). The main reason for this
is that the approach taken by the authors is closely related to the numerical imple-
mentation of homotopy continuation in the PHCpack (cf. Verschelde 1999)—the
numerical software utilized in this paper.

In general, the goal is to solve a (square) system f(x) = 0, where f = (f1,..., fn)
and x = (xq,...,x,) € C". To achieve this, a new system, say g(x) = 0, with known
solutions, is introduced together with a parameters ¢ € [0, 1], ¢ € C, and a continuous
family:

0 = h(x,t) = c(1 - )g(x) + ().

The purpose of the constant c is to act as a scaler to avoid numerical issues and ¢
is allowed to continuously change from O to 1. Here, g(x) is referred to as the start
system and h(x,1) is referred to as the continuation system.

To be able to use Theorem 1 to characterize and to guarantee the existence of the
solution curves x(t), with x(0) = xg, where Xq is a solution to g(x) = 0, it is required
that:

oh oh

rank(Jy)(Xo, fo) = rank([% e

[Joxo.t0) = 3)

i.e., the Jacobian matrix with respect to xi, ..., x, must be invertible at (Xg, o). 10 When
this condition is satisfied, one can use the solution curves with the aim of eventually
finding x(1), which instead will yield the solution(s) to f(x) = 0.

Noting that 4(x(?),¢) = 0 implies %h(x(t),t) = 0, one obtains, via an application
of the multivariate chain rule, the following system of ordinary differential equations
(ODE's) for functions x(¢) (cf. Cox et al. 2006, p. 354):

d oh
Jx(X(t)J)fl—(;) = -2 (0. ), )

with initial value x(0) = Xg. One can the solve this initial value problem using stan-

dard numerical methods developed for ODEs (see, for example, Butcher 2008).!!
Numerical methods designed for initial value problems are not, however, gener-

ally the most effective way to track the solution curves (see, Allgower and Georg

10 Equivalent conditions include: [1] Jx has a nonzero determinant [2] O is not an eigenvalue of Jx [3] the columns

of Jx form a linearly independent set.

Another way to approach solving the problem is to start from the known solution with ¢ = 0 and to proceed in
steps of At towards ¢ = 1. Namely, one can use x(0) = Xq as an initial guess for solving 4(x(A?), Ar) = 0 and solve the
problem using some locally convergent root finding method such as Newton-Raphson. Having obtained x(At), one
can again use it as an initial point for solving the problem in the next step thus progressing towards 4(x(1),1) = 0.

11
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2003). Instead, one typically seeks to iteratively track the solution curve from (4)
using the so-called predictor-corrector approach. The predictor gives a new approx-
imate point along the solution curve given the last point utilized, and the corrector,
typically an application of Newton’s method, which has strong local convergence
properties, shifts this new point closer to the tracked solution curve.

There are some cases, which cause trouble for the predictor-corrector approach
and for homotopy continuation methods in general. The first one is crossing paths.
At nonregular points the rank condition (3) for the Jacobian matrix does not hold and
thus the method is likely to run into difficulties. This is illustrated in Figure 1.

(e}

\
o\ x.t)=c(l=#)eg(xX)+1f(X)

-

~n

Non-singular

Singular },

=1 f=0

Figure 1: (Homotopy paths) This figure illustrates different homotopy path realizations.

To demonstrate another possible trouble area it is good to note that a key aspect
of the homotopy continuation method is the relation between the original system
f(x) = 0 and the start system g(x) = 0. For example, what can be said about the
number of solutions to the start system in relation to the number of solutions to
the original system? If the number of solutions to the start system is much larger
than the number of solutions to the (possibly sparse) original system, then plenty
of unnecessary computations will ensue from tracking diverging solution paths, i.e.,
solution paths for which x(f) — oo as t — 1 (cf. Figure 1).

These instances feature points (x,#*) for which no roots for the continuation sys-
tem can be found. The points “interrupt” the solution path from r =0 to t = 1. To
deal with this issue one can utilize the so-called gamma-trick, i.e., multiplying the
start system with an additional term exp{yi}. It holds that for almost all choices
of the complex constant y, the obtained solution paths are regular meaning that the
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Jacobian remains regular and no path diverges.

Based on the above discussion it is safe to say that careful choice of the start sys-
tem plays an important role in an effective implementation of the homotopy continu-
ation method. Determining an appropriate start system is closely related to bounds—
as tight as possible—on the number of (complex) solutions for the polynomial system
under study. To illustrate this, two such bounds—starting with the simpler one—are
considered.

Definition 9 (Bezout number). For a polynomial system f = (fi,..., f) : C" — C",
the Bezout number is given by:

5:= [ Jaeath)
i=1

The Bezout number given in Definition 9 can immediately be used to determine an
upper bound on the number of isolated solutions.

Theorem 2 (Bezout bound). If B is the Bezout number of f = (f1,..., ), then the
number of isolated solutions, taking into account multiplicities, of f(x) =0, x =
(X1, ..., Xn), is bounded above by B.

As noted, the Bezout bound is a simple bound for the number of solutions for a
square polynomial system. However, if the system has additional structure, such as
sparsity, this bound can be improved.'?

A more efficient bound for the number of solutions for the original system is
obtained from Bernshtein’s Theorem. The theorem below is given in a more general
form than is actually needed here (cf. Cox et al. 2007, Thm. 5.4).

Theorem 3 (Bernshtein’s Theorem, BKK bound). Suppose the n-variate Lau-
rent polynomials f = (f1,..., fu) over C have a finite number of common zeroes in
(C" = C"\ {0} and denote P; = NP(f;) C R". The number of common zeroes of
f in (C*)" is bounded above by the mixed volume MV (P, ..., P,), and for generic
choices of coefficients in the f;, the number of common zeroes is exactly equal to
MV, (Py,..., Pp).

Three contemporaneous papers relate to the mixed volume bound given in The-
orem 3: Bernshtein (1975), Kushnirenko (1976), and Khovanskii (1977). Thus, the
bound is often called the BKK bound.

Example 3. (Bezout versus the BKK bound) Consider the system (fi, f2) =0,
where

fi(x1,x2) =4x3x; =2

3.2
fa(x1,x2) =3x7x; — X1 X2.

12 See also, Verschelde et al. (1994), Huber and Sturmfels (1995), and Li (2003).
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It is immediate for the system above that 8 =5x5. Now, let P; := NP(f}), fori=1,2,
and recall from Example 2 that:

MV(P1, P2) = Va(P1+ P2) = Va(P1) = Va(P2) = Va(P1 + Pa),

where the last equality follows since line segments have a Lebesgue measure of zero
in R2. Finally, one can verify, either by direct calculation or via the use of the PHC-
pack, that MV(P, P») = 4 < 25 which obviously represents a significant improve-
ment on the upper bound.

2.3.2 Implementation and Earlier Applications

The numerical results in this paper are obtained utilizing the MATLAB version of the
Polynomial Homotopy Continuation pack, PHCpack for short (see, Verschelde 1999,
Guan and Verschelde 2008). The advantages of the PHCpack are active development,
clear and comprehensive documentation, and easy initialization. Other alternatives
include, for example, the software package Bertini (cf. Bates et al. 2013).

The PHC solver features four steps (see, Verschelde 1999, Fig. 4): (1) Precon-
ditioning (2) Root counting (3) Homotopy continuation (4) Validation. Precondition
refers to, for instance, coefficient scaling and seeks to ensure that the system is of a
suitable form. The second step is essential in constructing the start system. This is
due to the fact that root counting is crucial from the point of view of computational
complexity. For this reason, extra attention is devoted above to this step.

Indeed, one may estimate the required computational time by multiplying the (es-
timated) time to follow one solution path with the (estimated) number of roots. PHC-
pack utilizes multiple root counting methods among which the BKK bound (mixed
volume) given in Theorem 3—if available—always returns the lowest bound. The
start system g(+) is constructed so that it corresponds to the minimal root count avail-
able. The approach that uses mixed volume computations in constructing the start
system is called polyhedral homotopy.

The third step involves the actual homotopy continuation phase. This involves ad-
justment of the continuation parameters and the choice the path following methods.
Finally, the fourth step consists of validation procedures such as evaluation of local
condition numbers and analysis of path directions.

There are a couple applications of homotopy methods worth mentioning. First,
Besanko et al. (2010) apply homotopy continuation to a dynamic industrial organiza-
tion model and show that the homotopy path algorithm put forth in the paper is able
identify equilibria which have eluded the standard algorithms utilized to analyze the
problem earlier. For some parametrizations, even nine distinct equilibria are found
in a model thought to have a unique equilibrium. As noted by the authors, examining
the question of equilibrium multiplicity and verifying it numerically are steps along
the way to solve the multiplicity problem.
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Second, it comes as no surprise at this point that the all-solutions methods, again
similarly to polynomial optimization, have ample applications in the field of game
theory. Many games, especially dynamic stochastic games, are susceptible to the
equilibrium multiplicity problem. Recent applications of homotopy continuation to
game-theoretic settings include Herings and Peeters (2010), Bajari et al. (2010) Judd
et al. (2012).

2.4 All-Solutions Using Grobner Bases

24.1 Theory

The final method to be discussed, namely Grobner bases, offers an alternative to ho-
motopy methods in the quest to find all solutions to a given polynomial system. The
presentation closely follows Kubler and Schmedders (2010) and it quickly becomes
apparent that Grobner bases are as intimately tied to insights emerging from alge-
braic geometry as the two applications introduce above. Indeed, Grobner bases are
often cited as being a (nonlinear) generalization of the familiar Gaussian elimination
algorithm from linear algebra.

To understand how exactly this is done it is useful to introduce some new con-
cepts. Recall that a given set of polynomials fi,..., f;,, generate, i.e. form a basis for,
an ideal (Definition 4):

Ip = (firen fn) = {Zhifi hi € C[x]}.
i=1

Now, it should be noted that if x € C" satisfies f;(x) =0, V i = 1,...,m, then it holds
that g(x) =0, ¥ g € Ir. Hence, what one wishes to accomplish is to determine whether
there is alternative set of simpler polynomials, say, g1, ..., gx such that:

<f19"'7fm> = <g1’“"gk>a

because if this simpler basis is found, one can use it instead of fi,..., f;, to find (all)
solutions to the system fj(x) =0,V i=1,...,m.

The following lemma gives the existence of this kind of simpler basis.'?

Lemma 4 (Shape Lemma). Let < S1seees fm> be a regular ideal in Q[x1, ..., X, having
d isolated roots with distinct x,, coordinates. Then 3 a basis with the shape:

S= {x1 =q1(Xm)> X2 =q2(Xm)s -0 X1 = Gm—1(Xm), r(xm)},

where r is a polynomial of degree d and deg(q;) <d— 1.

13 Suppose f = (fi,.... fin) : C™ — C™. Regularity of an ideal generated by f means that the Jacobian matrix has

full rank m at all of the complex solutions of f.
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From Lemma 4 it can be seen that with the new basis, a reduced Grobner ba-
sis (under lexicographic order), the task of finding every solution to the system of
polynomial equations reduces to finding every solution of a single univariate poly-
nomial.'* For a more detailed account of the Shape Lemma, the reader is referred to
Becker and Weispfenning (1993) and Becker et al. (1994).

2.4.2 Implementation, Usage, and Earlier Applications

Two different implementations of Grobner bases are utilized. The first one is free
and open-source under the GNU General Public Licence and the second one is pro-
prietary. Starting with the open-source implementation, SINGULAR is described
by its developers as a computer algebra system for polynomial computations with
core algorithms able to deal with, for example, Grobner bases, polynomial factor-
ization, and numerical root finding."> One can use SINGULAR via a specialized
web-interface, making it a very low threshold alternative for learning how to take ad-
vantage of numerical algebraic geometry methods. For computational examples and
further information, the reader is referred to Greuel and Pfister (2012) and Kubler
et al. (2014).

The proprietary implementation is NSolve of MATHEMATICA..!6 In case of poly-
nomial systems, NSolve is able to find all solutions using MATHEMATICA’s internal
implementation of numerical Grobner bases. Indeed, if one is interested in having
a look at the actual Grobner basis for a given problem, one can use the Groebner-
Basis command to do just this. NSolve is an obvious choice for researchers already
actively using MATHEMATICA.

In the numerical implementation of Grobner bases there are some additional
things worth pointing out. First, in actual applications, the coefficients of the poly-
nomials fi,..., f;, from Lemma 4 will be real, not rational, scalars. Due to this, the
solutions obtained are not exact. However, due to scaling invariance of the solutions,
it is easy to transform the coefficients to approximately rational. Second, regarding
the conditions given in Lemma 4, verifying them for a small system (m € {2,3}) is
not overly taxing. Moreover, Kubler and Schmedders (2010) describe means to deal
with standard cases where the conditions do not hold.

Third, as Grobner bases can be seen as a substitute for homotopy methods, it is
wise to ask are there any guidelines for which one should be preferred. This question
is naturally case-dependent but, as a rule-of-thumb, homotopy methods are prefer-
able for larger, more computationally demanding, systems and for repetitive com-
putations (e.g., dynamic programming applications). Grobner bases instead enable
one to examine in more detail why certain solutions arise and how the solution set is

14
15

lex.
Lexicographic order means that x* S ap , where a,3 € Z", when the first non-zero element of @ — 8 is positive.
See, www.singular.uni-kl.de.
16 MATHEMATICA is a registered trademark of Wolfram Research, Inc.
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affected by changes in the coefficients of the polynomials.'”

There are, however, clear benefits from looking at the two methods as comple-
ments rather than substitutes. This view stems from the fact that the numerical im-
plementations of the two methods feature non-overlapping problem areas. On one
hand, Grobner bases, implemented using the standard Buchberger’s Algorithm (cf.
Cox et al. 2007), may run into numerical instabilities due to the fact the coefficients
of polynomials introduced in the algorithm blow up to tens of thousands of digits.
Hence, one may not always be able to calculate Grobner bases for a given system,
especially a complex system with real coefficients. On the other hand, as opposed
to Grobner bases, there are no theoretical guarantees that homotopy methods, with
probability one, produce all solutions to a given system (cf. Kubler et al. 2014). This
is due to the use of floating-point arithmetic, instead of exact calculations. Below,
the complementary view to the two methods is adopted and both are used to ensure
the quality of the numerical results.

2.5 Connection Between Polynomial Optimization and All-
Solutions Methods

Polynomial optimization and all-solutions methods are treated above as separate and,
from a strictly theoretical perspective, this is true. However, from a practical view-
point the two methods are, loosely speaking, substitutes. On one hand, one can
utilize polynomial optimization methods to find (all) solutions to a system of poly-
nomial equations (see, Lasserre 2010, pp. 147-162). On the other hand, one can
take advantage of, for example, the homotopy continuation method in finding global
solutions to constrained polynomial optimization problems.

This “duality” between the two methods is the main motivation to cover both
methods simultaneously. If one of the approaches is infeasible in the context of
some pressing problem, one still has the other approach in reserve. Moreover, the
majority of existing literature keeps polynomial optimization and all-solutions meth-
ods as distinctly separate, which is not likely to be helpful from the point of view of
those seeking to apply these methods to topical problems in various fields. Indeed,
as neither approach can be considered as fully developed, it is valuable to have al-
ternative solution methods in stock when a particular problem of interest proves to
be problematic for one of the approaches. In addition, potential numerical issues en-
countered with different problems might be specific to the solution method used and
thus having an alternative could turn out to be immensely useful from a robustness
perspective.

17" For more details, the reader is referred to Kubler et al. (2014).
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3 OPTIMAL EXECUTION

3.1 Problem Statement

This section describes—using a concise but relatively self-contained style—an opti-
mal execution problem based on Almgren and Chriss (2001) and Almgren (2003). 18
The goal is then to study various modifications of these baseline models. In particu-
lar, variations which are problematic to solve using standard optimization machinery,
but which can be readily dealt with using polynomial optimization methods. The fo-
cus is on discrete time models as the benefits of polynomial optimization are highest
with this class of models.

Now, suppose the goal is to liquidate a position of X > 0 units of security during
T (discrete) points of trade, i.e., t = 1,...,T.'° Trading is thus exogenously motivated
and the trading horizon (or, trading window) is taken as given. Relaxing these as-
sumptions is possible but not without complicating the model to a large extent (see,
for example, Easley et al. 2015). Denote by x; the remaining security holdings in pe-
riod ¢. Further, denote n, := x,_; — x;. Since the goal is to liquidate the entire position,
there are two natural boundary conditions: xp = X and xy = 0; there is no trading at
t=0.

The security price in the market follows an arithmetic random walk:

St=S8i1 +0'gt_8(”lt)

t
=So+ Z [O'Ej—g(”lj)],
=1

where & I Hd (0,1), 00> 0, Sg is the initial price, and g(-) is a yet to be determined
permanent price impact function.’® In what follows it is assumed that g is a linear
function of n;. In addition to the added benefit of tractability, this assumption is
supported by Huberman and Stanzl (2004), who show that only linear permanent
price impact functions rule out what the authors call “quasi-arbitrage”.?!

Permanent price impact is not the only source of trading costs. More specifically,
let h(-) denote the temporary price impact function and f(-) denote the uncertainty of

trade execution. Hence, the actual price for the /" trade is given by:

Sr =51 —h(nt)+f(”z)é~:t’ t=1,..,T.

18 See also Perold (1988), Bertsimas and Lo (1998), and Huberman and Stanzl (2005).
19" The case with X < 0 is similar.
20 Permanent price impact means that the impact of trades is persistent, i.e., it affects current and all future trades.
Conversely, temporary price impact is limited only to the current trade

In a market where trades affect prices, Huberman and Stanzl (2004) define quasi-arbitrage as the possibility to
carry out a sequence of trades which generates boundless profits in expectation.

21
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A central performance indicator in the model is the implementation cost:

nS. ®)
1

T
C:=XS 0—

1=
Clearly the implementation cost is a random variable which depends on xi,..., x7_;.
Letting A > 0 denote the “risk aversion” parameter, the goal is to solve:

irg E[C] + AV[C], (6)
where
T
E[C) = ) [xig(n) +nih(ny)]  and (M
=1

VIC] =

M)~

[sztz + ntzf(;)z], 3)

~
1l
—_

are the expected implementation cost and the variance of the implementation costs
respectively, and

Ax = {(xo,---,xr) eR™ ix=X>0 & xr :O}'

The set Ay is the set of feasible trading curves (x;);=0,.. r for a liquidation prob-
lem.?? It should be emphasized that the goal is to solve (6) in a static sense, i.e.,
the optimal trading program is solved in its entirety before any trading takes place.
The optimality of static (deterministic) strategies in this setting is discussed in, e.g.,
Almgren and Chriss (2001).

3.2 Nonlinear Temporary Price Impact

This section focuses on the temporary price impact function as it allows one to flu-
ently operate on both sides of the “tractability-boundary”. Namely, when the tempo-
rary price impact function is assumed linear one is able to find—on top of obviously
being able to solve the model numerically—exact solutions to the optimal execution
problem. However, assuming, for instance, polynomial (nonlinear) temporary price
impact, only numerical solution methods are left on the table.

22 The corresponding set of (deterministic) admissible liquidation strategies is given by:

T
Axp = {(m ..... nr) € RT : an = _X}.

t=1
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Theoretical work has often focused on the linear price impact case for tractability
reasons. Yet there is ample evidence in favor of nonlinear price impact (see, for
example, Bouchaud et al. 2009). Motivated by this empirical evidence, for instance,
Chen et al. (2015) have recently studied deleveraging under nonlinear temporary
price impact. Here, the task to be completed next is to provide an illustration of
how polynomial optimization methods can be utilized to solve optimal execution
problems with varying assumptions on the functional form of price impact functions.
The first illustration deals with nonlinear temporary price impact.

For this purpose, in this section the following functional forms are adopted:

g)=yz, v>0
h(z)znzk, n>0and ke N\ {1}
f(@=0.

Thus, the quantities in (7) and (8) take the forms:

T
E[C] = Z [yx,n, + nnf”] and

t=1
T

YI[C] = Z [o-zxtz],
=1

where it is good to recall that n, = —Ax;. Similarly, it is good to note that both
the permanent and temporary price impact terms are included solely in the expected
implementation cost term and do not appear in the variance term.

With these specifications it is evident that (6) is a polynomial optimization prob-
lem (POP) of degree k+ 1. In contrast, Almgren and Chriss (2001) use g(x) = yx,
h(x) = esgn(x) +nx, and f(x) = 0, thus obtaining a quadratic optimization problem.
Here, it is assumed, for simplicity, that € = 0; this assumption is inconsequential for
the examples below.

To illustrate the equivalence of the exact and numerical methods in the linear
temporary price impact case, Figure 2 illustrates asset holdings evolution for three
different risk aversion specifications.”

23 Parameter values, e.g., y and ;7 are not calibrated to data in these simple examples. Instead they are chosen to

closely match the values used in Almgren and Chriss (2001).
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(a) Almgren and Chriss (2001) exact solution (b) GloptiPoly numerical solution

Figure 2:  (Linear temporary price impact) The round dotted (lowest) line represents A = 2 x 1075, the dashed
line represents A = 0, and the solid line represents A = -2 X 1077, Further, o = 0.95, y=25X% 1077
and n=2.5x107°.

As seen from the figure, numerical polynomial optimization is able to replicate the
Almgren and Chriss (2001) exact solution. This illustration should be considered
as a baseline verification, because if it were the case that the exact and numerical
methods would differ here, one would have to think twice about proceeding to the
case where explicit solutions are unavailable.

Moving forward, Figure 3 juxtaposes asset holdings evolution under linear and
nonlinear (k = 2) temporary price impact. The nonlinear case is solved numerically
using GloptiPoly.
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Figure 3: (Nonlinear temporary price impact) The black line represents the linear temporary price impact
case and the red line represents the nonlinear temporary price impact case (k = 2). Further, o = 0.95,
y=25x10"7 and p = 2.5x 1070,

Contrary to what one might expect, Figure 3 shows that the holding trajectory with
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nonlinear price impact closely resembles the risk-neutral case (1 = 0) with linear
temporary price impact. For this reason, the instance A = 0 is omitted as the holdings
evolution would be nearly indistinguishable from the other cases. This reflects the
fact that a strategy with large individual trades is not optimal when temporary price
impact is large relative to the permanent price impact. In other words, nonlinear
temporary price impact pushes the trading strategy towards equal splitting (cf. Alm-
gren 2003). This pushing effect is more emphasized when temporary price impact is
nonlinear instead of linear.

3.3 Trading-Enhanced Risk

In this section an alternative specification of the basic optimal execution problem
based on Almgren (2003) is illustrated. More specifically, it is assumed that the
model features trading-enhanced risk: swift execution must be considered more
risky as one must take into account the risk that, during the aspired execution win-
dow, there is not enough traders present willing to provide liquidity. This issue is
easiest to understand by considering snapshots of the composition of traders in a
given market throughout some period. One would expect that among these snap-
shots there are those with high activity (many traders present) and those with low
activity (few traders present). If one is impatient and prefers rapid execution—for
instance, due to risk aversion—there is an elevated risk that the trading program is
executed during a more costly period of low trading activity.

From a modeling point of view, it is easily seen that this extension generally leads
to intractable nonlinear problems. To see this and to make matters more explicit, the
functional forms utilized in this section are:>*

g@)=vyz, v>0
h2)=nz, n>0
f@=a+BF, a€R,B>0, andkeN.
Said differently, permanent and temporary price impact take a linear form while the

function representing uncertainty of trade execution is allowed to be polynomial.
Thus, the quantities in (7) and (8) take the forms:

T
E[C] = ) [yxm+nnf]

t=1

[0’ X2 +a’n? + 2an**? +ﬁ2nt2(k+1)].

2% One can interpret « as representing fixed uncertainty, independent of trades, and 8 as representing trading related

uncertainty in realized trade prices. See, Almgren (2003).
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Clearly, the objective function is again in a polynomial form, this time with degree
2(k+1). Animportant distinction related to trading-enhanced risk above—in contrast
to the permanent and temporary price impact terms—is that it only appears in the
term V[C]. It is illustrated below that due to this distinction the impact of trading-
enhanced risk can be somewhat attenuated as compared to, for instance, the impact
stemming from temporary price impact.

Figure 4 displays the numerical results under trading-enhanced risk with k =1
and with four different risk aversion levels.

10510

[=

Holdings

[ B S R R R SO )

Period

Figure 4: (Trading-enhanced risk) The solid line represents the 1 = O case, the dashed liner represents A =
2% 1077, the dash-dot line represents A = 2x 107, and finally the dotted line represents 1 =2x 107>,
Further, 0 =0.95, y=2.5x10"7, 3=2.5x107%, @ =2.5x107>, and 8= 0.5 x1.

It is observed from the above figure that more risk averse traders choose to execute
rapidly under the chosen conditions. This stems from the, relatively speaking, pre-
eminent impact of the volatility risk and the risk averse trader’s desire to mitigate
this risk. More specifically, as the variance of the implementation cost (V[C]) is
multiplied by 4, and a as well as S—which are of the same magnitude as 7 (the tem-
porary price impact “intensity’) are raised to the second power, the effect of trading-
enhanced risk above is negligible and the term 0'2x,2 dominates. The volatility risk
stemming from o>x? is indeed the key reason that a more risk averse trader chooses
to trade fast (in large chunks), thus quickly decreasing x; and the risk related to main-
taining a large asset position.

The above example illustrates how trading-enhanced risk—which essentially has
the same effect as temporary price impact, i.e., it pushes trading strategies to-
wards equal splitting (see, Almgren 2003)—can be inconsequential under some
parametrizations when compared to other sources of trading costs. Naturally, if o
is smaller and @ and 8 are larger in magnitude, one starts to see a more pronounced
impact from trading-enhanced risk. From a practical viewpoint, close attention is re-
quired in calibrating the model parameters to ensure that the model solutions match
the risk assessment of the model user.
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3.4 Optimal Execution of Contingent Claims

As the final optimal execution exemplification this section discusses a highly stylized
model of contingent claim execution.”®> Here the trader faces a task of acquiring a
position X; in some contingent claim D (as in derivative) with underlying S (as in
Sections 3.2 and 3.3). Let D; denote the market price of the contingent claim at time ¢,
more specifically, D; := f(S;), f : R = Ry, and Dy fixed, so that the implementation
cost is given by:

T
Cyi= Z n,D, — X;Do. )

t=1

Note, that the above now relates to a buying program instead of a selling program as
in (5).
Price dynamics for S in this section are assumed to be of the form:

S:=S8i11 +0'gt_7nz,
Sz =811 —nng.

Put differently, S; = So + (7( 23:1 E j) - y( 23:1 n j). Notice that the above implies
that both the permanent and temporary price impact are linear. This assumption is
made for simplicity and could be relaxed with the cost of somewhat complicating the
numerical procedure.

Before moving forward, it is good to take a moment to consider the intuition
behind the proposed execution framework. In the previous examples the price impact
of trades has been direct, i.e., one is directly selling or buying the underlying asset.
Hence, given the specified price dynamics, it is clear that these trades should indeed
influence the price of the traded asset. Here, however, the setting is different as one is
buying contingent claims instead of the underlying asset and yet changes in the price
of the underlying are used to capture the execution (implementation) costs. Implicit
in this formulation is then the assumption that the contingent claim trades affect the
price of the underlying.

This assumption is backed by both anecdotal evidence as well as academic re-
search. First, one may interpret option trades as a reflection of private information
and thus there can be information-based price impact. A case in point is Lowry et al.
(2018), in which the authors discover evidence of advisor banks utilizing the private
information obtained from dealings with clients by placing trades in the client firm
options ahead of important corporate events such as merger announcements. In addi-
tion, hedging considerations related to options trading is another example of trades in

25 The approach discussed draws from Hernandez-del Valle and Sun (2012) albeit utilizing a novel POP repre-

sentation of the ensuing problem. Due to the POP representation, the contingent claim execution problem can be
solved in a global optimization framework.
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the derivatives market can influence the price of the underlying. Pearson et al. (2007)
and Henderson and Pearson (2010) study the issue empirically, finding evidence that
derivatives trading can affect the prices of the underlying assets in a statistically and
economically significant manner.

Finally, it is good to note that the parameters y and 7 should be interpreted as
representing “indirect” impact of contingent claim trading. This interpretation can be
thought of as a reduced form approach to contingent claim execution, which enables
one to construct a parsimonious model. What magnitudes should y and 7 take in this
setting is ultimately an empirical question not pursued further here.

Coming back to the contingent claim execution model, the following proposition
describes an approximate form of the problem at hand, which can then be solved
using the polynomial optimization machinery. It is worth emphasizing that an ap-
proximation is required as the function f is not defined explicitly but instead just
assumed to be some smooth function of the price of the underlying asset. Indeed,
there are plenty of such f’s that if one were to plug them explicitly into the objective
function, the resulting problem would no longer be polynomial.

Proposition 1 (Contingent claim execution problem as a POP?%). Assume f €
C*(R), i.e., f is smooth in the underlying S, and denote by T éi) the second order

Taylor expansion of (9) with respect to S¢.>’ Then the approximate objective in the
contingent claim execution problem:

BT+ AVITS),

with risk aversion parameter A > 0, has the following representation:

Pi= > Puy

deg=1,2,3,4

where Pyey : RT — R are homogeneous polynomials of degree deg = 1,2,3,4, and
the optimization problem (6) with T c(‘? is equivalent to the following POP:

inf{ Pn):nes | (10)

S = {n erRl: n,>0,¥t=1,...,T,and Z ny =X,1}.
t=1,...,T

26
27

Proof of this result is available from the author by request.
The second order Taylor expansion Tézi) is obtained by plugging:

N 1 » ~
D=fS0)+f So)Si=S0)+ 5 (So)S: -S0)%

into equation (9) and rearranging the obtained expression (see, Hernandez-del Valle and Sun 2012) Higher order
terms, denoted by R3, are ignored in the above approximation; it is possible to include, e.g., additional third
order terms but this would increase the degree of the resulting polynomial objective function and complicate the
optimization procedure. Moreover, one could also add a partial derivative with respect to time without issues. This
term is omitted here for simplicity.
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Since the objective function in (10), stemming from a second order approxima-
tion, is a dense quartic polynomial, the direct approach to solving the optimization
problem is unlikely to be the most effective. Indeed, due to the higher degree of the
polynomial, convergence to the global solution will require a higher relaxation order
and thus will induce a higher computational cost. For these reasons, an alternative
approach attributed to Mevissen and Kojima (2010) is utilized to tackle this problem.

The key idea in Mevissen and Kojima (2010) is to transform the original quartic
problem to a more manageable quadratic problem. One way to accomplish this is to
introduce new variables:

m; ::ntz, Myl =ngny, fort,l=1,..,T,t #1

together with an extended objective function P R2TH

algebraic feasible set:

— R and an augmented semi-

8 ;:{(n,m)eR2T+3:n,20,Vt: L.Tand > n=Xg;
t=1,...,T

my .= ntz, Myl c=ngny, fort,l=1,..,T,t # l}.

Letting k := (n,m), it is observed that the new problem:
inf{ P(n) : ke §
in {Pm):ked)

is indeed a quadratic optimization problem. The key benefit from this transforma-
tion exercise is that it helps to reduce the size of the required SDP relaxations, thus
decreasing computational burden. For additional information, the reader is referred
to Mevissen and Kojima (2010).

Having formulated the transformed problem, one can now examine, for exam-
ple, how risk aversion affects the optimal contingent claim trading program. Since
volatility o, as discussed in Section 3.3, is the main parameter capturing the risk
involved in executing a given trade, three different volatility levels are considered
together with three different risk aversion levels. The numerical results obtained are
presented in Table 1.2

On one hand, one may observe from Table 1 that, as is to be expected, risk aver-
sion typically causes the trader to execute the trading program faster and this result
is more pronounced when the price volatility of the underlying asset is higher. This
is a standard result documented in, for example, Almgren and Chriss (1999) as well
as Almgren and Chriss (2001).

On the other hand, a phenomenon one would not necessarily expect—at least
when dealing with the standard quadratic optimal execution problem—is that, for

28 In determining values for the model parameters one should acknowledge that the scaling of parameters has im-

portant implications on the model outputs. This is especially true when the objective and constraints are nonlinear.
Below, n;’s represent percentage proportions of the total position to be acquired.
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Table 1: (Contingent claim execution) This table shows the optimal contingent claim execution program for
three different risk aversion levels. In each run, the global optimality of the solution is verified numer-
ically. n,’s represent percentage proportions of the total position to be acquired. The parameter values
utilized are: 1 = 0.400 (temporary price impact intensity), y = 0.100 (permanent price impact intensity),
f'(So) =-0.250, f’(So) = 0.005.

o =0.500
Risk aversion ni n ns3
A1=0.000 0.369 0.333 0.298
A1=0.250 0.398 0.329 0.273
A1=0.500 0.000 0.000 1.000
A=1.000 0.000 0.000 1.000
o =0.750
Risk aversion ni ny n3
A=0.000 0.412 0.333 0.255
1=0.250 0.597 0.391 0.012
1=0.500 1.000 0.000 0.000
A=1.000 0.000 0.000 1.000
o =1.000
Risk aversion ny ny ns3
A=0.000 0.471 0.333 0.196
A1=0.250 1.000 0.000 0.000
A=0.500 1.000 0.000 0.000
A=1.000 1.000 0.000 0.000

lower levels of volatility, raising risk aversion can induce a kind of “waiting game”
where the trader holds trades until the /ast period in which the target position is
obtained via a single trade. This strategy is the polar opposite of the typical risk
aversion result where the trader seeks to minimize any effect of volatility by using the
single trade strategy in the first round. This result effectively illustrates the potential
“non-monotonicities” that may arise when dealing with highly nonlinear polynomial
objective functions but are absent in the standard affine or quadratic models.

A piece of intuition behind this observation goes as follows. When volatility is
relatively low and when the price of the contingent claim is a nonlinear function of
the price of the underlying, a speculative motive can arise to offset the effect of risk
aversion.”” Namely, if the price of the derivative evolves in a befitting manner with
the price of the underlying, one can, in an effort to minimize implementation costs,
benefit from waiting to allow for the possibility of a price decrease. Naturally, there
is a possibility that the price of the underlying evolves to the wrong direction, but

29 An avid reader may notice that from a hedging perspective the objective function of the trader is somewhat

incomplete as it does not capture the notion that the trader might in fact be trying to protect herself against, e.g., a
price decrease.
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this risk does not out-weight the upside from waiting when volatility is low. When
volatility is high (o = 1.000), the waiting strategy ceases to be optimal and the stan-
dard risk aversion result prevails. Determining how prevalent the above results are
and what other outcomes may arise when looking at the entire, possibly calibrated,
parameter space is an interesting open question left for future research.

3.5 Additional Considerations in Optimal Execution Models

To conclude the discussion on optimal execution models and polynomial optimiza-
tion some additional points are worth emphasizing. First, while it is for the most part
justified to assume that the permanent price impact function g(-) is linear, the exact
functional form of the temporary price impact function A(-) is not as clear-cut.

Above, the form h(x) = nxk, for k € N, was utilized. However, there is a strong
case for utilizing a power law function 4(x) = n|x|” such that ¢ € (0,1) (see, for in-
stance, Almgren et al. 2005 and Bouchaud et al. 2009)*° Now, even though under the
power law temporary price impact one would not directly end up with a polynomial
objective function, it is still possible to utilize the methodology outlined above. This
can be achieved, with slight assumptions on ¥, via extending the standard polyno-
mial optimization approach to optimization of semialgebraic functions as discussed
in Lasserre (2015) or in a straightforward fashion, in applicable instances, by apply-
ing an appropriate change of variables in the objective function.

Another key point to bring up is that while the optimal execution models ex-
amined above belong to the class of classical price impact models, one could also
consider more recent models seeking to capture the empirical properties of limit
order books (LOBs), i.e., models which feature transient price impact (see, for ex-
ample, Obizhaeva and Wang 2013 and Alfonsi et al. 2010).3! Notwithstanding the
fact that these models are often deliberately constructed in such a way that unique
optimal solutions can be constructed explicitly, it would be an interesting venue for
further research to apply polynomial optimization methods to cases where numerical
optimization is mandatory due to the inherent complexity of the problem.

30
31

Note that the absolute values in 4(x) = 7|x| are redundant if x is positive and does not change sign.

A transient price impact is greatest immediately after the trade but then starts to vanish over time as new orders
arrive to the LOB. This property is called the resiliency of the LOB. See, for example, Large (2007) and Lo and
Hall (2015).
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4 HIGHER MOMENT PORTFOLIO

OPTIMIZATION UNDER QUADRATIC
TRANSACTION COSTS

4.1 Portfolio Optimization Model

In this section, mean-variance-skewness (MVS) portfolio optimization, as opposed to
the standard mean-variance (MV) framework, is discussed (cf. Lai 1991, Konno and
Suzuki 1995, and Briec et al. 2007).>> The motivation for studying portfolio selec-
tion with higher moments, such as skewness and kurtosis, stems from the empirically
documented issue that returns are not generally normally distributed and thus anchor-
ing investor utility purely to the first (mean) and the second (variance) moments of
the return distribution is not completely innocuous. Indeed, considering investors
with a preference for positive skewness may notably change the composition of the
resulting optimal portfolios as well as help to better understand phenomena such as
under-diversification of investment portfolios (see, Briec et al. 2007).

Given the theoretical and practical importance of portfolio selection with higher
moments it is not surprising that there exists a wide literature addressing this is-
sue. Examples include Lai (1991), de Athayde and Flores Jr (2004), Jondeau and
Rockinger (2006), Briec et al. (2007), Briec and Kerstens (2010), and Harvey et al.
(2010). This wealth of papers means that various methods to tackle the question
the portfolio optimization involving higher moments have been proposed in earlier
works. There are, however, some complications that should be addressed. Indeed,
one of the main issues one is forced to deal with in higher moment portfolio op-
timization is the inherent nonconvexity of the optimization problem. As a result,
a majority of the methods introduced in the literature cannot guarantee the global
optimality of the solutions obtained or do so in an ad hoc fashion.??

Conversely, by formulating the higher moment portfolio problem as a POP, one is
able to frame the problem in such a way that general global optimization machinery
is readily available. Kleniati et al. (2009) utilize the POP formulation for a mean-
variance-skewness-kurtosis (MVSK) portfolio selection problem with and without
parameter uncertainty. The below introduced problem is related to their work but
differs on a number of dimensions.

First, Kleniati and Rustem (2009) utilize monthly returns whereas the numerical
results obtained in Section 4.2 seek to emulate portfolio optimization based on daily
data. This is noteworthy, as it is well known that monthly returns are closer to nor-
mally distributed than daily returns. Second, the problem formulated below involves

32" Note to the reader: notation in this section is independent of the notation in the previous section.
33 Exceptions include, e.g., Briec et al. (2007).
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MVS portfolio selection subject to quadratic transaction costs instead of MVSK port-
folio without transaction costs. For clarity, Kleniati and Rustem (2009) ignore trans-
action costs as their focus is on a one-shot, i.e., static, problem. Conversely, and
perhaps most importantly, the numerical example below features dynamic portfolio
rebalancing and for this reason it is reasonable to consider the influence of transac-
tion costs.

Moving on to the notation and the specific problem to be solved, suppose the mar-
ket of interest consists of n risky assets with random simple returns R = (Ry,...,R,)"
and let x; denote the portfolio weight in asset i such that a portfolio is given by
X =(X1,...s xn)T.34 Feasible portfolios belong to the set:

l’x:z{xeR”:Zn:xi=l,x2w}, (a1
i=1

where w = (wy,...,w,)" with w; > 0, for all i, captures a minimum weight con-
straint.>> In other words, the feasible portfolios in the polyhedral—or, more gen-
erally, semialgebraic—set Py are required to satisfy the so-called budget constraint
(all available funds are allocated to available assets) and a minimum weight con-
straint. The latter constraint also means here that short-selling is not allowed. It is,
however, noted that one could easily either relax some constraints, e.g., the minimum
weight constraint, or introduce more constraints, e.g., additional thresholds regarding
allowed asset positions (cf. Boyd et al. 2017).

The simple notation for the moments in the MVS portfolio problem is adopted
from Kleniati and Rustem (2009).3¢

Moment Definition (Sample) Formula
i E[R;] M RimIM
Tij EB[(R; —ui)(Rj — )] M Rim = )R — 1)/ (M = 1)
Sijk B[R — )R — )R = )] | T (Rin = )R jm = 1) Ricm — 1) IM

. . 2 .
Related to the above moments is the co-skewness matrix M, € R given, for the
case n = 3, by MS = [Sljk Szjk S3jk], where

Syl Sz Sir13
Sijk=|sr21 S22 s3],
S31 Si32  Si33

34
35

It is assumed, for simplicity, that a risk-free asset is not available.
A minimum (similarly, maximum) weight constraint can be seen as a device to ensure better diversification.
Other types of weight constraints, e.g., those following from UCITS-compliance can easily be handled.

36 Note that o; = a'l.z.



79

for i’ € {1,2,3}.
As usual, the portfolio return and expected portfolio return are given by:

n
RP(X) = ZR,’X,’,
i=1

pp(X) :=EBIRy(X)] = " pix;
i=1

Further, as noted earlier, it is assumed that trading is costly. In more detail, quadratic
transaction costs are specified similarly to Garleanu and Pedersen (2013), namely:

n
TC; = g Z U_iiji,tij,t,
i,j=1
where A > 0 is a scaling constant and A := (1o7;);j € R™" is a symmetric and
positive-definite matrix, and Ax;; = x7; — x74-1, [ = 1,...,n. The matrix A can be
thought of as a multidimensional version of Kyle’s lambda (see, Kyle 1985). Gar-
leanu and Pedersen (2013) offer the following interpretation for transaction costs of
this form: trading Ax; shifts average prices by %AAX; and total trading costs are given
by multiplying this shift in prices by Ax;.%’

With the relevant notation in place, it is time to state the portfolio optimization

problem. The problem in question can be written as:
n /l n n
sup ¢ Z,Uixi — (2 + 5) Z oijXiXj+$3 Z i jkXiX j Xk (12)
(X1Xn)€Px ] ij=1 ijk=1

where it holds that ¢ + ¢» + ¢3 = 1. The above problem is expressed in an explicit
summation form to emphasize the polynomial nature of the problem. Indeed, from
(11) and (12) one can immediately infer that the resulting problem is a POP with
total degree 3.%® In the numerical examples theoretical moments are replaced by their
empirical (sample) counterparts estimated from (simulated) historical data. Sample
moments are denoted by f1;, 5, and §; jx.

Finally, one might wonder the relation between investor’s utility maximization
problem and problem (12). To shed light on this, let # : R — R be a utility function
satisfying the usual properties.>® Further, suppose u has bounded derivatives of suf-
ficient order so that the following third order Taylor approximation around expected

37 Quadratic transaction costs can also be seen as a tool to combat estimation error. See, Olivares-Nadal and

DeMiguel (2018).

Due to the way the quadratic transaction costs are specified, the objective function in (12) has a relatively
simple form. One could also easily consider other p-norm transaction costs as in Mei et al. (2016) or quadratic
transaction cost of the form 87 |Ax| +|Ax|TT|Ax| for B € R" and T’ € R while still being able to treat the problem
as a POP. Moreover, one could consider, e.g., additional constraints such as the self-financing constraint. For more
on portfolio selection models see, for instance, Kolm et al. (2014).

It should be noted that it is assumed implicitly in this formulation that the relevant wealth of the investor is
entirely determined by the portfolio return.

38

39
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portfolio return is well-defined:

BIu(R, (9] ~uBIR, () + o VB (R, ) )]
+ME[<RP<> 1p()’|
—uBIR, 00D+ My g, op + E O gk, o,
(13)

where SKEW/| -] is used to denote the third moment, i.e., skewness. Under the stan-
dard assumptions concerning the utility function u, it holds that the second derivative

" < 0 captures variance aversion and the third derivative u’”” > 0 captures a prefer-
ence for positive skewness.

Therefore, similar to the way the second order Taylor approximation can be
used to motivate the standard mean-variance portfolio optimization problem (cf.
Markowitz 2010), the approximation (13) motivates the following optimization prob-
lem:

sup YE[R,(X)]+pVI[R,(x)] +«SKEWI[R,(x)], (14)
XEPx
where i > 0 captures the preference for higher expected returns, p < 0 captures the
aversion to risk measured by (co)variance, and x > O captures the preference for
positive skewness.

As a concluding note, the similarities between the objective function in (6) and in
(14) are worth noticing. In particular, both objectives exhibit weighted moments of
some underlying random variable. Problems of this form are frequently encountered
in finance and can usually be formulated as a POP, subject to some case specific
considerations. This observation speaks on behalf of the usefulness of polynomial
optimization in finance.

4.2 Numerical Examples

In this section simple numerical examples illustrating the POP approach to portfolio
optimization with higher moments are given. As a starting point and to fix ideas, a
short static (one-period) example is discussed first. The static example is followed
by a dynamic one. In the dynamic example the purpose is to study myopically re-
balanced, i.e., not dynamically optimized, MV and MVS optimal portfolios during
a one year evaluation period with monthly rebalancing.*’ Implementing and solving

40 Myopically rebalanced here means that the portfolios are not dynamically optimized but instead are obtained

by solving a sequence of one period problems. In fact, a dynamic programming approach often turns out to be
intractable in a general multiperiod portfolio selection setting with non-trivial transaction costs. See, for example,
Boyd et al. (2014) and Boyd et al. (2017).
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this problem utilizing polynomial optimization is straightforward as illustrated below
and detailed in Appendix B.

To get started with the numerics and to provide a quick example how portfolio
allocations stemming from the standard MV optimization and from the MVS op-
timization can be quite different. Fix 1 =5x10"* and consider three assets with
a sample drawn from a Gaussian distribution. The mean vector for the sample is
1 =(0.6003%, 0.6903%, 0.9275%) and variance-covariance matrix:

0.0838 -0.0369 -0.0076
10°x2 ={-0.0369 0.1363  0.0283
—-0.0076  0.0283  0.6317

Then, the global optimal solution for problem (12), with ¢; = ¢» = 1/2 and ¢3 = 0,
is x;,, = (31.61%, 42.65%, 25.74%). However, shifting to the MVS formulation
with ¢; = 1/2 and ¢, = ¢3 = 1/4, one obtains the globally optimal solution Xxj,, =
(6.47%, 46.37%, 47.15%).

So, while both solutions give a relatively large weight on asset 2, there are quite
large differences for the weights of assets 1 and 3. Asset 3 has the highest expected
return and highest risk. The MV portfolio seeks to find a balance between these two
aspects and assigns a weight 25.74% to the third asset. Conversely, the first asset
has the lowest expected return and lowest risk. In addition, the first asset is nega-
tively correlated with both the second and the third asset, thus providing additional
diversification benefits and obtains a weight 31.61% in the MV portfolio.

The MVS portfolio, however, assigns a weight of only 6.47% to the first asset.
To understand why, it is worth noting that in the MVS portfolio (co)variance and
(co)skewness have an equal, although opposite in sign, weight in the objective func-
tion. Further, the first asset exhibits negative coskewness with both the second and
the third asset. Consequently, from the MVS viewpoint, the diversification benefits
of the first asset are diminished. Hence, the weight of the first asset is reduced in the
MVS portfolio and, contrariwise, the weight of the third asset grows.

Moving on to the dynamic example, a quick look at how portfolio performance
is measured is in order. In the MV framework a natural performance measure is the
ratio of realized excess returns to volatility of these returns.*! This performance indi-
cator is commonly known as the (ex post) Sharpe ratio (SR; see, Sharpe 1966). In the
MVS framework, the standard Sharpe ratio is an incomplete performance measure.

By adding a preference for positive skewness, to put it plainly, the investor assigns
larger weights on average to assets, which exhibit positive (co)skewness. Therefore,
portfolio returns are also more likely to exhibit positive skewness. To take this into
account one would want to utilize a performance measure which rewards positive

41 Excess realized returns, generally speaking, are taken to mean returns in excess of transaction costs and some

risk free return. Transaction costs are modeled as discussed above and the risk free return is fixed at zero for
simplicity.
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skewness of portfolio returns. For this purpose, the skewness adjusted Sharpe ratio,
as in Zakamouline and Koekebakker (2009), is given below.

Definition 10 (Adjusted Sharpe ratio). The skewness adjusted Sharpe ratio, assum-
ing CARA-utility and provided that the quantity obtained is a positive real number,

is given by:
ASSR:SR\/1+WSR, (15)
where R,(X) is the portfolio excess return and SR is the Sharpe ratio:
R = M (16)

VVIR,01

Armed with the appropriate performance measures, it is time to move on to the
results. In the above static example, it was illustrated how portfolio weights between
the MV and the MVS strategy can differ substantially even when the sample data is
drawn from a Gaussian distribution. A natural follow-up question is: what if the data
is drawn from a non-normal distribution?

To shed light on this, the data utilized in the next example is drawn from a mul-
tivariate Gaussian mixture distribution. This distribution type is used to capture the
empirically verified fact of non-normal daily returns. The results below exemplify
one year of trading with monthly portfolio rebalancing. In the example there are
three risky assets—X, Y, and Z—and it is assumed that a rolling window of 252
(one year) daily return observations for each asset is used as training data in every
iteration of the portfolio rebalancing/optimization procedure. Portfolio returns are
determined on an out-of-sample basis. Appendix B gives a more formal account of
the procedure.

Figure 5 illustrates the evolution of portfolio weights over the rebalancing periods
t=1,2,...,12.

5

5

8

6 7 G 7
PERIOD PERIOD

Figure 5:  (Portfolio weights) This figure illustrates one instance of the evolution of the portfolio weights for
the MV portfolio (left) and the MVS portfolio (right) over rebalancing periods 7 = 1,2,...,12.
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Looking at Figure 5, one may observe a glimpse of how the MV procedure tends
to favor more extreme allocations as compared to the MVS procedure. Despite this,
it is also noticeable that the MV and MVS allocations are quite correlated. This,
of course, is no surprise as the two allocations are after all based on quite similar
preferences.

Table 2 reports the mean SR, the mean ASSR, and the mean turnover (TO) for
MV and MVS portfolios over 10000 simulations.**

Table 2:  (Performance and turnover) This table presents the mean performance ratios and mean turnover for
both the MV and MVS portfolios.

Strategy | mean SR | mean ASSR | mean Turnover
MV 0.806 0.874 3.988
MVS 0.824 0.900 3.323

It is evident from Table 2 that the mean SR and mean ASSR are relatively close to
each other although the MVS portfolio seems to have a slight advantage in terms of
performance measures. Figure 6 further illustrates the strong positive correlation in
the performance measures for the two portfolio allocations. Evidently, the two fig-
ures are virtually identical. Portfolio turnover, however, is more nuanced. The results
indicate that the turnover of the MV portfolio is notably higher than the turnover of
the MVS portfolio.

Two things are worth noting when examining portfolio turnovers. First, the re-
sults in Table 2 indicate that optimizing the portfolio over more than two moments
could have a stabilizing effect on the portfolio weights. In other words, as more mo-
ments are taken into account when making the rebalancing decision, one may end up
adjusting the portfolio weights less compared to the case where fewer moments are
utilized. Second, one could conjecture that the MVS portfolio dominates in terms of
the performance ratios simply due to the reduced transaction costs. If this were the
case, then one would expect that the MVS portfolio would consistently dominate the
MYV portfolio over different simulation runs. This is not strictly speaking the case.

In fact, while the observation that the MVS portfolio has a lower turnover than
the MV portfolio seems very robust over a barrage of numerical runs, the edge of
the MVS portfolio over the MV portfolio in terms of performance is much more am-

42 Regarding the mean ASSR, 13 complex valued sample points for the MV portfolio and 25 complex valued

sample points for the MVS strategy were discarded. Sharpe ratios are calculated using (16) and asymmetric
Sharpe ratios are calculated using (15). Moreover, portfolio turnover for each individual simulation round is
obtained from:

3 12

TO= )" |Ax .

i=1 t=1



84

mvs
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Figure 6:  (Performance ratios) This figure presents scatter plots for the performance ratios of the MV and
MVS portfolios. Sharpe ratio scatter is presented on the left and asymmetric Sharpe ratio scatter is
presented on the right. The dash-dotted line represents the trend while the dotted lines represent the
average and maximum observations on both axes.

biguous. In some instances, the more extreme allocations or more extreme changes
pay off. This observation mirrors the idea of basic diversification in that reducing
risk also generally means lower expected returns.

To have an illustrative look at the turnover comparison, Figure 7 highlights the
turnover differences between the two portfolios. The two horizontal lines in the
figure represent the x-axis (where turnover difference is zero) and the mean of the
turnover difference.
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Figure 7:  (Turnover difference) This figure depicts the turnover differences between the MV and MV portfo-
lios. The upper horizontal line highlights the x-axis where turnover difference is zero and the lower
horizontal line highlights the average of the turnover differences.
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The fact that the mean of the turnover difference is negative in Figure 7 indicates
that, on average, the MV portfolio generates higher portfolio turnover than the MVS
portfolio. As noted earlier, this observation, contrary to the relative order of the
performance ratios, holds true in each simulation run.

One reason for the difference in portfolio turnover between the two portfolios
could be, as alluded to earlier, that the decision-making rule in the MVS portfolio
is more “diversified” as compared to the MV portfolio. Hence, focusing on three
moments instead of two could produce smaller adjustments to the portfolio weights
moving from one period to another, thus reducing total portfolio turnover. The im-
plications of this observation can be particularly useful in cases where one is trading
in a market with high or potentially time-varying transaction costs.

4.3 Portfolio Optimization Extensions

There are various ways to refine the above simple numerical examples. First, one
could consider adding even higher moments, e.g., the fourth moment (kurtosis). This
would result in a POP of a higher yet still manageable degree. Second, one could
use real data and focus more on the empirical estimation of moments to gain a better
understanding of the impact of estimation errors on portfolio performance. Alter-
natively, one could utilize a robust formulation of the problem (as in Kleniati and
Rustem 2009) which would still boil down to a POP; the interplay of robust opti-
mization and transaction costs is surely worth examining. Third, one could utilize
econometric forecasting models for the different moments and compare the perfor-
mance gains stemming from different forecasting models for different moments or
even combined forecasts for multiple moments. Finally, one could consider adding
more practically relevant constrains, e.g. position limits and turnover limits, or con-
versely, one might consider removing existing constraints such as the short-sales
constraint.

There are also several recent developments in portfolio optimization outside the
examples given above which are compatible with the polynomial optimization ap-
proach. A case in point is Ban et al. (2018) who propose to exploit machine learn-
ing techniques to tackle the poor out-of-sample performance of classical portfolio
optimization combined with simple sample-average-approximation (SAA)—an ap-
proach which was also utilized in the above example. The authors propose using
performance-based regularization (PBR) to constrain the sample variances of the
estimated quantities for covariances and means (in the Markowitz model), thus seek-
ing to mitigate the effects of estimation error on the optimal portfolio solution.

Taking advantage of the PBR approach in the mean-variance framework results
in an addition of a quartic polynomial constraint. Since the original problem can
already be stated as a POP, adding another algebraic constraint is readily handled
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in the polynomial optimization framework. The only real difference is that the new
problem has a (total) degree of 4 instead of the degree 2 in the original mean-variance
problem.
Indeed, the PBR-MYV problem can be stated as:
Xy My € argmin fonx
xeRP
st x'1,=1,

SVAR[x"$,x] < U,

and the sample variance operator SVAR[ ] is given by:

)4
SVAR[XTan]= Z xixjxkleijkl,
i,),k,0=1
with
Ql]kl 1( ljkl 2 %]) ! ( 52 & 2 +0'10'2k)
Tij nn-1) e

where k; ki and é'l.zj is the sample average estimator of the fourth central moment (kur-
tosis) and the second central moment ((co)variance). Moreover, U is a regularization
parameter which is used to discard solutions with large estimation error.

Another example is Maillard et al. (2010) who, similarly to Ban et al. (2018)
above, start by noting the problems stemming from estimation errors in the classical
Markowitz portfolio selection framework, and remarking that due to these issues
many market participants prefer to employ heuristic approaches that strike a balance
between easy implementability and “robustness”, where robustness mostly refers to
the fact that these heuristic approaches are typically independent of expected returns.
Among these heuristic approaches are, for example, equally weighted and minimum
variance portfolios.

Maillard et al. (2010) propose an alternative approach, which seeks to equal-
ize the risk contributions of different portfolio components. The authors state that
their approach lies somewhere in between equally-weighted and minimum variance
portfolios and they call the resulting portfolio a equally-weighted risk contributions
(ERC) portfolio. The portfolio weights of an ERC portfolio with no short-selling can
be found by solving:

X" € argmin ZZ xi(2x); — x;(2x) )

i=1 j=1
suchthat1'x =1 and x;€[0,1]" Vi=1,....n

Again, the problem can be straightforwardly formulated as a POP. Similarly, addi-
tional polynomial constraints are easily implemented. Developing methods to handle
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large-scale instances (large n) of the above problem is a research question with no-
table practical relevance.

Finally, as far as static portfolio optimization is considered, adding higher mo-
ments to the standard mean-variance framework is crucial only under rather extreme
situations (high leverage portfolios or large deviations from normality). This may
no longer be true in dynamic context. At the very least, additional considerations
should be made in a dynamic setting as illustrated by the example above. A look
at multiperiod portfolio optimization with higher moments using model predictive
control (MPC, see Boyd et al. 2017) combined with polynomial optimization is one
interesting topic to consider.

Moreover, as argued by Jondeau and Rockinger (2012), higher moments may
also have a more pronounced role when the distribution of asset returns is time-
varying. Further inquiries along these lines are likely to benefit from modelling
the portfolio selection problem with higher moments as a POP. In general, dynamic
portfolio selection with (potentially time-varying) higher moments is an interesting
but highly challenging venue for further research.

5 ALL SOLUTIONS IN DYNAMIC MARKET
EQUILIBRIUM

5.1 Strategic Trading Model

The final example presented in this paper is related to strategic trading. In short,
strategic trading here refers to a situation where a trader aims to carry out a sequence
of trades such that the trades themselves, in addition to other potential factors, in-
fluence the price of the traded asset. In other words, trades have a price impact.*?
Another way to think about this is that trading costs are endogenous compared to the
portfolio optimization example where trading costs were exogenous.

The starting point for this section is a recent paper by Choi et al. (2019). The
paper introduces a game theoretic model of strategic trading based on the seminal
work by Kyle (1985). The model introduced in the paper is solved via a dynamic
programming approach, complemented by an assumption that the equilibrium strate-
gies are Markovian in nature. The dynamic programming approach leads one to, at
each period n = 1,..., N, solve a system of recursive equations which—after repeated

43 In finance, and more specifically in market microstructure theory, price impact is a concept generally associated

with markets with incomplete competition, i.e., it is assumed that there is a finite number of (large) traders in the
market instead of (or in addition to) a continuum of (small) traders.
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substitutions—can be shown to boil down to solving a system of two coupled high
degree polynomial equations.

This part of the model solution is crucial as the coupled system is likely to have
a large number of different (real) solutions, which instead may imply that the model
has multiple equilibria. Problem is that standard (numerical) approaches in finance
and economics tend to search only a single solution while ignoring the others. Alter-
natively, even if methods capable of producing multiple solutions (roots) simultane-
ously are used, authors often resort to ad hoc heuristics to trim down the solution set
until only a single (or none) solution remains.

An alternative approach, advocated by, e.g., Kubler and Schmedders (2010), Judd
et al. (2012), and Kubler et al. (2014), is to utilize advances in numerical algebraic
geometry, i.e., to use either all-solutions homotopy continuation or Grobner bases
methods to tackle the problem of determining all solutions to the given polynomial
system. Below these approaches are implemented in the context of the Choi et al.
(2019) model. Before that, the goal is to briefly introduce the model to be studied.

5.1.1 Market structure and trader types

For the sake of easy comparability, notation closely resembling the one used in Choi
et al. (2019) is utilized. Consider a market with one risky asset that has a (Gaussian)
terminal payoff # ~ N(0,02) for some o> > 0. In addition to the risky asset, there
is a riskless asset that pays zero interest rate. The realization of ¥ becomes public
information after N rounds of trading, i.e., at time N + 1 and trading takes place at
discrete time points n € {1,2,..., N} with evenly spaced time steps.

The market is populated by four types of traders:

(1) A risk neutral informed trader who observes the realization of ¥ at n = 0 and
trades to exploit Ais informational advantage. The letter [ is used to refer to the
informed trader.

(2) A risk neutral constrained trader (she), referred to as the rebalancer , who trades
to reach a hard terminal trading target, & ~ N(0,02) with o2 > 0, which is jointly
normally distributed with ¥ with correlation CORR[7,a] =: p,, € [0, 1]. The real-
ization of @ is privately learned by the rebalancer at n = 0.** The letter R is used
to refer to the rebalancer.

(3) Non-strategic liquidity (or noise) traders whose aggregate demand at each n =

1,...,N is given by ii, iid. N(O,aﬁ) for some o, > 0.

44 The notion of a hard trading target is interpreted so that the rebalancer must reach the specific position stipulated

by the target a during the N rounds of trading. A soft trading target with an associated penalty function is a possible
extension not pursued here. In case of a hard trading target, one could simply assume that the trader faces infinite
penalty if she deviates from the target.
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(4) A number of risk-neutral market makers who set prices competitively, using all
information available to them, such that the resulting financial market can be
considered semi-strong form efficient. The letter M is used to refer to the (repre-
sentative) market maker.

All information is costless to those who observe it and (strategic) traders in the
model are assumed perfectly attentive and rational in the sense that they do not ig-
nore any relevant information. Private information, for those who are endowed with
it, is learned at time n = 0, before trading commences, and no additional private in-
formation is received in later periods n = 1,...,N. Furthermore, private information
is available only to the trader who observes it and information cannot be bought or
sold.

Order flow information is observed by the market makers at each n = 1,...,N.
At period n, the information generated by the order flow process is denoted by
o(y1,...,yn), Where y, is used to denote the period n aggregate order flow. This de-
scribes the information available to the market makers. The market makers utilize
the order flow information to set prices and to update beliefs regarding the private
information possessed by 7 and R. The aggregate order flow y, is available only to
the market makers before the price p,, is determined and quoted to the traders.

However, due to the fact that there is—at least in the type of equilibria stud-
ied here—a one-to-one mapping from aggregate order flows to prices, the strate-
gic traders learn the realized aggregate order flow after observing p,. Nonetheless,
the traders do not have this information available upon placing orders for period 7.
Hence, at any n = 1,..., N, no one type of market participant is in possession of all the
price relevant information. More specifically, denoting I’s and R’s information sets
at time n by (9, y1,...,y,—1) and o°(a, y1, ..., ys—1) respectively, it can be seen that the
information sets of the different market participants are not nested.*

All in all, the model proceeds as follows. Periods n = O (the initial period) and
n = N+1 (the terminal period) are special. At the initial period, private information is
observed, and no trading occurs, and at N + 1 all uncertainty is lifted and the terminal
value of the risky asset is revealed. Otherwise, all trading rounds, n = 1,...,N, are
identical regarding the sequence of actions: the traders submit market orders, after
which the market makers determine the price for the current period.

5.1.2 Strategies and equilibrium concept

Let A6! and AR denote respectively the informed trader’s and the rebalancer’s order
at time n. Similarly, let 6/ and 6% represent the total risky asset position at time n for
the informed trader and the rebalancer respectively. Observe that, ZnNzl AGR =: «9115, =

45 Generally speaking, nested information sets simplify the analysis. See, for example, Foster and Viswanathan

(1994).
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a, where the last equality follows from the terminal constraint of the rebalancer. All
initial positions are assumed to be zero, i.e., AQ(’) = A9§ =0.

Utilizing the notation introduced above, the aggregate order flow can be written
Y = A0 + AOR + i1, with yo = 0. Due to the risk neutrality of the market makers and
the assumption of competitive pricing, the market makers earns zero expected profits
and sets prices according to:*¢

pn=E[v|o)| =BY[7] foralln=1,2,...N, (17)

where a' =0(y1,....yn) is the information set of M, along with the initial condition
po=0. As w1th the traders’ orders, define Ap,, := p, — pn-1.
The informed trader seeks to maximize:

N N
E[U (250-pnd) | "(ﬁ)] = ]Ef)[U [(Z(ﬁ—pnm@i)], (18)

n=1 n=1

where AH{l 1S, V1, Y1) =: 0',11 measurable for all n = 1,2,..., N. Note especially

that 0'(1) := 0 (¥). The measurability constraint is the only explicit running constraint
imposed on I’s (similarly R’s) optimal orders (controls).
Similarly, the rebalancer seeks to maximize:

BlUR(@-65_ )5 pn)+ 65 _ (5= py1) + ..+ AGF T = p1)) | (@)
= ]E[UR(El(T)—pN) — 08 _ (= pw) + ABR_ (5= py-1) + ..+ AR - p)) | 0(@)]

[UR(av Z l)Ap,,)la‘(a)] ]Eg[UR( Z(a I)Apn)] (19)

where the last equality follows once it is noted that py = 25:1 Ap,, with pg =0,
9’5 = ZZL: { AOR for L < N, and where the measurability condition dictates that AGR €
O(@,Y15..sYn-1) =: a'ff with 0‘§ :=0(a). Only risk neutral traders are examined here,
so UX(x) = x, for K € {I,R}. Tt is possible to extend the analysis to a risk averse set-
ting via negative exponential utility functions; this extension is pursued in Hannula
(2019).

The equilibrium concept, following Kyle (1985) and the references therein, uti-
lized is Bayesian Nash equilibrium. The formal definition is:

Definition 11 (Bayesian Nash Equilibrium (BNE)). A collection of functions

n,@f,pn) is a BNE if:
(i) pn satisfies (17) given (6%,6%),

n-n

(ii) 9,11 maximizes (18) (informed trader’s utility) given (H,If,pn),

4 One may, as is usual in the literature, assume that the market makers are subject to Bertrand competition and, as
aresult, (17) holds.



91
(iii) G,If maximizes (19) (rebalancer’s utility) given (Q,Il,pn).
Choi et al. (2019) show that equilibrium strategies have a simple linear structure:

AGL =L - pp-), (20)
AR =aRg, 1 +BR@-6~ ). 1)

5.1.3 Information structure and filtering

A key component of the Choi et al. (2019) model is endogenous learning of the
strategic traders and the market makers, and hence the next task is to briefly describe
how this endogenous learning or filtering takes place in the model and how the beliefs
of the market participants are formed. Starting with the market makers, the essential
quantities are:

pn=E,[7], (22)

q. =E,[a-6y], (23)
where equation (22) represents the market makers’ period n risky asset valuation

and equation (23) their belief about the remaining trading demand of the rebalancer.
These quantities, for all n = 1,..., N, adhere to the following dynamics:

Apn = An(ya—B) [ya]), (24)
Adn = ra(yn =B | [ynl) - @R g1, (25)

where {A,}n=1...~v and {r,},=1.. n are projection coeflicients. Moreover, straightfor-
ward manipulations show that:*’

B \[ya] = OR g1, (26)
—_——

Sunshine trading component

.....

where fo = (a/f + ﬂf), n=1,..,N, is a constant stemming from the orders of R.
Clearly, prices are unaffected by the (predictable) sunshine trading component.

Moving on to the strategic traders, one should note that due to the presence of het-
erogenous (asymmetric) information, both R and I try to learn about the information
possessed by the other. The relevant quantity for / is:

Ei[&—@rlf_l] = qn-1 +]E,I1[Zl_9§_1 —qn-1]
=qgp-1 +E[a— 9,15_1 —qn-1 10— pu-1l, (27)

and for R:

BR[5 - puo1] =BV = ppt |0 @—65_ | —qu-n)]. (28)

47 Note that the expectation is conditional on o (yy, ..., Yn—1)-
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The quantity given in (27) is I’s expectation of R’s remaining trading demand and
(28) gives R’s view on the misvaluation of the risky asset. Therefore, the privately
informed traders can utilize their private information to endogenously filter new in-
formation from observed prices in a superior fashion as compared to the market
makers. This learning mechanism is the main channel driving the trading dynamics
in the model.

The above filtering problems give rise to the following (co)variances:

=V =02, ) =V|a—08 -4, (29)
5@ = o2 =P :V[v—pn], (30)
50 = pavacy, Ty =COV|a-08 =G, 5= pa]. n=1....N, (31)

where V[ - | represents variance and COV]| - | represents covariance. The constants 4,
and r, appearing above are the projection coefficients of the market makers given by:

COV[v—p-1.2Y]

A= : 32

\Ed .
COV[a—R | —gy1.2M]

" V|| (=) >

where ¥ :=§, —]E[j)n o@1,..., yn_l)]. The projection coefficients of / and R are

) )
given by =% e and 2 50 respectively.

One mlght wonder about the appearance of “hatted” expressions, e.g. 6%, in equa-
tions (29)-(33). Before proceeding to discuss the meaning of these new expressions,
it is good to note that heterogeneous information introduces an additional layer of
complexity to learning dynamics and belief formation. Further, the description of
the relevant learning quantities given above implicitly assumes that all traders strictly
obey their equilibrium strategies. This need not be the case, and in order to obtain
a complete view regarding the equilibrium learning dynamics, one must consider
the possibility that a trader deviates from the equilibrium path. Matters are, how-
ever, somewhat simplified by the fact (see, Foster and Viswanathan 1996) that since
all order flows are observed with non-zero probability, there is no need to describe
off-equilibrium-path beliefs.

To account for deviations from the equilibrium path, suppose R, instead of apply-
ing the equilibrium strategy, has submitted arbitrary orders during the [ initial trading
rounds, and define hatted versions of y,, A6, and A6 as well as other quantities
given above, i.e., J, = A@{, + A@,’f + ii,. These hatted processes describe what would
have happened if R had instead followed her equilibrium strategy.*® In other words,

48 When solving the optimization problem of R, the same hatted processes are not used as inputs in the strategy
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the hatted processes capture the beliefs of R regarding what [ is able to learn from
the trading history under the assumption that R utilizes her equilibrium strategy. A
standard rational expectations argument dictates that the hatted processes must equal
the unhatted ones in equilibrium, i.e., ¥, = y,.

In order for the hatted processes to be useful, it is essential to verify that
NES O'(E,yl ,..,y) forall 1 </ <N, where g‘ € {a,v}. That is to say, it should hold that
o (&, 91,....9n) =0(&,¥1,....y,). This property is important and useful as it guarantees
the viability of certain orthogonality properties which are utilized, for instance, in de-
termining the state variable dynamics for both R and /. For completeness, Appendix
C gives additional details.

Concerning the aforementioned state variables, it is shown in Choi et al. (2019)
that the following, for n = 1,..., N, are enough to capture the equilibrium relevant
state information:

X" =5 - p,,

@ D ineq. =D 0

Xy =0 =0+ (@n = qn) + ~i5;(V = Pu) (2)Xn,
z "

v =a-of,

@) (3) AR A meqz 1) _y®

Yy =qn,

where Xf,i), i = 1,2 are state variables for I and Y,ij ), j=1,2,3 are state variables for
R, and the latter equalities in the second and the fourth equation hold in equilibrium
(“in eq.”). Using these state variables one can show that the value functions of the
strategic traders are quadratic in nature, and that from the first order conditions for
the traders’ optimal orders one obtains two coupled equations (recall equations (20)

and (21)):

1 2 Z:(3)1
B+ (34)
n—1

2(3)
B =5y + 67 =L (35)
Z( )
n—1
These two equations (34) and (35) can be manipulated via repeated substitutions so
that one obtains a bivariate polynomial system in (ﬂ,’i,ﬁf), ateachn=1,...N-1.

Solving this bivariate S-equation system constitutes the part of the model solution to

of I as this would mean that the strategy chosen by I would be independent of the actual strategy of R. This
contradicts the premise that the traders act strategically and utilize all the information available to them (cf. Foster
and Viswanathan 1996 and Choi et al. 2019).
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which all-solutions methods are applied. In particular, the above system has multi-
ple (real) solutions and in order to find out how many of these solutions satisfy the
equilibrium conditions (see, Choi et al. 2019, Thm. 1), one first needs to locate all of
them.

5.2 Examining Equilibrium Uniqueness Numerically

To fix ideas it is reasonable to start with, what is actually meant by equilibrium
uniqueness. First, it is important to emphasize that the discussion is limited to the
linear strategies (20)-(21). There is some reason to expect that the linear strategies are
unique even if nonlinear strategies are allowed but proving this is highly involved.*
Thus, one is left with the question of uniqueness under linear strategies.

To better understand this question, it is useful to first digress slightly and consider
the uniqueness of the dynamic linear strategy equilibrium in Kyle (1985). Related
to the above, iterating the Kyle (1985) model backwards, subject to a single initial
guess Xy and some boundary conditions, also boils down to solving a polynomial
equation.”” This univariate polynomial equation can be formulated using 1, and it is
easy to see that the resulting equation is cubic. Among the three real solutions to this
cubic equation, only one meets the second order condition of the Kyle (1985) model
and hence A, is determined uniquely. Substituting the unique 4, to other model
equations directly gives the values for the remaining equilibrium constants. Further,
it is shown in Kyle (1985) that there is a proportional relationship between the initial
guess Xy (model input) and initial variance Xy (model constant) so that the resulting
equilibrium path indeed is unique.

This simple second order condition approach to determining the uniqueness of
the equilibrium path is insufficient for the Choi et al. (2019) model even in the case
of linear strategies. The reason for this lies in equations (34)-(35) which can produce
multiple solution pairs able to pass the second order condition test along with other
equilibrium conditions.”' In the rest of this section, using a two period version of
Choi et al. (2019), the insufficiency of the second order condition is demonstrated
numerically.

The reason for choosing N = 2 is straightforward. As the last period N is special,
in the two period model one is required to solve the S-equations only once. Hence,
this simple case it the easiest to discuss from the point of view of uniqueness of
equilibria.

49 For a discussion pertaining to the uniqueness of the linear equilibrium in the static (one period) Kyle (1985)

model see, for example, Boulatov et al. (2013) and McLennan et al. (2017).

It is worth emphasizing that in this case one has to deal with a single polynomial equation not a system which
simplifies matters considerably in terms of both analytical and numerical methods.

Note that potential repeated roots are counted only once, i.e., only distinct roots are taken into account when
studying equilibrium multiplicity.

50

51
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The numerical algorithm for finding a Bayesian-Nash equilibrium for the above
described model is given in Appendix D. In short, the algorithm takes as inputs
initial guesses for Zx)_ 12 25511, and 253)_1 as well as the preset values for a number of
model constants and then proceeds via backward induction from the last period n = N
towards period n = 1. At each period, except the last (N), the pair of equations (34)-
(35) is solved and the solved values are plugged into auxiliary equations to obtain
the numerical values for the other model parameters. The algorithm terminates when
the moments Z(()i), i=1,2,3, produced by the algorithm match the values specified for
these constants ex ante (see, (29)-(31)).

Having covered the basics, it is time to move on to an explicit example. To start,

fix parameter values:

Parameter | Numerical value
o2 1.000
o2 1.000
o2 0.100
Pav 0.000

The next step is to look at the uniqueness of the solutions in period n = N =2, i.e.,
the last period.

To obtain the period n = 2 unknowns (ﬂfv,/lN) one solves a pair of equations of a
much simpler form compared to the 8-equations. To see this, first plug the expression
for ﬁ{v obtained from I’s period N problem, namely:

1,1
[ _ (3/2)
By = E(E‘EN—I)’ (36)
to the expression for Ay, namely:
/[ y(2) ©)
ByEn—1tEN

N= 2 I 3 ’
(ﬂfv)ng\,)_l + 25\/)—1 + Zﬁfvzﬁv)—1 +0oa

whence one obtains a standard form quadratic equation:

aly +bdy+c=0,
5@
with b = 0 and ¢ = ==, The expression for « is slightly more complicated and less
relevant for the discussion at hand. Combining the above observations, one attains:

@
2N—l

a

/lNIi

N —
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By the second order condition Ay € R.¢, and therefore one can deduce that Ay is
solved uniquely. Furthermore, since Ay uniquely determines /311\, via (36), the pair
AN, ,85\,) is uniquely determined. Appendix E gives an alternative take on the period
N solution.

Note also that if Ay is allowed to be negative, then it may hold that ,va < 0 which
would mean that I would trade in the direction opposite to his private information.>?
Pure strategy trades of this kind cannot be used to manipulate the beliefs of the
market makers due to the fact that the market could perfectly anticipate these manip-
ulation efforts. Therefore, this type of equilibrium would lack any sort of economic
intuition.

Then, moving to period n = 1 one faces the task of finding all (real) solutions
to the full bivariate S-equations obtained using (34) and (35). For this purpose, the
MATLAB version of the PHCpack, taking advantage of polynomial homotopy con-
tinuation, is utilized. To double-check results, the S-equations are also solved using
MATHEMATICA’s NSolve, which tackles the problem by computing the numerical
Grobner basis and exploiting eigensystem methods to extract all roots.

The first task after obtaining the entire solution set S ¢ C? is to isolate the real
solution pairs, after which the feasibility of the remaining solution pairs is checked
against the equilibrium conditions. Those pairs that do not meet the equilibrium
conditions are discarded. In terms of uniqueness one wishes to end up with a single
solution pair or none if the initial guess is incorrect. The set of real solution pairs for
the present case, obtained by simply removing all complex solutions, is presented in
Figure 8.

50 1 B BY
D1 © 1. | -0.535 | —8.058
: ° o 5 om0 | 15
1.0 4 o O . -0. .
o o o & T e ® € oo 4. | —0758 | 1624
20 ] 5| 0392 | -0.539
20| 6. | 0574 | 0011
e 7. | -0.633 | 1.000
60 | 8. | 0.633 | 1000
7.0 A 9. | -0.002 1.000
01T © 10. | 0519 | 0542
0o 1 2 3 4 5 6 7 8 & 10 11 11. | 0307 | 0.319

Fi gure 8:  (Real solutions to the S-equations) This figure presents the real S-solutions for the two period exam-
ple with o2 = 0.1.

From the solutions pairs obtained, pairs 1-6 fail the second order condition and

52 Ttis typically the case in numerical tests that ZS{” <Oforn=1,..,N.
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pairs 7-9 fails the proviso that ﬂf #1,forn=1,...,.N—1 (see, Choi et al. 2019). In
order to gain better intuition regarding the proviso, Figure 9 illustrates what happens
to the market makers’ projection coefficients in the two period model when ,Bf - 1.

Figure 9:  (Projection coefficient surfaces) This figure depicts the values taken by the projection coefficients 1;
and r; when the pair (B{ s ﬁf) is allowed to vary on the plane [0, 1] X [0, 1).

The last two solution pairs (10. and 11.) in Figure 8 both satisfy all equilibrium
conditions and one cannot discard neither of them based on, for instance, the second
order condition as in Kyle (1985). Does this mean there are two equilibria in this
case?

The answer is no. Looking at the initial moments implied by the two solutions
sheds light on this. Denote by ﬁg), i =1,2,3, the implied initial solutions and recall
that the fixed initial parameter values are: 28) = 02 =1, ZE)Z) = 0"2) =1, and 283) =
po,0, = 0. Initial moments implied by the two remaining solutions are given below.

S [ 3O | 30
s se 5¢

1.000 | 1.000 | 0.001
0.247 | 0.713 | -0.294

Thus, recalling that p,, € [0,1] and therefore Zg) > 0, the latter solution pair
(0.307, 0.319) can be discarded and (0.519, 0.542) remains as the unique period
n =1 solution pair. Alternatively, one could have discarded (0.307, 0.319) based on
the fact that the implied moments are hardly the same as the fixed initial moments.
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However, noting that this solution also violates the assumption regarding p,,, means
that it cannot be considered an equilibrium in any case.

In the above example, a numerically unique equilibrium is obtained in a rather
unambiguous fashion. Things are not always so straightforward. In fact, it would be
surprising if they were. Returning for a while to real solutions to the S-equations at
n =1, Figure 10 highlights the two solutions which pass all the standard equilibrium
conditions.

5.0

4.0 1)
30

20 -
@ O T

I o O OOy

10} ® ® o e O T e .
20

30

40

50

60

7.0

80} @

9.0

0o 1 2 3 4 5 6 T 8 9 10 11

Figure 10: (Real solutions to the S-equations revisited) This figure presents the real S-solutions for the two
period example with o2 = 0.1. Solutions passing the standard equilibrium conditions are circled.
The dotted line represents the proviso B’f * 1.

The main take way from Figure 10 is that to “succeed” the n = 1 solution pairs (1)
need to be relatively close to each other in terms of magnitude®? and (2) they must
also, in general, be of correct magnitude with respect to other model parameters, i.e.,
too small or large solutions do not pass the second order conditions.

Now, noting that the above example represents just one possible model
parametrization, one might be skeptical with respect to global uniqueness, i.e.,
uniqueness over the whole range of feasible parametrizations. Indeed, one needs
only to look at the case where (ceteris paribus) o2 = 0.5 to observe that the above
example does not cover all possible cases. Indeed, in this new case, after trimming
out all solutions that do not meet the equilibrium conditions, one is left with:

1. (B =0.592, B = 0.588) = £ =(17.700, 2.383, 4.942) & py = 0.761,

2. (B} =0.592, B =0.459) = £(=(0.999, 1.001, 0.002) & pgy = 0.000.

33 Note the almost perfect overlap.
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Now, even though the first solution pair seems dubious, one cannot rule it out
based on the same principles applied to the case where o2 = 0.1.%* In fact, it could
be interpreted as a market where the variance o2 and o2 are of utterly different mag-
nitude compared to o2. This issue may be pondered from the point of view of relative
volume (cf. Moallemi et al. 2012), and in the particular situation portrayed above, the
assumed amount of noise trading is hardly enough to conceal the private information
that motivates the trades of I and R respectively. Hence, almost all uncertainty is
lifted after just one round of trading.

Theoretically, the situation depicted by the first solution pair must then be con-
sidered as possible. However, to be realistic, it is unlikely. Instead one would, for
example, expect that R would seek to split her trading to various different markets so
that at each individual market her trading target would not represent such a dominant
part of the total trading volume. This is especially true in today’s more fragmented
market where a myriad of new exchanges and trading systems have risen and volume
from old exchanges has drifted to these alternative venues (cf. Angel et al. 2015).

Therefore, from an economic viewpoint, only the second solution pair seems to
imply a sensible equilibrium outcome which is, in addition, consistent with the ini-
tial parameter values o2 = o2 = 1. However, one could ask whether there is an
alternative (economically meaningful) solution to the parametrization o2 = 0.500
and 0'3 = 17.700, 0'% = 2.383, pagyo a0, = 4.9427 Generally speaking, it is reason-
able to expect that among all possible initial parametrizations there are ones that are
more susceptible to equilibrium multiplicity. Is there a way to locate or to character-
ize these parametrizations based on the equilibrium conditions and equations? This
question and other further inquiries into the equilibrium numerics are left for future
research.

5.3 Related Applications of All-Solutions Methods

In the preceding numerical example, the focus was on the aspects of numerical
uniqueness and the central goal was to verify numerically—at least for specific ex-
amples from the entire parameter space—that the equilibrium obtained was unique.
An alternative use for the all-solutions methods, polynomial homotopy continuation
and Grobner bases, relates to verifying numerically whether or not there exists an
equilibrium under some conditions.

The key idea here would be that algorithms, which focus on finding a single
solution, might end up converging to a solution which does not support equilibrium
existence. The advantage of finding all solutions lies in the fact that one can then
examine the whole solution set at once and determine whether a feasible solution

54

It is good to note that ﬁ{ has the same value in both cases and only the value ﬂf changes. This essentially means
that, fixing ,B{ , the remaining equations have, at least, two distinct solutions.
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belongs to that set.

Similar methods as introduced above can naturally be applied to, for example,
the risk-averse extension of Choi et al. (2019) as illustrated in Hannula (2019). The
solution method in the risk averse case is for the most part similar to the one utilized
in the risk neutral case, although the coupled polynomial equations tend to be more
complicated. However, the problem of potential equilibrium multiplicity due poly-
nomial systems characterizing key model restrictions is by no means limited only to
discrete-time dynamic models.

A case in point is Marinovic and Varas (2018) in which a blockholder (activist
investor) has the ability to both trade strategically and to control firm value via costly
effort. Their model features a continuous-time Gaussian linear quadratic model with
CARA-preferences, and due to the emergence of coupled optimization problems be-
tween the blockholder and a set of market makers, combined with a feedback loop
between stock price and firm productivity, multiple equilibria may arise. Indeed,
like Choi et al. (2019), equilibrium multiplicity in Marinovic and Varas (2018) boils
down to analyzing a system of polynomial equations. This observation supports the
notion—and a major motivation for the present paper—that as strategic (trading)
models become more complicated—in both discrete- and continuous-time—one is
more likely to have to deal with potential equilibrium multiplicity.

In addition to the above discussed “partial equilibrium” examples, there are sev-
eral other examples of using homotopy continuation methods and Grobner bases in
general equilibrium analysis. Recently, Amisano and Tristani (2009) and Amisano
and Tristani (2011) utilize polynomial homotopy continuation in computing exact
likelihoods for nonlinear dynamic stochastic general equilibrium (DSGE) models
solved using second order approximations and Robatto (2019) takes advantage of
Grobner bases in dealing with multiple equilibria in a general equilibrium banking
model. Other applications to general equilibrium models include Schmedders (1998)
and Schmedders (1999).

6 CONCLUSION

This paper overviews selected methods from the field of (numerical) algebraic geom-
etry, which has recently undergone rapid progress, and points out a few promising
applications of these methods in finance. Examples selected are closely related to
strategic trading and cover both theoretical and practical viewpoints. Explicit nu-
merical examples—including many new findings—are given for optimal execution
problems, mean-variance-skewness portfolio optimization, and determining equilib-
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rium uniqueness in a dynamic strategic trading model.

The purpose of the examples is to both illustrate the applicability of the intro-
duced methods and to provide some unique insights to widely recognized problems
in the field of finance. First, in the case of optimal execution, it is illustrated how
polynomial programming provides an effective way to optimize trading under non-
linear price impact and trading-enhanced risk. Moreover, it is shown how one can
parsimoniously formulate a problem of optimal execution of contingent claims as a
polynomial optimization problem (POP).

Second, a portfolio selection example demonstrates that even if standard per-
formance measures, such as the Sharpe ratio and asymmetric Sharpe ratio, can-
not clearly differentiate between mean-variance (MV) optimal and mean-variance-
skewness (MVS) optimal portfolios, these two portfolios can still have very different
properties. In particular, it is documented that the portfolio turnover is consistently
lower for the MVS portfolio. This result has practical implications for trading in the
presence of transaction costs.

Third, a strategic trading example shows how one can numerically study equilib-
rium uniqueness in a complex dynamic model using all-solutions methods such as
polynomial homotopy continuation and Grébner bases. After providing an overview
of the model under study, a detailed discussion pertaining to the simplest dynamic
model, i.e., the two period model, is given. Discussion is supplemented with numer-
ical examples, shedding light on various factors crucial for the existence of a unique
(linear) equilibrium.

Finally, multiple possible venues for further research are identified and several
other potential application areas are proposed. With the recent development in al-
gebraic geometry combined with the advances in, for example, high-performance
computing and semidefinite programming, many problems previously out of reach
are now open for inquiry. Accordingly, additional research towards uncovering the
full potential of algebraic geometry-based methods in the field of finance is certainly
advisable.
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APPENDICES

A POLYNOMIAL OPTIMIZATION DETAILS

In Appendix A details pertaining to polynomial optimization are presented. The representation follows Henrion and
Lasserre (2005) and Lasserre (2015).

Consider the following problem for f € R[x]:

fr= inf[ fx):x€ s}, (37
X
where the feasible (semialgebraic) set is given by:
S:={xeR": g;®=0, j=1,..,m}.

Moreover, suppose S is compact and a technical Archimedean condition holds.>

Fix go=1,v;:= |-deg(gj)/2-|, Jj=0,...,m, dy := max{[deg(f)/2], max v;}, and consider the following (convex)

linear matrix inequality (LMI; see, for example, Boyd et al. 1994) relja):;iirgn of order d (= do,do +1,...):>°
pd =iry1f Ly(f)
s.t. My(y) =0,
Moy, (g9) 2 0, j=1um
=1
where Ly is the Riesz linear functional:

Definition 12 (Riesz linear functional). For a real sequencey = (yo) CR, denote by Ly : R[x] — R the Riesz linear
functional given by:

FrLyH)= ) fava

aeN"

M,(y) is the (order d) positive semidefinite moment matrix defined as:

Definition 13 (Moment matrix). Given a sequence y = (Ya), the positive definite moment matrix with @ € N} used
to label rows and columns is defined by:’

My(Y)@.B) = Ly(x*x?) = youp, Ve, BN,

and My-,;(g;y) is the (order d —v;) positive semidefinite localizing matrix related to polynomial g, forall j=1,...,m.
More specifically, the localizing matrix is defined as:

55 In short, the Archimedean condition requires that there exists u € Q(g) = 0(g1,...,8m), for (g_,v);.":1 c R[x], such

that the set {x € R" : u(x) > 0} is compact. Above, Q(g) is the so-called quadratic module and it is defined by:

m
0(8) = 01, r8m) 1= {qo + 4851 @)y © Z[XJ},
j=1
where X[x] is the set of SOS polynomials (recall, Definition 3).
The ceiling function is given by: [z] =minfke N : k> z}.
57 Suppose n =2 and d = 1, then N? = {(0,0),(1,0),(0, 1)}. Generally:

56

N :={@eeN": |a| <d),

where |e| := Y-y .. @i-
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Definition 14 (Localizing matrix). Given u € R[X] with coefficient vector u = (uy), the localizing matrix with respect
to'y and u is the matrix My(uy) given by:

My @y)(@f) = Lyu(x)X"¥) = 3" ttyyyearp, Ve, BEN,

yenN”

where rows and columns of Mu(uy) are indexed by & € N).

The central idea in polynomial optimization, as implemented in GloptiPoly, is to solve a sequence (Ry)q4=1.....
of LMI relaxations of the original problem (37). By doing this, under relatively mild assumptions, one obtains a
2008 for asymptotic convergence and Nie 2014 for finite convergence) to converge to the global optimal value
f*. For many relevant problems such as the MVS portfolio optimization discussed in Section 4, the convergence
is immediate, i.e., relaxation order d = 1 is enough for obtaining the exact, numerically verified, global optimal
solution(s).

One can also utilize special techniques to transform the original problem to simpler one to keep the required
relaxation order as low as possible. This approach is demonstrated in Section 3.4. Generally, the main computational
cost in polynomial optimization, using the above described approach, is due to solving the semidefinite optimization
problem (SDP) R,. The size of this problem increases quickly with d which instead can pose a challenge for existing
SDP solvers.

After solving, say, a relaxation R, and obtaining an optimal solution y*, a special solution extraction algorithm is
utilized to obtain the (list of) global minimizers. Description of this extraction algorithm is omitted here; for further
details the reader is referred to Lasserre (2015, Ch. 6.1.2). Instead, the general algorithm for solving a semialgebraic
constrained polynomial optimization problem is given below.

Algorithm 1: Constrained Polynomial optimization

Input: Objective polynomial f(x), the (compact) semialgebraic feasible set
K:={xeR": gj(x)>0, j=1,...,m}, where deg(g;) = 2v;, 2v; — 1 (depending on parity),
v:=max vj, j = 1,...,m, and the relaxation order k € N.
J

Output: Conditional on reaching the exact solution: the value f* = infyeg f(x) and the set of global
minimizers. Otherwise: a lower bound py on f*.

Solve the SDP given in (37), obtaining the optimal value p, and, if the optimal solutions exists, also the
optimal solution y*. If there is no optimal solution, the optimal value p; provides a lower bound for f*.

if rank(My4_,(y*)) = rank(M,4(y*)) then
‘ pa = f* and at least rank(M,(y*)) global minimizers can be extracted.
else if rank(M,_,(y")) # rank(My(y*)) and d < k then
‘ Increase d by one and return to the first step.
else
‘ Rank condition does not hold and d = k. Stop and return p; which provides a lower bound for f*.
end

Suppose that y* is an optimal solution of relaxation R;. Then, a sufficient, albeit not necessary, condition for
global optimality is:

rank(My-,(y")) = rank(My(y")).

One may observe that this condition appears in Algorithm 1. From the perspective of numerics, one can use the
singular value decomposition (SVD) to verify the global optimality condition (see, Lasserre 2015, Ch. 6.1.2).

One can also observe from Algorithm 1, how upon failure of the rank condition, one increases the relaxation
order d and tries solving the new relaxation R4.;. In practice, however, increasing the relaxation order multiple
times is often computationally impracticable as then the size of related SDP increases sharply. Even with the recent
promising development in the field, solving a very large SDP can generate a notable bottleneck in the polynomial
optimization procedure.
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B ALGORITHM FOR PORTFOLIO
REBALANCING

In Appendix B the simulation procedure for rolling (out-of-sample) portfolio optimization is described.’® Addition-
ally, the multivariate Gaussian mixture distribution is reviewed briefly.

Denote by ¢ = (¢1,¢2,¢3) the specified preferences over the moments, i.e., the weights on expected returns,
(co)variances, and (co)skewnesses respectively. Moreover, denote by T the sample size, the frequency of which can
be determined freely, by N the number of rebalancing periods, and by X the initial weights in the portfolio prior to
optimization.

Suppose, for instance, that a year’s worth of trading days is used estimate the initial input moments and that
N =12, i.e., one year out-of-sample trading horizon with monthly rebalancing. Then, the size of the sample 7" with
daily data is 2 x252. Rolling estimation means that the first estimation window (or, the first training set) is 1-252,
the second is (1+21)—(252+21), and so forth.

The portfolio optimization algorithm with rolling moment estimation is presented below.

Algorithm 2: Rolling portfolio optimization via polynomial optimization

Input: Sample size T € N, number of rebalancing periods N, initial weight vector X, the level of
transaction costs A > 0, preferences ¢ which specify the objective function (14), distribution
specific parameters 6 for simulation, and constraint (feasible) set Py for optimization.

Output: Realized return vector R, portfolio turnover 70, matrix X, of stacked (optimal) portfolio
weights over rebalancing periods ?1,...,ty, SR, and ASSR.

Draw a random sample of length 7' from a distribution specified by 6.

for(I=1;1=N;I1=1+1)

Evaluate the sample moments from the training data set for period #;. Training data is updated on a
rolling fashion for each ;.

Construct the objective function f using the in-sample moments, A and ¢. Construct the semialgebraic
constraint set using Py.

Solve the polynomial optimization problem (14) and verify global optimality numerically.
Save the optimal weight vector, calculate and save realized portfolio return and turnover.

Determine and save the performance measures SR and ASSR.

endfor

Above the data is drawn from either a multivariate Gaussian or a multivariate Gaussian mixture distribution.
In a finance context, mixture distributions are useful in, for example, modelling stereotypical empirical properties
of financial return time series, such as negative skewness and positive excess kurtosis, and to capture the dynamics
of potentially time-varying means and volatilities. Here, mixtures are used to ensure the simulated data has at least
some of the empirical properties mentioned. To exemplify, two examples of simulated data together with a fitted
normal distribution are given next.

38 If the reader is wary about the use of simulated data, one can think of the procedure described in the spirit of the

resampling procedure put forth by Jobson and Korkie (1981). See also Michaud and Michaud 2008, Ch. 6.
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Figure 11:  (Examples of simulated negative skewed distributions) In both figures the samples are drawn
from a mixture distribution with the same initial parameters. The black curve represents a normal
distribution fitted to the simulated sample and the dotted vertical line indicates the mean of the
simulated distribution. While the sample on the top is closer to being normally distributed both
samples feature negative skewness and excess kurtosis.

Formally, it is assumed that the mixtures utilized are finite and of the form:

Yth(~|9)H(d9),

where y is the data, & is a parametric density function, and the mixture measure H places probability mass m, on
each atom 6, where g belongs to some finite set, for instance, {1,...,G}. Consequently, the finite mixture density is
given by a convex combination of the component densities.

Gaussian distributions are parameterized by 6, = (ug, 07). While it would be possible to allow for slightly
more generality using /4, instead of / as the component density, this generalization is not relevant here as the focus is
solely on Gaussian mixtures. For more information about finite mixtures the reader is referred to Frithwirth-Schnatter
(2006).
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C HATTED PROCESSES AND
INFORMATION SETS

Appendix C gives additional details about the strategic trading model. More specifically, in order to illustrate the
equivalence o (&, 91, ..., Jn) = 0(E, V1, ..., yn), With & € {@, ¥}, consider the case from the point of view of R:

N L le N Gfea'(a) o ol ~
o@ y)=0@ v+ +i,) ' = 0@, Bv+iy,) and
. Reo(a)
0@ $1)=0@ fiy+8+i) ' = 0@ Biv+in)
Via an induction argument it then follows that:

P

- A N ind. hypo. - ~
0@, 9150 In41) = 0@, Y1503 Yn>Inr1)

—AGR

n+l

= (@ V1seos Vs Yust +(AGF

n+l

)+ (A8, =46, 1)
= 0(a Yisees YnsYntl)s

where the last equality follows since A&fﬂ (similarly A@S +1) 18 0(@, y1.....y,) measurable and A@fl R AQfl =
B, (P = Pn) €0°(@, Y1,....yn)- Now, defining 28 := 9, —BR[$,], 1 <n <N, itis observed that:

R~ NOVEERD, 28 L @,y1, s yum1) and

(@, Y15 V0) = O(@ D150 ) = 0@, 2K, .., 2R,

where:
3 )
i1 (2, - B g
n—1

More specifically, orthogonality facilitates Markovian dynamics, thus resolving the issue of expanding state
history and allowing for a tractable treatment of the forecast the forecast of others problem. In addition, by verifying
the above property for §; one simultaneously verifies that the other hatted processes are also in (€, y1,...,y,). This
setting is aptly described in Foster and Viswanathan (1996) as the need for a specified trader i to “keep two sets
of books”. The first one documents the equilibrium path while the second one documents realized outcomes given
possible non-equilibrium path actions by i.

Pertaining to the second book, deviations from the equilibrium path cause deviations in prices p, as well as in
6!, 6% (since the orders of the strategic traders are not independent of each other), and ¢,. To keep track of these
deviations, the following quantities are paramount in determining the sufficient state variables:

Pn—Pns éf,_efp ‘2}5_9;157 Gn—qn-

It is immediately clear that all these deviations are equal to zero on the equilibrium path.
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D ALGORITHM FOR DYNAMIC STRATEGIC
EQUILIBRIUM

In Appendix D the search and verification algorithm for determining the dynamic linear Markovian BNE in the
strategic trading model of Section 5 is described. In a nutshell, the algorithm is based on the principle of dynamic
programming and proceeds via backward induction. The logic of Algorithm 3 follows closely the structure of the
verification theorem in Choi et al. (2019).

Instead of utilizing a naive three dimensional search, involving initial guesses for all EX/) B
©

nal” approach is used. Namely, since the quantltles that truly matter are z(,) and =

i=1,2,3, a “diago-

(2) s only 21\1—1 is guessed and then

25\})_1 and ):‘5\/)—1 are obtained as proportions of 3¢ N_] . This approach helps to narrow down the search space.

Algorithm 3: Linear equilibrium search and verification via backward induction

Input: Number of periods N, termination parameter € > 0, variance of noise trading demand o, variance
of risky asset payoff o2, variance of (latent) trading demand o2, correlation p between ¥ and @
initial guess 25311.

Output: For all n = N,N —1,..., 1, the trading parameters (,B,L, ﬁn, ok n), the prlcmg parameters (An, 1), the
moments (Z(’) s w1th i =1,2,3, the value function coefficients for 7, (I,, D )1<i<j<2, and the value
function coefficients for R, (Ln )IS,S j<3-

for(n=N;n=1;n=n-1)

if n = N then

Solve constants ,B{v and Ay using (38) and (39) and fix ﬂ§ =1, a'R =0,&ry:=0.

L(’ ) = 0 determine the value function coefficients (L(’ -/ )1)

Using (8.8, a® Ay, ry) and I(l -
for 1 S1S1S3,and(1(' ’))for1<1 <j <2

else
Taking as inputs the constants from the previous period, solve backwards the system of moment
condition (29)-(31).

Plug the solved moments to equations (32) and (33) and solve A, and r, as functions of 8’s and
plug these solutions back to the expressions for the backward solved moments.

Plug the solved moments and A, and r, which at this point are all expressed as functions of only
B! and BR to the B-equations (34) and (35) and solve the pair of equations using all-solutions
methods (polynomial homotopy continuation or Grobner bases).

Extract the set real solution pairs from the set of all solutions and determine whether the set
contains feasible solutions by using the obtained real solutions to solve other equilibrium
constants A, r,,,a,’f as well as (2521), i=1,2,3, and to verify that the SOCs and other equilibrium
constraints are satisfied.

if Equilibrium constraints are satisfied then
‘ Determine the value function coefficients (l’(jj"l))g,g_,gz and (Lf;jf)]g[gjg} and proceed to
round n—1.
else
‘ Break loop and adjust the initial guess
end

(3)
D

end
endfor

if |2(1) -0 | < € and |2(2)—0' | < € and IE( )—pon,oyll < € then

‘ The algorithm terminates.
else

Adjust initial guesses 0

N_1° i=1,2,3, and start the algorithm from the beginning.

end
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E EXISTENCE AND UNIQUENESS IN FINAL
PERIOD

This appendix studies the uniqueness of the pair (ﬁfv,/lN) when ﬁf\, > 0. This case can be justified as follows: In
the numerical analysis, 25,3) tends to be negative. Moreover, Ay > 0—a condition stemming from the second order
condition of /—means that ﬁ{v + 2531 2]) > 0 must hold. In other words, it must hold that ﬁ;v > 0.

Moving on, recall that ﬁ}v and Ay are given by:

1
I _ (3/2)
Py =335 I (38)
/ v(2) (3)
B ByEy_ Iy,
VT B es® v Lopis® L 32" 39
(B ZNy +Ey 2 + 28BN + 0
Now, observe that, after fixing o, > 0 and o, > 0, it holds for the initial guesses:
1
= € 0.0,
(2) 2
Zyl, €0,07),
3 1) (2
Y <x) 20, <olol
From (38) and (39) one obtains the quadratic equation:
(2) \2/pl \2 2) v3) pl (2) (1) 2 (3) 2
(N2 By) +225 Ty By — (ZN—I (Eny +o) - 22y, ) (40)

Assume further that:

(3) $(3/2)
No1Znoy > 0.

(rﬁ >%
This assumption rules out only non-feasible parts of the parameter space and poses essentially no restrictions on the
numerical analysis.

Armed with the above assumption, it is observed that (40) exhibits only one sign change. Thus, by Descartes’
rule of signs, at most one positive solution exists. This guarantees uniqueness if a solution indeed exists. For
existence, note that the quadratic expression is negative if ,G';V =0 and must unavoidably change sign for ! large
enough. Hence, for a large enough interval, a unique solution exists. As ﬁfv uniquely determines Ay the existence

and uniqueness for the pair (ﬁllv,/lN) is now verified.
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Abstract

This paper studies the effect of risk preferences on a dynamic financial
market equilibrium with constrained and unconstrained, privately
informed, strategic traders. The constrained trader (rebalancer) has a
strict terminal trading target which dictates, ex ante, the risky asset
position the trader must hold at the end of the day. The unconstrained
(informed) trader is in possession of fundamental information and
trades to maximize profits. It is shown that risk preferences play a
pivotal role in determining the equilibrium interactions between the two
strategic traders and the resulting intraday patterns in the market.

Keywords: Risk preferences, trading target, strategic trading, rebalanc-
ing, optimal execution, market microstructure

JEL Classification Numbers: G10, G11, G14, G23

I INTRODUCTION

It is widely acknowledged that savvy traders employ dynamic trading strategies such
as order splitting to increase profits by minimizing trading costs.! In fact, there
has been a sharp rise in the utilization of optimized trade execution (algorithms)
during the last two decades, and it is estimated that algorithms are behind roughly
80-90% of trades in the US. Major reasons for this are the development of electronic
markets (e.g., NASDAQ) and improved access to order book information. Both can
be utilized in the design of more effective execution strategies. As a natural result
the user base—referred to as strategic traders in this paper—of these types of trading
tools has become both wider and more heterogenous. The question then arises: What
implications do the interactions between different types of strategic traders have on

Turku School of Economics at the University of Turku, mianhan@utu. fi.

I See, for example, Hendershott et al. (2015).
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the financial markets? This important question is studied recently in, for example,
Choi et al. (2019).

In this paper, a market in which traders with different objectives and differen-
tial information engage in a dynamic (sequential) trading game is modeled. The
main purpose of this modeling exercise is to study how introducing different risk
preferences to this setting changes equilibrium outcomes. Formally speaking, the
model constructed below is an extension of Choi et al. (2019) which is—in its own
right—an extension of the seminal Kyle (1985) model and the more recent Foster
and Viswanathan (1996).

The emphasis on risk preferences can be motivated as follows. First, recent ev-
idence (cf. Cohn et al. 2015, Hanaoka et al. 2015, and Guiso et al. 2018) supports
the notion that risk preferences are time varying and affected by changes in the fi-
nancial environment. Thus, it is conceivable—for example—that even the traders
generally regarded as risk neutral experience periods during which their behavior is
better described by aversion to risk rather than plain neutrality towards risk.

Second, it is clear that traders representing financial institutions (the informed
trader and the rebalancer in this paper) generally operate under a compensation con-
tract. The space of different financial contracts is vast, but chiefly the goal of these
contracts is to induce certain behavior deemed desirable by the principal of the con-
tract. As a side product, these contracts can—on purpose or by accident—induce
risk averse or even risk seeking behavior.”

Hence, by examining how shifts in risk preferences change the properties of the
dynamic trading equilibrium, one can better understand how different initial condi-
tions can affect the characteristics of financial markets. In addition to being of theo-
retical interest, this issue is also important for market participants with daily trading
activities. For instance, certain trading strategies designed based on historical market
data and related assumptions pertaining to the behavior of other traders might prove
to be less efficient if the (large) traders’ attitude towards risk has incurred a marked
shift, which instead has resulted in an adjustment in their trading activities.

At the center of the model discussed in this paper there are two strategic traders.
The informed trader trades to maximize expected utility given an endowment of
private information regarding the payoft of a risky asset. The rebalancer maximizes
expected utility of trading under a strict terminal position target in the risky asset.
The realized size of the trading target is private information of the rebalancer. Private
information in the model is long-lived and learned before any trading commences.
In addition to the strategic traders, the market is populated by several competitive
market makers and exogenously motivated noise traders.

Both strategic traders are assumed to have negative exponential, i.e., CARA, util-
ity. CARA utility renders the decision problems of the traders independent of wealth

2 Recent papers investigating these issues, among others, include Panageas and Westerfield (2009) and He and

Xiong (2013).
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considerations, and hence (cf. Schied et al. 2010) this particular utility form is well-
suited for modelling institutional investors. Moreover, CARA utility, in the context
of the present model, is a tractable instrument, which allows one to look at various
risk preferences.

This paper offers various contributions to the literature. First, the main theoretical
contribution is the construction of a financial market equilibrium such that the strate-
gic traders are allowed to exhibit different risk preferences. Since the equilibrium
is dynamic in nature, in addition to the optimal strategies of the traders, their value
functions are also characterized. The approach taken also extends the differential
information procedure developed in Foster and Viswanathan (1994) and Foster and
Viswanathan (1996) to a setting with more general risk preferences. Some caveats
brought on by adding CARA utility to the model are also discussed. Further, due to
the inherent complexity of the full dynamic model, the basic intuition of the model
is first detailed using a two period example.

The theoretical foundations are exploited to address the main purpose of the pa-
per. Namely, to study the equilibrium implications of different risk preferences. Re-
garding these implications, it is shown that changes in the risk preferences of the
informed trader generally induce larger equilibrium changes than changes in the risk
preferences of the rebalancer. This result is intuitive as the presence of the (strict)
trading constraint restraints the degree to which the equilibrium behavior of the rebal-
ancer can change. The informed trader, however, is not subject to such constraints.

Nevertheless, there are exceptions to the rule. A case in point, where changes in
the rebalancer’s risk preferences are more important than changes in the informed
trader’s risk preferences, is aggregate order flow autocorrelation. This is to be ex-
pected as the main driver behind the autocorrelation dynamics is the presence of ex-
ogenous rebalancing needs. Hence, even small changes to the rebalancer’s strategy
carry over to changes in the autocorrelation dynamics.

Pertaining to the changes in the informed trader’s risk preferences, it is shown
that, in line with Holden and Subrahmanyam (1994), the intraday price impact be-
comes monotonically decreasing when the informed trader is more risk averse. This
contrasts Choi et al. (2019) who document a non-monotonic (twisted) price impact
pattern. Moreover, a similarly unique pattern—distinct from the risk neutral case—
arises when the informed trader is allowed to be risk seeking, while maintaining
the risk neutrality assumption for the rebalancer. This result verifies that even in the
presence of a rebalancer, the trades of the informed trader mainly determine the price
impact. This result is related to the fact that the price impact in the model, following
Kyle (1985), is assumed to be information-based. Therefore, the trades of the most
informed individuals are the most important components in the determination of the
(endogenous) price impact parameter.

Another interesting intraday observation relates to the correlation between the
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trades of the rebalancer and the informed trader. It is noted by Choi et al. (2019) that
negative correlation is mutually beneficial due to the liquidity provision effect. The
presence of risk aversion seems to amplify liquidity provision. Conversely, if the
informed trader is risk seeking and the rebalancer is risk neutral liquidity provision
is repressed. This speaks on behalf of the potential detrimental effects of risk seeking
on the financial market equilibrium.

Outside the main purpose of the model, studying the model solution brings forth
some curious issues of independent interest. Because the model is essentially linear-
quadratic and Gaussian, conditional moments and objective functions pose little
problems as they can be dealt with via exact calculations. In other words, one does
not have to rely on approximating the objective functions in solving the model nu-
merically. However, the equilibrium conditions of the model generate a system of
polynomial equations to which there are a large number of solutions. Moreover, as
there is no general existence theory to which one could rely on, one faces two key
questions: (1) does an equilibrium for some given parametrization exists? (2) is this
equilibrium unique? To answer these questions one has to rely on numerical analy-
sis. General answers, as one might expect, cannot be found using numerical methods.
With the right tools, however, one can gain a better grasp of the inner workings of
the model.

Consequently, this paper makes contributions pertaining to numerical procedures
used in analyzing models of strategic trading. This is an eminently relevant topic as
closed form solutions to these types of models are generally in short supply. Further,
since Kyle (1985) the solution procedure has remained more or less the same al-
though the models themselves have evolved rapidly. The proposed numerical meth-
ods are applicable to various strategic trading frameworks, naturally including the
risk neutral and risk averse discrete time models, and extending to—for instance—
continuous time models (cf. Marinovic and Varas 2018) as well as, via the use of
polynomial approximations, models with even more general preferences and uncer-
tainty specifications (cf. Bernardo and Judd 2000).

In the numerical equilibrium analysis conducted in the subsequent sections, the
main emphasis is on the determination of equilibrium uniqueness. As noted earlier,
due to the complicated nonlinear nature of the system of equations that describes the
model equilibrium, it is very difficult to ascertain through analytical methods whether
or not the model has a unique equilibrium. Hence, one must resort to the second best
approach and study equilibrium uniqueness numerically.

Indeed, since the model solution boils down to a solution to a system of poly-
nomial equations, one can take advantage of all-solutions homotopy continuation
methods (see, e.g., Judd et al. 2012), in conjunction with the dynamic programming
algorithm to obtain all solutions to a given equilibrium system of equations and then
proceed by process of elimination to check whether the final solution set has car-
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dinality one. Naturally, by this same process one can study the uniqueness of the
equilibria presented in Choi et al. (2019), i.e., the risk neutral case (cf. Hannula
2019a). Details and issues related to the numerical approach are covered thoroughly
in the forthcoming sections, the main observation being that the more intricate equi-
librium dynamics in Choi et al. (2019) and its extensions raise new issues—in par-
ticular, issues not present, for instance, in the solution of the Kyle (1985) model—to
be considered in the numerical implementation.

On top of the theoretical and computational contributions discussed above, this
paper also contributes to the literature by expanding the understanding of, and ex-
pounding on the potential reasons behind, the patterns of trade observed in real trad-
ing data. From an industry perspective, modeling intraday dynamics is of interest
since it serves the development of methods to predict trading volume. Improved
forecasts of future trading volume can have a decided positive effect on the perfor-
mance of various algorithmic (e.g., Volume Weighted Average Price, VWAP) and
non-algorithmic trading strategies (see, e.g., Satish et al. 2014). Intraday trading dy-
namics may also have relevance in asset pricing applications (see, e.g., Huh 2014).

Furthermore, there is abundant empirical evidence supporting the economic sig-
nificance of the trade implementation process (see, e.g., Anand et al. 2011), empha-
sizing the need for further inquiry on this area. Makarov and Schoar (2019) utilize
the Kyle (1985) model in an empirical study of cryptocurrency trading, exemplifying
the wide applicability of these types of models. Finally, using a novel data set of pro-
fessional asset managers and utilizing the Foster and Viswanathan (1996) model to
develop hypotheses, Di Mascio et al. (2017) provide empirical evidence on behalf of
strategic trading behavior by informed traders. However, Di Mascio et al. (2017)—
due to the nature of their theoretical framework—only consider informed trading
and competition between similarly motivated informed traders, while ignoring other
types of strategic traders potentially present in the market and the conceivably di-
verse risk preferences between different traders. Thus, there is still work to be done
to gain a more holistic view of strategic trading and strategic traders. Unsurprisingly
then the pressing need for models dealing with contemporaneous optimal execution
of heterogenous orders is acknowledged in, for instance, Van Kervel and Menkveld
(2019).

The rest of the paper is organized as follows. Section 2 reviews prior literature
and discusses the positioning of the present paper. Section 3 introduces the model,
the notation, and the equilibrium concepts used throughout the paper. In Section 4
a two period version of the model is discussed while Section 5 describes the full
dynamic model. Section 6 concludes the paper. All proofs are allocated to Appendix
A and the description of the numerical procedures is given in B.
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2 PRIOR LITERATURE

This section gives a brief overview of the related literature. From a theoretical
point of view, the two most relevant areas for the model at hand are: (1) the mar-
ket microstructure-based approach to strategic trading (2) the literature on optimal
execution strategies. The former is discussed first.

To this end, a natural starting point is the two seminal, most widely cited and upon
further inspection closely linked classical papers regarding market microstructure
theory and strategic trading, i.e., Kyle (1985) and Glosten and Milgrom (1985).?
In fact, concerning the linkage between the aforementioned papers, it is shown in
Back and Baruch (2004) that, under certain assumptions, the equilibria of the latter
converge to the equilibrium of the former. Unsurprisingly, there is a voluminous
literature dealing with possible extensions and empirical tests regarding these two
important papers. Due to the fact that the model below is based on the first mentioned
paper—as it is more suitable to studying dynamic trading strategies of individual
traders—the literature covered here is for the most part limited to contributions that
adopt a similar starting point.*

As for Kyle (1985), the framing of the paper features a simple financial market
with one risky asset and a privately informed insider. The private information of the
insider is long-lived, and the model has multiple trading periods so that the insider is
induced to split his total demand to smaller child orders in order to minimize price
impact. There is also a (number of) competitive market maker(s) who observes the
aggregate order flow, which represents the orders submitted by the insider and a
number of noise (liquidity) traders.

Both the insider and the market maker(s) are assumed risk neutral. Kyle (1985)
studies the continuous time limit of his discrete time sequential model, while Back
(1992) provides a formal description and a generalization of Kyle (1985) under the
assumption of continuous trading. Risk aversion in the context of strategic informed
trading in the framework proposed by Kyle (1985) is studied, in a static setting, by
Subrahmanyam (1991) and, in a dynamic setting, by Holden and Subrahmanyam
(1994). Baruch (2002) examines risk averse strategic trading in a continuous time
environment.’

Holden and Subrahmanyam (1992) study a dynamic model with homogeneous
long-lived private information with competing informed traders. They show that

3
4

Market microstructure literature is surveyed in, for example, Madhavan (2000) and Biais et al. (2005).

Models building on Glosten and Milgrom (1985) usually assume that (informed) traders arrive sequentially and
trade only once.

In addition to examining risk averse traders, Subrahmanyam (1991) also allows for risk averse market makers
(see also Bernardo and Welch 2004). This is facilitated by the static setting utilized in the paper. In a dynamic
context modeling risk averse market makers is much more subtle; see, for example, Cetin et al. (2016). Due to this
issue, the question of market maker risk aversion is omitted in this paper.

5
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competition results in rapid the revelation of private information when compared to
a market with a monopolist informed trader. When the interval between auctions
approaches zero, the speed of information revelation increases. The notion of (rela-
tively) long-lived information plays an important role in models of strategic trading,
since it forces the traders to utilize dynamically optimal decisions instead of one-shot
optimal decisions. Back et al. (2000) examine the continuous time version of Holden
and Subrahmanyam (1992). They find that there does not exist a linear equilibrium
when the signals of the informed traders are perfectly correlated.

Foster and Viswanathan (1994) and Foster and Viswanathan (1996) extend the
multiple informed traders setting by allowing heterogeneous information. Indeed,
Foster and Viswanathan (1994) study a discrete time model with two informed
traders, where one trader has access to more private information. Common infor-
mation, available to both traders, is revealed quickly due to competition but the ad-
ditional information available to the better-informed trader is only revealed during
the last rounds of trading. Foster and Viswanathan (1996) extend the analysis to
multiple heterogeneously informed traders and show that informed traders compete
fiercely but also learn from each other. In fact, the competing traders seek to forecast
the private information of the other traders. This brings about the forecast the fore-
casts of others problem (also present in this paper) to which Foster and Viswanathan
(1996) provide an elegant solution. The authors show that the initial correlation be-
tween the signals observed by different traders has an important role in determining
equilibrium profits and price informativeness.

Recently, Collin-Dufresne and Fos (2016) have extended the Kyle (1985) model
to allow the noise trading process to exhibit stochastic volatility. Biais et al. (2015)
and Foucault et al. (2016) study strategic trading when traders have differences in
speed. Guo et al. (2015) study a continuous time model where an insider trades on
both fundamental and non-fundamental (e.g., noise supply) information while Yang
and Zhu (2020) study a two-period Kyle (1985) model with a back-runner trader
who is allowed to observe a signal of the informed trader’s previous order. In the
Yang and Zhu (2020) setting a mixed strategy equilibrium may arise as the informed
trader seeks to better hide his private information in the first round of trading. Mixed
strategies are also encountered when an informed trader (insider) is required to dis-
close his trades (see, Huddart et al. 2001). The recent contributions exemplify the
vibrant discussion revolving around models of strategic trading.

This paper is also related to the literature on optimal trade execution.® In fact,
one could view the rebalancer in this paper as a trader pursuing optimal execution
of an ex ante decided trade. The main difference between optimal execution litera-
ture and the present paper is that here trading strategies and price impact are jointly
and endogenously determined in equilibrium, whereas it is common in the trade ex-

6 See, for example, Bertsimas and Lo (1998), Almgren and Chriss (2001), Gatheral and Schied (2011), Predoiu
etal. (2011), Bayraktar and Ludkovski (2011), and Robert et al. (2012).
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ecution literature to work with an exogenously given price impact function. Even
though this approach is efficient in facilitating tractability, there are many potential,
empirically feasible, price impact functions to choose from and not necessarily any
general guidelines to assist in providing the microfoundations to any given choice.

Furthermore, simplifying the notion of price impact to a fixed functional form
usually ignores the learning aspect which plays an important role, e.g., in the model
studied in this paper. Relatedly, papers focusing on optimal execution and the al-
gorithmic side of the problem typically consider a single agent setting. Hence, the
modeled trader operates in a vacuum without any interactions with other market par-
ticipants.” This again marks a clear distinction to the model presented below in
which the main focus is on intraday interactions between two strategic traders.

Finally, in the optimal execution literature one usually separates between perma-
nent and transient price impact (see, e.g., Huberman and Stanzl 2005). In short,
permanent price impact may be understood as the changes in the actual equilibrium
price while transient price impact merely means deviations from the equilibrium
price, which itself remains unchanged. Conversely, in this paper, following Kyle
(1985) and its numerous extensions, the price impact is assumed to be linear and
permanent.

From a modelling point of view, in addition to Choi et al. (2019), the papers
closest to this paper are Seppi (1990), Foster and Viswanathan (1994), Foster and
Viswanathan (1996), Moallemi et al. (2012), and Degryse et al. (2014).8  Of the
papers listed, only Moallemi et al. (2012) can be considered to directly deal with an
optimal execution problem.

Relaxation of the risk neutrality assumption, endogenous learning in a dynamic
framework, and the utilization of heterogenous long-lived private information sep-
arate the current model from previously suggested models. As a consequence, the
problem of large number of state variables and the occurrence of high degree polyno-
mials in the recursive equations describing the equilibrium encountered, for example,
by Degryse et al. (2014) resurfaces in the present paper. Nevertheless, effective nu-
merical methods are employed to deal with the problem.

These modeling complications mainly stem from dynamic learning and the fore-
casting the forecasts of others problem. Foster and Viswanathan (1994) model a
similar type of learning problem with two traders having nested information sets
while Foster and Viswanathan (1996) solve the problem of timewise increasing state
history under a more general, non-nested, differential information structure. More
specifically, they proceed under the assumption that the signals representing the in-
formation possessed by the traders are drawn from a joint normal distribution. The

7 Recently, new approaches deviating from the single agent setting have emerged. See, for instance, Brunnermeier

(2005), Moallemi et al. (2012), Huang et al. (2015), and Schied and Zhang (2017).
See, Choi et al. (2019) for a discussion regarding the differences between their model and the model of Degryse
etal. (2014).

8
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approach developed in these two aforementioned papers to deal with the learning
problem of the differentially informed traders is one of the backbones of Choi et al.
(2019) and the model presented below.

In addition to dealing with differential information, this paper relates to, e.g., Sub-
rahmanyam (1991) and Holden and Subrahmanyam (1994), two papers which also
feature strategic risk averse traders. The first paper utilizes a static approach while
the latter deals with a dynamic setting with multiple competing and homogeneously
informed traders. These papers provide a useful albeit somewhat distant benchmark
against which to contrast the results obtained in the proposed framework. Another
important and related example—this time from the optimal execution literature—is
Schied and Schoneborn (2009) who study the effect of risk aversion on optimal exe-
cution strategies.’ The authors conclude that the coefficient of absolute risk aversion
is a key parameter determining the optimal strategy of the trader. Empirically, risk
aversion may help to provide a rational explanation for different types of liquida-
tion strategies, e.g., aggressive in-the-money and passive in-the-money, utilized by
real-world investors.'?

Finally, this paper is also related to literature discussing computational methods
in solving game-theoretic equilibrium models and finding all equilibria of a given
game. Earlier examples of this literature are Kostreva and Kinard (1991), Schmed-
ders (1998) and Schmedders (1999). More recently, homotopy methods are applied
in Bajari et al. (2010), Besanko et al. (2010), Borkovsky et al. (2010), Herings and
Peeters (2010), Judd et al. (2012), and Kubler et al. (2014). Especially in the three
last papers, various insightful examples from economics are discussed.

3 MODEL

3.1 Overview

This section introduces the key components as well as the timeline of the model an-
alyzed in this paper. In addition, the section covers the traders’ objective functions,
the equilibrium concept utilized, and a description of the endogenous learning pro-
cess. For the sake of easy comparability, notation closely resembling the one used in
Choi et al. (2019) is utilized.

ASSETS . There is one risky asset which has a terminal payoff ¥ ~ N(0,02) for

®  See also, Schied et al. (2010).
10" The notions aggressive in-the-money and passive in-the-money relate to the question whether optimal strategies
are increasing or decreasing functions of revenues.
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some constant o2 > 0. In addition to the risky asset, there is a riskless asset that pays
zero interest rate. The realization of ¥ becomes public information after N rounds
of trading, i.e., due to the discrete time setting, at the next possible instance N + 1,
where N € N.!! Trading takes place at discrete time points n € {1,2, ..., N} with evenly
spaced time steps.

TRADERS. There are four types of traders in the model, two of which are assumed

to be strategic. It is assumed that the market composition—i.e., which types of

traders are present in the market—is common knowledge among all market partici-
12

pants.

(1) A (fundamentally) informed trader who has access to private information about
the terminal payoff of the risky asset prior to the start of the trading game, i.e.,
the informed trader privately observes the realization of ¥ at n = 0 and trades
strategically to exploit Ais informational advantage. The letter / is used to refer
to the informed trader.

(2) A constrained trader, hereinafter referred to as the rebalancer, who trades strate-
gically to reach a terminal trading target, & ~ N(0,02) with constant o2 > 0. & is
jointly normally distributed with ¥ such that Corr(¥,a) = p € [0,1]. The realiza-
tion of @ is privately learned by the rebalancer at n = 0. The trading target dictates
the terminal position in the risky asset the rebalancer needs to acquire in the form
of a strict constraint, i.e., the terminal position must be equal to the realization
of a exactly.13 The rebalancer has two distinct trading motives: (1) to meet the
terminal trading target (2) to exploit her potential informational advantage. The
letter R is used to refer to the rebalancer.

(3) Non-strategic liquidity (or noise) traders whose aggregate demand atn=1,....N

is @iy A N (0,02) for some o, > 0.'* The liquidity trader demand is assumed to
be price inelastic and independent of both ¥ and a.'>

(4) A number of risk-neutral market makers who set prices competitively such that
the resulting financial market can be considered semi-strong form efficient. The

11
12

In this paper, N = {1,2,...}, i.e., N refers the set of positive integers.

It may be possible to relax this assumption but it would require an extensive modification of the present model.
Uncertainty about the presence of an informed trader is examined, for example, in Li (2013) and Wang and Yang
(2016).

Soft constraints could be considered but with the cost of added complexity. A strict target can be interpreted to
have an infinite penalty from deviation.

One could just as well model the noise trader demand via independent and normally distributed increments Au,
with variance Ac-2. This variant is not used here as it exacerbates notational clutter.

Utilizing non-strategic liquidity traders is a standard—see, for example, Grossman (1976), Grossman and
Stiglitz (1980), Hellwig (1980), and Admati (1985), yet rather controversial—approach. In the present model,
this modelling choice is related to the tractability of the model. Moreover, the results are likely to carry over to
any equilibrium with endogenous liquidity trading, whenever the rebalancer, together with the informed trader,
have an information advantage over the rest of the traders. For a model with strategic uninformed traders see, for
example Spiegel and Subrahmanyam (1992) or Mendelson and Tunca (2004).

13

14

15
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market makers observe the aggregate order flow at each n = 1, ..., N but not indi-
vidual orders (trader anonymity). The letter M is used to refer to market makers.

INFORMATION STRUCTURE. All information is costless to those who observe
it and (strategic) traders in the model are assumed perfectly attentive and rational in
the sense that they do not ignore any relevant information. Private information, for
those who are endowed with it, is learned at time n = 0, before trading commences,
and no additional private information is received in later periods n = 1,2,...,N 16
Furthermore, private information is available only to the trader type that observes it
and information cannot be bought or sold.!”

Order flow information is generated throughout the model at each n = 1,...,N.
At a given period n, the information generated by the order flow process is denoted
by o(y1,....ya) =: 07,.'% This effectively describes the information available to the
market makers. The market makers utilize the order flow information to set prices
and to update beliefs regarding the private information possessed by I and R. The
(aggregate) order flow y,, is available only to the market makers before the price p,—
for period n—is determined. In other words, the traders move first by simultaneously
submitting market orders, after which the market makers observe the sum of these
orders and determine the price for the current period. The traders obviously know
their own order but do not observe the orders of others.

However, since there is a one-to-one mapping from aggregate order flows
to prices, all traders learn the realized aggregate order flow after observing p,.
Nonetheless, the traders do not have this information available upon placing orders
for period n. Hence, at any n =1, ..., N, no one type of market participant is in posses-
sion of all the price relevant information.!” More specifically, denoting I’s and R’s
information sets at time n by o (¥, y1,...,y,—1) and 0°(@, y1, ..., yu—1) respectively, it can
be seen that the information sets of the different market participants are not nested.?’

MODEL TIMELINE. Figure 1 illustrates the model timeline for a generic N trading
rounds model.

16
17
18

Strategic trading with information flow is examined recently in Sastry and Thompson (2019).

Information sales is examined in, for instance, Cespa (2008) and Garcia and Sangiorgi (2011).

o(y1,...,yn) denotes the sigma-algebra generated by {y1,...,y,}. This, with slight abuse of notation, is the unique
smallest sigma-algebra that contains all sets of type {y; < u} foru € R and i = 1,...,n. Thus, to avoid confusion, it
should be noted that B[Z | y1,...,y,] =B[Z | (y1,....y2)] =B[Z | 7,] with & € (¥, a).

In a continuous time setting, under the usual right-continuous filtration, the invertibility of the pricing rule im-
plies that an informed trader can infer the aggregate noise trader demand immediately at any time ¢. See, for
instance, Back (1992). This does not happen in a discrete time setting, since the information sets of market par-
ticipants remain constant in between periods. Due to this, the information sets of the informed traders cannot
be considered as initial enlargements of the information set of the market makers, even though one could re-
gard them as initial enlargements of the period n “public” information set (y1,....yu1), i.€., (&, Y1, Yno1) =
OT(O15eer Y1) Va'(.f:f) for & € {¥,a}.

Generally speaking, nested information sets simplify the analysis. See, for example, Foster and Viswanathan
(1994).

19
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Figure 1: (Model timeline) This figure illustrates the model timeline. In the initial period (n = 0) the strategic
traders receive their private information endowments, after which there are N sequential and identical
trading rounds. At the terminal period (n = N + 1) all remaining uncertainty regarding ¥ in the market
is lifted.

n=1 n=N+1
Traders submit Terminal value &
orders revealed
Msetsp.pg =0
| | | 1| L
| | b |
n=0 n=2.,N
Ilearns ¥ Traders submit
R learns d orders
M sets p,

Periods n = 0 (the initial period) and n = N + 1 (the terminal period) are special and
are assumed to involve no strategic actions. At the initial period, private informa-
tion is observed, and no trading occurs, and at the terminal period, after the market
has closed, the liquidation value of the risky asset is revealed. All trading rounds,
n=1,...,N, are identical regarding the sequence of actions. The most natural inter-
pretation for the model timeline is that it takes place during a single trading day.

3.2 Objective Functions

Let A9’ and AGR denote respectively the informed trader’s and the rebalancer’s order
at time n. Similarly, #/ and 6R represent the total risky asset position at time n.
In other words, one obtains, for example, that 25:1 Aé‘,’f =: 9§ = a, where the last
equality follows from the terminal constraint of the rebalancer. All initial positions
are assumed to be zero, i.€., 9(1) = 6‘5 =0.

Utilizing the notation introduced above, the aggregate order flow can be written
asy, = AH{l + AH,If + ii,,, with yg = 0. Due to the risk neutrality of the market makers
and the assumption of perfect competition, the market makers earns zero expected
profits and sets prices according to:”!

pn=E[5| o) | =BY[v], foralln=1,2,...N, (1)
where oM =
orders, define Ap,, := p, — pu-1.

Given the pricing rule, the informed trader seeks to maximize:

]E[UI( ZN:(V - pn)AG,ﬂ) | a'(ﬁ)} = ]Eé[UI ( ZN:(T; - pn)Aef,)], )
n=1 n=1

One may, as is usual in the literature, assume that the market makers are subject to Bertrand competition and
consequently (1) holds.

o(y1,...,yn) along with the initial condition pg = 0. As with the traders’

21
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where U’ is given by:

_e A

1
Ul() = {T if AT #0 3
x, if A7 =0,
and A@{, 1S (M, y1,..0r Vn—1) =: O'fl measurable for all n = 1,2,..., N. Note especially
that 0'(1) := 0°(¥). The measurability constraint is the only explicit constraint imposed
on I’s (similarly R’s) optimal orders (controls). Put differently, no additional ex ante
constraints, e.g., functional form constraints, are introduced.
As for the rebalancer, it is easy to see that:

B[UR(@-05_ )5 pn)+ 05 _ (5= py1) + ..+ ARG = p1)) | (@)
= B|UR(a(v— pn) = 0f_, (5= pn) + A0y _ (5= py-D)+ ..+ AGF (5= p1)) | (@]

- ]E[UR(zw - i(a - e,f_l)Apn) | a(a)] - Eg[UR(av - ZN:(a - ef_l)Ap,,)], @)
n=1

n=1

where the last equality follows once it is noted that py = ZnNzl Apy,, with pg =0,
G)JIf,[ = 211 ABR for M < N, and UR is given by:

_e*ARx . R

UR()C)= A—R’ if A ¢0 (5)
X, if AR =0,

and where the measurability condition dictates that AGX € a(@,y1, ..., y,—-1) =: & with

ag :=o(a). It is important to note that in (4) the whole expression in the utility

function—the term &v minus the sum—refers to (maximization of) terminal wealth.

The latter sum term simply captures the trading costs for R. So, omitting the term av

from (4) one obtains a trading cost minimization objective:

N
Eg[UR(_ Z(a_eff_l)Ap,,)]. ©)
n=1

The reason why this is important is that the term av, even though @ belongs the
information set of R, is not stochastically independent of the rest of the expression
and thus cannot be ignored as can be done (due to linearity) in the risk neutral case.
Due to this, the resulting expressions obtained using the expected terminal wealth
objective differ somewhat from the ones obtained using the trading cost objective.
The most notable difference—originating from the need to deal with a complicated
learning problem—is that one needs to introduce additional (quasi) state variables
and additional conditional moments. This instead complicates the model further
quite heavily in terms of both the dynamic programming equations and the numerical
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methods. For this reason the model is solved only for the cost minimization objective
(6).22

3.3 Equilibrium Definition
The equilibrium concept utilized in this paper, following Kyle (1985) and the refer-
ences therein, is Bayesian Nash equilibrium. The formal definition is:

Definition 1 (Bayesian Nash Equilibrium (BNE)). A collection of functions
(64,68, py) is a BNE if:

(i) pn satisfies (1) given (67,11,9,'1e ,

(ii) 0,11 maximizes (2) (informed trader’s utility) given (9,11e > Pn)s
(iii) G,If maximizes (4) (rebalancer’s utility) given (Hfl,pn).

Similarly to Choi et al. (2019), the equilibria constructed under different risk prefer-
ences have a linear structure.”® Namely, it is shown below that, for constants 5!, o,
BR, the optimal orders of 7 and R are given by:

AL =B = pu-1)s 7
AR =aRq,_ +pR@-68 )
=R @68 - gu-1) + @X + g1, (8)

where g, denotes the market makers’ expectation of the R’s remaining demand for
the risky asset, i.e., g, := EM[a—6R]. The terminal constraint of R imposes that
BR =1and ok =0.

3.4 Learning and Beliefs

This section details the endogenous learning that takes place in the model and the
beliefs of the market participants. Starting with the market makers, there are two key
quantities:

pn=EBY[9], )

The impact of this choice on the trading strategies of / and R remain an open question. It is conjectured, however,
that this impact will be negligible. Numerical tests show that the extra components in the wealth maximization
formulation typically have very small values.

The existence of a linear equilibrium in a Kyle-type CARA-Gaussian setting is to be expected. See, for example,
Holden and Subrahmanyam (1994).

22

23
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g, =BM[a-6f, (10)

where equation (9) represents the market makers’ period n risky asset valuation and
equation (10) their belief about the remaining trading demand of R. These quantities,
forall n =1,...,N, adhere to the following dynamics:

Apn = Au(yn =B [ya]) (1)
Agn = ra(yn —B) 1)~ QR g (12)

where {4,,},=1 N, are projection coefficients given by:

..........

C[‘j_ﬁn—l,an]

An = V[ZQ’I] (13)
i OR G 7,\2,1
- C[a r;_,l[AMq] 1,%, ]X(l _ﬁf)’ (14)
Zn

where V[ | represents variance and C[ e | represents covariance and where  :=
Y —]E[j)n | a(i,..., yn_l)], while Qf; = (aff + /Bff) is a constant stemming from the

orders of R. Moreover, using (7) and (8), it follows that:>*
]E,I:/[_l nl = QrISQn—l-
N————

Sunshine trading component

Clearly, prices are unaffected by the sunshine trading component which can be read-
ily seen from equations (11)-(12). As noted by Choi et al. (2019), the sunshine
trading component in the optimal order of R is a unique feature that, among other
things, distinguishes the strategy of R from that of /.

Moving on to the strategic traders, one should note that due to the presence of het-
erogenous (asymmetric) information, both R and I try to learn about the information
possessed by the other. The relevant quantity for 7 is:

Blla-68 1= qu1 +Bla-6% | —qu1]
= qu1 +Bla—-68 | — g1l (= pu-1] (15)
and for R:
BR 5 - pu1] =B = ppoil @—68_ | —gu-1)]. (16)

The quantity given in (15) is I’s expectation of R’s remaining trading demand and
(16) gives R’s view on the misvaluation of the risky asset. Related to the learning
dynamics, the following (co)variances are heavily utilized:

) =V|a—0f -4, (17

24 Note that the expectation is conditional on o (yy, ..., Yn—1)-
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5 = V5= pul, (18)
) =Cla—0f = gu, v pu. (19)

Since ratios of these conditional moments are often needed, let ng/ D= Z,(f) / 2511) and
25,3/2) = 2513)/2,(12).

Therefore, in sum, both the market makers and strategic traders use all informa-
tion available to refine their expectations. Further, the privately informed traders can
utilize their information endowment to endogenously filter new information from ob-
served prices in a superior fashion as compared to the market makers who are using
only public information. This learning mechanism is the main channel driving the
trading dynamics in the model.

One might wonder the significance of the “hatted” expressions, e.g., 6% above.
To understand their usage, it is first important to recognize that heterogeneous in-
formation introduces an additional dimension of complexity to learning and belief
formation. More specifically, in order to obtain a complete view regarding the equi-
librium learning dynamics, one must consider the possibility that a trader deviates
from the equilibrium path. In the present model, this sort of deviation is not directly
observable to other (non-deviating) traders. Matters are, however, somewhat sim-
plified by the fact (see, Foster and Viswanathan 1996) that since all order flows are
observed with non-zero probability, there is no need to describe off-equilibrium-path
beliefs.

To account for the deviations from the equilibrium path, suppose I, instead of
applying the equilibrium strategy, has submitted arbitrary orders during a number
of initial trading rounds and define hatted versions of y,, AG%, and A8/ (as well as
the other relevant quantities given above) such that y, = A@fl + A@§ +ii,. These hat-
ted processes describe what would have happened if / had followed the equilibrium
strategy instead.” More specifically, the hatted processes capture what I believes
(knows) that R can infer from past order flows subject to [ utilizing his equilibrium
strategy. A standard rational expectations argument dictates that the hatted processes
must equal the unhatted ones in equilibrium, i.e., y,, = y,.

In order for the hatted processes to be useful, it is essential to verify that
Sk € (&, y1,...,y) for all 1 <k < n, where & € {@,7}. That is to say, it should hold
that (&, 91, ...,9,) = 0°(€,y1, .., y,) which is indeed shown to be the case below. This
property is important and useful as it guarantees the feasibility of certain orthog-
onality properties that are utilized, for instance, in determining the state variable
dynamics for the traders R and /.

More specifically, orthogonality facilitates Markovian dynamics, thus resolving

25 When solving the optimization problem of I, the same hatted processes are not used to determine the strategy

of R as this would mean that the strategy chosen by R would be independent of the actual strategy of /. This
contradicts the premise that the traders act strategically and utilize all the information available to them. See,
Foster and Viswanathan (1996).
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the issue expanding state history and allowing for a tractable treatment of the forecast
the forecast of others problem arising in the model. In addition, by verifying the
above property for §; one simultaneously verifies that the other hatted processes
are also in o°(€,y1,...,y,). This setting is aptly described in Foster and Viswanathan
(1996) as the need for a specified trader i to “keep two sets of books”. The first one
documents the equilibrium path while the second one documents realized outcomes
given possible non-equilibrium path actions by i.

Pertaining to the second book, deviations from the equilibrium path cause devia-
tions in prices p, as well as in 67, 6 (since the orders of the strategic traders are not
independent of each other), and ¢g,. To keep track of these deviations, the following
quantities are paramount in determining the sufficient state variables:

Pn— Dn> 9111_9711’ @5—95, 4n— qn-
All of the above play a role in solving for the traders’ optimization problems (cf.
Choi et al. 2019) Moreover, based on the above discussion it is immediately clear
that all these deviations are equal to zero on the equilibrium path.

4 TWO-PERIOD EXAMPLE

4.1 Equilibrium Properties

The expressions stemming from the multiperiod dynamic optimization in the N pe-
riod model can be relatively complicated, and it might be hard to grasp the intuition
behind the lengthy formulas. Hence, illustrating the model mechanics in the sim-
plest possible dynamic setting, namely the two period version of the model, seems
well advised. The two period example also enables one to introduce many of the
relevant details and concepts employed in the general multiperiod model as well as,
through computational illustrations, to depict some static comparative statistics in
the spirit of Subrahmanyam (1991). The focus in this section, for brevity, is only on
risk aversion; possible implications of risk-seeking behavior are discussed in Section
5.3.26

Start with R whose problem does not involve optimization at N = 2 due to the
condition 65 = & which directly implies that 8§ = 1 and of = 0 in (8). The only task
left then is to determine the value function coefficients for period n = 1. Since R’s

26 Due to the focus on risk aversion the denominator coefficient AX, K € {I,R}, in (3) and (5) is omitted. Generally

speaking, the inclusion of the risk aversion coefficient in the denominator ensures convexity in the risk-seeking
case
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objective is to minimize expected trading costs, plugging in the final period trading
parameters a§ and ,8§ yields:

_]E12e [eAR(ﬁ—f?f)ﬂz((ﬁ—(?f—ql)+ﬁ§(\7—[’|)+ﬁz)]. (20)

Denote, for all n = 1,...,N, by Y, the state variable vector of R, i.e., Y, =
D 72 YO)T, where?’

YD =a-of, Q1)
Y = (Pn— p) +ER[3 = pul

= (pn—p) + 25" @-08 - qy), (22)
Y = g, (23)

The state variables given in (21)-(23)—with Y(()l) =a, Y(()z) = %Zz, and Y(()3) =0—
correspond to the state variables used in Choi et al. (2019). Y,gl) keeps track of the
remaining trading demand, Y,(lz) is a composite state variable related to the risky as-
set misvaluation, and Y,(,3) tracks the market makers’ belief regarding latent trading
demand. The invariability of the state variables with respect to changes in risk pref-
erences is standard in CARA-Gaussian settings. However, one should recall from
Section 3.2 that, in the present case, this invariability result hinges on how the ob-
jective function of R is set up. Similar issues are not present in most Kyle (1985)
extensions.

Composite state variables, e.g., (22), are used to minimize the number of required
state variables. Moreover, as noted earlier, all deviations are zero in equilibrium, i.e.,
the hatted processes concur with the realized values, and so one obtains the following
identity:

2 3/1) (1 3
v =5 (r - ). (24)
Utilizing the state variables, one can write (20) as:
_ ARu(2 8Ly -orVr )
><]EﬂeAR/lZﬁﬁ(Y%”(W—ﬁl)—Ef[ﬁ—ﬁl])+Yfl)’22)]- (25)
It follows from (25) that the value function coefficients of R for n = 1 are given by:
A 2
2,0,0 2 R 1\’ (R 2 1,1,0 1 1,0,1
L0 = —?(2 +A /12((,82) =0 +0'u)), L0 = —aph, LD = -,

L(10,2,0> -0, L(]0,1,1) 0, L(lo,o,z) 0,

27 All vectors are assumed to be column vectors unless otherwise stated.
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where?®
=0 :=V|(- po)-Bf - pr]|
(=)

@
=>?_
1 Z(11)

For brevity, the value function coefficients are denoted by Lff), where ¢ =

(¢1.¢2.93) € :={(i. k) N> : 0<i,jik <2, i+ j+k=2].
Moving on to the informed trader, the first thing to note is that—unlike R—/ has
an actual optimization problem to solve in the final period. This problem is:

HAlng —]Eé [ e—AI(T;—Apz)AGé]‘ (26)
2

Denote by X,, the state variable vector of 7, i.e., X,, = (X,(f) Xﬁ,z))T, where

X" =9 pu, X\ =7, @7
2 A ~ 3/2) ,~ 2 TaP
X2 = @R =%+ (G0 —gn) + =P - po), xg>=—; 7. (28)
)

Again, the state variables given in (27)-(28) corresponds the state variables used in
Choi et al. (2019). X,(ll) captures misvaluation and X,(lz) is a composite state variable,
capturing expectations related to the latent trading demand of R. On the equilibrium
path, it holds that:

X2 =302 (29)

The above identity is used in conjunction with the first order condition (FOC) to
obtain an expression for Bé. The FOC for (26), after using (29), is:??

Y
<Ae§>*=[ ke ]Xff), (30)
H(2-ALED +02))
:;’85
where:30
@), v0)
:3521 +2
2= ) a® . 2 ©1)
(,82) 2P +30 1 2pI5Y 1 2
and

28 Z;R) is obtained analogously.

29 Note that by setting A’ = 0 one recovers Bé in the risk neutral case.
30 Note especially that Z,(f) #* 2511).
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3))?
g s E)
1 1 2(12)

The second order condition (SOC) says:
—h(2-ATpE" + o) <0.

The implications of the SOC on the sign of A, (or, more generally, on Ay) are
ambiguous. However, if one allows for 1, < 0, the SOC is always true when A’ > 0
and 2(11) + 0'3 > 0.3! This quickly leads to counter-intuitive equilibrium properties
such as [ trading against his private information. These issues are avoided when
A > 0. For this reason, in what follows, the focus is on equilibria in which Ay is
positive. Lemma 1 guarantees that such a solution exists.

Lemma 1 (Period N existence result). There exists a solution, satisfying Ay > 0, to
the bivariate period N system:

Sno1 2B+ 2B +Z0 P Ay~ 1 =0
(@) 1\? (3) I 5 Q) ol 3) (32)
ZN_IAN(,BN) +250) B + Sy -Z0 BL -2, =0,
where:
EN—I = —AI(EE\I[)_I +0'3)

2

S 1
ZN_1 :ZEEV)—] +0,.

To understand the role of the equations in Lemma 1, note that by combining (30)
with the expression for A, given in (31) one can form a pair of coupled equations—
referred to here as the period N system—to solve the two unknowns. These are in fact
the only two unknowns in the last period—at least from the point of view of solving
the model numerically. The reason for this is that, due to the restriction ,81; =1, one
has r, = 0 (see, (14)). Further, to initiate the numerical procedure, one makes an
educated guess for the period n = N — 1 (here, period n = 1) moments (25\",)_1),-:1,2,3.
Therefore, one can treat the moments appearing in (32) as constants.

It is worth pointing out that the above result likewise holds in the general case
N > 2 and not just in the two period case. However, even with Ay > 0, one cannot
guarantee that ,va is positive, as the sign of /3{\, depends also on the values of the
exogenous parameters. Similarly, standard comparative statistics yield ambiguous
results when applied to the period N system. A case in point is the sensitivity of ,va,
obtained via an application of the Implicit Function Theorem, to changes in the risk

31 Alternatively, if one requires that 1, > 0 and lets A’ < 0, then the second order condition is always true. Clearly,

the case where A,, = 0 is not relevant.
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aversion parameter A’:

/
Py _1( Sv-1By ((ﬁN) +250/ 280 +5n_ (zﬁil)_l))go,

AT M|

where
/lN(Z AIZN 1/11\/) 2ﬁ5\,(1 —AIZN l/lN) +2§3£21)
(Bl ) -1 BB 2 I )

The above is just one individual example but it plainly justifies the focus on numerical
techniques in examining the equilibrium properties.>?

To obtain the value function coefficients / i‘"), where w = (w1, w) € Q and Q :=
{(i, HEN? 1 0<i,j<2,i+j= 2}, one plugs the general expression obtained from
the FOC of I back into I’s objective function and groups together the relevant terms.
Then, after having determined the period n = 2 unknowns and the value function
coefficients for both R and /, one can proceed to solving the period n = 1 problems.

The first period problems of R and I respectively are:

nAlgx ]ER[ A ( (a_gg)Ap”Z"’Eq)L(le?)], (33)
nzglx —]E{ [e_AI((i_AP 1A+ Soea 15“”){‘;’)], (34)
1

where Y'f = (Yfl))"jl (Yiz) 2 (Y il))‘% and X9 = (Xil))“’1 (Xiz) )“2. The expressions in the
exponent will be quadratic in the decision variables after evaluating the respective
expectations. Since x — e* is increasing, it is sufficient to focus on these quadratic
expressions.

In evaluating the expectations in (33) and (34) the dynamics of the state variables
are in a central role. Namely, one wishes to understand how Y, and X, evolve as
functions of past state variables and other model parameters. In turns out that, these
dynamics are Markovian and hence the expectations can be evaluated efficiently.
State variable dynamics are detailed in Section 5.

From the FOCs stemming from (33) and (34), in conjunction with the equilibrium
path restrictions (24) and (29) and some algebraic manipulations, one obtains the
pair of coupled polynomial equations for ,B{ and ,B‘If. This pair of equations cannot
be solved explicitly and thus one must resort to numerical methods in finding the
solution(s).>> The solutions obtained are crucial to the task of solving the entire
model as one can use the solutions to (uniquely) determine all other equilibrium
unknowns.

. . - OB s . L
32 The particular question of ;ﬁTA; , within the context of the two period model and for one example parametrization,

is answered in Figure 2b.
Alternatively, one can skip the algebraic manipulations and resort to solving a higher dimensional system of
polynomials. This, more direct, approach is described in Appendix B.2.

33
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4.2 Numerical Results for Two Period Model

Solving the two period model numerically closely follows the steps in the above pre-
sentation and is reminiscent of the static analysis in Subrahmanyam (1991). Detailed
discussion of numerical solution methods can be found in Appendix B.

The goal of the following selected numerical examples is to illustrate some of the
consequences of risk aversion on dynamic trading in as simple a setting as possible.
One could also study the consequences of risk-seeking behavior. However, as the
intention is to provide a concise and introductory overview of the model mechanics,
only risk aversion is examined here. A good starting point for the overview is the
intensity of informed trading and price impact.

Figure 2 shows the evolution of B!, (green squares) and A, (blue circles), n = 1,2,
as a function of risk aversion of the strategic traders. In line with the risk neutral
model, it is assumed for now that / and R have an identical coefficient of absolute
risk aversion, i.e., Al = AR,

Figure 2:  (Informed trading intensity and price impact) This figure depicts 8, (denoted by =) and A,, (denoted
by e) for n = 1,2. Model parameter values used: AR = A’ (values on the x-axis), (J% = (r% =1, (rﬁ = %

and p = 0.
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An interesting observation from Figure 2 is that the relationship between in-
formed trading intensity and risk aversion—and thus the relationship between price
impact and risk aversion—is non-monotonic in the first round. For example, the trad-
ing intensity of the informed trader ,8{ initially rises sharply for low risk aversion lev-
els only to decrease again with higher levels of risk aversion, resulting in an inverted
U-shape. Conversely, although in a less extreme fashion, 4; exhibits a U-shaped pat-
tern to balance changes in the intensity of informed trading. Non-monotonicities are
also discovered in Subrahmanyam (1991). It is also good to note that, in terms of
magnitude, the trading intensity ,8{ dominates the price impact parameter A;.

Above, due to setting p = 0, information about the risky asset payoft is only con-
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veyed through the trades of the informed trader. What happens if one allows for
positive correlation, say p = 1/37? Figure 3 answers this question.

Figure 3:  (Informed trading intensity and price impact revisited) This figure depicts 85 (denoted by m) and A,
(denoted by e) for n = 1,2. Model parameter values used: AR = A? (values on the x-axis), 0'5 = 0'3 =1,
o2=4.andp=1/3.
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As seen from Figure 3, when p = 1/3 the results pertaining to ,3{ and A; incur
noticeable changes (compare to Figure 2a), while the results pertaining to ﬁé and A
remain almost unchanged. On one hand, the reason for the change in the first period
constants is due to the fact that shifting from p = 0 to p = 1/3 changes the behavior of
R who now, in addition to having private information about &, also possesses private
information about 7. On the other hand, the reason for why ﬁé and A, are only slightly
affected stems from the fact that R’s trade at ¢t = 2 is fixed due to need to meet the
hard trading target, and thus unaffected by the change in p.

Moving on to the rebalancer, ﬁf (green square) as well as o/f (red triangle) in
Figure 4 can be seen to exhibit a mild inverted U-shape. This hints at the inter-
connectedness of the strategies of the two traders as well as the price impact, all of
which are determined endogenously in equilibrium. Even though a positive p merely
induces a level shift in the parameters a’f and R, it is enough to cause a clear change
in ,8{ and A;. This “mere level shift” observation captures a wider trend present also
in the N > 2 versions of the model. Namely, it demonstrates how changes in the
initial conditions tend to have a smaller impact on the equilibrium behavior of R than
on the equilibrium behavior of 1. This can be seen as a reflection of the first order
importance of the trading constraint @ in governing the behavior of R.

Generally speaking, allowing R to possess some private information about ¥ (i.e.,
p > 0) affects the values of the various equilibrium constants in different ways. In the
rest of this paper, when this additional information channel is found to be substantial,
results are reported for both p =0 and p = 1/3.34

34 Naturally, choosing p = 1/3 is somewhat arbitrary but, in any case, it provides an idea on how positive p may
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Figure 4:  (Rebalancer trading intensities) This figure depicts ,Bf (denoted by @) and a’f (denoted by 4) as
functions of risk aversion. Model parameter values used: AR = A’ (values on the x-axis), (TZ = 0'% =1,
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It is also evident from Figure 4 that a’f + ﬁ’f > 0 which indicates, as noted in Choi
et al. (2019), that the rebalancer tends to buy more when the market expects the
rebalancer to have a large latent trading demand. Moreover, due to the few trading
opportunities present in the two period version of the model, the difference between
,BIf and cx’f is relatively big as the rebalancer relies more heavily on sunshine trading.

As a final demonstration, Figure 5 illustrates the behavior of the period n =1
conditional variances as functions of risk aversion; recall that 25,1) is the conditional
variance of @— 6% (unrealized, or latent, demand of R) and 2512) is the conditional
variance of 7.

Figure 5: (Conditional variances in the first round) This figure depicts Z(ll) (on the left) and Z(lz) (on the
right) as functions of risk aversion. Model parameter values used: AR = A (values on the x-axis),
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affect the equilibrium results. Higher levels of p amplify the effect and lower levels weaken it. It is also possible
that for some positive p’s equilibrium fails to exist or that numerical instabilities occur (cf. Choi et al. 2019).
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Unsurprisingly, both conditional variances reach their lowest levels when the trad-
ing intensities of both the informed trader and the rebalancer hit their peaks, i.e.,
information is revealed the fastest. However, where 2(11) again follows an U-shaped
pattern, 2(12) interestingly exhibits an S-shape as seen in Figure 5b. This difference

stems from the fact that solving E,(f) backwards yields noticeably more complicated
dynamics for Zf_)] as does solving Z,(f) backwards yield for Z;]_)l. The key piece of
intuition here is then that while 2(11) is a rather simple function of B{ and BR, 2(12)
involves more complicated (nonlinear) expressions of these two trading intensities.
Hence, the conditional variance of the risky asset payoff ends up having a unique
pattern as compared to the conditional variance of the trading target.

In conclusion, the two period model numerics illustrate some interesting aspects
of the model while at the same time raise some further questions. For instance, will
the intraday dynamics and trading patterns presented in Choi et al. (2019) remain
valid when one or both strategic traders are risk averse? Before looking into this
question and others numerically, the next section presents the solution to the full N
period model.

5 FULL MODEL

5.1 Equilibrium Derivation

In this section a verification theorem for the full dynamic equilibrium is constructed.

.....

NG, =Bl = pu-1), (35)
AR =pR@-0% ) +alg, ., (36)

$n = AOL + AOR + i, (37)
Apn = aGn — (@ +BR)Gn-1), (38)
Agn = 1pdn— (L + 1) (@R + B)G-1, (39)

for all n = 1,..., N, with boundary conditions ﬁﬁ =1, a§ =0, @(I) =0, 95 =0, yo =
0, po =0, and go =0. The first two boundary conditions stem from R’s trading target
while the next two are assumptions. These assumptions and the model primitives
imply the final three boundary conditions.

Recall that the hatted processes depict the conjectures concerning other traders’
beliefs about the equilibrium dynamics. This formulation captures the idea that an
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optimal strategy for a market participant, at any given round #, is optimal even if
this particular participant has followed an arbitrary strategy in earlier rounds. Nev-
ertheless, in equilibrium the beliefs must be correct, i.e., 8] = 61. In addition, off-
equilibrium-path beliefs are not a concern since all orders flows are observed with a
positive probability.

Endogenous learning on part of the strategic traders (R and /) is one of the key
drivers behind the model dynamics. This feature, however, does bring about some
challenges. Namely, even though the CARA-Gaussian setting enables one to utilize
effectively standard filtering theory, the resulting expressions are complicated to the
extent that the equilibrium cannot be represented in closed form. Moreover, with-
out learning the equilibrium would have a much simpler form and, for instance, the
forecast the forecasts of others problem would cease to be an issue.

Yet, it is imperative to study models that allow for endogenous learning so that
one can better understand how this class of models differs—if it indeed differs—from
models where traders have fixed beliefs. The justification is straightforward. On one
hand, if the differences are found to be significant, then one has a chance to uncover
why this is the case. On the other hand, if the differences are found to be small or
negligible, then one obtains a good justification to focus on other important questions
and to utilize simpler models as proxies for ones that are more complicated.

The following lemma gives the equilibrium properties of the projection coeffi-
cients and the equilibrium moments.*>

Lemma 2 (Equilibrium pricing constants and moments). Recall that p, =
]E[f/ | )71,...,)7”] and g, := ]E[Zl—é,lf | )71,...,5),,]. Since the market makers are ratio-
nal and take advantage of Bayesian updating it follows that, for alln=1,....N

i 2 415

T (pR2y (D) 1252 Ry (3) 2’ (40)
Br) X, +(By ) z +2/3,,/3 DI

( —ﬂff)(ﬂisz)l ﬁRz(”p

@D+ (D, 28D v 0
Moreover, the moment recursions are given by:
= = (1-8) (1 -pE - rEl —nplx). =V =02, (42)
o = (1- 4,852, - 4,852, =2 = o2, 43)
= = (1-BR) (- Bz, - 2,885 0)), =Y = poyory. (44)

These coefficients are mainly related to the filtering problem of the market makers
albeit the moments given in equations (42)-(44), or more specifically, the ratios of

35 The moments are conditional on period n information after the order flow for the period has realized.
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these moments, play a crucial role also in I’s and R’s filtering problems.36 Note from
the above that if 8% = 1, for some n=1,..., N — 1, then Z(l) 2(3) = 0. This would
essentially mean that R would choose to prematurely reach the target a, after which R
would refrain from trading. This would be suboptimal in the present setting, as R has
a profitable trading opportunity in each period, and only in the limit, after an infinite
number of trading rounds, is R’s private information completely revealed. For this
reason, a constraint is set so that ,Bff #1forn=1,..,N—1 (see also Choi et al. 2019).
Continuing with R’s trading coeflicients, denote again, for alln = 1,...,N, by Y,
the state variable vector of R, i.e., Y, = (Y,(,l) Y,(,z) Y,(f))T. In the following lemma the
measurability conditions and the dynamics for R’s state variables are described.

Lemma 3 (R’s state variable dynamics and measurability). The dynamics of R’s
state variables are given by:

AY" = —A6R, s =0, 45)
o .
AV = -2, (AR +BLYP, — (aR + B ) -1 ”z<1> Ry vaa, (46)
a
AYY = ry(A0F + LY P ) = (L4 r)(@f +BOYY, + 12K, ¥ =0, (47)
where
e
Zrlf:yn_AHIIf_ﬁnW(a_gﬁ_l_qn—l)’ n= 1’2’“-’N~ (48)
n
Moreover, for all N> n < N:37
2R~ N, VIR,

0'(51’)’1,---,)%) = 0-(51,571,...,5\7”) = O'(El,ER,...,zf), and
2;/15 J— (a,y1’,yn—l)

The derivation of equations (42) - (44) is straightforward by first noting that:

36
Z(l):v[a_éR_Qn] v[ 61;11 AQR A%]
(= +rpHa-ok qnﬂ)—rnﬁn(v—pnfl>—r,,Aw,,]

] u[P= a1 - Aﬁn]

1= An(AB] + AR + Awy = (a + )G ) |

'E>

5O _ {
=V[r-p
and
%) =E|@-0f - 40— pa)|
=E[@-08 | —gu1 — A0 — AG)(— puot — Apn),
and utilizing equations (40) and (41).
3 V[gR = (ﬁfl)zZL[i)l +02. The term £ is covered in Section 4.
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It can be seen from Lemma 3 that R’s state variable dynamics are identical to
the risk neutral case. It is mainly due to this, i.e., the invariance of R’s and I’s
state variables under CARA-utility, that the description of the equilibrium is almost
identical to the risk neutral case. Similar invariance holds also between the risk
neutral and risk averse Kyle (1985) model.

The following lemma concludes the description of R’s problem and gives R’s
value function.

Lemma 4 (R’s value function). For each n = 1,...,N, the value function of R is of
the form:

1 AR _AR(1© @)
max _E[A oA\ ( A G 1)Al’m ’ n+l] = PR, A (Ln +2gew Ly Yﬁ) (49)

AOR e ok, R

n+1<m<N-1

where WK, L(O), and (Lﬁl¢))¢€q> are constants independent of R’s state variables,

R .
O, =015 Yn) and.

6 =(61.02.03) € D= (i, W) €N 0<i, k<2, it j+hk=2),
Y¢ :(Y(l))¢1(Y(z))¢2(y(3))¢3
n n n n .
Moreover, the first and second order conditions of R’s problem are given by:

Am A® A®
yO LA e A e

nl R “n—-1 R ~n-1°
n Dn Dn

-DR <o0. (51)

(AGF)" = (50)

Since the conjectured processes must correspond to the realized processes in equilib-

3)
rium, it is possible to write Y,(,Z) = 25,3/ 1)(Y,(,l) Y, (3)) where 2(3/ D 2’(’1) , and hence:
(A (MDA» 0 AS) AL 1146
\..__.\,_.___._/ [ S ——
=By =iag

This expression corresponds to the one given in (8).

After having described R’s problem, it is now time to move on to /. Denote again
by X, the state variable vector of [, i.e., X, = (X,(ll) X,(f))T. Lemma 5 gives I’s state
variable dynamics and measurability conditions.

Lemma 5 (I’s state variable dynamics and measurability). The dynamics of I’s
state variables are given by:

AX, = =2, (A0 + BRXD ) - Az, x{" =0,

n“tp-1
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53
AXY = —r AL~ (1 4+ )BR XD - 220,20 X =0,

n“p-1 2(2) on

where

3

s o AR . D RPN

=9, —AQ,IZ—(a/ff—k,Bf)qn_l—ﬁfﬁ(\)—pn_l), n=1,.,N
n

Moreover, for all N> n < N:38
A N
~N(©O,V[z,],
T, Y1500 Yn) = OB, 91,00, 90) = (3,28, ..., 21), and
2,11 J— (\7,)71,-'~a)’n—1)-

The next lemma completes the description of I’s problem by stating the form of I’s
value function and giving the corresponding optimality conditions.

Lemma 6 (I’s value function). For eachn=1,...,N, the value function of I is of the

form:
-1 —A’( - )AH) —AI(I(O)+Z (“’>xw)
max ]E[_Ie Zm n+1( Pm ’0',11+1 — \Pl a)eN non , (53)
A eol, |A
n+1<m<N-1

where ¥}, 1,20) , and (I,(f’))weg are constants independent of I’s state variables, 0'2
o(V,y1,.-,yn), and:

+1 =
o =(w,wy) €Q:={(i.j)eN? : 0<i,j<2, i+j=2},
Xy =(x")" (x7)”

Moreover, the first and second order conditions of 1’s problem are given by:

(
[ (1)
(Ag ) - Dn X Dl n—1°

-D! <o0. (55)

(54)

In equilibrium it holds that X(z) 2(3/ 2) X(l) where 2(3/ .= (2) Thus, utilizing (54),

it can be seen that I’s optimal order has the form:

Iy* F(l) (3/2)r (1
(g = | S+ 2 ](X b), (56)
n
—,_/
=,

2
B vzl = (ﬁf) foj ] +02. The term fo) is covered in Section 4.
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which corresponds to expression given in (7). It is worth emphasizing that the gen-
eral form of I’s optimal order remains unchanged from the risk neutral case. An
analogous observation can be made when comparing the expression in (56) to I’s
optimal order in, e.g., Kyle (1985) or Holden and Subrahmanyam (1994). All in all,
the notion that I’s trades are proportional to the remaining information advantage has
proven to be a robust feature of Kyle-type strategic trading equilibria.

Naturally, this does not mean that the equations that define, for example, 8/ in
equilibrium are invariant across different models. Nor does it mean that the values
taken by the equilibrium constants are identical across models. This point becomes
clear in Section 5.3. Before that, one needs to state the set of equilibrium conditions
and to discuss some of the challenges these conditions pose in explicitly solving for
the model equilibrium. With this aim in mind, the following verification theorem
summarizes the sufficient conditions for the Bayesian Nash equilibrium.

Theorem 1 (Verification theorem). The set of constants:
{/1115 r}’lv 18;{1’ a{fs ﬁﬁ}n:l,,N

with a§ =0, ,Bfl =1, and ﬁ§ # 1, for n < N, constitutes a linear Bayesian Nash
equilibrium (BNE) if, Vn = 1,...,N, it holds that:

(i) Pricing constants and moments satisfy the equations given in Lemma 4. Con-
ditional variance terms are non-negative, E; ) is non-increasing, and:

(ED) <zs?.

(ii) R’s first and second order conditions given in Lemma 3, in conjunction with
Y,(lz) = 2513/ b (Y,Sl) - Y,(f)), are satisfied and R’s value function corresponds to
(49).

(iii) I’s first and second order conditions given in Lemma 6, in conjunction with
X,(f) = 2513/ 2)X,(ql), are satisfied and I’s value function corresponds to (53).

Before proceeding, it is important to acknowledge that Theorem 1 is silent about
equilibrium existence and uniqueness. The reason for this is the rather complicated
nature of the equilibrium dynamics, preventing one to approach the existence and
uniqueness questions with explicit methods. Exhaustive results pertaining to these
3 However, it is possible to
give some guidelines which can then be utilized, in conjunction with appropriate nu-
merical methods, to study, for instance, case-by-case uniqueness of any equilibrium
found. Details relating to this issue are covered in the next section.

equilibrium properties are not pursued in this paper.

39 General equilibrium properties of the Kyle-model have proven to be quite resistant to thorough analysis. McLen-

nan et al. (2017) study uniqueness of the single period version of Kyle (1985); to the best knowledge of the author,
notable advances regarding the dynamic version of the model range from scarce to non-existent.
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5.2 Solutions to Equilibrium System of Equations

The case-by-case qualification above refers to the issue that based on the uniqueness
of a given equilibrium under some initial parametrization—say SY, consisting of the
values for the exogenous parameters and the initial guesses—one cannot necessarily
conclude the uniqueness of another equilibrium under an alternative parametrization
SIEV 40 While general results pertaining to this matter would obviously provide more
widely applicable information, “pointwise” uniqueness is not without merit. Indeed,
it takes only one instance of equilibrium multiplicity to show via a counter-example
that general uniqueness does not hold. Moreover, one can focus on specific situa-
tions to conduct detailed analysis regarding why uniqueness may fail under certain
conditions and persist in some other cases.

To pave way for the ensuing discussion, it is worthwhile to revisit the standard
solution approach to the Kyle (1985) model in which, as in the present model, the
equilibrium boils down to finding solutions to a system of difference equations. Two
distinctive features are especially important:

1. First, the Kyle (1985) equilibrium system can be reduced to finding a root of a
univariate cubic equation in 4,. With appropriate parametrizations, this cubic
polynomial features a unique feasible solution, which can be used to determine
other equilibrium constants.

2. Second, to initiate the backward induction algorithm one needs an initial guess
Xn. Viadirect inspection, due to the relative simple structure in the Kyle (1985)
model, one can verify that £y o« Xy, which can then be used to verify that the
initial guess and the initial value Xy are uniquely related.

The two features can be summarized schematically as:

Z:N - ((ﬁN)*v“e (ﬁl)*) - Z(),

which is interpreted as follows: the initial guess Zy induces a (unique) path of 8,,’s—
and as a by-product all other equilibrium constants required—and via backward iter-
ation, this path eventually produces the initial value Zo.*! If the initial value obtained
corresponds to a preset value the algorithm terminates.

The present model differs from the Kyle (1985) model in various respects. First,
instead of a single univariate polynomial—even after simplifications—one has to
solve a polynomial system. Indeed, the equilibrium system features seven equations
and seven unknowns: individual equations for the pricing constants A, (40) and r,

40 SN and S”EV have identical N and € > 0 (the termination parameter) but differ in terms of numerical values of

other input constants and/or initial guesses. For more information about the initial parametrizations the reader is
referred to see the inputs used in the algorithms of Appendix B.

41 Note that one can also reduce the Kyle (1985) equilibrium system to a univariate polynomial in 3,



148

(41) and the trading constants ﬁ,’1 (56) and ,B,If (52), as well as the equations for the
conditional moments obtained from (42)-(44). While this seven-by-seven system can
be directly solved via numerical methods, for instance, using the approach described
in B.2, for talking about equilibrium multiplicity one is better off examining a lower
dimensional system. To this end, it is described in B.3 how the equilibrium system
of equations can be reduced to a bivariate system of coupled S-polynomials (or, S-
equations). While the resulting system is far from simple, it enables one to describe
the potential issues with equilibrium multiplicity in a rather straightforward manner.

Second, instead of one initial guess one is required to make three, i.e., instead
of Xy one is required to use Xy_1 = (ZE\})_I 255)_1 ZSZI)T.“ Also, due to the more
complex dynamics of these three conditional moments, it is not completely clear how
a change in the initial guesses is transmitted to the initial values Xy = (EE)D 252) Zg))T.
Choi et al. (2019) make progress on this front by examining, similarly to Kyle (1985),
how changes in the pricing error variance affect the initial values, but these special
case results cannot be used to make general conclusions.

To understand what kind of conclusions could be made, some additional notation
is required. Denote by B* a feasible path (if it exists) :*3

((va)*, (B> BE_) - (81 )*,(ﬁf>*)),

i.e., a solution path—to the period N system as well as equilibrium solutions to the
B-equations for all n = N —1,..., I—which meets all the required equilibrium condi-
tions.** A feasible equilibrium path is a feasible path which implies initial values
Yo consistent with some ex ante parametrization, i.e., the preset numerical values for
oy, 0 g, and p. A terminating path is such that the path breaks, i.e., at some 1 <n <N
there is no feasible solution and thus the path “terminates”. Moreover, individual
paths can diverge at some point to produce a number of new paths. This happens
when there are multiple feasible solutions to the equilibrium system of equations for
some period n. Figure 6 provides a simple illustration.

In Figure 6, the path on the left (8*) can be considered as the unique feasible
path and the path of the right (ﬁ') is an example of a terminating path. To recap
how the solution paths generate sequences of conditional moments, denote by X, =
(2,(11) 2512) 25,3))T. Further, recall that 8/ and SX can be used to determine A, and r,,
and denote by H,, the matrix of coefficients in the period n — 1 moment recursions
(42)-(44). Now, one can simply write:

zn = ann—l s

42 The fact that in the present model one uses guesses for period N — 1 instead of period N as in the Kyle-model is

due to the differences in the model setups and inconsequential for the following discussion.

43 More specifically, one could use B:‘SN to denote the solution path under model parametrization S¥. For the sake

€
of notational simplicity, 8* is used instead.

4 An asterisk is used to separate the solution from the variable.
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Figure 6:  (Solution paths) This figure exemplifies solution path divergence. The path on the left is a feasible
path while the path on the right terminates at n = 1.
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where all the elements hff’j) € H,, are known real numbers. Thus, conditional on
det(H,,) # 0, one uniquely obtains the conditional moments for n—1.

Now, based on these notions, the question at hand is: what can one say about
how the initial guesses and the induced solution paths relate to the initial values (Zq)
implied by them? After all, in the context of the Kyle-model this relationship was
found to be very clear-cut.

A good starting place is the uniqueness of the feasible equilibrium path. Can one
have multiple, two or more, feasible equilibrium paths induced by a single Xy_1 such
that these paths produce the same initial values 2¢? A schematic description of this
situation is:

VIR 8 (S.1)

In terms of questions related to potential equilibrium multiplicity, the situation de-
picted in (S.1) is perhaps the most pressing. This is due to the fact that if multiple
feasible equilibrium paths were found it would, in general, be rather difficult to dis-
cern which of them would be the most likely (dominating) equilibrium outcome, and
therefore the equilibrium predictions of the model would be ambiguous at best.
Luckily numerical methods—especially the approach described in B.3—can be
used, and are used, to verify that the feasible equilibrium paths found in Section 5.3
are unique. Namely, the paths found either feature no diverging paths or if diverging
paths emerge, then all but one path are terminating or, at the very least, the initial
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values implied by diverging paths are inconsistent with the ex ante parametrization
used. ¥

It turns out that the last qualification, i.e., that the initial values implied by di-
verging paths fail to converge to the values preset in the model parametrization,
is important. Due to “slack” in the equilibrium conditions, one can find instances
which feature multiple feasible paths, something that cannot occur in, for example,
the Kyle (1985) model. This is exemplified in the context of the risk neutral version
of the model in Hannula (2019a). Distance to initial values, as exemplified in B.2
and B.3, can then be used to consistently rule out these extraneous paths.

This observation that a single initial guess can produce multiple paths does, how-
ever, bring forth another question: is it possible that two (or more) distinct initial
guesses produce two (or more) distinct feasible equilibrium paths, which imply the
same initial values? A schematic description of this situation is:

o128\
: : 2o 8.2)
Iy, =B/

The above case relates to the second feature of the Kyle-model, i.e., that initial
guesses are unique. However, in the context of the present model, where a single
initial guess can produce multiple feasible paths, the uniqueness of the initial guesses
need not hold.

Indeed, the possibility that multiple initial guesses produce the same initial values
through different paths cannot be completely ruled out. Nevertheless, it can be argued
that this is highly unlikely to occur with non-extreme parametrizations.*® For one,
this issue is not encountered in the numerical tests. Second, suppose, for instance,
that the path 8 features lower trading intensities (Bl) for I as compared to some

other path. As a result R’s trading intensity needs to be adjusted because otherwise
the lower 8.’s would result in a higher Z(()z). But all these changes also (nonlinearly)

affect the paths for 25,1) and 25,3). Therefore, even if a parametrization and an initial
guess with two (or more) feasible equilibrium paths exists, the possibility that they
imply the same initial values can be deemed improbable.

Furthermore, in numerical runs, there are certain characteristics pertaining to the
feasible equilibrium paths which seem to always hold.*’ One such characteristic is
that 8/ are monotonically increasing, moving from the first period towards the end of
the trading horizon. One could thus use, if necessary, these characteristics as means

45 If a feasible equilibrium path exists, all paths deviating from it are diverging paths. Diverging paths can be

feasible or terminating. There can be feasible paths even if there is no feasible equilibrium path, but in this case,
all paths can be considered as diverging with respect to each other.

It is clear, when dealing with polynomials, that with extreme enough parametrizations one can produce very
ill-behaved equations which instead can produce strange equilibrium outcomes.

Actually, many properties are such that they hold in almost all extensions of Kyle (1985).

46

47
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to rule out potential ill-behaved equilibria. Therefore, the situation (S.2) is not of
primary concern in the numerical equilibrium analysis.

Based on the discussion about (S.2) one might still wonder about the possibility
that two (or more) initial guesses produce, not different, but instead the same feasible
equilibrium path. A schematic description of this situation is:

IN-1 0\
B >3, (S.3)
v/

To rule out situation (S.3), one should note that from Lemma 1 it follows that chang-
ing the initial guess changes the period N system. More specifically, it changes the
coeflicients of the Ay quartic. Unless the coefficients change in a way that can be
factored out—which is generically not the case due to the complicated ways the co-
efficients depend on the initial guesses—these changes will change the solutions of
the Ay quartic, and thereby also ,85\, will be changed. Thus, the resulting paths cannot
be the same.

Having obtained a better understanding of the equilibrium dynamics, the next
task is to analyze these dynamics numerically. Lessons from above are good to keep
in mind throughout the analysis. The path uniqueness of all equilibria presented is
studied using the algorithm presented in B.3.

5.3 Numerical Results for Full Model

This section presents the numerical results for the full model. The main focus here is
on the comparison between the risk neutral and risk averse cases. Namely, whether
or not the equilibrium observations, i.e., trading and intraday patterns, from the risk
neutral model carry over to the risk averse case, and if not, what changes and for
what reason.

To keep track of the parameter values used, the next table reports the fixed param-
eter choices utilized in the rest of this section.
For conciseness, o, 04, and o, are fixed to the values given in Table 1 throughout
this section. Unreported numerical runs verify that the results obtained by varying
these parameters are in line with results below. p is allowed to take two values:
p = 0 pertains to the case where R has no (ex ante) private fundamental information,
whereas p = 1/3 pertains to the case where R has some private fundamental informa-
tion.*® In line with the main focus of this section, both risk aversion parameters (A’
and AR) are allowed to vary over the range 0,1/2,...,5.

48 Over the range [0, 1/3] for p, the results seem to be well-behaved.
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Table 1: (Parameter values) This table present the fixed values for exogenous parameters
utilized in the numerical analysis of the full model.

Parameter Value
N 8
a? 1/N
a2 1
a? 1
Jol 0,1/3
Al 0,1/2,...,5
AR 0,1/2,...,5

In addition to the case where both traders are risk averse, special attention is paid
to the case where only R is risk averse. This is arguably a somewhat more interesting
setting compared to the other special case, i.e., the case where [ is risk averse and R
is risk neutral . *

5.3.1 Trading coefficients and price impact

Since the trading intensities and price impact are determined endogenously in equi-
librium, it is crucial for the big picture to understand how risk aversion affects each
equilibrium constant individually. The first illustration in Figure 7 focuses on the
equilibrium trading coefficients (intensities) 8., B, and .

It is evident from Figure 7 that high risk aversion has a greater impact on I’s be-
havior in contrast to the behavior of R. Namely, high risk aversion raises the trading
intensity of / in all periods, i.e., there is a clear upward translation in the intensity
curve. Generally, this implies that the private information of / will be incorporated
in the price faster as compared to the case where [ is risk neutral. While this is a
standard result for / (cf. Holden and Subrahmanyam 1994), the fact that risk aver-
sion has little impact on R’s trading curves—for instance, the case Al=0, AR=5is
omitted from Figure 7b as it is nearly indistinguishable from the risk neutral case—is
somewhat surprising and not at all clear ex ante.

49 For instance, think of I as representing a hedge fund and R as representing a mutual fund.
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Figure 7: (Trading intensities) This figure provides a comparison between the risk neutral and risk averse
trading intensities under the assumption that p = 0.
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the black line represents Al = AR = 0, the blue line represents Al = 0, AR = 5,
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The explanation for this observation stems from the presence of the constraint a
which, more or less, stipulates the optimal execution path for R. I does not face a
similar constraint and is thus able to adjust his trading more. One might pose the
question whether the results pertaining to R could be an artefact of the modified ob-
jective of R, as discussed in Section 3.2. There is little reason to believe this would
be the case because—as indicated earlier—the extra terms related to the wealth max-
imization objective seem to be generally very small.

Next, Figure 8 depicts the intraday patterns in the endogenous price impact pa-
rameter A, under various risk aversion levels. In interpreting Figure 8 it is important
to take note of the dynamics of the trading intensity parameters discussed above.

In essence, 4, captures the signal-to-noise ratio obtained from the order flow. In
the risk neutral market with p = 0 the signal to noise ratio first decreases then remains
(almost) fixed during the middle of the day, and then again decreases at the end to
the trading horizon. The result is a distinctive twisted S-shape. In the risk averse
case, however, this S-shape seems to vanish and the signal-to-noise ratio decreases
monotonically even when p = 0.°° This is in line with Holden and Subrahmanyam
(1994) and stems from the fact that as I’s private information is revealed at a faster
pace, the noise component in the signal-to-noise ratio quickly starts to dominate.

50 Similar monotonicity can be found when more private fundamental information is introduced to the market, i.e.,

p > 0. In this context, the monotonicity is due to a competition effect.
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Figure 8:  (Price impact) This figure presents the endogenous price impact parameter A, for symmetric AX =
0,1,2,3,4,5, where K € {I,R}. The risk neutral case in presented in black, AK =1is presented in blue,
AKX =2 is presented in , AX =3 is presented in violet, AX = 4 is presented in , and finally
AKX =5 is presented in red. Throughout it is assumed that p = 0.
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To wrap up, it should be pointed out that the results with a positive p and with A =
0 and AR > 0 are similar to those of Choi et al. (2019), and therefore these results are
not reported. As earlier, one can conclude that the apparent change in the behavior
of the price impact parameter is driven by the change in the trading strategy of I.
This is because—in the cases under study—a bulk of the assumed, price-relevant,
private information is endowed to /, and for this reason it is the trading strategy of /
which has a more prominent effect on the equilibrium price impact parameter. This
result instead is driven by the fact that the price impact in the model is assumed
to be purely information-based, i.e., trades which do not carry any price relevant
information will have no price impact. In terms of robustness, it is conceivable that
the above results continue to hold in a modified model with a more complicated price
impact function—including, e.g., non-information-based components—as long as
one maintains the assumption that information-based price impact is first-order and,
more or less, dominates over the other price impact components.

5.3.2 Intraday patterns

The above results provide a good basis for proceeding to study intraday patterns.
These patterns, in a large part, reflect the dissimilar trading motives of / and R. Look-
ing back, the expectation is that I’s risk aversion tends to cause more pronounced
deviations from the risk neutral baseline. A good way to examine the validity of this
intuition is to look the two key conditional moments ZS) and 2512).

Figure 9 shows how the variance of latent (unrealized) trading demand of R
changes over the trading horizon. Choi et al. (2019) find in their numerical anal-



155

ysis that 2;1) is monotonically decreasing and the same observation can be made
from Figure 9.

Figure 9:  (Variance of latent trading demand) This figure presents the evolution of latent trading demand

variance 25,1) over the trading horizon. The line always represents the case A’ = 0 and AR =5,
while the black and red on the left (right) represent the case A’ = AR =0 (A’ = AR = 5).
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On top of verifying the monotonic evolution of E,(f), Figure 9 also gives some
additional indication on how risk aversion affects ZELI). Evidently, the variance de-
creases faster in the risk averse case. However, somewhat surprisingly, E,(f) decreases
the fastest when R is risk averse and endowed with private information (o = 1/3) and
I is risk neutral. This can be seen by looking at the green line in Figure 9b.

A natural explanation for this is that while a risk averse R slightly intensifies
early trading, the same does not hold for the risk neutral /. Thus, R has a weaker
camouflage and more information is revealed. Furthermore, as both traders now
have fundamental information, the latent trading demand of R is more closely tied to
informed trading. This issue also factors in to the speed with which 2;1) decreases.
Additional evidence on the matter can be gleaned by looking at the evolution of 222).

For this purpose, Figure 10 depicts the intraday patterns for the pricing error vari-
ance 2512). It can be seen from the figure that—as one would expect—risk aversion of
I leads to faster information revelation. Moreover, information revelation is slightly
faster if R is also endowed with fundamental information. The latter observation
reflects the competition effect and it is in line with, for example, Holden and Subrah-
manyam (1992) and Foster and Viswanathan (1994).

Finally, and perhaps most interestingly, when [/ is risk neutral, R is risk averse,
and p = 0, the pricing error variance is higher than in the full risk neutral case. This
indicates that a risk averse R, through her rebalancing activities, provides additional
camouflage for / over and above the camouflage provided by a risk neutral R. This
effect is not, however, monotonically increasing in R’s risk aversion. Instead, numer-
ical tests imply that the additional camouflage is greatest when R is moderately risk
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Figure 10:  (Pricing error variance) This figure presents the evolution of pricing error variance £ over the
trading horizon. The black (solid and dashed) lines represent the case A/ = AR = 0 with p = 0 (m)
and p = 1/3 (A). The red (solid and dashed) lines represent the case A’ = AR = 5 with p = 0 () and
p =1/3 (2). The solid (dashed) line covers the case A’ = 0 and A® = 5 with p=0 (p=1/3).
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averse, i.e., AR € (0,2.5). Nonetheless, it does seem that a risk averse R generally
provides more camouflage for I as compared to a risk neutral R and this effect can
mostly be attributed to early trading rounds.

Moving on, Figure 11 shows the intraday correlations between I’s and R’s or-
ders.”! In the risk neutral case, Choi et al. (2019) show that these correlations tend to
be negative—at least towards the end of the trading horizon. The authors conclude
that negative correlation is beneficial for both traders due to the liquidity improving
effect.

51

Here it is helpful to note that:
Al AD 3
CILAD,. A1 = BATEY.
since it follows from iterated expectations that:
E[(f) - ﬁn—l )‘Aln—l ]
=E[G 1BV~ pu1l0 @1, S]] = 0.
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Figure 11: (Order correlation) This figure depicts the correlation between A8, and AGR for various (symmet-
ric) risk aversion levels, i.e., AK =0,1,2,3,4,5, where K € {I,R}. The risk neutral case in presented
in black, AX =1 is presented in blue, AX = 2 is presented in , AK = 3 is presented in violet,
AKX = 4 is presented in , and finally AX = 5 is presented in red.
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One may observe from Figure 11 that for higher levels of risk aversion the cor-
relation between the orders tends to become more negative. A similar observation
pertains to the case where only R is risk averse. This implies that risk aversion tends
to strengthen the mutually beneficial liquidity provision effect.

Furthermore, when R is uninformed (o = 0) the correlation is—for lower levels
of risk aversion—initially close to or slightly higher than in the risk neutral case,
decreasing faster towards the end of the trading period. When R is informed (p =
1/3), correlation between the orders of R and I decreases monotonically when the
traders become more risk averse.

Continuing with the topic of correlations, the unconditional aggregate order flow
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autocorrelation between periods n— 1 and n is given by:
]E[yn—lyn]

2 2

By, [Bl]

In order to calculate the autocorrelation coefficient numerically it is helpful to note
first note that:

R(yn-1,yn) =

In :ZIJ;/[+Q§Qn—1> n=1,..,N,

where QF is a constant and ¢, can be further decomposed:
Gn = Z u,(cn(),z,y , with constants

o =(1=0%--- (1= 0f .

Then, using the above decompositions and taking advantage of the properties of z2/,
the following formulas are obtained:

Ely;] = Z#(")E[(Zi” .

Ely- 1yn]—Z/~t(")E[(zn ).

(") and y(") are new constants obtained via grouping the relevant terms in

where p
the 1ntermed1ate equations. Using the above, the autocorrelation coefficient can be

expressed in as:

zk 1/1(”)E|: )2]
\/ (2t VB[ @2 ])( i Bl e )2])

The above expression is used in the numerical illustrations of Figure 12.

Figure 12 depicts the patterns of unconditional intraday autocorrelation in the
aggregate order flow y,. It is obvious from the figure that risk aversion has an ap-
parent impact on the shape of the curve depicting intraday autocorrelation evolution.
More specifically, risk aversion seems to level out the rise in autocorrelation ob-
served during the last periods in conjunction with risk neutral trading. This result
can be explained by noting that risk aversion induces both I and R to trade in a more
front-loaded fashion and, as a direct consequence, / and R trade less during the fi-
nal periods. The results in Figure 12 are in line with Dufour and Engle (2000) who
document stronger autocorrelation during periods with higher trading activity.

R(Yn—l ,)’n) =
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Figure 12: (Order flow autocorrelation) This figure presents the (unconditional) aggregate order flow (y,)
autocorrelation patterns under various parametrizations. The black line is used to denote the risk
neutral case, the red line corresponds to the case A’ = AR =5 (A! =0 and AX = 5) in the top two
figures (in the bottom two figures), and finally the line dashed line is used for the case A’ =
AR =25 (A =0 and AR = 2.5) in the top two figures (in the bottom two figures).

©p=0 dp=1/3

Furthermore, an interesting feature regarding the autocorrelation patterns is the
fact that even in the case where I is risk neutral and only R is risk averse—Figures 12¢
and 12d—autocorrelation exhibits a clear deviation from the risk neutral baseline.
This is in contrast to some the earlier results which seem to be mostly driven by I’s
risk aversion. A similar explanation as in the high risk aversion case (A’ = A® =5)
pertains to this case. A risk averse R trades more during the initial periods and less
towards the end.

Based on this observation one may conclude that while it is possible to use a
risk neutral R as a proxy for a risk averse R in some instances, how good this proxy
turns out to be depends greatly on what aspects of the market one is examining. For
instance, if the goal is to study intraday patterns, one should pay close attention on
how to model R’s motives and preferences.

Finally, while the impact of risk aversion on the intraday autocorrelation patterns
is plainly visible, the impact on the level of autocorrelation is, however, relatively
small. For instance, in Figure 12a autocorrelation is close to zero for most of the
trading horizon. This observation is in line with Choi et al. (2019).
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5.3.3 Risk seeking informed trader

So far, the discussion has revolved around the outcomes stemming from the intro-
duction of risk aversion. In this section the tables are turned and attention is directed
towards the case where I is—instead of risk neutral or risk averse— (moderately)
risk seeking, i.e., AT = —1, while R is risk neutral.>> The goal is to exemplify that
even a conservative step to the “wild side”—i.e., a step from risk neutrality towards
risk seeking— is (again) sufficient to generate decided changes in the equilibrium
dynamics.

As noted above, the motive for studying the impact of changes in risk preferences
stems from the fact that the risk preferences of actual traders are likely to be time-
varying and affected by changes in the economic environment as well as, e.g., shifts
in financial regulation. With respect to risk seeking behavior, especially when 7 (the
informed trader or, e.g., a portfolio manager) is concerned, the main justification
can be drawn from financial contracting (cf. Panageas and Westerfield 2009). It
is plausible that, for example, convex compensation contracts, specifically towards
the end of a (finite) contract horizon, can induce risk seeking behavior. Therefore,
it is important to understand the impact of these alternative risk preferences on the
dynamic trading equilibrium.

As with the risk averse case, a natural starting point is to examine the trading
intensities 87, B8, and a®. However, changes related to these are found to be far from
dramatic and hence omitted. It suffices to note that, as intuition would predict, I’s
trading intensity moves to the opposite direction when / is risk seeking as compared
to the case where [ is risk averse.

More specifically, I’s trading intensity falls, as with A’ = —1 he is more willing
to look for better trading opportunities, instead of locking in profits early to protect
himself from potential future price shocks as is the case when I is risk averse.’
This leaves room for R to be more aggressive than in the risk averse setting, but, as
above, changes in R’s trading strategy, for the most part, have a weaker effect on the
equilibrium dynamics. Changes in the trading intensities are useful in understanding
the behavior of 4,, depicted in Figure 13.

Earlier it was observed that in a risk averse market the twist in the A, curve,
clearly present in the risk neutral case, straightens out and price impact becomes
monotonically decreasing over the trading horizon. It is evident that the same does
not, by any means, hold when / is risk seeking. Indeed, it can be seen from Figure
13 that in the risk seeking market, with p = 0, the twist very much remains and, in
addition, becomes rotated. Liquidity, the reciprocal of 4,, is higher at the start of the
trading horizon because [ trades with less intensity, only to decrease towards the end

52
53

In unreported numerical experiments it is found that R’s risk aversion does not materially change the results.

One outcome from this decreased intensity is that the pricing error variance 25,2) tends to be higher than in other
specifications (risk neutral baseline or risk averse models) when 7 is risk seeking.
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Figure 13:  (Price impact revisited) This figure presents the endogenous price impact parameter 4, for the
risk seeking case: A/ = —1 and AR = 0. The solid black line represents the risk neutral baseline
(A" = AR = 0) with p = 0, the dashed blue line represents the risk seeking case with p = 1/3, and the
dotted red line represents the risk seeking case with p = 0.
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due to more pronounced informed trading.

Endowing R with some initial fundamental information (p = 1/3) attenuates the
rotation while still preserving the twisted shape. This is unsurprising: higher 4, in
this case only reflects the fact that the informed R picks up the slack left by the risk
seeking [/ during the initial trading rounds.

Proceeding to the intraday observations, Figure 14 shows the patterns in trade
correlation and autocorrelation. First, regarding the unconditional trade correlation,
one can see from 14a that deviations from the risk neutral baseline stemming from
risk seeking behavior are small. This is a reflection of the fact that the trading strate-
gies of I and R are coupled and mutually beneficial liquidity provision extends also
to the risk seeking case.
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Figure 14: (Intraday patterns in the risk seeking case) This figure depicts the correlation between A% and
Aé’ﬁ (cf. Figure 11) as well as the aggregate order flow (y,) autocorrelation (cf. Figure 12) for both
p = 0 (the bottom two lines in the first subfigure) and p = 1/3 (the top two lines in the first subfigure)
and for both the risk neutral A’ = AR = 0 (solid black lines) and the risk seeking case Al'= -1 and
AR =0 (dotted lines).
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Second, Figures 14b and 14c illustrate that risk seeking has a greater impact on
order flow autocorrelation than it has on the correlation between the trades of / and R.
Although the U-shape is preserved, the autocorrelation magnitude is clearly elevated
in the risk seeking case, especially in the case where R initially has no fundamental
information. Autocorrelation is mainly driven by the rebalancing needs of R. There-
fore, higher levels of autocorrelation in the risk seeking case simply echo the fact
that R has more room to trade and to be aggressive in the beginning of the trading
horizon when the risk seeking / trades with lower intensity.
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6 CONCLUSION

This paper studied a model of strategic trading under asymmetric information based
on Choi et al. (2019), featuring two strategic traders—the informed trader and the
rebalancer—with distinct trading motives and risk preferences. One of the traders
(the rebalancer) operates under a strict terminal position constraint dictating the
amount of risky asset the trader needs to hold when trading commences. The size of
this position constraint is private information. The other trader (the informed one) is
unconstrained and trades to take advantage of an endowment of private fundamen-
tal information. The main theoretical contribution of the paper was to analyze the
dynamic equilibrium of a model where these two traders, under various risk prefer-
ences, are allowed to interact with each other. Due to the intractability of the equilib-
rium system of equations, computational methods were advanced to effectively study
the equilibrium numerically.

In the actual numerical analysis, special attention was paid on the impact of risk
preferences on equilibrium constants and on intraday properties emerging in the stud-
ied financial market. On this front, it was found that risk preferences indeed have a
marked impact on the equilibrium properties but that this impact is not evenly dis-
tributed between the two traders. More specifically, the results implied that changes
in the risk preferences of the informed trader tend to have greater equilibrium impli-
cations than changes in the risk preferences of the rebalancer.

Changes in the risk preferences of the informed trader had a particularly no-
table effect on price impact and on the symbiotic liquidity provision between the
two traders. Changes in the risk preferences of the rebalancer had most weight in
shifting the order flow autocorrelation patterns. The results can be utilized, for ex-
ample, in justifying the risk neutrality assumption in versions of the model, where
research questions are such that changes in risk preferences do not have first order
effects.

Moreover, as the model is susceptible to equilibrium multiplicity, emphasis was
also put on studying—instead of a single feasible equilibrium solution—the entire
solution set of the equilibrium system of equations. It was shown that the potential
equilibrium multiplicity in the model has many dimensions, which must be con-
sidered separately. Efficient solution methods tend to involve a two tier approach
where costly parameter value search is conducted using efficient local methods and
uniqueness examination is conducted using, computationally more expensive, global
solution methods.

There are a number of ways to extend the analysis further. Different forms of
trading constraints (e.g., a soft constraint with quadratic penalties) combined with
new ways to model the private information of the rebalancer (e.g., short-lived private
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information independent of the trading target) would be fruitful avenues for further
research. Another extension is to move into a continuous time framework.

On one hand, a continuous time approach circumvents the complexities involved
in dealing with the rigid system of equations that is characteristic for the discrete
model, and one could thus obtain a simpler description of the model equilibrium.
On the other hand, the continuous time framework requires dealing with a number
of non-trivial technical issues not present in the discrete time model. Finally, one
could consider modifying the (endogenous) price impact dynamics from permanent
to transient (cf. Hannula 2019b). This extension would provide valuable information
with regards to the robustness of the equilibrium properties to changes in the way
trades are assumed to impact prices.
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APPENDICES

A PROOFS

Appendix A contains the proofs from the main text.

A.1 Proofs from Section 4

Proof of Lemma 1. Assume that AT > 0 and note first that:

Sy =-Al(Z)_ +07) <0,
;____;6_____/
Sn-1 = 25\1,11 +0'3 >0,
=0 >0ands{) eR
The system in question can be simplified to a quartic (univariate) polynomial in Ay. The coefficients of
the quartic are:

Ay En-1"Zn-1>0,
A3 “SvaZy) (25577 + Sv-1) +45v-1Eh-1 20,
A Sz 30 20T -5 (S +25Y) + 45y 20,
Al ~EnaE0) >0,
A -x, <o.

By looking at the possible permutations, one can observe that the quartic exhibits either one or three
signs changes. A similar observation can be made in the case where A’ < 0. The only difference there
is that Zy_; > 0 and the coefficient of /111\, is now negative. Finally, setting A’ = 0 reduces the problem
further and the desired result is obtained from a quadratic equation. For additional details the reader is
referred to Hannula (2019a).

Therefore, by Descartes’ rule, the number of positive roots is either exactly one or three, i.e., a
positive root, either unique or not, always exists. This concludes the proof. [ ]

A.2 Proofs from Section 5

Proof of Lemma 2. Omitted. See Choi et al. (2019) for details. [ |

Proof of Lemma 3. Begin with the state variable dynamics. Since the dynamics of Y,gl) are trivial, one
can move straight to Y,(,z):

AY? = (Apn—Apa) + B0 = po | 0@, $1veees$0)] ~ BT = Pt | 0@, $1, s 91)]

= (Apn = Apn) —E[Apn | 0@, 31, ... 5)] + B[V = pu1 | 0@, $1..... )] =E[V = pu—i | 0@, $1,....9n-1)]

E[(7- pn)2K] ,

=—-App+
PN
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——An(AeanY(Z) QRy<3>) [ (G- PwEy] ek

ot V[zf]
12 _ HRy3) >
n
=—/ln(A0,If+ﬁnYnfl—QnYn 1) nz(l)z,’f,

where the third equality follows from the recursive property of projections and since Ap, €
o(a, y1,...,9n), the fourth equality follows from equations (35) - (39), and the fifth equality is obtained
using Lemma 2. The dynamics of Y,(f) are derived similarly.

As for the second part, start by fixing an arbitrary m € {1,...,n — 1}. The claim 2R L (Zz VisesYn-1)
follows from the joint normality of the random variables and from the fact that B[285,,] =

Regarding the equivalence of the different sigma-algebras note that:

OReo (@)
o(a, y1) =o(a, ﬂ’lf/+9f+f41) 1z o, ﬂllf,ﬂ;l) and
~ A ~ I~ AR . ~ é’fﬂf(&) N I~
0'(61, }’1)=0'(6l,ﬂ1v+91+u1) = 0-(a7ﬁlv+ul)
Via an induction argument it then follows that:

A N ind. hypo. - R
0@, 9159n41) = 0@ Y15 Yo Int1)

= 0'(&, y1a~--7yn,yn+1+(A8,If+1 AQR 1)+(A n+1 A91+1))
= 0@ Y1, YnsYnt1)s

where the last equality follows since A(Jf . (similarly A@f 1) 18 0(@, y1,...,yn) measurable and A@fl N

Aﬂfm ﬁn+l (pn—pn) €o0(@, yi,...,yn) which proves the second claim in Lemma 3. [ |
Proof of Lemma 4. Recall the notation E[ e | o7(@,y1,...,yu—1)] =: BE[ #], for n € {0, 1, ..., N}, and denote

R’s state variable vector by Y, = (Y,(,]) Y,(,z) Y,(f))T. Using the principle of optimality and backward
induction, one obtains, for period n, the Bellman equation:

-1 _
max FE§ [exp{ —AR( —@-08 )Apn+ Z L) }] (A1)
" $cd
where AG,If is required to be a'f—measurable, ¢ =(¢1, d2, ¢3), Yﬁ = (Y,Sl))q)‘ (Y,Sz))¢2(Y,53))¢3, and
={(2,0,0), (1,1,0), (1,0, 1), (0,2,0), (0,1,1), (0,0,2)}.

Moving forward, the term outside the expectation operator is omitted. The goal now is to evaluate
the expectation (A.1). Using Lemma 3 one can verify that:

e -0 i)

D

=exp{ —AR( FR(Y,) + D A6f + dfP(Aef)z)}

R
xB,

exp{ —AR( (s, 0, vﬁ,l)Afo)ZR + s,z)(zR)2 )}] (A2)

where FR :R3 = R is a quadratic function of the state variables of R, and where the constants dﬁf) ,

i=1,2, as well as s(J) j=0,1,2, are independent of AGR. Now, noting that 2 ~ N(O, V[? 1), the last
line in (A.2) is evaluated as:

Ef[exp{ AR( (59 + 5D AGREE + 5D ey )}]
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” _(sR\2
= ;exp (§;O)+§511)A9R)2R+§£’2)(2R)2 xexp () o
o " v [

e \[27V[Z] (Zn]

A 0 1 2
| —ARV[2RY(s) + 55 A6R)
S S—— o (A3)
1+2AROV[2R) 2(1+24RsPVIER])
—,———
constant absorbed by WX
where §£,i) = —AR ss), for i =0, 1,2, and where it is required that:
@__1 (A4)
n 2V[2§]

Condition (A.4) ensures the above expectation is finite.
Combining (A.2) and (A.3) one can verify that the resulting expression inside the exponential func-
tion is quadratic in A@ and thus it suffices to check the usual optimality conditions:

O (PR + WY [+ WSO P |t + [+ w5 (a6 =,

AAGR
_Mf;)z (PR + WR(S) + [ 42850 |0k + [a2 + WE(51) (265 ) <,
n

whence, after some algebra, one obtains:

AW AD A®
(Am) = o+ 7 n2+ 7 2
L DO Dn
A0 e e
=Ny Y,o1, (A5)

and the second order condition —Df < 0, where:

2,0,0 1,1,0 1,0,1 0,2,0 0,1,1 0,0,2 1))\2
D§=_2((L§, D4 Ly = LD+ 200 — 4, LY + 2L )+ W (s1D) )

=: d'?; see also, Choi et al. (2019)

r__ —ARVI
2(1+24Rs7V(2R))

This verifies (50) and (51). Furthermore, from the above presentation it is straightforward to see that,
by setting AR = 0, one immediately recovers the risk neutral solution presented in Choi et al. (2019). In
other words, the model nests the risk neutral version of the model.
Now, it is easy to check that df,l) and 5510) from (A.2) are linear in the state variables:
1 D1 2) (2 3)y(3
dV =My s MPyY? +uP YD,
0 Dy 2) (2 3),(3
§O YD @y 4Dy
Moreover, d;,z) and sﬁ,l) are independent of the state variables. Therefore, plugging (A6R)* = A, - Y,,_1
from (A.5) back into:

FROV )+ WE(sOY + [ + 2w s 506k + [ + WR(s0) | (a6F)’,

yields the expression inside the exponent function on the right hand side of (49). This concludes the
proof. [ ]
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Proof of Lemma 5. Omitted. See, the proof of Lemma 3. [ ]
Proof of Lemma 6. The proof is similar to the proof of Lemma 4. [ ]
Proof of Theorem 1. The proof of the verification theorem follows from Lemmas 2 - 6. [ |

B NUMERICAL ANALYSIS

Appendix B introduces the numerical methods.

B.1 General Discussion

In this appendix, the procedures to determine an equilibrium numerically are described. This is nec-
essary as, due to lack of analytical solutions, most models of strategic trading in finance are forced to
utilize numerical methods in illustrating various equilibrium properties. The standard numerical ap-
proach, more or less applicable to the present model, is detailed in Kyle (1985) and it consists of a
combination of an “educated” initial guess and a backward induction based solution procedure, involv-
ing simple numerical (univariate) root-finding. The approach terminates when one finds an initial guess,
which produces a set of starting values matching those set by the modeler ex ante. This approach is
well-suited for solving many important extensions of the standard Kyle-model such as versions with
risk averse informed traders, multiple informed traders, and so forth. 54

In the model at hand there are two additional complications, not present in Kyle (1985) and its
simpler extensions. (1) Instead of a single initial guess, one is required to provide three initial guesses
Tyl = (ZS\})—l EE\?)—I 25311 )T, all of which should be, in some shape or form, mutually consistent (recall
the discussion in Section 5.2), and (2) instead of simple univariate root finding problem one is faced
with the task of solving a system of (simultaneous) polynomial equations. As the implications of these
complications on equilibrium existence and multiplicity are already dealt with in the main text, the
focus here is instead on the implications on applicable solution methods and the solution procedure.

Two approaches for determining the (set of) numerical solution(s) to the model presented in this
paper are discussed in detail. The first one emphasizes speed and is useful due to the fact that finding the
correct initial guess usually boils down to a three dimensional grid search with bisection—a procedure
which can easily take a large chunk of computing time.>® The second one emphasizes uniqueness of the
solution path and is best used in conjunction with the first approach, as the second approach is orders of
magnitude slower than the first one. Using the combination of these two approaches could be deemed as
a sort of hybrid approach, benefiting from the best of both worlds—the first approach is used to narrow
down feasible initial guesses and the second approach is used to examine the number of solutions which
meet the equilibrium conditions.

54 However, due to the dynamic nature of the problem, solutions from later rounds are used as inputs in solving

model equations in earlier rounds. This feedback leads to the possibility of dynamic (propagating) error which
may cause (numerical) instabilities. To be more specific, in each round, after having solved the key equilibrium
constants, one solves the value function coefficients using the constants solved earlier. These value function coef-
ficients are then (again) plugged into their respective objective functions to be used in the subsequent optimization
problem. Increasing N, the number of trading periods, one increases the number of these backwards substitutions
where the solutions from the previous round are directly used to solve the next period problem.

Typically, in economics and finance, one utilizes this sort of search in a situation where, for instance, one has to
find a discrete approximation of a complicated objective function over some predetermined subset of R”. In this
type of situation, determining the “optimal grid” is usually a rule-based problem, whereas in the present model
one initially faces a substantial amount of uncertainty pertaining to how to best set up the initial grid.

55
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The key steps in the numerical procedures are:

(1) The starting step, similarly to Choi et al. (2019), involves guessing the period N — 1 values of the
conditional moments (Z%i k=123 s well as fixing the values for other model constants. Due
to the trading constraint, the trading parameters of the rebalancer in period N are fixed as ,8§ =1
and aﬁ = 0. Thus, one only needs to solve for ,8]’V and Ay as depicted in Lemma 1. Finally,
before moving to period N — 1, one needs determine the value function coefficients (11(\‘;),)1)%9
and (L%i geo for both I and R respectively. These value function coefficients depend only on
parameters which are known at N and can thus be treated as constants in the period N — 1 problem.

(2) Inrounds n=N—-1,N-2,...,1 the algorithm proceeds by backward induction, taking as inputs the
conditional moments and value function coefficients solved in the previous round and proceeding
to determine, under the equilibrium path restrictions, the trading parameters {BL,8R, aR} pricing
parameters {4,,r,}, and the conditional moments X,,_; = (2(1) 2(2) 2(3) ) Initially, the afore-
mentioned parameters are solved using local methods, ignoring the fact that multiple solutions may
exist for the system of nonlinear equations. Finally, the value function coefficients (11(1“_’)] Jweq and
(Lg’i)l),peq) are updated. The algorithm returns to step (1) until the initial guesses produce moments

that concur with the fixed starting values (Z(k))k_l 23

(3) For a previously determined set of equilibrium starting values, denoted by SN o the equilibrium
path is recalculated, this time taking into account all solutions to the equlllbnum system of equa-
tions.>® The goal is to explicitly rule out all solutions which do not adhere to the equilibrium
conditions and by doing this to verify whether or not there are, for a given parametrization, multi-
ple equilibria.>” It is evident that the solution found earlier, the de facto starting point of step (3),
should survive this process of elimination and thus at least one equilibrium remains at the end.

B.2 Description of Basic Nonlinear Algorithm

Algorithm 1 describes the solution method for the dynamic Markovian equilibrium based on solving
the complete nonlinear equilibrium system of equations. For reference, define the so-called equilibrium
system of equations to constitute of equations (40) and (41), which define the pricing parameters, 4,
and r,, equations (42)-(44), which define the conditional moments Z(’) i=1,2,3, and expressions (56)
and (52), which give ,8,’1 as well as Bﬁ.

36 For the sake of efficiency, SE o—Or, more specifically, the tuple of initial guesses related to Sy e £O —is initially

determined using an al gorlthm (A gorithm 1) which, at each round, finds only one solution to the set of equilibrium

equations. Finding S6 EO usually requires one to go through a large grid of initial guesses and consequently, to

speed up this process, a fast algorithm is crucial. Once the iterative part is over and SQ’ EO is obtained, one can use
a more specialized algorithm (Algorithm 2) to study equilibrium uniqueness.

Complex solutions may be removed immediately, while real solutions are ruled out by establishing that they are
not part of any feasible equilibrium path.

57
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Algorithm 1: Linear equilibrium search and verification using Newton’s method

Input: Number of periods N, termination parameter € > 0, risk aversion coefficients Al and AR, variance

of noise trading demand 0'3, variance of risky asset payoft a'%, variance of (latent) trading demand
0'3, correlation p between ¥ and &, and initial guesses for Z;}zl ) Zgzl , and ZSL.

Output: For all n = N,N —1,...,1, the trading parameters (8], B, oX), pricing parameters (1, r,),
moments 2;’11, with i = 1,2, 3, the value function coefficients for /, (1,(1“’)),,,69, and value function
coeflicients for R, (Lﬁ,'ﬁ) )ped-

for(n=N;n=1;n=n-1)

if n = N then

Fix ,Bﬁ =1, a% :=0, & ry := 0 and solve constants ,va and Ay using (30) and (31)“.

Using (8L, B, af, Ay, ry), and the fact that I = 0, Y € Q and LY = 0, V¢ € ®, determine

the value function coefficients (11(\‘,"7)1),‘,59 and (L%ﬁl),,,eq;.

else

Plug in the known constants (i.e., value function coefficients and current period conditional

moments) to the equilibrium system of equations and solve the resulting system using Newton’s
method.

Using the solved equilibrium parameters, determine o via (52).
Check the second order conditions DX > 0 and D/, > 0.

if Equilibrium constraints are satisfied” then

‘ Determine the value function coefficients (lr(l"j)1 Jweq and (LE:{)I )¢co and proceed to round
n—1.
else
‘ Adjust initial guesses £
end

0]

N_1° i=1,2,3, and start the algorithm from the beginning.

end
endfor

if [~ 02| < eand [£ - 02| < e and [E) — pory 07| < € then

‘ The algorithm terminates.
else

ust initiz cee 3@
‘ Adjust initial guesses X,

end

i=1,2,3, and start the algorithm from the beginning.

a

Note that these equations need to be modified to the general N period case in an obvious way.
b

Equilibrium constraints are taken to mean that each equilibrium constant is obtained from the equilibrium system

of equations and the second order conditions as well as the natural conditions (positivity etc.) for the conditional

moments are satisfied.

Finding the appropriate initial guesses for the conditional moments over the three dimensional
search space is nontrivial and, due to the complex interconnections between the model parameters, the
equilibrium system of equations gives little information concerning the correct values of these initial
guesses. For this reason, one needs to have an efficient way to search for—basically a three dimensional
grid search—a fitting tuple of initial guesses. Algorithm 1 is used for this purpose. More specifically,
in each period the nonlinear equilibrium system is solved with the fast converging (local) Newton’s

method.>8

58

the eventual root of the target system.

The fast convergence of the Newton’s method relies on providing the method a starting point relatively close to
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B.3 Description of Homotopy Algorithm

The search and verification algorithm for the dynamic Markovian equilibrium using polynomial homo-
topy continuation is described in Algorithm 2. It assumed that the equilibrium system of equations is
manipulated to yield two coupled polynomials in 8] and 8% instead of the seven equation nonlinear
system used in Algorithm 1. The mechanics of this manipulation operation are briefly presented below.

Let ?"n’ denote the polynomial related to (56) and ‘7-',,R denote the polynomial related to (52). To see
that solving the equilibrium constants can be reduced to solving the system %,/ = 7K = 0 start by noting
that solving (42)-(44) backwards yields:

s __ (= Apm) + i) B.6)
R - DR+ ) + A= - 1)
2)5(2 3)s(3
o _ WpH?E) + BPED + B N B
n-1 =1 _ 1 2l AR — 1\ 3R I _gRy_q) here (B.7)
(1= B BE = DB+ 1) + AL =B~ 1)
BY =1+ BL(BR @~ A~ 1)+ BR(BR (1 + 1) - 2+ )
B =B a,(1- R+ 1)
3
s __ U=BRA+r)EY + ApRE]D B5)

=L BR - 1)(BRA + 1)+ 4,BL(1 =B~ 1)

Plugging the above expressions to equations (40) and (41), solving for 4,, and r,,, and simplifying yields
A, and ry, as equations of ﬁfl and ﬁf only. These expressions can then be substituted back into (B.6)-
(B.8) which in turn yields Zﬁll_)] , 2512_)1, and 223_)1 expressed in terms of B and SR only.

The final step is to plug in the new expressions for A, 7y, 251131’ 251231’ and Zf}l to:

n

DL - -1 = 0

n

DR - A -2 VAP = 0,
B

s

obtained from the FOCs of R and I respectively.”® Simplification and algebraic manipulation of the
resulting expressions then gives the two (coupled) polynomials #7 and #®. The equations obtained in
this manner are referred to as the (coupled) B-equations.

Due to the fact that 4,,, ry, Z;l_)l, Zf—)l’ and 223_) | are at this point expressed as functions of Bl and
BE only, it follows that solving 7,/ = FF = 0 is sufficient for obtaining the values of all of the remaining
equilibrium constants. For a given solution pair, the values of the other equilibrium parameters are thus
uniquely determined.

3 Unfortunately these equations are too complicated to be presented explicitly.
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Algorithm 2: Linear equilibrium search and verification using PHC

Input: Number of periods N, termination parameter € > 0, risk aversion coefficients Al and AR, variance

of noise trading demand 0'3, variance of risky asset payoft a'f, variance of (latent) trading demand
0'3, correlation p between ¥ and &, and initial guesses 25\}11 ) Zgzl , and ZSL.

Output: For all n = N,N —1,..., 1, the trading parameters (ﬁfl, ﬁf, aff), pricing parameters (4,, r,),
moments (2531)’ with i = 1,2, 3, the value function coefficients for /, (Iff"))weg, and value
function coefficients for R, (Lﬁ,'p) )ped-

for(n=N;n=1;,n=n-1)

if n = N then

Fix ,Bﬁ =1, a% := 0, & ry := 0 and solve for the constants ,85\, and Ay using (30) and (31)“ .

Using (B, BR. R, A, ry), and the fact that 1% = 0, Vw € Q and LY = 0, V¢ € @, determine

the value function coefficients (11(\‘,"7)1),‘,59 and (L%ﬁl),,,eq;.

else

Plug in the constants from the previous round and extract the set of real solution pairs from the
set of all (C?) solutions to the coupled B-equations.

Determine whether the set of real solutions contains feasible solutions by solving for the other
equilibrium constants A,,, r,,,af , and (Zszl), i =1,2,3, and verifying that the SOCs and other
equilibrium conditions hold.

If multiple feasible solution pairs are found, all pairs are tested one by one.

if Equilibrium constraints are satisfied then
‘ Determine the value function coefficients (IL‘f)l Jweq and (L;*{)l )¢co and proceed to round
n—1.
else
‘ Break the loop and adjust the initial guesses =0

vo1»1=1,2,3.
end

end
endfor

if 5"~ 02 < eand £’ — 02| < € and [} — por, 07| < € then

‘ The algorithm terminates.
else

‘ Adjust initial guesses 2%)4, i=1,2,3, and start the algorithm from the beginning.

end

¢ Note that these equations need to be modified to the general N period case in an obvious way.
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Order Execution Game with Transient Price Impact and
Asymmetric Information

Mika Hannula*

Abstract

In this paper an order execution game between a large frader and an
adversary arbitrageur under transient price impact and asymmetric
information is studied. The model extends previous work by Moallemi
et al. (2012) and shows that shifting from a permanent (linear) price
impact to transient (linear) price impact markedly changes the optimal
trading strategies of both the trader and the arbitrageur. Furthermore,
the impact of transaction fees on the equilibrium strategies and expected
profits is examined and it is shown that small transaction fees may be
beneficial for a large trader utilizing suboptimal trading strategies. The
paper concludes with an overview of numerous directions for future
research, illustrating the wealth of remaining open questions.

Keywords: Strategic trading, optimal execution, transient price
impact, asymmetric information, transaction fees

JEL Classification Numbers: G14, G23, G24

I INTRODUCTION

Optimal execution problems have recently gained much attention in the finance lit-
erature and industry. While there are a number of reasons behind this development,
the advent of new trading technologies—floor trading has given way to electronic
trading—and introduction of new regulation (e.g., MiFID Il & Reg. NMS best ex-
ecution rules) are among the chief culprits for the ever increasing use of trading
algorithms and reinforced attention towards trade execution quality (cf. Anand et al.
2011). Increased adoption has sparked the interest of researches, which instead has
fueled innovation and development in this growing and evolving area of finance.

In short, an optimal execution problem asks how to optimally buy or sell a given

*
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number of some target security while taking into account the fact that trading, in con-
trast to what some well-known models of financial markets would have you believe,
tends to be costly. First, trades tend to have an impact on the price of the security
traded, i.e., liquidity is limited. In fact, one of the key questions in how to set up an
optimal execution problem is how the price impact of trades is modeled, and most
strategic trading models, i.e., models where traders acknowledge that their actions
are costly and influence prices, focus solely on the effects of price impact. There are,
however, other costs such as various trading (transaction) fees, adding to the total
execution costs.! Further, a trader 7, while executing a given trade, may face a sit-
uation where there are some adversary traders present in the market, trying to profit
from the (predictable) trading program of 7.2

Returning to the issue of price impact, in classical models, such as Kyle (1985)
and its many extensions, price impact is assumed to be linear and permanent. Lin-
ear permanent price impact is theoretically well-founded in that it rules out quasi-
arbitrage (see, Huberman and Stanzl 2004). Many, more practice oriented models,
such as Bertsimas and Lo (1998), Almgren and Chriss (1999), Almgren and Chriss
(2001), and Huberman and Stanzl (2005) distinguish between (typically linear) per-
manent price impact and temporary price impact, where the latter may be nonlinear
and affects only current trades.’

More recently, a view that price impact should in fact be modelled as a transient
effect has gained foothold. This view is taken, for instance, in the influential paper by
Obizhaeva and Wang (2013), where the authors focus on modeling the dynamics of
a limit order book (LOB), arriving at a tractable optimal execution model which fea-
tures transient price impact. A large literature follows in the footsteps of Obizhaeva
and Wang (2013).* The model developed in this paper also embraces the transient
price impact view. However, different from most earlier models, the two additional
sources of trading costs, namely, transaction fees and the existence of potential ad-
versary traders is also recognized.

The first is achieved by augmenting the objective functions of the model agents
with quadratic transaction fees. As for the second source of additional trading costs,
a distinguishing feature of all of the theoretical papers discussing optimal execution
listed above (excl. Kyle 1985) is that they deal with a “single-player in a vacuum”
setting, i.e., there are no strategic interactions. This is naturally a notable shortcom-

' Generally speaking, trading fees could be categorized as being visible costs while, for example, price impact

costs may be considered as invisible (cf. Treynor 1994). Explicit (transaction fees) and implicit (price impact)
costs is another commonly used categorization.

The case of LTCM is (by now) a classic example. See, Brunnermeier (2005).

Obviously, in order to be able to separate permanent from temporary, one must assume that there is a long enough
time between distinct trades.

Working paper versions of Obizhaeva and Wang (2013) date back to at least 2005 and many extensions to the
model were developed and even published prior to the publication of the original paper. For instance, Alfonsi et al.
(2010) replace the block-shaped LOB of Obizhaeva and Wang (2013) with a more general shape function and derive
optimal strategies. Similarly, Predoiu et al. (2011) study a generalization of Obizhaeva and Wang (2013).

2
3

4
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ing as real markets thrive on dynamic interactions between different market partici-
pants. To reconcile this issue, the model developed below features, in addition to a
large trader seeking to execute optimally an exogenously given trade, an adversary
arbitrageur whose goal is solely to maximize trading profits.

More precisely, the framework studied involves two players, one of who is ex-
ogenously required to execute a given trade. This exogenously constrained player is
henceforth referred to as trader 7. The other player, henceforth referred to as arbi-
trageur A, only seeks to profit from the trading needs of 7. Asymmetric information
is introduced in the form that the size of the initial position of 7~ is observed by 7~
only, and A must infer the size of the evolving asset position from the (partially
observed) trades of 7.

The papers closest to the present model are Moallemi et al. (2012), on which
the transient price impact order execution game featured in this paper is built upon,
and Choi et al. (2019), who study a related extension of Kyle (1985) featuring non-
nested asymmetric information and linear permanent price impact. Other closely
related papers include Yang and Zhu (2020), who also study an extension of Kyle
(1985) where “back-runners” can observe past orders of informed investors who, in
turn, are forced to resort to using randomized strategies, as well as Strehle (2017)
and Schied and Zhang (2018), who study an order execution game under transient
price impact and symmetric information.’

The present model differs from Moallemi et al. (2012) in that instead of permanent
linear price impact, the model is formulated under transient linear price impact. As is
shown below this change yields non-trivial changes to the resulting optimal trading
strategies. Moreover, Moallemi et al. (2012) assume that there are no additional
trading fees, whereas quadratic fees are included in the present model.

Similarly to Moallemi et al. (2012), Choi et al. (2019) and Yang and Zhu (2020)
utilize permanent linear price impact.® However, in these Kyle-based models price
impact is endogenous. In the model below the price impact, as noted earlier, is tran-
sient and exogenous.7 Moreover, Choi et al. (2019) conduct their analysis under
non-nested information sets (two-sided asymmetric information), while the present
model, together with Moallemi et al. (2012), features nested information sets (one-
sided asymmetric information). Yang and Zhu (2020) instead focus on a two period
model and assume that there are back-runners in the market who obtain signals per-
taining to the past trades of a fundamental investor which forces the fundamental
investor to adopt a mixed trading strategy and, as such, the motivation behind their

See also, Schied and Zhang (2017) and Huang et al. (2019).

Linear permanent price impact is best suited for models with private fundamental information which is slowly
incorporated into prices. While there is private information in the present model, it is not considered to be funda-
mental, i.e., information directly tied to the economic state of a company whose securities are traded or information
related to the state of the surrounding economy.

Endogenous transient price impact would essentially require one to model explicitly the dynamics of the under-
lying limit order book. This task is beyond the scope of this paper.

6
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paper is quite different from the present paper. Choi et al. (2019) and Yang and Zhu
(2020) also ignore costs other than those stemming from price impact.

Strehle (2017) and Schied and Zhang (2018) feature transient price impact and
quadratic transaction costs but the models analyzed in these papers are formulated
under the assumption of symmetric (perfect) information. In reality traders are not
equally informed and a more appropriate setting features asymmetrically informed
traders as in Moallemi et al. (2012), Choi et al. (2019), and the present paper.8

In sum, the objective of this paper is to push the boundaries of existing models
and to study a more multifaceted order execution game with transient price impact,
trading fees, as well as strategic interactions and asymmetric information. On top of
this main objective, the main contributions to the existing literature are:

1. Analysis and comparison of the equilibrium strategies between (linear) perma-
nent and (linear) transient price impact order execution game.

2. Insights into additional equilibrium properties and equilibrium existence in this
new framework.

3. Numerical analysis of expected execution costs and factors affecting these costs
under various trading strategies.

4. Analysis of the impact of introducing quadratic trading fees to the above-
described framework.

5. A comprehensive look at the assumptions behind most current models supple-
mented with thoughts on potential modifications.

The rest of this paper is organized as follows. Section 2 introduces the model.
Section 3 presents the model analysis. Section 4 provides the results from the nu-
merical analysis. Section 5 discusses some specific model details and potential ex-
tensions. Section 6 concludes the paper. All proofs are allocated to Appendix A.°

2 MODEL

2.1 Preliminaries

The trade execution game involves two risk neutral players and takes place in discrete
time, i.e., t = 0,...,T,T + 1. The first player is referred to as the trader (7, she) and

8 Predatory trading models such as Brunnermeier (2005), Carlin et al. (2007), and Schied and Schoneborn (2009a)
also feature perfect information.

®  Appendices B and C provide additional details pertaining to the numerical methods and equilibrium analysis.
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the second player as the arbitrageur (A, he). One may interpret 7, as a (large)
trader who is subject to a privately observed exogenous shock, resulting in a need to
acquire/liquidate a number of shares in a risky asset.'® A in turn can be interpreted
as an opportunistic trader, seeking to profit from short-term price movements. The
probability space (Q,%,P) is taken as given and all random variables featured in the
model are defined on this space.

As in Moallemi et al. (2012), both 7~ and A are subject to boundary conditions
(i.e., hard trading constraints). Namely, letting x; (y;) denote the target stock position
of 7 (A) at time ¢, it is required that x; = 0 and yr4+; = 0. The assumption that A
has one extra period to close his position again reflects the notion that A has more
freedom in pursuing profit seeking trading strategies. Trade sizes at time ¢ of 7 and
A respectively are denoted by u; and v; so that the target stock position has dynamics:

Xt = Xp—1 t Uy,
Vi = Y1+ Vs

The game features asymmetric information in the sense that the initial stock posi-
tion of 7-, denoted by Xy, is assumed to be private information of 7~ while ‘A begins
the game with a (Gaussian) prior:!!

%o ~ N(uo, 03, ¢o = (1o, o). (1

The realization xy of Xy, observed exclusively by 77, is thought being a direct con-
sequence of the aforementioned exogenous shock. A’s initial position is denoted by
yo and it is assumed that yg is common knowledge; in what follows it is generally
assumed that yg = 0 which is consistent with the assumption that A is free to pursue
profits from short horizon strategies and prefers to end up with zero inventory. Due
to the common knowledge assumption, it follows that the information set of 7~ nests
the information set of ‘A and hence there will be no forecasting the forecasts of others
problem as in, for instance, Foster and Viswanathan (1996).

All period t trades are assumed to be executed at price p;, where, fort=1,...,T +1,
and po = 0 fixed, p; has the following dynamics:

Ap;=vq— (1 —a@)si-1, (2)
where!2
Gi =t + v, +e,, with & "< N(0,02) and

S; = Z o' Tyg, with @ € (0,1] and so = 0;

7=0,...,t

10 The exogenous shock could be, for example, arrival of new fundamental information or a change in market

conditions that plunges 7~ into a state of distress.

The private information assumption is interpreted as 7~ observing at ¢ = 0 the realization xo € R of Xo.

Note that ¢,, the realization of g,, is used to denote the total order flow for period ¢. After period ¢ trading, g,
becomes public knowledge due to the fact that the total order flow is inferable from price changes.

11
12
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In other words, trades impact prices and price impact is assumed to be transient
(whenever 0 < @ < 1) with factor @ and an exogenous intensity y. As noted by
Obizhaeva and Wang (2013) this form of price impact is consistent with the notion
of replenishing liquidity backed up by empirical literature (see, for example, Biais
et al. 1995, Degryse et al. 2005, and Large 2007).

Above, &’s represent periodic random (noise) trades which, from a modeling
perspective, enable 7 to hide part of her private information from A over an extended
period of time. This is a standard assumption in finance literature, especially in the
context of strategic trading models.

A small digress to further discuss the repercussions of the transient price impact
assumption is in order. Classical market microstructure literature (cf. Kyle 1985)
assume permanent linear price impact leading to price dynamics of the form:

Ap: = gy,

where A, is allowed to be endogenous. Generally, A, is derived using Gaussian filter-
ing, in which case it has a clear interpretation as being the result of market makers’
efforts to filter price relevant information from aggregate order flows. As a result,
prices are semi-strong form efficient in that they reflect, within the context of a given
model, all public information. This interpretation for the permanent price impact
intensity A does not extend to the transient intensity y, or more generally y;, which
should be thought of as stemming from the features of an unmodeled underlying
limit order book and not from the filtering efforts of a set of market markers. Hence,
v is taken to be an exogenous constant and one can interpret price impact as being
liquidity-driven.

Moreover, looking at the present model, the notion that prices would be governed
by a linear permanent price impact and would reflect all public information would
essentially mean that A could not trade profitably on any price relevant information
obtained from aggregate order flows as this information would already be reflected
in the prices. In addition, trades that do not contain price relevant information would
have no price impact. However, under transient price impact, and because price
impact is not assumed to be purely information-driven, A has a clear incentive to
pursue trading strategies which are designed to reap profits from short-term price
movements. Section 5 discusses incorporating the Kyle-lambda (1) in to the present
model.

2.2 Optimal Execution Problem

Given the dynamics for the stock positions, price, and information sets (%, , F;7)—
which are described properly in (11) and (12)—the objective of both 7~ and A, for
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eachr=0,..,7—1,T, is to maximize expected profits given by:

T-1
H;r = ]E[ Z Apri1x: — echz | 7_;7-]’ )
7=t
T
Htﬂ = E[Z Ap'z'+1y7' - ecAy% | ﬁﬂ]’ (4)
T=t

over admissible, u = (uy,...,ur) € U and v = (vi,...,vr+1) € V, where u, (resp. v;)
is required to be 7—"? -adapted (F'-adapted) and the sets U and V refer to all ad-
missible controls for 7 and A respectively. To understand the objectives in terms of
controls one should recall that, for example, Ax; = u;.

In addition, 8. > 0 is the common transaction fee parameter and A is used to
denote differences, i.e., Aw; = w; —w,_1. Naturally, setting 6. = 0 corresponds to the
situation where transaction fees are ignored.

2.3 Equilibrium Concept

The relevant state variables for the model as described above are:!3

x; — describes the evolution of 7 s position
y; — describes the evolution of (A’s position
u; — describes the evolution of A’s beliefs

s; — describes the fading impact of past trades.

As in Moallemi et al. (2012) and Choi et al. (2019), the trading strategies of the
players, for all # =1,...,7 + 1 are conjectured to be Gaussianity preserving, linear
functions of the state variables, i.e.,

Up = Ax 1 Xe—1 T Ay V-1t Qpefls—1 T A5t St-1, (5)
Ve = Dy V-1 + Dy apte—1 + bsp5e-1, (6)
which in turn implies that the value functions of 7 and A will be quadratic in the

state variables. More specifically, let £ ;7— eR*and ¢ ;7{ € R3 represent the state variable
vectors of 7 and A respectively as follows:

{;T = (xl"yt’/vlt’ st)9 (7)
&M= G, s0)- (8)

Recall that 7~ can determine g, the same way A can due to the nested nature of the information sets of the
two traders. Thus, one should keep in mind that y, always refers to the conditional expectation restricted to A’s
information set.

13
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Then the value functions take the forms:!*
U; =¢;-vech¢” @¢7)7, 9)
Vi=d;-vech¢/' @7, (10)

where the constants €; = (Cxx,s Cxy,rs Cxpi> Cxcsis Cyyuts Cypts Cys,is Cupasts Cusyts Css,) T€pre-
sent the value function coefficients of 7~ and in a similar manner the constants
d; = (dyy 1, dyy s dysts Ay dys,p- dys,) Tepresent the value function coefficients of A.

The goal is to find a (weak) Perfect Bayesian equilibrium in pure strategies ac-
cording to the following definition. !>

Definition 1 (Perfect Bayesian Equilibrium (PBE)). A perfect Bayesian equilib-
rium of the model is a system of beliefs ¢ = (u,0) and a pair of strategies (u*,v*)
such that:

(1) Taking ¢g as given, ¢,, for each t = 1,...,T, is obtained via (14) and (15), consis-
tently with Bayes’ rule.

(2) A’s strategy v* € V is sequentially rational, i.e., for each t = 1,...,T + 1, it max-
imizes (4) given {¢;} and the conjectured strategy 0.

(3) T ’s strategy u* € U, such that u* =, is sequentially rational, i.e., for each
t=1,...,T, it maximizes (3) given v* € V and {¢,}.

Absent from the above definition is the fact that the state variables {x;,y;,uy, s;} will
adhere to Markovian dynamics, which enables the use of standard dynamic opti-
mization tools. In spite of this, the equilibrium of the model cannot be expressed
in closed form and numerical methods are instead utilized to obtain model solutions
and to evaluate model properties. The numerical algorithm is adapted from Moallemi
et al. (2012) and described in Appendix B.

Another point in Definition 1 that deserves more attention is the belief system.
Indeed, the beliefs in the definition are referred to only in a simplified fashion, de-
picting them as they were separate from the explicit sources of uncertainty brought
on by the underlying probability structure. This issue is remedied in the following
section.

14

The term vech(-) refers half-vectorization. This specific linear transformation is utilized since, for example, the
outer product ¢, ,ﬂ ®L; f‘ yields a symmetric square matrix, i.e.,

Yoo i s
el =y 12 s
YiSt MiSt S7
15" For simplicity, beliefs at zero-measure information sets are not restricted, hence the qualifier weak. This is not
consequential for the results obtained below. The pure strategy restriction is taken to be implicit in the two sets of
feasible strategies U and V.
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2.4 Information and Filtering

Even though A cannot directly observe the realization of Xy, he can still improve his
view on the target stock position of 7~ over time. Due to the fact that the underlying
uncertainty takes the form of Gaussian random variables, linear filtering techniques
can be used to obtain A’s beliefs in a manner consistent with Bayesian updating. To
see this, note that each price change involves, for A, an uncertain component:'®

%= APy —Ezﬂ[Aﬁt] =y(it, + &) — 7(&)),0’:—1 + Qg -1 + sSi-1)
= Yy X1 + &),

where ]Efﬂ[-] =E[- | 7‘;&2‘] is the conditional expectation of A based on his period
t information specified below, and where the first term after the second equality,
v(il; + &;), is clearly Gaussian and the term after that is a known constant. Call these
terms innovations and denote z' = (zy, ..., ;).

The hatted versions of 7 ’s trading parameters refer to the fact that ‘A cannot di-
rectly observe the trades of 7~ and thus cannot verify the strategy 7~ is using. Instead,
A makes inferences based on his own actions and the conjectured strategy of 7. As
it is possible that the conjectured strategy differs from the actual strategy used by
7, hatted versions, i.e., dy,, dy;, dyuy, and ag, are used to designate the conjectured
trading parameters. A reasonable follow-up question is whether one should also de-
termine hatted versions of A’s trading parameters, i.e., IA)L,, i €{y,u,s}. To answer
this, it is wise to have a look at the information sets of 7~ and A.

First, it is important to emphasize that the innovation z; only becomes available
for A after period t trading. For this reason, the information set of (A just prior to
period ¢ trading is given by:

ﬁﬂéa'(yr—l,zl,---,&—l)’ =

where o(S) refers to the o-algebra generated by the a §'. Similarly, the information
set of 7 just prior to period ¢ trading is given by:

77,7-éO'(Xt—l,)’t—l,Zla‘--,Zt—1)~ (12)

Now, to solve the problem pertaining to lAJi,,’s, the decisive question is: Does it hold
that v, € 7_—;T ? To answer this, first note that 7, in addition to her private information,
has access to the same observations as ‘A. Moreover, since yg is common knowledge,
one observes that y,— and s,—; indeed belong to 7—7 . Furthermore, it holds that:

e
= by,1y0+bﬂ’1,llo+bs,1S() eF/,

16 Due to the Gaussian noise assumption all order flows occur with nonzero probability and hence A cannot

directly infer the actions of 7". Due to this 7 ’s private information is not immediately revealed. The equilibrium
of the order execution game will feature rational expectations in the sense that in equilibrium A’ s beliefs and the
actual strategy utilized by 7~ concur.
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where 7"17 = 0(x0,y0). Suppose now (inductively) that v,_; € TZ | holds for 7—1.
This implies that y,—1 = y;—a +Vv;—1 € 7—}7 , and since it is already confirmed above that
Ui—1 and s,_1 are in 7—;7- , one obtains that v; € ‘F,T . Therefore, 7 cannot be misled
and defining 13,~,,’s would be redundant.

Moving on, by Bayes’ theorem one obtains that:

]P[jzt72t | Zt_l]

P[% | 7] = Pz [z !] o« PZ|x] X P[F | Zt_l] .
N————— ————
! Current likelihood Last best estimate

It is well established in Bayesian statistics that a Gaussian prior, e.g., P[X | 2% =
Py[Xo] (see, (1)), multiplied by a Gaussian likelihood yields a posterior (filter) distri-
bution that will also be Gaussian as long as, in each period, the Gaussian random vari-
ables are mapped through affine (Gaussianity preserving) functions. Consequently,
the filter distribution can be characterized through its first two conditional moments,
i.e., conditional mean and conditional variance. Proposition 1 characterizes these
moments.

Proposition 1 (Filtering Formulas). Suppose that A’s prior on T ’s initial position
Xo is Xo ~ N(,uo,o%), é, iid. N(O, 0'5) is independent of Xy, and that Gaussianity is

preserved in rounds t' = 1,...,t. Then, it holds that:

E[% |y Ap1.... Ap | =B[% | yi.7']. (13)

Moreover, A’s conditional distribution for X, is characterized by:

Hi é]E[fft | 7‘:?1] = ]E[)th | yz,zt]
=y i+ a5+ (U + e dpe + (1 + 008 (2 —Blz 1 271)
=qyyr-1+aspSi-1 + (&/J,t + 0,/(&x’tpt2_l))u,_1 + Ay O x1-1 + Orey, (14)
where
¢ LCOV[x,z | 27'] Qs
2

V] el
Ay (1 +ay,)

O Zy(1+ay.)g: = )
(o2 +a2)

and

o7 2% N F | = V% o2 | = V[ +ii ]y 7|

olo?

=(1+au) ">~ (15)
(0’6 +0't_1ax,t)
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It is easily seen from (15) that the scaled variance (see, Moallemi et al. 2012)
p: = 0/ 0 satisfies the relation:

s (L+ay)?

= . (16)
" (pt_—zl +ai,t)

The dynamics of p; have an important role to play in the numerical determination of
the model equilibrium. This point becomes evident from the algorithm presented in
Appendix B.

3 MODEL ANALYSIS

3.1 Illustrative Example

In this section, to gain a better grasp of some of the model features, a three pe-
riod version (¢ = 1,2,3) of the model is examined.!” This example is suitable for
demonstrating certain aspects that play an important role in the inner workings of
the model, yet simple enough that the main intuition is not buried under lengthy and
complicated equations. One of the key observations from below is that the due to the
state variable treatment of transient price impact, the model mechanics remain close
to the permanent price impact version of the model.

First, it is good to see at how the prices look in a fully explicit form. Using (2)
one obtains:

Po =0,

p1=Ap1=yq1

P2 =¥(a2+aqr)

P3 =7((13 tagqy+ 02%),

where q; = u, + v, + ¢, for t = 1,2,3. Moving forward, it is assumed—without loss of
generality'>—that y = 1. This assumption is made mainly for simplicity. From the
explicit prices, it is easy to see that, for example:

App=q—-(1-a) q ,
~——

A5

17
18

Time 7 = 0 is special in that no trading takes place.
Because all other parameters can be scaled appropriately.
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whence it is straightforward to obtain the general relation given in (2) and where the
state variable s, captures the (fading) impact of past order flows.

At this point it is useful to consider what does the optimization problem of 7~ look
when it is assumed that there are no adversary traders, i.e., no A. Noting that 7 is
required to complete her trade by ¢ = 2, one obtains: '’

]E[Aplxo +AP2X1]

_[~@-a) -172\ -
‘“( -2 -l )“ ’

negative definite for @€(0,1]

which is maximized over strategies:

{u = (uy,up) s.t. uy +ur = —x()}.

The unique solution to the above problem, which is extendable to a general 7 € N,
is the optimal strategy in the class of deterministic strategies for the case where 7~
faces no adversary traders. It is easy to see that this strategy is also optimal in the
class of adapted strategies since there is no useful information for 7 to glean from
the price process in this case. Arguments along these lines leads one to see that, for
example, the dynamic programming formulation in Obizhaeva and Wang (2013) can
be substituted with a deterministic (convex minimization) problem; see, for instance,
Fruth et al. (2014) or Lin and Fahim (2017).

However, with both 7 and A present, the market features strategic interactions as
well as asymmetric information, and in this case both players learn new information
from changes in the market price. In particular, A updates his beliefs (infers new
information) about the position x; of 7~ based on past price changes as described in
Proposition 1. Deterministic strategies overlook this learning aspect and hence, on
average, underperform adaptive strategies. This observation is summarized in the
first model feature.?”

MODEL FEATURE 1: Deterministic strategies will be suboptimal in equilibrium
due to strategic interactions and asymmetric information.

Utilizing backward induction, one sees that since 7 must finish her program at
t = 2, it must be that ”; = —x1. Similarly, since A must finish his program at = 3, it
follows that v; = —y. Plugging v; back into the objective function of A yields:

E[(-y2+&)y2— (1 - )y | 7]

2
=_~1 y; + (@=1)y2s, (17)
éd.\'.‘\z éll’,\;\-,z

19 Eigenvalues are given by: L; = %( +Va?-2a+2+(a- 3)), fori=1,2.
20 The relation of deterministic and adaptive strategies is revisited in Section 4.2.
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whence, using the value function coefficients from above, ué = —x1, and the dynamics
of s, from (2), one arrives at the ¢ = 2 objective of A:

]E[(Vz —xi+eéy—(1- CY)SI))’I
— 1+ ) (01 +v2) = (@ = D(asi +v2-x1+&)) | 73],

which is maximized over feasible v,. The above objective is immediately recognized
as a quadratic and it turns that a similar observation can be made for each trading
period and for the objectives of both 7~ and A. As a result, it is, at each period,
enough to verify the standard first and second order optimality conditions.

MODEL FEATURE 2: The objective functions of 7 and A are quadratic under
transient price impact.

Continuing the backward analysis and plugging u; = —x; back into the objective
of 7~ and assuming yo = 0, one finds that the first period objective is:

]E[(Ml + bﬂ,lﬂo + él)xo + Cxx,l(X() + u1)2
+ Cay, 1 (X0 + 1) (Yo + by, 1140) + i1 (X0 + 11 ) (O1u1)

+ s (xo+ur)(un + b o +&1) | 7.
The first order condition with respect to u; is:
_z(cxx,l + chx,u,l + st,l)ul = (1 + 2cxx,l)xO + b,u,l(cxy,l + st,l)/JO,

whence, solving u; and equating appropriately, one obtains:

_ _(1 - cxx,l)
2(Cxx,l + glcxy,l + st,l)’

ax1

which, recalling that:

ax,l(l +ax,l)
b=
('00 +ax,1)

’

simplifies to a polynomial equation in a, ;. Having obtained the roots of this poly-
nomial, one can proceed to solving a,,; from the first order condition. Indeed, deter-
mining the coefficients of the a,-polynomial and solving it is a key step in each round
t=1,..,T -1, as ay is used to obtain the values for all of the remaining constants a,,
ay, and a.

The last thing to note is that the model features transient price impact as long as
a € (0,1). Setting @ = 0 would essentially mean that there is only temporary price
impact; this case is not of interest here. A question that remains is what happens
when @ = 1? To make an educated guess, one should see what happens to (17):
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the coeflicient dy, goes to zero. In fact, it is easy to verify that @ = 1 means that
all model parameters featuring the subscript s will go to zero and what remains is
summarized in the final model feature.

MODEL FEATURE 3: Linear permanent price impact model can be recovered by
setting a = 1.

3.2 Dynamic Equilibrium

Suppose the current period is t. Using the approach put forth in Section 3.1, one
can verify that a,; from the first order condition of 7 satisfies the following cubic
equation:

> fud, =0, (18)

k=0,1,2,3

where f;; € R are (reasonably complicated) constants obtained again from the first
order condition. These constants—whose numerical values change moving from one
period to another—depend only on ¢,—obtained from the previous round via value
function recursions—and p,_.

Having solved for a,;, one can solve p,_| using (16). After this one proceeds
to successively solving three pairs of linear equations in (ay,by,), (a,, by, and
(as;, by, also obtained from the first order conditions of (A and 7. Finally, to check
the feasibility of the solutions obtained, one must verify that the second order condi-
tions:

>

D;r (Cxx,t +YCxstt+ yzcss,t + et(cxy,t +YCus, + etcp,u,t) - Tc) <0, (19)

2
Z(d)')'J + ydys,t + 72dss,t - Tc) <0, (20)

>

A
Dl‘

hold in the current period. The final step, for each r = 2,...,T + 1, is to update the
value function coeflicients backwards for period 7 — 1, at which point one starts from
the beginning by again solving the polynomial for a,, ;. Following this backward
procedure, one is able to determine the set of equilibrium (if one exists) constants
fromt=T+1to t=1. As a final note, one should recall that periods T+ 1 and T are
special (see, Section 3.1) due to the limited strategic interactions and hence finding
the roots of the a,-polynomial is only required for periods t =7 —1,..., 1.

Having traced back the above procedure until the first period, one requires a way
to corroborate that the solution path found indeed constitutes an equilibrium. To
this end, the following theorem states the conditions required for a given candidate
equilibrium to be a PBE for the order execution game. In other words, Theorem 1 is

a verification theorem.?!
21

Bayesian belief evolution is embedded in the state variable dynamics.
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Theorem 1 (Verification Theorem). The collection:

<{ax,t’ay,taap,taas,t}, {by,t’b/l,tabs,l}a p1>a 1= 1’---’T+ 1,

constitutes a PBE in pure (linear) strategies (5) and (6) of the order execution game
(I) ay; solves (18), fort=1,..,T 1.

(I) The parameters pairs (ay,by,), (Quzbuy) and (ass, bsy), fort=1,..,T -1, are
obtained as the unique solutions to the linear systems given in (a.2).

(Ill) The second order conditions (19) and (20) are satisfied.

(1V) The scaled variance satisfies:

, +ayy)?

Pi .
Ry

The proof of Theorem 1 is provided in Appendix A.

The limitation of Theorem 1 is that while it can be used to recognize whether a
given candidate is a PBE equilibrium solution, it does not itself guarantee that, for
a given set of initial values, an equilibrium actually exists. Moreover, Theorem 1
remains silent about equilibrium uniqueness. This issue deserves some attention.

Facing a similar situation, Kyle et al. (2011) analyze a quintic polynomial to
establish equilibrium existence and uniqueness in a strategic trading model, and one
might wonder why their approach could not be applied here also. The reason is the
dynamic nature of the present model as compared to the static model developed in
Kyle et al. (2011). To understand the difference, start by fixing 7 while supposing
that the initial values (xg, yo, o, 00,0, Y, @,60;) € I C RS, where I is a compact set,
are not fixed, and note that now the polynomial (18), at a given period ¢, is in fact a

univariate interval polynomial:**

[f1ax) = { ity fir€ Qi C R}, 2y

k=0,1,2,3

where the constants (f;,) and the corresponding intervals (I ;) are dependent on the
initial values and, for example, constants from earlier rounds.

The question then boils down to whether or not this interval polynomial, for ¢ =
1,...,T —1, has a unique solution or many solutions on an appropriate interval /, C R.

22 Essentially, an interval polynomial is a polynomial whose coefficients are considered to be intervals instead

of constants. The coefficients of (21) vary with p, and 7’s value function coefficients and hence the polynomial
coeflicients effectively take values from intervals.
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Existence of a unique solution would imply existence of a unique solution to the
order execution game, or more precisely, to the restriction of the order execution
game to the initial value set 7. Similarly, multiple solutions or no solution would
have straightforward implications. The reason for why looking at the a,-polynomial
is key, is that through a, all other equilibrium parameter values can be determined in
a unique way. Appendix C provides a further illustration of the proposed approach
in an example.

Nevertheless, a detailed analysis of (21), while certainly worth looking at, is be-
yond the scope of this paper.”* Instead, equilibria in the next section are solved using
numerical methods without a theoretical existence proof. This can be justified as fol-
lows (cf. Judd 1998): if an equilibrium does not exist, the numerical methods will
with all likelihood fail. Otherwise, proceeding to look at numerical solutions is in the
current setting exactly what one would do even if one could find a formal existence
proof.

4 NUMERICAL RESULTS

4.1 Values for Exogenous Parameters

Prior to moving to the actual numerical analysis, it is helpful to discuss briefly the
values chosen for the exogenous parameters in the model. Following Moallemi et al.
(2012), three regimes describing the trading volumes in the market are designated:>*

Low relative volume regime (LRVR): po =1,
Moderate relative volume regime (MRVR): po =10,
High relative volume regime (HRVR): po = 100.

Regarding naming conventions, it should be noted that, for example, a MRVR market
with permanent (transient) price impact is sometimes referred to as the MRVR-perm.
(MRVR-trans.) market. Similar naming convention is utilized for the LRVR and
HRVR markets.

Numerical illustrations below mainly involve liquidation problems, i.e., xy > 0.7
The initial position of A is assumed to be zero, i.e., yo = 0. This choice is made
for convenience and for the sake of uncluttered presentation. Finally, the effect of

23 Example applications of interval methods are given by Stradi and Haven (2005) and Stradi-Granados and Haven

(2010).
Changes in pg are obtained by adjusting oo while holding o, unchanged.
The case with xo < 0 can be handled analogously.

24
25
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transaction fees is studied in Section 4.4. Until then, for simplicity and comparability,
it is assumed that trades are free of transaction fees, i.e., 6, = 0.

4.2 Liquidation without Adversary

This section discusses the liquidation problem without an adversary, i.e., without
A. Since most existing optimal execution models are formulated in a single trader
setting without strategic interactions, the results in this section enable one to compare
optimal strategies with earlier models.

4.2.1 Deterministic and Adaptive Components

As noted earlier, the optimal execution strategy—when both 7~ and ‘A are present—
features both adaptive and deterministic components. This contrasts prominent sin-
gle trader models such as Bertsimas and Lo (1998), Almgren and Chriss (2001), and
Obizhaeva and Wang (2013). One might thus expect that in the special case of solo
7 the optimal execution strategy would reduce to a deterministic equal-weight (EQ)
strategy (cf. Moallemi et al. 2012).2° Interestingly, this would be the case when
a = 1, but with transient price impact the optimal strategy will feature an adaptive
component even without A.
To see this, note that, without A, 7 s linear strategy takes the form:

U = Ayt Xr—1 T Qg1 S1-1,
with simplified s-dynamics:

S = asi—1 +y(u; +ep).
Hence, one obtains a forward recursive formula:

Ul = dx,1X0,

up = axp(l+ay1)xo+as2y(u +ey),

Uy = ax,t(xo +up+--- +u,_1)+ya5,,(at_2(u1 +ep)+---
1 0
+a (2 +e2)+a (- +ez-1)),

whence it is easy to see that, in addition to the deterministic component, which is
specified as the coefficient in front of x, there is an adaptive component which makes

26 The equal-weight (liquidation) strategy, for ¢ = 1,..., T, is characterized by:

-1
EQ _
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use of the noise demand ateach = 1,...,T — 1. The inclusion of adaptive components
stems from the state-variable approach. More specifically, adaptive components arise
since for @ € (0, 1), the coefficient ay, is nonzero, and 7 adjusts her trading program
to take into account the weakening impact from past order flow shocks.

Figure 1 shows examples of execution programs of solo 7~ in the MRV-regime.
From the figure one can, for example, see how changes in the sizes of trades start
to twist the evolution of x; (depicted by the red line) from a straight line (Figure 1a)
towards a mild S-shape (Figure 1c). Moreover, an eagle-eyed reader might notice
some “dissymmetries” in Figures 1b and 1c. These stem from the fact that the trading
sequences shown feature adaptive components as opposed to the fully deterministic
trading sequence shown in 1la.

Figure 1:  This figure shows the solo 7 strategy under permanent (o = 1) and transient price impact (a =
e7!, 2¢7). The first (left) vertical axis is trade size, the horizontal axis is time, and the second

(right) vertical axis is the remaining asset position. The red line depicts the evolution of x;.
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(c) Transient price impact e = 2¢~', MRVR

The impact of adaptive trades is most visible in Figure 1c, where the trading
pattern has noticeably more distinct features compared to the other two examples.
It is good to note also that the adaptive components vanish at the boundaries, i.e.,
when price impact becomes almost temporary (« approaches 0) or when price impact
becomes purely permanent (@ = 1). This is a standard result for the permanent price
impact case. With almost temporary price impact, 7 loses the ability to utilize the
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information in past order flows and a deterministic strategy is again optimal.

To further study the role of adaptive trading under transient price impact, Figure 2
separates the deterministic and adaptive components under different market regimes
and a-levels. Looking at the figure it is obvious that, for example, the discernible
pattern in Figure 1c¢ derives from deterministic components of 77’s strategy.

Figure 2:  This figure demonstrates explicitly the deterministic and adaptive components of the solo 7”’s equi-
librium strategy under different market conditions.
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It is observed from Figure 2 that the market regime and the size 7 ’s trading target
are crucial in determining how much adaptive trading occurs in equilibrium. Evi-
dently, when 7’s trading accounts for most of the trading volume, adaptive compo-
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nents are small with respect to the deterministic components. It should also be noted
that as 7~ faces no adversary traders, motives to utilize adaptive trading are dimin-
ished to a single objective: taking advantage of random profit-making opportunities.
These opportunities are understandably scarce when outside trading volume is low.
Furthermore, for example, Choi et al. (2019) document that adaptive components
can be relatively small even in a setting featuring strategic interactions. The question
of adaptive versus deterministic components is revisited in Section 4.3 when 7~ must
design an optimal trading strategy taking into account the presence of (potentially
adversary) player A.

4.2.2 Comparison to Other Transient Price Impact Models

The purpose of this section is to provide a quick comparison of the present model
to some earlier transient price impact models. This comparison helps one to better
position the current paper with respect to existing models. As mentioned before, the
comparison is done using the solo 7~ version—more specifically, using the determin-
istic components of the solo 7 strategy—as the earlier models considered do not
feature adaptive trading and because adaptive components in the present model are
small for all but the LRVR market. In essence, the restriction to deterministic strate-
gies simply means that any potential adaptive components featured in the strategies
are omitted. The trades obtained in this fashion are essentially expected trades in the
context of the current model.

Figure 3 depicts the optimal trading sequence under four different price impact
specifications in the MRVR market. As seen from the figure, all four optimal se-
quences have highly similar features.

Figure 3a illustrates the optimal strategy from Obizhaeva and Wang (2013), fea-
turing two larger trades at the beginning and end as well as constant trades in between
these two trades. Figure 3b shows a variant of the exponential resilience, namely the
Gaussian resilience, with:

Gity=e",
while Figure 3¢ features a power law resilience function:
G =1+ withk=e".

Finally, Figure 3d represents the (deterministic) trading sequence under the present
model with « resilience, where, for comparability, @ = e~!.

It is quickly observed that « resilience shares the shape of the power law trad-
ing sequence but with individual trade sizes closer to the exponential and Gaussian
resilience strategies. Overall, one may conclude that the present model is able to
capture the same features as the more explicit Obizhaeva and Wang (2013) model

and its various extensions. Moreover, « resilience, as depicted above, facilitates a
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Figure 3:  This figure presents optimal trading sequences in the MRVR market under different price impact
specifications. Parameter values: T = 10, xo = 100, @ = e !, v =1, po = 10, and finally the power law
exponent k = ¢!
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clear-cut state-space representation for the model which is essential from the point
of view of efficient (economic) analysis and interpretation. Therefore, the rest of the
paper focuses exclusively on the « resilience case.

4.3 Liquidation Facing Adversary

Having looked at the solo 7 case, it is time to consider the model version with
strategic interactions. To be more specific, this section provides a comparison of the
equilibrium trading strategies under permanent and transient price impact when both
7 and A are assumed to be present in the market.
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4.3.1 Evolution of Traders’ Positions

Looking at how the traders’ average positions evolve over several simulated runs
reveals the marked change caused by the move from permanent to transient price
impact. This is highlighted in Figure 4.

Figure 4:  This figure portrays the average evolution of x; and y; when xo = 8, tg = 0, and 09 = 10. The line with
the blue circles depicts the average x; (left) or y, (right) in the permanent price impact (& = 1) market
while the line with the black squares depicts he average x; (left) or y, (right) in the transient price
impact (@ = e~') market. The yellow area represents the difference zferm' —zi"ns- where z; = x;,y; and
t=1,..,21.
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(a) Average evolution of x; (b) Average evolution of y,

As shown in Figure 4 moving the parameter @ from 1 to e~! turns around A’s
trading approach almost completely. When price impact is permanent A’s strategy
is, in a nutshell, to start trading in the same direction as 7 (Figure 4b). Since xg
is assumed to be positive and yg = 0, this means that ‘A accumulates a short posi-
tion, expecting the price to fall further in the future due to the permanent nature of
price impact. Therefore, A’s strategy relies on the view that the short position can
eventually be closed on the cheap.?’ In this case, 7 s strategy closely resembles the
minimum revelation (MR) strategy (cf. Moallemi et al. 2012).28

When price impact is transient, however, similar logic does not apply, or—at
least—is not optimal. In fact, to maximize profits under transient price impact, A
instead provides liquidity to 7 while at the same time acquiring information about x;.
One should also note that A trades noticeably more conservatively under transient
price impact as compared to the permanent price impact case (Figure 4b). As a result
7 liquidates at a faster pace (Figure 4a), and consequently A seeks make profits

27
28

Naturally, from the perspective of A at ¢ = 0, Xp is a Gaussian random variable with mean y( and variance 0'3.

The MR-strategy is obtained by setting u; = 0, for t = 1,...,T =2, ur—_; = =0.5x7_2, and ur = —xr_;. The
minimum revelation name stems from the fact that by using this strategy 7~ ensures that A cannot obtain any useful
information about 7’s position before trading ceases. In a sense, one can interpret the choice of submitting nonzero
trades only at the last two rounds as an optimal trading horizon choice for 7~ under certain market conditions; for
additional discussion the reader is referred to Easley et al. (2015).
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during the intermediary trading-phase by acting as a liquidity provider. In the final
trading-phase, both traders share the common goal of closing their positions.

Evolution of average positions can also be illustrated by examining, instead of a
fixed xp, what happens when xg is drawn randomly from N(uy, 0-(2)). This is exempli-
fied in Figure 5.

Figure 5:  This figure portrays the average evolution of x; and y, when %y ~ N(uo, (Tg), o =10, and o9 = 10. The
line with the blue circles depicts the average x; (left) or y; (right) in the permanent price impact (@ = 1)
market while the line with the black squares depicts he average x; (left) or y; (right) in the transient
price impact (o = e~!) market. The yellow area represents the difference zf e _ ZnS-where z; = X7,
and 7 = 1,...,21. The red dashed line illustrates the minimum revelation path.
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Distinctions between the permanent and transient price impact case are again
clearly visible and it is verified that the average evolution of x; in the MRVR-trans.
market with strategic interactions is similar to the position evolution of the equal-
weight strategy. As above, the intuition is that with transient price impact the ability
of A to profitably front-run 7~ is decreased and hence 7~ can focus more on mini-
mizing the impact of individual trades. In conclusion, the observation from Figure 4
carries over even when xg is drawn randomly and g > O.

The results for the MRVR-perm. market in Figure 5, however, seem quite differ-
ent. First, it should be noted that in this case, A knows that yg = 10 which explains
the more aggressive short position during the first periods (Figure 5b). Second, the
evolution of x; under permanent price impact (Figure 5a) illustrates the various mo-
tivations affecting 7 ’s trading. Initially, when the quality of A’s information is low,
it is optimal to liquidate of decent chunk of the initial position. This is again related
to the fact that A’s prior features a positive wo. During the intermediate periods cam-
ouflage motives dominate and in the final periods 7~ must liquidate the remaining
position.

The “buy jump” (Figure 5a) just prior to the last two trades is driven by a cost
minimization objective. 7 knows that in the final periods A is forced to start buying
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to close his short position. This pushes the price of the risky asset up and hence 7~
is able to, on average, sell her remaining shares at a higher price. It makes sense to
have a bit more—just enough so that the equilibrium does not break down—to sell
to take advantage of this.

In sum, while 7 s strategy is very stable in the MRVR-trans. market, in the
MRVR-perm. market the implications of having yo > 0 are more pronounced. Com-
paring the x;-path in the MRVR-perm. market (Figure 5a) to the MR-path (dashed
red line) highlights this difference.?

4.3.2 Trading Coefficients

At this point it is reasonable to wonder what (in a mechanical sense) causes the dif-
ferences observed in Figure 4a and Figure 4b. Due to the fact that the equilibrium
strategies considered have a similar functional form in both permanent and tran-
sient price impact cases, all changes in the trading sequences are transmitted through
changes in the equilibrium trading parameters (a, ay, G, as;) and (by, by, bsy).
Thus, it is worthwhile to examine how these parameters change with the price impact
specification.

Figure 6 initiates this examination by focusing on a, in the stereotypical MVRV
market.>*

Figure 6:  This figure depicts the evolution of the trading parameter ay, in the MRVR market under permanent
(green) and transient (blue) price impact (@ = eh.
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The green line in Figure 6 shows that, in the MRVR market with permanent price
impact, 7 avoids trading directly towards the target until the end of trading hori-
zon. This is again akin to the minimum revelation strategy. At the same time, it
is observed that the same does not hold when price impact is transient. Instead,
with @ = e”!, one sees that 7~ proceeds with the liquidation program, using an—
in absolute terms—increasing trading intensity towards the terminal target position.
Evidently, this increasing intensity merges with the “almost MR-strategy” from the

29 1In general, the MR-strategy is mostly utilized in the HRVR-perm. market, but the “almost MR-strategy” is also

possible in the MRVR-perm. market as shown in Figure 4a.

30 Stereotypical in the sense that the results are similar in the LRVR and HRVR cases.
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permanent price impact market only during the final two periods in 7’s execution

horizon. Clearly, the increased intensity explains in part the faster and more straight-
forward execution pace discovered earlier.

Next, Figure 7 focuses on ay,; and by;.

Figure 7:

This figure shows the evolution ay, (black) and by, (red) in the MRVR market under permanent and
transient price impact.
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First thing to note is that 7 s intensity towards y; (i.e., a,,) is negative in the per-
manent price impact case, meaning that, for example, when (A starts to accumulate
a short position, ay; < 0 slows down the liquidation program of 7. Further, a,, re-
mains nearly constant throughout the execution horizon of 7~ under both permanent
and transient price impact, exhibiting notable variation only at the end. This varia-
tion stems from 7 s need to close down her execution program and the goal to benefit
from the fact that the same need holds true for A also.

Interestingly, as observed from Figure 7b, in the transient price impact case ay, is
close to zero instead of clearly negative. As A does not engage in a straightforward
adversary trading, 7 has less need to slow down her execution speed for protection
purposes. A’s coeflicient by, remains negative, yet distinctly smaller in absolute
terms. Negativity of by, reflects the fact A also aims the end the day with zero
inventory. Hence, it is not surprising that the path by, resembles closely the path of
Ayt

Next to be discussed are a,,, and b,,,. For this purpose, Figure 8 contrasts the
permanent and transient price impact equilibrium parameters in the MRVR market.
At this point it is good to recap how 7 s MR-strategy under permanent price im-
pact works in terms of the trading coefficients. As seen from Figures 7 and 8, the
coefficients a,; and a,, differ from zero in the MRVR-perm. market. Their impact

on the evolution of x; is, however, negligible due to the fact that when 7~ trades

slowly the state variables y, and u; remain close to zero.>!
31

Thus, the evolution of
See, Figure 10.
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x; is dominantly driven by a,, which is also close to zero during all but the last
two rounds (see, Figure 6). This explains the evolution of x; under permanent price
impact demonstrated in Figure 4.

Figure 8:  This figure shows the evolution ay, (black) and by, (red) in the MRVR market under permanent and
transient price impact.
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As seen from Figure 8 the dynamics of a,, and b, are clearly affected by the
change in the form of price impact. Starting with Figure 8a it is observed that both
7 and A have, until the very final periods, a negative weight (trading intensity) on
the conditional expected value of 7 ’s position. In particular, initially (yg = s9 = 0) A
trades—provided that y, has the correct sign—against 7 ’s expected position. Thus,
as in Figure 4b, A trades to same direction as 7 and thus acquires a short position.
This makes sense in the permanent price impact case when (A believes he is facing a
liquidating 7°. In this case A wishes to push price as low as possible so that he can
close the short position cheaply during the final trading periods.

What about Figure 8b then? Not only is the intensity b, , much smaller in absolute
terms, but a,, also takes positive instead of negative values. This change reflects
the fact that with transient price impact it is not optimal for A to (slowly) build an
opposing position to 7, relying on profitable trading opportunities and the ability to
close down the position at later rounds. Instead A is forced, consistently with Figure
4b, to glean potential profits from liquidity provision.

7’s optimal correction to change in A’s trading is to accelerate the liquidation
process with more trading towards the goal. As a result, the intensity on ; is adjusted
to a small positive value and the trading intensities (in absolute terms) a,, and ay;
are adjusted upwards accordingly.? To exemplify, Figure 9 shows the paths for a,
and by, for two different levels of @ in the MRVR market.

In interpreting the implications of Figure 9 on the evolution of y;, it is first good

32 Note that when @ = 1,a5;,=bs;=0,forallt=1,...,T+1.
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to note that by, < O implies that—when s,’s are negative, which is typical when
7 is a liquidating trader—by, drives y; towards a long position instead of a short
one. When this effect dominates one obtains a result such as the one in Figure 4b.
Evidently, whether or not this dominance occurs depends also on the other trading
parameters. The intensity by, < 0 slows down this accumulation effect while the
significance of b, ; depends, for the most part, on . All in all, the end result tends
to be conservative trading by A as illustrated in Figure 5b.

Figure 9:  This figure shows the evolution ay, (black) and by, (red) in the MRVR market under permanent and
transient price impact.
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The conservative strategy makes sense from the point of view of expected price
evolution. Indeed, if instead A would have, for instance, acquired a substantial
short position, he would face the risk of rising prices stemming from both the at-
tenuating impact of past order flows and exogenous demand from other market par-
ticipants. This risk is mitigated by choosing a more conservative strategy, which
consequently—in the case of transient price impact—also turns out to have higher
expected profits.

In essence, under transient price impact, A seeks to maintain his total asset po-
sition near neutral in order to be able to flexibly take advantage of any emerging
profitable trading opportunities. A crucial aspect of this approach is that A’s posi-
tion cannot swell too much, otherwise the immediate price impact from reversing the
position could wipe out all potential profits. This aspect is clearly visible in Figures
4b and 5b in that A’s position remains (on average) closer to zero in the transient
price impact case.

4.3.3 Belief Evolution

Looking deeper at the reasons and rationale as to why A transforms from a preda-
tor to a conservative trader, one key reason can be found from the evolution of A’s
beliefs. These beliefs inherently carry uncertainty, which diminishes as more infor-
mation is learned. This is also very much the case in everyday financial markets.



206

To exemplify this point, a short digression to tie the discussion at hand to real
world phenomena is in order here. For this purpose, consider the recent empirical
analysis by Van Kervel and Menkveld (2019). Looking at high frequency trading
around (large) institutional orders, the authors observe, among other things, that: (1)
institutional investors trade judiciously on their information (2) it takes a significant
amount of time for high frequency traders to detect and target these aforementioned
institutional orders. 33

The latter observation can be illustrated in the context of the present framework.

For this purpose, Figure 10 illustrates the belief evolution of A over a number of
trading rounds.

Figure 10:  This figure illustrates path realizations of the belief evolution (orange) and the evolution of x; (black)
under different market conditions.
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33 See also Korajczyk and Murphy (2018) and Hirschey (2018). Moreover, it is worth pointing out that assuming

A is unsure about both whether 7~ is present in the market and the realization of X, leads to a considerably more
involved model. By interpreting the realization xo = 0 as 7~ not being present in the market in the current model,
it is noted that the above analysis does not specialize to this probability zero event.
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From Figure 10 it can be seen how the beliefs of A converge to the actual position
of 7~ only during the final trading periods. Trading on noisy beliefs thus involves
considerable risk, and—taking the point of view of a real trader—one could easily
see some constraints imposed on A’s trading activities. For example, constraints
preventing (A from trading when his information quality is questionable. Then, as
observed by Van Kervel and Menkveld (2019), it would take an extended period of
time for A to react to the trading activities of 7°.>* This is especially relevant when
price impact is transient and future prices are less dependent on current trades.

Indeed, with transient price impact, the shorting strategy for A is clearly less
efficient as A must start to acquire the short position during the very first rounds
with low quality information, facing the problem that impact from past trades has
already mostly faded when A’s information quality has finally improved. Hence,
relying on the looming big payoff during the final trading rounds is largely wishful
thinking and it is optimal for A to instead opt for a conservative trading strategy,
which is much less dependent on the belief evolution process.

4.3.4 Strategic Interactions and Size of Adaptive Component

The purpose of this section is to quickly revisit the question of deterministic ver-
sus adaptive component in the trading strategy of 7.3 It is generally believed (cf.
Schied et al. 2010 and Aldridge 2013) that different types—e.g., adaptive and static
(deterministic)—of optimal execution programs perform well in different market en-
vironments. This raises the question of how important is adaptive trading when
traders face strategic interactions under transient price impact? Table 1 seeks to
provide insights to the matter.

Table 1: This table reports the adaptive-deterministic ratio R, = u,adapt Jud™ for ¢ = 1,...,10, obtained from
10 Monte Carlo runs under three different relative volume regimes and for both linear and transient
price impact (a = ¢~!) markets.

Market [ 1=1] t=2 | =3 | t=4 | t=5 ] t=6 | =7 | t=8 ] t=9 | t=10
LRVR-perm. 0.00 0.87 0.72 0.58 0.52 0.53 0.62 0.86 1.16 1.56
LRVR-trans. 0.00 4.49 4.51 4.49 4.45 4.35 4.18 3.96 3.63 4.04
MRVR-perm. 0.00 9.13 7.88 6.04 4.54 3.52 2.79 3.19 1.46 0.32
MRVR-trans. 0.00 0.80 0.73 0.68 0.63 0.60 0.57 0.54 0.50 0.73
HRVR-perm. 0.00 65.81 56.99 | 43.78 31.70 | 23.09 17.17 15.89 0.07 0.01
HRVR-trans. 0.00 0.12 0.11 0.10 0.09 0.08 0.07 0.07 0.06 0.17

Table 1 provides yet another clear illustration of the consequences of moving
from permanent to transient price impact. First thing to note is that under permanent

34 Section 5 discusses the case where, on top of asymmetric information about X, A is uncertain about whether

7 is actually present in the market.
Examining the same question for A is less relevant as A’s strategy, by its very nature, is based on adaptive
learning and taking advantage of arising profitable trading opportunities.

35
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price impact adaptive trading tends to attenuate significantly in the middle of the
day, while with transient price impact the fraction of adaptive trades tends to remain
rather stable throughout the day. The more stable trading under transient price impact
reflects the notion that periodic adaptive trades are in a sense “cheaper” since the
impact of these trades fades quickly.

A perhaps more striking finding is that adaptive trading is by and far dominant
in the HRVR when price impact is permanent, while with transient price impact
adaptive trading is most utilized in the LRVR market. While this stark difference
may feel puzzling at first, it can be explained based on the earlier discussion. In the
HRVR market with permanent price impact 7 is desperately trying to camouflage
her position. This involves aggressive adaptive trading during periods when A’s
information is still relatively noisy. In fact, essentially all of 7’s trading in periods ¢ =
1,...,8 is adaptive. Hence, as the deterministic component is small, the total trade size
during these periods is small (close to zero). Small deterministic trades also explain
why the adaptive-deterministic ratios are an order of magnitude larger in the HRVR-
perm. market than in other market parametrizations. Conversely, during periods
t =9 and ¢ = 10 there are essentially no adaptive trading but plenty of deterministic
trading. An avid reader may notice that the reason for this is that the HRV-regime and
permanent price impact forces 7 to utilize the MR-strategy, which is characterized
by two large, deterministic trades in the final two periods.

With transient price impact, however, it is optimal for 7—in the MRVR-trans.
and HRVR-trans. market—to trade in a more balanced manner. This is because in
these markets information revelation is less important relative to optimally utilizing
the transient nature of price impact via effective trade splitting. In contrast, in the
LRVR-trans. market, it is optimal for 7~ to engage in speculative trading and to
actively mislead A. These goals manifest in the form of large adaptive components.
Key facilitators here are the fact that 7 believes that her private information is well
camouflaged by the high inflow of exogenous (noise) trades and the observation that
due to @ < 1, the impact of past trades fades rapidly.

4.4 Expected Execution Costs

This section illustrates expected execution costs under various market parametriza-
tions and strategies. The impact of quadratic transaction fees on expected execution
costs is also discussed.>® Finally, to better understand how additional transaction
fees affect the equilibrium outcomes, the question of adaptive-deterministic ratios in
T’s trading strategy is revisited.

36 Empirical approaches to execution cost assessment are given in, for instance, Bessembinder (2003) and Davies

and Kim (2009).
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4.4.1 Expected Costs of Optimal and Suboptimal Strategies

The following proposition summarizes the expected execution costs for the different
strategies introduced.’’

Proposition 2 (Ex Ante Expected Execution Costs and Profits). The scaled ex-
pected execution costs for T and scaled expected trading profits for A are given,
respectively, by:
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where the value function coefficients are obtained from recursions:
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Ex ante expected costs and profits from HEQ’O and H?Q,O are obtained as special
cases of H:)r and Hoﬂ.

It should also be noted that, while for the most part not explicitly visible, the potential
existence of transaction fees is transmitted to the ex ante expected costs and profits
via the relevant value function coefficients. Table 2 illustrates expected costs and
profits numerically.

There are a few to things to note in Table 2. First, utilizing her optimal trading
strategy, 7 is considerably better off in terms of expected execution costs when price
impact is transient. Second, both the MR-strategy and the EQ-strategy perform bet-
ter from the viewpoint of 7~ under transient price impact. These results are a further
elaboration on how the form of price impact changes the nature of interactions be-
tween 7 and (A. In term of expected execution costs, 7 ’s optimal strategy dominates
both the MR- and EQ-strategies in all markets.

37 H?Q,O captures A’s expected profits when 7~ uses the EQ-strategy and A trades optimally.
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Table 2:  This table gives expected execution costs (77) and trading profits (A) under three different relative
volume regimes and for both linear and transient price impact markets. HZ; (resp. Hg‘) refers to the

optimal strategy of 7~ (A), H;C,R o (resp. H‘;{,R_O) refers to the minimum revelation (MR) strategy, and
H;;(Q,o (resp. H}?Q,o ) refers to the equal-weighting (EQ) strategy. Throughout, it is assumed that 7 = 10.

Market ‘ 1Tor ; H(L)Z{ ‘ HLR,O > HﬁR,O ‘ HZQ,O ; H?Q,O
LRVR-perm. -0.56; 0.00 -0.75;0.00 -0.57;0.01
LRVR-trans. -0.06 ;0.10 -0.59 ; 0.00 -0.14 ;0.19
MRYVR-perm. -0.75;0.02 -0.75;0.00 -1.09;0.25
MRVR-trans. -0.14;0.00 -0.59 ; 0.00 -0.15;0.00
HRVR-perm. -0.75;0.00 -0.75;0.00 -1.33;0.37
HRVR-trans. -0.14 ;0.00 -0.59 ; 0.00 -0.14 ; 0.00

Finally, for A, under permanent price impact and when both traders utilize their
optimal strategies, the expected trading profits are highest in the MRVR market
where 7 represents a lions’ share of the trading volume but not quite so much that
invoking the MR-strategy would be optimal. In stark contrast, under transient price
impact, the best case for both traders is the LRVR market where adaptive (symbi-
otic) trading is most beneficial. More specifically, in the LRVR-trans. market, as
noted earlier, the outside (noise) trading volume is large enough to facilitate more
aggressive speculative trading.

However, the best situation for A, among all possibilities considered, is the case
where 7 utilizes the deterministic EQ-strategy. Indeed, one can observe from Table
2 that H?Q,O > Hg‘ for all markets. This is in large part due to the fact that the
deterministic strategy of 7 enables A to effectively predict the trading need of 7~
towards the end of the trading horizon 7.

4.4.2 TImpact of Transaction Fees

The question posed in this section is how does imposing an across the board transac-
tion fee on trades impact the expected execution costs and profits. This question has
clear-cut implications on liquidity and market volume as increased (total) costs can
be linked to decreased volume and liquidity and vice versa. Moreover, it is found in
Schied and Zhang (2018) that introducing transaction fees may “stabilize” equilib-
rium strategies and lead to overall lower execution costs. This welfare implication
is important from, for instance, a policy making point of view and hence addressed
below. Table 3 displays the numerical results.

It is obvious from Table 3 that 7 —utilizing her optimal strategy, adjusted to take
into account the existence of transaction fees—is not better-off after the introduction
of transaction fees. As a matter of fact, 7 (A) is consistently worse-off (better-off)
in the MRVR-perm. market with nonzero transaction fees. In the LRVR and HRVR
market, when both traders utilize optimal strategies, the introduction of transaction
fees increases expected execution costs and decreases expected profits.
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This table gives expected execution costs (77) and trading profits (A) under three different relative
volume regimes and for both linear and transient price impact markets. H;)r (resp. Hg‘) refers to the
optimal strategy of 7 (A), HZ}R o (resp. Hnﬂ;m o) refers to the minimum revelation (MR) strategy, and
H;QAO (resp. H?Q o ) refers to the equal-trade (EQ) strategy. 6 is used to denote the level of the addi-
tional transaction costs. Cases where the introduction of transaction fees has decreased the expected

execution costs of 7~ are . Cases where the introduction of transaction fees has improved the
expected profits of A are presented in bold. Throughout, it is assumed that 7 = 10.

Panel A: 6, = 373

Market S H7A:IR,0 ;HﬁR,O ‘ HEQ,O ;H?Q.O
LRVR-perm. -0.57 ;0.00 -0.77 ; 0.00 -0.58 ;0.01
LRVR-trans. -0.07 ;0.09 -0.61 ; 0.00 -0.15;0.19
MRVR-perm. -0.76 ; 0.03 -0.77 ; 0.00 -1.05;0.24
MRVR-trans. -0.15;0.00 -0.61 ;0.00 -0.15;0.00
HRVR-perm. -0.77 ; 0.00 -0.77 ; 0.00 -1.28 ;0.34
HRVR-trans. -0.15;0.00 -0.61 ; 0.00 -0.15;0.00
Panel B: §, = 372
a—] R — D]
Market Iy I 7 e0 s Miigo \ 703 0,
LRVR-perm. -0.57 ;0.00 -0.81;0.00 -0.58 ;0.01
LRVR-trans. -0.08 ; 0.09 -0.65 ; 0.00 -0.15;0.18
MRVR-perm. -0.80 ; 0.05 -0.81;0.00 -1.00; 0.21
MRVR-trans. -0.15;0.00 -0.65 ; 0.00 -0.15;0.00
HRVR-perm. -0.81;0.00 -0.81;0.00 -1.20; 0.30
HRVR-trans. -0.15;0.00 -0.65 ;0.00 -0.16 ; 0.00
Panel C: 6, = 3-1
T . TA T A T . A
Market 1T, ;113 ‘ Mro s ko ‘ g0 Tgoo
LRVR-perm. -0.59 ; 0.00 -0.92;0.00 -0.59;0.01
LRVR-trans. -0.11;0.08 -0.76 ; 0.00 -0.18 ;0.15
MRVR-perm. -0.83;0.08 -0.92;0.00 -0.90;0.15
MRVR-trans. -0.18 ; 0.00 -0.76 ; 0.00 -0.18 ; 0.00
HRVR-perm. -0.92 ;0.00 -0.92;0.00 -1.05;0.22
HRVR-trans. -0.18 ; 0.00 -0.76 ; 0.00 -0.18 ; 0.00
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However, looking at the column stating the results for the EQ-strategy, an oppo-
site remark can be made. 7 is in fact better-off (lower expected costs) in some cases
using the EQ-strategy in a market with nonzero transaction fees as compared to a
market with zero transaction fees, while A is generally worse-off (lower expected
profits). This result on quadratic transaction fees is reminiscent of the one in Schied
and Zhang (2018) and highlights some important issues.

First, in Schied and Zhang (2018), where nonzero fees have a positive impact,
trading strategies are deterministic. Similarly, the EQ-strategy of 7 is deterministic,
leading one to conjecture that the positive impact of nonzero fees may only apply to
market settings where deterministic strategies are pursued. Generally speaking, it is,
on one hand, reasonable to purport that a trader utilizing a suboptimal trading strat-
egy benefits from the extra “protection” provided by transaction fees which limit, for
example, predatory trading. On the other hand, it is equally reasonable to purport that
nonzero fees constrain the utilization optimal adaptive strategies and thus the positive
impact turns to negative when adaptive strategies are studied. In sum, in considering
how to limit, for instance, predatory trading one should take into account the sophis-
tication of the trading strategies utilized by the (average) market participants in order
to avoid making the market uniformly less attractive for all traders.

Another point of view from which the impact of transaction fees can be examined
further is how these fees affect the relative proportions of adaptive and deterministic
components. This point of view can be considered as an additional robustness check
to corroborate the above discussion.

Table 4 exhibits the numerical results and it is quickly observed from the table,
though a comparison with the results in Table 1, that introducing nonzero transaction
fees do not fundamentally change the relationship between adaptive and determin-
istic components when price impact is transient. This indicates that 7’s optimal
strategy under transaction fees remains close to the optimal strategy without fees.
This is unsurprising as price impact is the main source of execution costs and given
the straightforward way in which quadratic transaction fees affect the strategies of 7~
and A.
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Table 4:  This table reports the adaptive-deterministic ratio R, ; = u;‘dap ! /uf““"‘, obtained from 10° Monte Carlo
runs under three different relative volume regimes and for both linear and transient price impact mar-

kets. 6, is used to denote the level of the additional transaction costs. Throughout, it is assumed that
T =10.

Panel A: 6. =373

Market [ r=1] =2 | t=3 | t=4 | t=5 ] =6 ] =7 | t=8 | =9 [ t=10
LRVR-perm. | 000 | 081 [ 067 | 053 [ 048 [ 051 | 061 [ 081 | 0838 [ 1.44
LRVR-trans. | 0.00 | 431 | 433 | 434 | 427 | 415 | 404 | 381 | 345 | 382
MRVR-perm. | 0.00 | 832 | 7.4 | 562 | 427 | 337 | 266 | 386 | 146 | 036
MRVR-trans. | 000 | 076 | 071 | 067 | 062 | 059 | 057 | 053 | 051 | 070
HRVR-perm. | 0.00 | 61.37 | 53.82 | 41.66 | 30.75 | 22.64 | 16.60 | 1931 | 0.08 | 0.01
HRVR-trans. | 000 | 012 | 011 | 010 | 009 | 009 | 008 | 007 | 007 | 0.16

Panel B: 6, =372

Market [ t=1] =2 | =3 | t=4 ] =5 1t=6] =7 | t=81]1=9 |:1=10
LRVR-perm. | 0.00 [ 0.68 [ 057 | 045 [ 042 ] 047 [ 057 [ 069 [ 055 [ 121
LRVR-trans. | 0.00 | 4.14 | 416 | 4.07 | 407 | 394 | 382 | 361 | 330 | 3.62
MRVR-perm. | 0.00 | 6.87 | 598 | 474 | 370 | 3.02 | 238 | 517 | 147 | 045
MRVR-trans. | 0.00 | 071 | 067 | 061 | 058 | 056 | 053 | 049 | 048 | 0.63
HRVR-perm. | 0.00 | 53.52 | 47.78 | 37.68 | 28.55 | 21.59 | 1540 | 2506 | 0.08 | 0.02
HRVR-trans. | 0.00 | 0.10 | 0.09 | 009 | 008 | 007 | 006 | 006 | 006 | 0.14

Panel C: 6, = 37!

Market [ 1=1 ] t=2 | r=3 | t=4 | t=5] =6 | 1=7 | 1=8 | 1=9 | t=10
LRVR-perm. [ 0.00 [ 046 [ 037 [ 029 [ 030 ] 037 [ 044 [ 042 ] 0.9 [ 0.80
LRVR-trans. | 0.00 | 3.65 | 3.66 | 3.63 | 356 | 346 | 332 | 313 | 286 | 3.15
MRVR-perm. | 0.00 | 451 | 402 | 324 | 256 | 189 | 227 | 160 | 050 | 0.81
MRVR-trans. | 0.00 | 0.59 | 056 | 052 | 049 | 047 | 046 | 043 | 041 | 052
HRVR-perm. | 0.00 | 36.97 | 33.89 | 28.05 | 2252 | 17.18 | 11.58 | 30.76 | 0.11 | 0.02
HRVR-trans. | 0.00 | 0.09 | 0.08 | 008 | 007 | 006 | 006 | 005 | 006 | 0.10

There are, however, differences between the transient price impact and perma-
nent price impact cases. In particular, when looking at the MRVR-perm. market
one can observe a clear drop in the adaptive-deterministic ratio. This observation
directly supports the view that additional transaction fees can constrain the utiliza-
tion of optimal adaptive strategies and helps to explain the MRVR-perm. results in
Table 3. Indeed, one can observe from Table 4 that the adaptive-permanent compo-
sition is in fact generally more affected when price impact is permanent. One reason
for this is that 7’s strategy is more direct and to the point in the transient price im-
pact case. This combined with the fact that nonzero transaction fees hinder A from
taking advantage of 7 ’s forthright approach amounts to transaction fees having a
limited impact on R, ; under transient price impact.
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5 DISCUSSION

This section provides a discussion of the significance of various model assumptions
and how these assumptions could be altered, extended, or relaxed entirely. Directions
for future research are set forth. A reasonable starting point is the way information
and price impact are modeled in the paper.

Information, Price Impact, and Transaction Fees

First, it should be noted that the price impact in the model is interpreted to be
liquidity-driven (or, flow-driven). This is in contrast to, e.g., Kyle (1985) where price
impact is information-driven; should the market makers in the Kyle-model believe
(with probability one) that none of the traders in the market possess any fundamental
information, then orders from these traders would not have a price impact. Hence, as
it is assumed that the trading needs of 7 are not driven by fundamental information,
the traders in the present model would not induce information-driven price impact.
For this reason the model presented does not feature an additional information-based
component.®

It is, however, worth pointing out that a potential extension is to augment the
information structure of the present model and to consider a model where at least
some of the traders are endowed with fundamental information and where the price
dynamics take the form:

Aps = g +yq; — (1 —a)s;—1,

where A; is the endogenous Kyle-lambda.?* This hybrid model would feature both
linear permanent price impact and transient price impact and optimal execution
strategies in this setting are presently an open question. In general, models fea-
turing combinations of different types of price impact functions are scarce. Park and
Van Roy (2015) is one recent example.

Second, in the present model it is assumed that asymmetric information is one-
sided, i.e., A is uncertain about 7 ’s initial position while A’s initial position is com-
mon knowledge. Relaxing this assumption would require one to take into account
the issues, which ensue from the use of non-nested information sets, and this would
add an additional layer of complexity to the model. Moreover, since the zero initial
inventory assumption for the arbitrageur seems reasonable from an economics per-
spective, the two-sided asymmetric information extension is not developed further

38 One needs to be somewhat careful in specifying the form of different price impact functions to avoid potential

(quasi-)arbitrage (cf. Huberman and Stanzl 2004) or transaction-triggered price manipulation (cf. Alfonsi et al.
2012).

39 Naturally, one could allow vy to be time-varying as well.
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here. For the interested reader, Choi et al. (2019) is an example of a closely related
model with two-sided asymmetric information.

Another extension related to information structure is robust trading in a setting
where 7~ is ambiguity averse and faces uncertainty pertaining to the prior beliefs
of A. For instance, A could either be totally oblivious with regards to the trading
needs of 7 or, alternatively, A could have been extensively studying 7 ’s financial
position before trading commences and thus have a very accurate idea about the
initial position %o.*’

Finally, pertaining to different specifications for transaction fees, Schied and
Zhang (2018) illustrate that, under certain restrictions, quadratic transaction fees can
be replaced with proportional ones without changing equilibrium outcomes. Ulti-
mately, the choice of the functional form depends on what aspect of total costs one
wishes capture. Quadratic costs are typically linked to slippage costs*! while (linear)
proportional costs may be seen as representing, e.g., transaction taxes.

Resilience, Limit Order Book, and Queuing

Continuing with topics related to price impact modeling, the model discussed as-
sumes a recovery parameter « to capture the key aspects of transient price impact,
abstracting over the micro-foundations of this assumption. Whilst this approach is
sufficient and justifiable for the goals of this paper, one could pursue a more detailed
procedure. For example, one could superimpose a model of a limit order book, as in
Obizhaeva and Wang (2013), on top of the current model and specify from that a (at
least semi-endogenous) resilience function to be used instead of the parameter «.

However, delving deeper into modeling LOBs, one must acknowledge the exis-
tence of typical price-time priority rules which would represent a deviation from the
assumption utilized above that all period ¢ trades are executed simultaneously and
at the same price. Taking priority rules into account may provide new insights and,
at the same time, complicate the model in various ways, depending on the approach
taken.

The simplest way to consider time priority in the present model is to assume that
one trader—the logical choice is A—has a natural speed advantage and thus is, at
each period, able to basically front-run the other trader. Alternatively, one could
assume that the priority at each period is determined via a (possibly biased) coin-
flip. The first mentioned approach clearly makes matters worse for 7 in the form
of increased execution costs. Furthermore, the minimum revelation strategy of 7~
becomes less usable and an optimal strategy drifts away from larger, more revealing,
trades. The second approach has a more ambiguous impact on profits and execution
costs.

40
41

Ambiguity-averse strategic trading is studied in, for example, Vitale (2018) and Schied (2013).
Slippage costs could arise from, for instance, temporary price impact which causes a difference between the
expected price of a trade and the price at which the trade is eventually executed.
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Schied and Zhang (2018) illustrate the emergence of distinctive (“hot potato’)
oscillations in a perfect information, “coin-flip priority”, transient price impact ex-
ecution game. A reasonable question to ask is whether or not this could happen in
the present model as well. The answer is a tentative no and the justification for the
answer is as follows.

Suppose that, at each period, there is an exogenous probability & € (0, 1) that 7’s
period ¢ order is executed at price:

Pi =P +y(u+€)—(1—a)s—1,

and A’s order is executed, immediately after, at price:

p;k* = Pr-1 +’)/(l/tt +v:+ E[) - (1 —a’)St—l-

In other words, if 7~ gets to trade first at period #, she is able to avoid the additional
trading cost stemming from v;, while A incurs the price impact of both his own and
7’s trade. Naturally, with probability 1 —¢ the roles are reversed.

It is easy to see that the effect of this change in the model is transmitted through
changes in the value function coefficients of 7 and A, leaving the state variable dy-
namics unchanged. Hence, the end result will be, depending on what values certain
parameters take, either amplification or attenuation of the effects at play in the anal-
ysis above, instead of the rise of completely new trading strategies. Furthermore,
it should be noted that an important prerequisite for synchronous oscillatory trad-
ing is precise knowledge about the position of the opposing trader—in the present
asymmetric information setting A does not possess this knowledge.

Multiple Traders

The model discussed features two prominent players: 7 and A. A natural exten-
sion would be to consider an extension where there are multiple arbitrageurs and a
single 7. A straightforward way to achieve this is to assume there are N > 1 arbi-
trageurs with identical prior beliefs, initial positions, and strategies (cf. Holden and
Subrahmanyam 1992).

An extension featuring multiple heterogenous arbitrageurs is trickier since in this
case the interactions between the arbitrageurs become more complicated even if there
is no information asymmetry among the arbitrageurs. Complicated interactions are
likely to yield inconclusive inferences. Alternatively, one could devise the multi-
player model in a mean field game framework (cf. Huang et al. 2019) to avoid some
of the problems related to games with a finite number of heterogenous players.

Continuous Time Limit and Endogenous Trading Horizons

The question of existence of the continuous time limit of a discrete model, or alter-
natively, determining the discrete time model, assuming one exists, of which a given
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continuous time model is a limit of is an important topic with practical relevance (cf.
Duffie et al. 1992). The former can be achieved in the context of the present model
by examining equilibrium outcomes when the time between trades approaches zero.
The version attained using this approach can be coined as the (continuous time) limit
model.

As illustrated, for example, by Huberman and Stanzl (2005), Caldentey and Stac-
chetti (2010) and Schied et al. (2017) equivalence of the continuous time limit model
and a pure continuous time model—i.e., a model developed directly using the princi-
ples of continuous time stochastic processes—is not guaranteed nor is the existence
of continuous time equilibria or the continuous time limit for that matter. More
specifically, Caldentey and Stacchetti (2010) show, utilizing a Kyle-type model, that
the limit equilibrium obtained by letting the time between trades to go to zero does
not constitute an equilibrium in the pure continuous time model. A proper treatment
of the continuous time limit is beyond the scope of this paper and is left for further
research.

Another important timing related assumption is that the model has a fixed termi-
nal date after which trading ceases. As an alternative Moallemi et al. (2012) suggest
studying an infinite horizon model with suitable objective functions such that, up to
a point, faster liquidation is preferred to slower.** This approach is certainly worth
looking at as, in addition to endogenizing the trading horizon, it allows one to effec-
tively supplement the model with time-varying or regime-switching dynamics in the
spirit of Becherer et al. (2018) and Siu et al. (2019).

Soft Targets with Inventory Costs

Above it is assumed that 7 (A) must end up with x7 = 0 (yr4; = 0), i.e., the traders
are subject to hard trading constraints. Consider instead a situation where 7~ is al-
lowed to choose x7 freely, but incurs a penalty of, say, c(x7) > 0, whenever |x7| # 0.4
How does shifting from a hard constraint to a soft one change 7 ’s trading?

Simple terminal penalty, as depicted above, has a rather predictable impact. In-
deed, one can think of the present model as one with an infinite terminal penalty
and therefore it may be conjectured that there exists a threshold terminal penalty,
above which 7 finds it optimal not to deviate from the target and below which de-
viations become profitable when the relevant performance criteria is total execution
costs. Naturally, if one lets the terminal penalty to go to zero then, subject to a profit
maximization objective, 7 does not trade at all thus securing zero execution costs.

Running inventory penalty, however, could change the equilibrium dynamics in
a fundamental way. A case in point is Cartea et al. (2017) who illustrate that, in

42 Endogenous horizons in strategic trading models are previously featured in, for example, Holden and Subrah-

manyam (1996), Easley et al. (2015), and Brunovsky et al. (2018).
This example focuses solely on 7~ but nothing prevents one to relax assumptions about A’s terminal position as
well.

43
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a market-making context, running inventory penalties can be linked to ambiguity
aversion. Simply put, in this case 7 incurs periodic costs from holding inventory and
thus is encouraged to trade faster. Under running inventory costs, optimal strategies
may feature pace changes: initially the trader wishes to shed inventory quickly to
reduce costs after which a slower camouflage strategy is adopted to delay revelation
of the remaining private information.

Utility Functions and Gaussian Noise

The model involves assumptions pertaining to utility functions and return distribu-
tions. A simple risk averse extension with negative exponential utility of the present
model is feasible and potentially valuable. Indeed, risk aversion has been shown to
yield important insights in conjunction to optimal execution problems (cf. Schied
and Schéneborn 2009b).

Relaxing the assumption of Gaussian uncertainty is more complicated as this as-
sumption is linked to the “shape” of the resulting equilibrium. While numerical
methods could be used to solve the filtering equations and to solve the resulting opti-
mization problems, one should be wary of not ignoring the technical issues stemming
from moving beyond Gaussian uncertainty. For example, one may have to consider
an alternative equilibrium concept to the PBE used above due to an inability to im-
pose Bayes’ rule.

Nevertheless, a model with more general distributional assumptions is without a
doubt an interesting modeling challenge. Even more ambitiously, one could consider
a model with general objectives as well as general return and noise distributions in
the spirit of Bernardo and Judd (2000). This type of extension would be a very
comprehensive exercise in the efficiency and flexibility of modern computational
methods.

Uncertainty about Presence of A

Uncertainty about the presence of A brings about a new, novel component by chang-
ing the nature of the asymmetric information in the model.** While A, if present,
is still in the dark about the initial position xy, 7~ also now faces incomplete infor-
mation pertaining to whether (A is actually present in the market. So, in a similar
fashion as A tries to learn the stock position of 7 from price changes, 7 now tries to
infer whether there are, hidden in the aggregate order flow, adversary trades of A.*

This type of setting with two-sided asymmetric information results in a model
noticeably more involved than the one discussed in this paper. Nonetheless, the main

4 Uncertainty about the presence of 7~ could also be considered. This angle to the problem is, however, less

interesting from an economic point of view. Further, one can think of uncertainties pertaining to 7~ to be embedded
in the prior beliefs about Xo.

Models of strategic trading featuring uncertainty about the presence of certain traders are studied in, for example,
Chakraborty and Yilmaz (2004) and Back et al. (2017).

45
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intuition is rather straightforward. From the viewpoint of 7, protecting against ‘A is
costly if A is actually not present and not protecting is costly if A is present. From
the viewpoint of A, having 7 believe that she can essentially operate adversary-
free—along the lines of the greatest trick the devil ever pulled—is the key to ef-
fectively learning 7 ’s position at which point it will be too late for 7 to shift into a
camouflage mode. Thus, A’s optimal strategy in this environment is likely to involve
a slow learning phase at the beginning and a faster profit phase towards the end of
the trading horizon.

A proper analysis of this case is left for future research. One can, however, look
at the present model as a certain special case of a more general model, featuring a
form of uncertainty about the presence of A. To see this, suppose Q" = {Q1, ..., Qx},
for some k € N, is a set of appropriate subjective measures, consistent with a control
u, and assume that Q; assigns probability 1 to the event that (A is present while other
measures in the set assign a probability between 0 and 1 to the same event. Then,
the present model can be viewed through the lens of robust optimization such that 7
solves:

T-1
max { min B2 A 718
uE‘LI{QEQ“ [TZ:; pT+1xT|7:t ]}

where U is the set of admissible controls (cf. Iyengar 2005). Interpreting the above
as a game of its own, it is noted that for any control u, “nature” chooses Q € Q
such that the objective is minimized. In this case, under the working assumptions,
7 always solves the problem as if A is present with probability one. Therefore, the
solution in this special case concurs with the solution of the model without ambiguity.

6 CONCLUSION

While optimal execution under transient price impact has been studied extensively,
the existing models typically feature a single trader without strategic interactions in a
complete information setting. This setting, for the most part, is not the most realistic
one, and—in light of the present paper—features modeling choices, such as ignoring
strategic interactions and asymmetric information, not strictly necessary for estab-
lishing a parsimonious optimal execution model. Indeed, complementing existing
literature, the model depicted above illustrates an order execution game, featuring
coupled strategic trading of a large liquidating trader and a (predatory) arbitrageur
under transient price impact, asymmetric information, and quadratic transaction fees.

The main theoretical contribution presented in the paper is the description of a lin-
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ear equilibrium of the order execution game together with an appropriate verification
theorem and the analysis of the properties of this linear equilibrium. Furthermore,
equilibrium existence and uniqueness are discussed in detail. For example, a way to
proceed with the problem of verifying equilibrium existence and uniqueness in the
discrete time dynamic programming formulation is put forth. This approach is based
on an application of interval polynomial theory and could prove to be an interesting
area for further research. Furthermore, to emphasize the links to earlier attempts to
model optimal execution problems with transient price impact, the present model is
compared to other existing models and it is illustrated that, despite different foun-
dations, these models share key common features. For instance, it is verified that
without an adversary player, the deterministic part of the liquidating trader’s strategy
corresponds to deterministic optimal strategies derived in earlier models. Finally, an
extensive discussion pertaining to the model assumptions and extensions is provided
together with an overview of possible venues for future research.

Theoretical results are complemented with an extensive numerical analysis. A
key observation from this analysis is that shifting from permanent to transient price
impact markedly changes the equilibrium trading strategies of both the liquidating
trader and the arbitrageur. Namely, under transient price impact the arbitrageur trades
conservatively, focusing mostly on liquidity provision. As a consequence, the liqui-
dating trader adopts a more straightforward strategy and trades, for the most part, as
if there were no arbitrageur. Moreover, the dynamic programming treatment of the
order execution game combined with the nature of uncertainty in the game yields
adaptive, instead of deterministic, equilibrium trading strategies.

In additional numerical examinations, focusing on expected execution costs, it
is discovered that both optimal and suboptimal trading strategies for the liquidating
trader perform better under transient rather than permanent price impact. This is
mainly because transient price impact changes the nature of interactions between the
liquidating trader and the arbitrageur. Furthermore, it is shown that small transaction
fees may improve the performance of suboptimal strategies of the liquidating trader,
especially if price impact is permanent. The intuition of this result circles back to the
fact that transaction fees may alleviate the problem of adversary trading and thus in
fact reduce the execution costs faced by the liquidating trader.
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APPENDICES

A PROOFS

Appendix A contains the proofs from Sections 2 and 3. Prior to moving to the proofs,
a short refresher is in order.

The order execution game features four states variables: x;, y;, 4y, and s;. All of
these state variables evolve from period to period with the trades of 7~ and ‘A. Recall
first, that x; = x,_; + u, from which it is obtained that

X =1+ ax)Xe—1 +ay i1+ auit—1 + ag 1 Si-1. (a.1)
Similarly, from y; = y;_| + v, it follows that:
yr=(1 +by,t))’t—1 +b,u,t,ut—1 +bstS-1.

Regarding s;, one obtains:

= as—1+Yq;:.

The dynamics of y; are given in (14) and verified in the subsequent proof.
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Proof of Proposition 1. Equality (13) follows the fact that the innovations (z;) are
obtained from the observations (Ap;) via invertible linear causal operations (cf. An-
derson and Moore 1979). Hence, the o-algebras generated by the two are indeed
equivalent. Further, the first equalities in both (14) and (15) follow from (11).

Due to the Gaussianity of the random variables involved, the conditional mean
(14) is obtained using (a.1) and noting that g; is essentially a linear regression slope
coefficient. Similarly, the conditional variance o is obtained using (a.1) and:

o7 2 V|5 | y.2| = (1 — (CORR[%.z, |yt,z’-1])2) x V(x| 27],

where CORR] - | refers to correlation and where it is recalled that z' = (z1,...,z,). ®

Due to the fact that the state variables have stochastic (Markovian) dynamics, one
faces the question of conditional moments of the state variables. This question is
addressed in Lemma A.1.

Lemma A.1 (State variable moments). The conditional moments for the state vari-
ables y; and s; under linear strategies are:

Blus, | 7,
Bl5, | 77

=E[i | 7" 1%B[5 | 7 | +v6,0¢,
Eli | 77 ¥E[5, | 77 + 0,02

E[f, | 7:;]—] =qyyr-1tasrSi—1 + (ay,z +6:/ (&x,tp;z_l))ﬂl—l + et(“t —AyYr-1— Clu,tllz—l),
B, | 77 =ty i1 +asisin+(1+ Qo+ e i,
Vi | 7=y 60,
Via | 7';3{] :7_29120%(1 + (&x,tp,_l)z),
E[5; | ﬁT] =as;_| + y(u, +by Y1 + by -1 + bs,tst_l),
E[3 | 7‘7?{] =S+ Y(Vt +ay Y1 + (G + Qg )r—1 + &s,tst—l),
Vs |7 =yor,
N 7‘-;%] =720'§(1 + (&x,tpt—l)z),
]
|

Proof of Lemma A.1. The first two conditional expectations are obtained via the re-
sults from Proposition 1, while the following two conditional variances are obtained
using the properties of variance as well as the scaling relation p; = yo;/0. Iden-
tical approach can be utilized for the next four conditional moments. The last two
relations are obtained by using the law of total expectation and recalling that &, for
t=1,..,T+1,is an i.i.d., zero mean Gaussian random variable independent of the
other random variables in the model. [ ]
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In the proof of Theorem 1, the Lemma A.l has a key role in verifying the
quadratic nature of the periodic optimization problems. For example, using the above
conditional moments, for K € {7, A}, one immediately obtains:

2
E[(5)” | 771 = V5 | 7+ (B[, | 7).
which can in turn be used to evaluate the value function terms related to ¢ and dyg s
respectively.

Proof of Theorem 1. The first step is to set up the optimization problem for period
t. Starting with 7, using (7), one obtains:

max E[(y(u, +v+&)—(1—a)si— )x,_l +U; | 77,7]
=max ]E[(y(ut +v+&)—(1- a)s,_l)x,_l +¢;-vech] ®¢7)7 | ?;T],

where £7 is given in (7) and where it is recalled that:

A
¢ = (Cxx,t, Coxy,t> Cxpa,ts Cxs,ts Cyy,ts Cyu,ts Cys,ts Cupt> Cus,ts Css,t)-

The quadratic nature of the problem can be verified by fixing v; to (6) and using the
above described state variable dynamics and Lemma A.1. Based on Proposition 1
and Lemma A.1 the system of beliefs is consistent with Bayes’ rule. Therefore, due
to the quadratic nature of the problem, sequential rationality is ensured via the first
and second order optimality conditions.

The first order condition for 7, obtained from the above is:

2
- 2(Cxx,t +YCxsttY Cssp + ax,tgt(cxy,t +YCust + C,up,tax,tgt))ut
= (7 + 2Cxx,t +YXxset ax,tetcxy,t)xt—l + Ayyt—l + A,u/lt—l +AsSi-1,

from which, by matching coefficients, one can recover the a,-polynomial which is
clearly independent of ay,, a,,, and a,,. The scaled variance p,—; does, however,
appear in the polynomial, for instance, through 6; (cf. Proposition 1). Thus, one
must utilize (16) to simplify the first order condition to a standard polynomial in
a, and hence the recursive equation for p,;_; is an integral part of the equilibrium
construction.

The lengthy terms in front of ay;, a,;, and a,, are suppressed (A,, Ay, and Ay)
to keep the presentation concise. These terms can be recovered from the first order
condition in a straightforward manner. The second order condition (19) is immediate.

To proceed, the first order condition for A is presented next. The optimization
problem of A is:

max E[(y(uz +vi+&)—(1- CY)St—l))’t—l + Vi ﬁﬂ]

omax B[ (y(u +v,+ &)~ (1= @)si1 i1 +dy - vech@ o277 | 77,
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where £ ;7[ is given in (8) and where it is recalled that:

A
dl = (dyy,ta dyy,ta dys,t, dyy,t, dys,t’ dss,t)-

Again, the quadratic nature of the problem can be verified by fixing i, to (5) and using
the state variable dynamics given in Lemma A.1. Sequential rationality follows as
above.

The first order condition for A is:*¢

_Z(dyy,t + ydys,t + yzdss,t)vt = Byyt—l + B,u/«lt—l + Bgsi-1.

The second order condition (20) is immediate.
Similarly to the a,-polynomial, one obtains from the above first order conditions
for 7~ and A the following set of linear systems, for i € {y,u, s} and AEI)BEI) * 1

B§‘>A§°>+B§°>
MY’
(1-a5") (a2)
0 1
dir = AE )+AE )bi,t,

bi,t =

where one utilizes the fact that (A;, B;) parameters have decompositions:

A; =AY +AVb;, and
B; =B + B a;,.

Thus, for instance, (Ay, By) only depend on a,,—which is obtained from the a,-
polynomial and thus known at this point—and (a, s, b, ;). Consequently, the equilib-
rium linear systems are square—two equations and two unknowns—and therefore
any solution pair obtained will be unique. [

Proof of Proposition 2. Omitted. [ ]

B NUMERICAL APPROACH

Appendix B gives the details of the numerical algorithm used to solve for a PBE in
the model.

The final step in each period t =T +1,7,...,2, moving backwards in time, is to
update the value function coefficients to be used in the preceding period. Value

46 Note that setting @ = 1 effectively shuts down the s-channel, i.e., all coefficients with the s subscript will be

equal to zero. Then, setting y = A, one can recover the Moallemi et al. (2012) model.
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function coefficients are updated via (lengthy) linear recursions, which are omitted
here for the sake of brevity.

ALGORITHM: Iterative equilibrium search

Input: Trading horizon for 7°, denoted by 7', prior parameters for A, denoted by 1o and op. Model constants: yg, o, ,
a, and 6,. Iteration control: Set counter := 0, fix m, referring to the maximum number of iterations permitted, x
referring to strategy update step-size, and a stopping threshold € > 0.

Output: Forall t =T +1,T,..., 1, the equilibrium trading and value function coefficients:

* T
@z,
T . T+14
a: =(ax» Ayrs Qs as;) , A" = . eR'
@p’
3k 3k 3k sk sk sk sk sk sk ok ok sk ok
*  \T
(bT+l)
T [ . T+13
b: :(hy,h by,l, b.y,t) 5 B = . eR
T
and two sequences of scaled variances: p = (0o, 1, ... ,0r), referring to initial scaled variances, and

p = (o, P1, ... ,pr), referring to closing scaled variances.

Fix po and set & := a*4, heureka := 0.¢

while (heureka = 0 and counter < m) do
Compute p using 4,’s, for t = 1,...,T, and py and, using the traders’ boundary conditions, assign values for a,/, by,
for#’ =T +1,T, as well as ¢7_; and dr_;.°
for (r=T-1,T-2,..,1)

Solve the a,-polynomial to obtain a.

Using ay,, find p;—; via (16).

Obtain the rest of the constants in a, and b, using (a.2).

Check the second order conditions (19) and (20).

Collect a, and b, to A and B respectively.

Find ¢, and d, using a, and b, and the value function coefficients from the present round.
endfor

Compute p using a,,’s solved in the for-loop.

if ||p - Bll < € then

HEUREKA! Le, set heureka := 1. The algorithm terminates.

Return A and B from the last iteration.
else

‘ Update guess: 4 := ki + (1 —«)col; (A).
end

end

a

a®d refers to the Bertsimas and Lo (1998) strategy in which, for all 7, a,, = (t— (T + 1))71, and ay; = a,, = ay; = 0.
b

Due to the special nature of the last two periods, these coeflicients are determined easily. See Section 3.1. Note also that a,,
b, (without hats) refer to the equilibrium candidate values for the trading coefficients as opposed to &, which is used to refer to the
conjectured strategy.

pr is an intermediary scaled variance not to be confused with p, the elements of which are all known at beginning of the for-loop
or P, the elements of which are determined outside the for loop.
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C EQUILIBRIUM ANALYSIS VIA INTERVAL
POLYNOMIALS

In this appendix a short example on using univariate interval polynomials in analyz-
ing equilibrium uniqueness and existence is discussed. For this purpose, suppose that
T +1=4. It is easy to see that equilibrium solutions at periods ¢ = 4,3 are unique.
This observation stems from the fact that there are only limited strategic interactions
in the last two rounds since the options of both 7~ and A are constrained by their
respective trading targets.

What about round 7' — 1 = 2?7 One can verify that the cubic polynomial for ay
takes the form:

fla) 22(= 1= =)W+ Wa)ad, +(=5-5(1-a)W, +3W,)a%,
+(=4-40 - )W + Wa)aro+ (- 1-(1—a)W;) =0, (22)

where
a
2Q2—a)
L(I=—a)pr
22-a)

A
1 =

+1,
W>

Via direct substitution it is easy to check that a,» = —1/2 and a,2 = —1 solve (22)
for @ € (0,1]. Of these roots, noting that a,3 = —1, the latter is not consistent with
7s equilibrium strategy.’

There is still one root not accounted for. To proceed, fix @ = 1.*8 Then, (22)
simplifies to:

~2a),-5a%, —4a. -1 =0, (23)

whence one obtains Ay = 0, where Ay is the cubic discriminant, indicating that (23)
has a multiple root. In this case the multiple root is a,» = —1 which, as noted earlier,
is incompatible with the equilibrium strategy. It follows that a,» = —1/2 is the unique
solution to (23).

How crucial is to assumption @ = 1?7 By examining (22) with a € (0,1), one
observes that a,, = —1/2 generally continues to be the unique (feasible) solution
with the other two solutions lying somewhere in (—1 — €, —1], for small € > 0.

Now, only period ¢ = 1 remains. It is crucial to note that by simply looking at
the solutions of the r = 1 a,-polynomial f for fixed coefficient values would not be

4T To see why this is the case, one should consider what happens to the scaled variance (16) if a,; = —1, for some

t<T.
48 With this assumption, one can delay introducing interval polynomials to period f = 1.
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sufficient in determining the equilibrium path uniqueness over a larger parameter
space. The reason for this is intuitive. Changes in the a,-polynomial coefficients can
change the real solution set for this polynomial and thus, while feasible solutions
exist for some part of the parameter space, this might not hold for the whole space.

However, starting with a fixed parametrization for which an appropriate solution
does exist, one should expect that—at least around a small enough neighborhood—
this existence continues to hold, i.e., that the polynomial is well-behaved. The ques-
tion then becomes: Where are the limits of the parameter space where existence is
compromised and do the limits belong to the interior of the so-called economically
sensible part of the parameter space? This is just an example question to which
interval methods can be applied.*’

The above discussion implies that:

(a,y) €I, x I, CR?,

where I, = (0,1] and I, C R are appropriate intervals for & and y respectively.
Therefore, the period ¢ = 1 a,-polynomial can be treated as an interval polynomial:

3
[flaxn = {kaai;] L feelff e R},
k=0

with piecewise polynomial upper (f,) and lower (f;) bound functions:

fu(a )£ {f’:—(aX) = Z“12=0 Ifal;,l x20,

- _ £33 2 2 1
filay) = [ a uax’1+flax,1+fl? x<0,

_ N3 sk ok
fl+(ax)—zk:0flax’1 x>0,
- _ 3.3 2.2 1
fl (ax)—fuax’1+ lax’1+fuax,1+flo x<0.

One can now utilize Theorem 12. from Zhang and Deng (2013) and the related al-
gorithm to determine the number of interval zeros of [ f](a,). Should one obtain that
this number is zero, then the implication is that no equilibrium (of the desired form)
exists for the given parametrization. Alternatively, if the interval polynomial has a
single, i.e., a unique, solution on (—1,0) then each stage problem (¢ = 4,3,2,1) in the
dynamic program has a unique solution. In other words, the solution path is unique.
Preliminary numerical tests support this view. Naturally, one could also adopt the
above described approach to a general T (> 4) in which case interval methods need
to applied multiple times.

Although the interval approach is compelling and relatively simple to use, there
are some caveats related to this approach in the present context. First, it is implicitly
assumed above that a, | is restricted to (—1,0). While this holds in the numerical tests

filax) = {

4 Interval arithmetic is implemented in the INTLAB toolbox (cf. Rump 1999) for MATLAB®. For the purposes
of the analysis described here, one does not require numerical interval arithmetic.
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and is consistent with the equilibrium characterization, it is possible that there are
cases in which this assumption is violated. At the same time, extending the interval
to which the solutions are assumed to belong, increases the likelihood of “spurious
solutions”, which are indeed interval zeros, but which cannot be considered to part
of a sensible equilibrium solution. Second, deriving exact bounds for coefficient
intervals [ flk , £*1, needed to make sharp conclusions about the equilibrium properties,
is complicated.

Finally, related to the last point, a large T implies that interval methods need to
be utilized multiple times and this considerably increases the computational effort
required to solve the problem. For example, one must take into account a multitude
of different coefficient intervals. Nonetheless, these caveats are surpassed by the
benefits and insights gained from better understanding of equilibrium properties, es-
pecially in cases where these properties are central to answering the questions posed.



ISBN 978-951-29-8055-0 (PRINT)
ISBN 978-951-29-8056-7 (PDF)

ISSN 2343-3159 (Painettu/Print)
ISSN 2343-3167 (Verkkojulkaisu/Online)




	ABSTRACT
	TIIVISTELMÄ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF ORIGINAL RESEARCH PAPERS
	Part I SYNTHESIS
	1 INTRODUCTION
	1.1 Motivation
	1.2 Research Questions
	1.3 Structure

	2 STRATEGIC TRADING, OPTIMAL EXECUTION, AND TRANSACTION COSTS
	2.1 Background
	2.2 Curious Case of Price Impact
	2.3 Explicit Transaction Costs
	2.4 Other Modeling Choices
	2.5 Recent Research

	3 NUMERICAL REAL ALGEBRAIC GEOMETRY
	3.1 A Quick Overview of the Field
	3.2 Gröbner Bases and Polynomial Homotopy Continuation
	3.3 Polynomial Optimization
	3.4 Interval Polynomials
	3.5 Applications of NRAG in Finance and Economics

	4 OVERVIEW OF INCLUDED ESSAYS
	4.1 Applications of Numerical Algebraic Geometry in Strategic Trading and Portfolio Optimization
	4.2 Risk Preferences, Dynamic Equilibrium, and Trading Targets
	4.3 Order Execution Game with Transient Price Impact and Asymmetric Information

	REFERENCES

	Part II ESSAYS
	I Applications of Numerical Algebraic Geometry in Strategic Trading and Portfolio Optimization
	Abstract
	1 INTRODUCTION
	2 TOOLS FROM ALGEBRAIC GEOMETRY
	2.1 Preliminaries
	2.2 Polynomial Optimization Problems
	2.2.1 Theory
	2.2.2 Implementation and Earlier Applications

	2.3 All-Solutions Using Homotopy Methods
	2.3.1 Theory
	2.3.2 Implementation and Earlier Applications

	2.4 All-Solutions Using Gröbner Bases
	2.4.1 Theory
	2.4.2 Implementation, Usage, and Earlier Applications

	2.5 Connection Between Polynomial Optimization and All-Solutions Methods

	3 OPTIMAL EXECUTION
	3.1 Problem Statement
	3.2 Nonlinear Temporary Price Impact
	3.3 Trading-Enhanced Risk
	3.4 Optimal Execution of Contingent Claims
	3.5 Additional Considerations in Optimal Execution Models

	4 HIGHER MOMENT PORTFOLIO OPTIMIZATION UNDER QUADRATIC TRANSACTION COSTS
	4.1 Portfolio Optimization Model
	4.2 Numerical Examples
	4.3 Portfolio Optimization Extensions

	5 ALL SOLUTIONS IN DYNAMIC MARKET EQUILIBRIUM
	5.1 Strategic Trading Model
	5.1.1 Market structure and trader types
	5.1.2 Strategies and equilibrium concept
	5.1.3 Information structure and filtering

	5.2 Examining Equilibrium Uniqueness Numerically
	5.3 Related Applications of All-Solutions Methods

	6 CONCLUSION
	REFERENCES
	APPENDICES
	A POLYNOMIAL OPTIMIZATION DETAILS
	B ALGORITHM FOR PORTFOLIO REBALANCING
	C HATTED PROCESSES AND INFORMATION SETS
	D ALGORITHM FOR DYNAMIC STRATEGIC EQUILIBRIUM
	E EXISTENCE AND UNIQUENESS IN FINAL PERIOD


	II Risk Preferences, Dynamic Equilibrium, and Trading Targets
	Abstract
	1 INTRODUCTION
	2 PRIOR LITERATURE
	3 MODEL
	3.1 Overview
	3.2 Objective Functions
	3.3 Equilibrium Definition
	3.4 Learning and Beliefs

	4 TWO-PERIOD EXAMPLE
	4.1 Equilibrium Properties
	4.2 Numerical Results for Two Period Model

	5 FULL MODEL
	5.1 Equilibrium Derivation
	5.2 Solutions to Equilibrium System of Equations
	5.3 Numerical Results for Full Model
	5.3.1 Trading coefficients and price impact
	5.3.2 Intraday patterns
	5.3.3 Risk seeking informed trader


	6 CONCLUSION
	REFERENCES
	APPENDICES
	A PROOFS
	B NUMERICAL ANALYSIS


	III Order Execution Game with Transient Price Impact and Asymmetric Information
	Abstract
	1 INTRODUCTION
	2 MODEL
	2.1 Preliminaries
	2.2 Optimal Execution Problem
	2.3 Equilibrium Concept
	2.4 Information and Filtering

	3 MODEL ANALYSIS
	3.1 Illustrative Example
	3.2 Dynamic Equilibrium

	4 NUMERICAL RESULTS
	4.1 Values for Exogenous Parameters
	4.2 Liquidation without Adversary
	4.2.1 Deterministic and Adaptive Components
	4.2.2 Comparison to Other Transient Price Impact Models

	4.3 Liquidation Facing Adversary
	4.3.1 Evolution of Traders’ Positions
	4.3.2 Trading Coefficients
	4.3.3 Belief Evolution
	4.3.4 Strategic Interactions and Size of Adaptive Component

	4.4 Expected Execution Costs
	4.4.1 Expected Costs of Optimal and Suboptimal Strategies
	4.4.2 Impact of Transaction Fees


	5 DISCUSSION
	6 CONCLUSION
	REFERENCES
	APPENDICES
	A PROOFS
	B NUMERICAL APPROACH
	C EQUILIBRIUM ANALYSIS VIA INTERVAL POLYNOMIALS





 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 7.717 x 10.630 inches / 196.0 x 270.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     -4
            
       D:20200420123754
       765.3543
       Blank
       555.5906
          

     Tall
     1
     0
     No
     1802
     467
     QI2.9[QI 2.9/QHI 1.1]
     None
     Right
     8.0504
     -0.2835
            
                
         Both
         81
         AllDoc
         89
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

        
     10
     231
     230
     231
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: before current page
     Number of pages: 2
     Page size: same as page 1
      

        
     Blanks
     0
     Always
     118
     2
     /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
     1
            
       D:20200406135050
       765.3543
       Blank
       21.2598
          

     LAST-1
     Tall
     1289
     415
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     BeforeCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   InsertBlanks
        
     Where: after current page
     Number of pages: 1
     Page size: same as page 1
      

        
     Blanks
     0
     Always
     118
     1
     /E/Työt/Yksityiset/Rantaralli 2018/aikakortti_takasivu_2018.pdf
     1
            
       D:20200406135050
       765.3543
       Blank
       21.2598
          

     LAST-1
     Tall
     1289
     415
     AllDoc
     qi3alphabase[QI 3.0/QHI 3.0 alpha]
     1
            
       CurrentAVDoc
          

     SameAsPage
     AfterCur
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.929 x 9.843 inches / 176.0 x 250.0 mm
     Shift: none
     Normalise (advanced option): 'original'
      

        
     -4
            
       D:20150206130427
       708.6614
       B5
       Blank
       498.8976
          

     Tall
     1
     0
     No
     1802
     467
    
     QI2.9[QI 2.9/QHI 1.1]
     None
     Right
     8.0504
     -0.2835
            
                
         Both
         81
         AllDoc
         89
              

       CurrentAVDoc
          

     Uniform
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus3
     Quite Imposing Plus 3.0k
     Quite Imposing Plus 3
     1
      

        
     233
     234
     233
     234
      

   1
  

 HistoryList_V1
 qi2base



